xref: /netbsd-src/sys/arch/atari/dev/clock.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: clock.c,v 1.59 2014/07/25 08:10:32 dholland Exp $	*/
2 
3 /*
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * from: Utah $Hdr: clock.c 1.18 91/01/21$
37  *
38  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.59 2014/07/25 08:10:32 dholland Exp $");
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/uio.h>
49 #include <sys/conf.h>
50 #include <sys/proc.h>
51 #include <sys/event.h>
52 #include <sys/timetc.h>
53 
54 #include <dev/clock_subr.h>
55 
56 #include <machine/psl.h>
57 #include <machine/cpu.h>
58 #include <machine/iomap.h>
59 #include <machine/mfp.h>
60 #include <atari/dev/clockreg.h>
61 #include <atari/dev/clockvar.h>
62 #include <atari/atari/device.h>
63 
64 #if defined(GPROF) && defined(PROFTIMER)
65 #include <machine/profile.h>
66 #endif
67 
68 #include "ioconf.h"
69 
70 static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
71 static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
72 
73 /*
74  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
75  * of 200. Therefore the timer runs at an effective rate of:
76  * 2457600/200 = 12288Hz.
77  */
78 #define CLOCK_HZ	12288
79 
80 static u_int clk_getcounter(struct timecounter *);
81 
82 static struct timecounter clk_timecounter = {
83 	clk_getcounter,	/* get_timecount */
84 	0,		/* no poll_pps */
85 	~0u,		/* counter_mask */
86 	CLOCK_HZ,	/* frequency */
87 	"clock",	/* name, overriden later */
88 	100,		/* quality */
89 	NULL,		/* prev */
90 	NULL,		/* next */
91 };
92 
93 /*
94  * Machine-dependent clock routines.
95  *
96  * Inittodr initializes the time of day hardware which provides
97  * date functions.
98  *
99  * Resettodr restores the time of day hardware after a time change.
100  */
101 
102 struct clock_softc {
103 	device_t	sc_dev;
104 	int		sc_flags;
105 	struct todr_chip_handle	sc_handle;
106 };
107 
108 /*
109  *  'sc_flags' state info. Only used by the rtc-device functions.
110  */
111 #define	RTC_OPEN	1
112 
113 dev_type_open(rtcopen);
114 dev_type_close(rtcclose);
115 dev_type_read(rtcread);
116 dev_type_write(rtcwrite);
117 
118 static void	clockattach(device_t, device_t, void *);
119 static int	clockmatch(device_t, cfdata_t, void *);
120 
121 CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
122     clockmatch, clockattach, NULL, NULL);
123 
124 const struct cdevsw rtc_cdevsw = {
125 	.d_open = rtcopen,
126 	.d_close = rtcclose,
127 	.d_read = rtcread,
128 	.d_write = rtcwrite,
129 	.d_ioctl = noioctl,
130 	.d_stop = nostop,
131 	.d_tty = notty,
132 	.d_poll = nopoll,
133 	.d_mmap = nommap,
134 	.d_kqfilter = nokqfilter,
135 	.d_discard = nodiscard,
136 	.d_flag = 0
137 };
138 
139 void statintr(struct clockframe);
140 
141 static int	twodigits(char *, int);
142 
143 static int	divisor;	/* Systemclock divisor	*/
144 
145 /*
146  * Statistics and profile clock intervals and variances. Variance must
147  * be a power of 2. Since this gives us an even number, not an odd number,
148  * we discard one case and compensate. That is, a variance of 64 would
149  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
150  * This is symmetric around the point 32, or statvar/2, and thus averages
151  * to that value (assuming uniform random numbers).
152  */
153 #ifdef STATCLOCK
154 static int	statvar = 32;	/* {stat,prof}clock variance		*/
155 static int	statmin;	/* statclock divisor - variance/2	*/
156 static int	profmin;	/* profclock divisor - variance/2	*/
157 static int	clk2min;	/* current, from above choices		*/
158 #endif
159 
160 int
161 clockmatch(device_t parent, cfdata_t cf, void *aux)
162 {
163 
164 	if (!strcmp("clock", aux))
165 		return 1;
166 	return 0;
167 }
168 
169 /*
170  * Start the real-time clock.
171  */
172 void clockattach(device_t parent, device_t self, void *aux)
173 {
174 	struct clock_softc *sc = device_private(self);
175 	struct todr_chip_handle	*tch;
176 
177 	sc->sc_dev = self;
178 	tch = &sc->sc_handle;
179 	tch->todr_gettime_ymdhms = atari_rtc_get;
180 	tch->todr_settime_ymdhms = atari_rtc_set;
181 	tch->todr_setwen = NULL;
182 
183 	todr_attach(tch);
184 
185 	sc->sc_flags = 0;
186 
187 	/*
188 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
189 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
190 	 * at an effective rate of: 2457600/200 = 12288Hz. The
191 	 * following expression works for 48, 64 or 96 hz.
192 	 */
193 	divisor       = CLOCK_HZ/hz;
194 	MFP->mf_tacr  = 0;		/* Stop timer			*/
195 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
196 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
197 
198 	clk_timecounter.tc_frequency = CLOCK_HZ;
199 
200 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
201 		printf (": illegal value %d for systemclock, reset to %d\n\t",
202 								hz, 64);
203 		hz = 64;
204 	}
205 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
206 	tc_init(&clk_timecounter);
207 
208 #ifdef STATCLOCK
209 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
210 		stathz = hz;
211 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
212 		profhz = hz << 1;
213 
214 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
215 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
216 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
217 
218 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
219 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
220 	clk2min  = statmin;
221 #endif /* STATCLOCK */
222 }
223 
224 void cpu_initclocks(void)
225 {
226 
227 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
228 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
229 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
230 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
231 
232 #ifdef STATCLOCK
233 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
234 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
235 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
236 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
237 #endif /* STATCLOCK */
238 }
239 
240 void
241 setstatclockrate(int newhz)
242 {
243 
244 #ifdef STATCLOCK
245 	if (newhz == stathz)
246 		clk2min = statmin;
247 	else clk2min = profmin;
248 #endif /* STATCLOCK */
249 }
250 
251 #ifdef STATCLOCK
252 void
253 statintr(struct clockframe frame)
254 {
255 	register int	var, r;
256 
257 	var = statvar - 1;
258 	do {
259 		r = random() & var;
260 	} while (r == 0);
261 
262 	/*
263 	 * Note that we are always lagging behind as the new divisor
264 	 * value will not be loaded until the next interrupt. This
265 	 * shouldn't disturb the median frequency (I think ;-) ) as
266 	 * only the value used when switching frequencies is used
267 	 * twice. This shouldn't happen very often.
268 	 */
269 	MFP->mf_tcdr = clk2min + r;
270 
271 	statclock(&frame);
272 }
273 #endif /* STATCLOCK */
274 
275 static u_int
276 clk_getcounter(struct timecounter *tc)
277 {
278 	uint32_t delta, count, cur_hardclock;
279 	uint8_t ipra, tadr;
280 	int s;
281 	static uint32_t lastcount;
282 
283 	s = splhigh();
284 	cur_hardclock = hardclock_ticks;
285 	ipra = MFP->mf_ipra;
286 	tadr = MFP->mf_tadr;
287 	delta = divisor - tadr;
288 
289 	if (ipra & IA_TIMA)
290 		delta += divisor;
291 	splx(s);
292 
293 	count = (divisor * cur_hardclock) + delta;
294 	if ((int32_t)(count - lastcount) < 0) {
295 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
296 		count = lastcount + 1;
297 	}
298 	lastcount = count;
299 
300 	return count;
301 }
302 
303 #define TIMB_FREQ	614400
304 #define TIMB_LIMIT	256
305 
306 void
307 init_delay(void)
308 {
309 
310 	/*
311 	 * Initialize Timer-B in the ST-MFP. This timer is used by
312 	 * the 'delay' function below. This timer is setup to be
313 	 * continueously counting from 255 back to zero at a
314 	 * frequency of 614400Hz. We do this *early* in the
315 	 * initialisation process.
316 	 */
317 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
318 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
319 	MFP->mf_tbdr  = 0;
320 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
321 }
322 
323 /*
324  * Wait "n" microseconds.
325  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
326  * Note: timer had better have been programmed before this is first used!
327  */
328 void
329 delay(unsigned int n)
330 {
331 	int	ticks, otick, remaining;
332 
333 	/*
334 	 * Read the counter first, so that the rest of the setup overhead is
335 	 * counted.
336 	 */
337 	otick = MFP->mf_tbdr;
338 
339 	if (n <= UINT_MAX / TIMB_FREQ) {
340 		/*
341 		 * For unsigned arithmetic, division can be replaced with
342 		 * multiplication with the inverse and a shift.
343 		 */
344 		remaining = n * TIMB_FREQ / 1000000;
345 	} else {
346 		/* This is a very long delay.
347 		 * Being slow here doesn't matter.
348 		 */
349 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
350 	}
351 
352 	while (remaining > 0) {
353 		ticks = MFP->mf_tbdr;
354 		if (ticks > otick)
355 			remaining -= TIMB_LIMIT - (ticks - otick);
356 		else
357 			remaining -= otick - ticks;
358 		otick = ticks;
359 	}
360 }
361 
362 #ifdef GPROF
363 /*
364  * profclock() is expanded in line in lev6intr() unless profiling kernel.
365  * Assumes it is called with clock interrupts blocked.
366  */
367 profclock(void *pc, int ps)
368 {
369 
370 	/*
371 	 * Came from user mode.
372 	 * If this process is being profiled record the tick.
373 	 */
374 	if (USERMODE(ps)) {
375 		if (p->p_stats.p_prof.pr_scale)
376 			addupc(pc, &curproc->p_stats.p_prof, 1);
377 	}
378 	/*
379 	 * Came from kernel (supervisor) mode.
380 	 * If we are profiling the kernel, record the tick.
381 	 */
382 	else if (profiling < 2) {
383 		register int s = pc - s_lowpc;
384 
385 		if (s < s_textsize)
386 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
387 	}
388 	/*
389 	 * Kernel profiling was on but has been disabled.
390 	 * Mark as no longer profiling kernel and if all profiling done,
391 	 * disable the clock.
392 	 */
393 	if (profiling && (profon & PRF_KERNEL)) {
394 		profon &= ~PRF_KERNEL;
395 		if (profon == PRF_NONE)
396 			stopprofclock();
397 	}
398 }
399 #endif
400 
401 /***********************************************************************
402  *                   Real Time Clock support                           *
403  ***********************************************************************/
404 
405 u_int mc146818_read(void *cookie, u_int regno)
406 {
407 	struct rtc *rtc = cookie;
408 
409 	rtc->rtc_regno = regno;
410 	return rtc->rtc_data & 0xff;
411 }
412 
413 void mc146818_write(void *cookie, u_int regno, u_int value)
414 {
415 	struct rtc *rtc = cookie;
416 
417 	rtc->rtc_regno = regno;
418 	rtc->rtc_data  = value;
419 }
420 
421 static int
422 atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
423 {
424 	int			sps;
425 	mc_todregs		clkregs;
426 	u_int			regb;
427 
428 	sps = splhigh();
429 	regb = mc146818_read(RTC, MC_REGB);
430 	MC146818_GETTOD(RTC, &clkregs);
431 	splx(sps);
432 
433 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
434 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
435 		printf("Error: Nonstandard RealTimeClock Configuration -"
436 			" value ignored\n"
437 			"       A write to /dev/rtc will correct this.\n");
438 			return 0;
439 	}
440 	if (clkregs[MC_SEC] > 59)
441 		return -1;
442 	if (clkregs[MC_MIN] > 59)
443 		return -1;
444 	if (clkregs[MC_HOUR] > 23)
445 		return -1;
446 	if (range_test(clkregs[MC_DOM], 1, 31))
447 		return -1;
448 	if (range_test(clkregs[MC_MONTH], 1, 12))
449 		return -1;
450 	if (clkregs[MC_YEAR] > 99)
451 		return -1;
452 
453 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
454 	dtp->dt_mon  = clkregs[MC_MONTH];
455 	dtp->dt_day  = clkregs[MC_DOM];
456 	dtp->dt_hour = clkregs[MC_HOUR];
457 	dtp->dt_min  = clkregs[MC_MIN];
458 	dtp->dt_sec  = clkregs[MC_SEC];
459 
460 	return 0;
461 }
462 
463 static int
464 atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
465 {
466 	int s;
467 	mc_todregs clkregs;
468 
469 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
470 	clkregs[MC_MONTH] = dtp->dt_mon;
471 	clkregs[MC_DOM] = dtp->dt_day;
472 	clkregs[MC_HOUR] = dtp->dt_hour;
473 	clkregs[MC_MIN] = dtp->dt_min;
474 	clkregs[MC_SEC] = dtp->dt_sec;
475 
476 	s = splclock();
477 	MC146818_PUTTOD(RTC, &clkregs);
478 	splx(s);
479 
480 	return 0;
481 }
482 
483 /***********************************************************************
484  *                   RTC-device support				       *
485  ***********************************************************************/
486 int
487 rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
488 {
489 	int			unit = minor(dev);
490 	struct clock_softc	*sc;
491 
492 	sc = device_lookup_private(&clock_cd, unit);
493 	if (sc == NULL)
494 		return ENXIO;
495 	if (sc->sc_flags & RTC_OPEN)
496 		return EBUSY;
497 
498 	sc->sc_flags = RTC_OPEN;
499 	return 0;
500 }
501 
502 int
503 rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
504 {
505 	int			unit = minor(dev);
506 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
507 
508 	sc->sc_flags = 0;
509 	return 0;
510 }
511 
512 int
513 rtcread(dev_t dev, struct uio *uio, int flags)
514 {
515 	mc_todregs		clkregs;
516 	int			s, length;
517 	char			buffer[16 + 1];
518 
519 	s = splhigh();
520 	MC146818_GETTOD(RTC, &clkregs);
521 	splx(s);
522 
523 	snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
524 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
525 	    clkregs[MC_MONTH], clkregs[MC_DOM],
526 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
527 
528 	if (uio->uio_offset > strlen(buffer))
529 		return 0;
530 
531 	length = strlen(buffer) - uio->uio_offset;
532 	if (length > uio->uio_resid)
533 		length = uio->uio_resid;
534 
535 	return uiomove((void *)buffer, length, uio);
536 }
537 
538 static int
539 twodigits(char *buffer, int pos)
540 {
541 	int result = 0;
542 
543 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
544 		result = (buffer[pos] - '0') * 10;
545 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
546 		result += (buffer[pos+1] - '0');
547 	return result;
548 }
549 
550 int
551 rtcwrite(dev_t dev, struct uio *uio, int flags)
552 {
553 	mc_todregs		clkregs;
554 	int			s, length, error;
555 	char			buffer[16];
556 
557 	/*
558 	 * We require atomic updates!
559 	 */
560 	length = uio->uio_resid;
561 	if (uio->uio_offset || (length != sizeof(buffer)
562 	  && length != sizeof(buffer) - 1))
563 		return EINVAL;
564 
565 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
566 		return error;
567 
568 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
569 		return EINVAL;
570 
571 	s = splclock();
572 	mc146818_write(RTC, MC_REGB,
573 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
574 	MC146818_GETTOD(RTC, &clkregs);
575 	splx(s);
576 
577 	clkregs[MC_SEC]   = twodigits(buffer, 13);
578 	clkregs[MC_MIN]   = twodigits(buffer, 10);
579 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
580 	clkregs[MC_DOM]   = twodigits(buffer, 6);
581 	clkregs[MC_MONTH] = twodigits(buffer, 4);
582 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
583 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
584 
585 	s = splclock();
586 	MC146818_PUTTOD(RTC, &clkregs);
587 	splx(s);
588 
589 	return 0;
590 }
591