xref: /netbsd-src/sys/arch/atari/dev/clock.c (revision 755bba41ccda0ce86450b3c883d0707970d299d4)
1 /*	$NetBSD: clock.c,v 1.64 2022/06/26 18:46:14 tsutsui Exp $	*/
2 
3 /*
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * from: Utah $Hdr: clock.c 1.18 91/01/21$
37  *
38  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.64 2022/06/26 18:46:14 tsutsui Exp $");
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/uio.h>
49 #include <sys/conf.h>
50 #include <sys/proc.h>
51 #include <sys/event.h>
52 #include <sys/timetc.h>
53 
54 #include <dev/clock_subr.h>
55 
56 #include <machine/psl.h>
57 #include <machine/cpu.h>
58 #include <machine/iomap.h>
59 #include <machine/mfp.h>
60 #include <atari/dev/clockreg.h>
61 #include <atari/dev/clockvar.h>
62 #include <atari/atari/device.h>
63 
64 #if defined(GPROF) && defined(PROFTIMER)
65 #include <machine/profile.h>
66 #endif
67 
68 #include "ioconf.h"
69 
70 static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
71 static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
72 
73 /*
74  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
75  * of 200. Therefore the timer runs at an effective rate of:
76  * 2457600/200 = 12288Hz.
77  */
78 #define CLOCK_HZ	12288
79 
80 static u_int clk_getcounter(struct timecounter *);
81 
82 static struct timecounter clk_timecounter = {
83 	.tc_get_timecount = clk_getcounter,
84 	.tc_counter_mask = ~0u,
85 	.tc_frequency = CLOCK_HZ,
86 	.tc_name = "clock",
87 	.tc_quality = 100,
88 };
89 
90 /*
91  * Machine-dependent clock routines.
92  *
93  * Inittodr initializes the time of day hardware which provides
94  * date functions.
95  *
96  * Resettodr restores the time of day hardware after a time change.
97  */
98 
99 struct clock_softc {
100 	device_t	sc_dev;
101 	int		sc_flags;
102 	struct todr_chip_handle	sc_handle;
103 };
104 
105 /*
106  *  'sc_flags' state info. Only used by the rtc-device functions.
107  */
108 #define	RTC_OPEN	1
109 
110 static dev_type_open(rtcopen);
111 static dev_type_close(rtcclose);
112 static dev_type_read(rtcread);
113 static dev_type_write(rtcwrite);
114 
115 static void	clockattach(device_t, device_t, void *);
116 static int	clockmatch(device_t, cfdata_t, void *);
117 
118 CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
119     clockmatch, clockattach, NULL, NULL);
120 
121 const struct cdevsw rtc_cdevsw = {
122 	.d_open = rtcopen,
123 	.d_close = rtcclose,
124 	.d_read = rtcread,
125 	.d_write = rtcwrite,
126 	.d_ioctl = noioctl,
127 	.d_stop = nostop,
128 	.d_tty = notty,
129 	.d_poll = nopoll,
130 	.d_mmap = nommap,
131 	.d_kqfilter = nokqfilter,
132 	.d_discard = nodiscard,
133 	.d_flag = 0
134 };
135 
136 void statintr(struct clockframe);
137 
138 static int	twodigits(char *, int);
139 
140 static int	divisor;	/* Systemclock divisor	*/
141 
142 /*
143  * Statistics and profile clock intervals and variances. Variance must
144  * be a power of 2. Since this gives us an even number, not an odd number,
145  * we discard one case and compensate. That is, a variance of 64 would
146  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
147  * This is symmetric around the point 32, or statvar/2, and thus averages
148  * to that value (assuming uniform random numbers).
149  */
150 #ifdef STATCLOCK
151 static int	statvar = 32;	/* {stat,prof}clock variance		*/
152 static int	statmin;	/* statclock divisor - variance/2	*/
153 static int	profmin;	/* profclock divisor - variance/2	*/
154 static int	clk2min;	/* current, from above choices		*/
155 #endif
156 
157 static int
clockmatch(device_t parent,cfdata_t cf,void * aux)158 clockmatch(device_t parent, cfdata_t cf, void *aux)
159 {
160 
161 	if (!strcmp("clock", aux))
162 		return 1;
163 	return 0;
164 }
165 
166 /*
167  * Start the real-time clock.
168  */
169 static void
clockattach(device_t parent,device_t self,void * aux)170 clockattach(device_t parent, device_t self, void *aux)
171 {
172 	struct clock_softc *sc = device_private(self);
173 	struct todr_chip_handle	*tch;
174 
175 	sc->sc_dev = self;
176 	tch = &sc->sc_handle;
177 	tch->todr_gettime_ymdhms = atari_rtc_get;
178 	tch->todr_settime_ymdhms = atari_rtc_set;
179 	tch->todr_setwen = NULL;
180 
181 	todr_attach(tch);
182 
183 	sc->sc_flags = 0;
184 
185 	/*
186 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
187 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
188 	 * at an effective rate of: 2457600/200 = 12288Hz. The
189 	 * following expression works for 48, 64 or 96 hz.
190 	 */
191 	divisor       = CLOCK_HZ/hz;
192 	MFP->mf_tacr  = 0;		/* Stop timer			*/
193 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
194 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
195 
196 	clk_timecounter.tc_frequency = CLOCK_HZ;
197 
198 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
199 		aprint_normal(": illegal value %d for systemclock, reset to %d\n\t",
200 								hz, 64);
201 		hz = 64;
202 	}
203 	aprint_normal(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
204 	tc_init(&clk_timecounter);
205 
206 #ifdef STATCLOCK
207 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
208 		stathz = hz;
209 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
210 		profhz = hz << 1;
211 
212 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
213 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
214 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
215 
216 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
217 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
218 	clk2min  = statmin;
219 #endif /* STATCLOCK */
220 }
221 
222 void
cpu_initclocks(void)223 cpu_initclocks(void)
224 {
225 
226 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
227 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
228 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
229 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
230 
231 #ifdef STATCLOCK
232 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
233 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
234 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
235 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
236 #endif /* STATCLOCK */
237 }
238 
239 void
setstatclockrate(int newhz)240 setstatclockrate(int newhz)
241 {
242 
243 #ifdef STATCLOCK
244 	if (newhz == stathz)
245 		clk2min = statmin;
246 	else clk2min = profmin;
247 #endif /* STATCLOCK */
248 }
249 
250 #ifdef STATCLOCK
251 void
statintr(struct clockframe frame)252 statintr(struct clockframe frame)
253 {
254 	register int	var, r;
255 
256 	var = statvar - 1;
257 	do {
258 		r = random() & var;
259 	} while (r == 0);
260 
261 	/*
262 	 * Note that we are always lagging behind as the new divisor
263 	 * value will not be loaded until the next interrupt. This
264 	 * shouldn't disturb the median frequency (I think ;-) ) as
265 	 * only the value used when switching frequencies is used
266 	 * twice. This shouldn't happen very often.
267 	 */
268 	MFP->mf_tcdr = clk2min + r;
269 
270 	statclock(&frame);
271 }
272 #endif /* STATCLOCK */
273 
274 static u_int
clk_getcounter(struct timecounter * tc)275 clk_getcounter(struct timecounter *tc)
276 {
277 	uint32_t delta, count, cur_hardclock;
278 	uint8_t ipra, tadr;
279 	int s;
280 	static uint32_t lastcount;
281 
282 	s = splhigh();
283 	cur_hardclock = getticks();
284 	ipra = MFP->mf_ipra;
285 	tadr = MFP->mf_tadr;
286 	delta = divisor - tadr;
287 
288 	if (ipra & IA_TIMA)
289 		delta += divisor;
290 	splx(s);
291 
292 	count = (divisor * cur_hardclock) + delta;
293 	if ((int32_t)(count - lastcount) < 0) {
294 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
295 		count = lastcount + 1;
296 	}
297 	lastcount = count;
298 
299 	return count;
300 }
301 
302 #define TIMB_FREQ	614400
303 #define TIMB_LIMIT	256
304 
305 void
init_delay(void)306 init_delay(void)
307 {
308 
309 	/*
310 	 * Initialize Timer-B in the ST-MFP. This timer is used by
311 	 * the 'delay' function below. This timer is setup to be
312 	 * continueously counting from 255 back to zero at a
313 	 * frequency of 614400Hz. We do this *early* in the
314 	 * initialisation process.
315 	 */
316 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
317 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
318 	MFP->mf_tbdr  = 0;
319 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
320 }
321 
322 /*
323  * Wait "n" microseconds.
324  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
325  * Note: timer had better have been programmed before this is first used!
326  */
327 void
delay(unsigned int n)328 delay(unsigned int n)
329 {
330 	int	ticks, otick, remaining;
331 
332 	/*
333 	 * Read the counter first, so that the rest of the setup overhead is
334 	 * counted.
335 	 */
336 	otick = MFP->mf_tbdr;
337 
338 	if (n <= UINT_MAX / TIMB_FREQ) {
339 		/*
340 		 * For unsigned arithmetic, division can be replaced with
341 		 * multiplication with the inverse and a shift.
342 		 */
343 		remaining = n * TIMB_FREQ / 1000000;
344 	} else {
345 		/* This is a very long delay.
346 		 * Being slow here doesn't matter.
347 		 */
348 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
349 	}
350 
351 	while (remaining > 0) {
352 		ticks = MFP->mf_tbdr;
353 		if (ticks > otick)
354 			remaining -= TIMB_LIMIT - (ticks - otick);
355 		else
356 			remaining -= otick - ticks;
357 		otick = ticks;
358 	}
359 }
360 
361 #ifdef GPROF
362 /*
363  * profclock() is expanded in line in lev6intr() unless profiling kernel.
364  * Assumes it is called with clock interrupts blocked.
365  */
profclock(void * pc,int ps)366 profclock(void *pc, int ps)
367 {
368 
369 	/*
370 	 * Came from user mode.
371 	 * If this process is being profiled record the tick.
372 	 */
373 	if (USERMODE(ps)) {
374 		if (p->p_stats.p_prof.pr_scale)
375 			addupc(pc, &curproc->p_stats.p_prof, 1);
376 	}
377 	/*
378 	 * Came from kernel (supervisor) mode.
379 	 * If we are profiling the kernel, record the tick.
380 	 */
381 	else if (profiling < 2) {
382 		register int s = pc - s_lowpc;
383 
384 		if (s < s_textsize)
385 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
386 	}
387 	/*
388 	 * Kernel profiling was on but has been disabled.
389 	 * Mark as no longer profiling kernel and if all profiling done,
390 	 * disable the clock.
391 	 */
392 	if (profiling && (profon & PRF_KERNEL)) {
393 		profon &= ~PRF_KERNEL;
394 		if (profon == PRF_NONE)
395 			stopprofclock();
396 	}
397 }
398 #endif
399 
400 /***********************************************************************
401  *                   Real Time Clock support                           *
402  ***********************************************************************/
403 
mc146818_read(void * cookie,u_int regno)404 u_int mc146818_read(void *cookie, u_int regno)
405 {
406 	struct rtc *rtc = cookie;
407 
408 	rtc->rtc_regno = regno;
409 	return rtc->rtc_data & 0xff;
410 }
411 
mc146818_write(void * cookie,u_int regno,u_int value)412 void mc146818_write(void *cookie, u_int regno, u_int value)
413 {
414 	struct rtc *rtc = cookie;
415 
416 	rtc->rtc_regno = regno;
417 	rtc->rtc_data  = value;
418 }
419 
420 static int
atari_rtc_get(todr_chip_handle_t todr,struct clock_ymdhms * dtp)421 atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
422 {
423 	int			sps;
424 	mc_todregs		clkregs;
425 	u_int			regb;
426 
427 	sps = splhigh();
428 	regb = mc146818_read(RTC, MC_REGB);
429 	MC146818_GETTOD(RTC, &clkregs);
430 	splx(sps);
431 
432 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
433 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
434 		printf("Error: Nonstandard RealTimeClock Configuration -"
435 			" value ignored\n"
436 			"       A write to /dev/rtc will correct this.\n");
437 			return 0;
438 	}
439 	if (clkregs[MC_SEC] > 59)
440 		return -1;
441 	if (clkregs[MC_MIN] > 59)
442 		return -1;
443 	if (clkregs[MC_HOUR] > 23)
444 		return -1;
445 	if (range_test(clkregs[MC_DOM], 1, 31))
446 		return -1;
447 	if (range_test(clkregs[MC_MONTH], 1, 12))
448 		return -1;
449 	if (clkregs[MC_YEAR] > 99)
450 		return -1;
451 
452 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
453 	dtp->dt_mon  = clkregs[MC_MONTH];
454 	dtp->dt_day  = clkregs[MC_DOM];
455 	dtp->dt_hour = clkregs[MC_HOUR];
456 	dtp->dt_min  = clkregs[MC_MIN];
457 	dtp->dt_sec  = clkregs[MC_SEC];
458 
459 	return 0;
460 }
461 
462 static int
atari_rtc_set(todr_chip_handle_t todr,struct clock_ymdhms * dtp)463 atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
464 {
465 	int s;
466 	mc_todregs clkregs;
467 
468 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
469 	clkregs[MC_MONTH] = dtp->dt_mon;
470 	clkregs[MC_DOM] = dtp->dt_day;
471 	clkregs[MC_HOUR] = dtp->dt_hour;
472 	clkregs[MC_MIN] = dtp->dt_min;
473 	clkregs[MC_SEC] = dtp->dt_sec;
474 
475 	s = splclock();
476 	MC146818_PUTTOD(RTC, &clkregs);
477 	splx(s);
478 
479 	return 0;
480 }
481 
482 /***********************************************************************
483  *                   RTC-device support				       *
484  ***********************************************************************/
485 static int
rtcopen(dev_t dev,int flag,int mode,struct lwp * l)486 rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
487 {
488 	int			unit = minor(dev);
489 	struct clock_softc	*sc;
490 
491 	sc = device_lookup_private(&clock_cd, unit);
492 	if (sc == NULL)
493 		return ENXIO;
494 	if (sc->sc_flags & RTC_OPEN)
495 		return EBUSY;
496 
497 	sc->sc_flags = RTC_OPEN;
498 	return 0;
499 }
500 
501 static int
rtcclose(dev_t dev,int flag,int mode,struct lwp * l)502 rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
503 {
504 	int			unit = minor(dev);
505 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
506 
507 	sc->sc_flags = 0;
508 	return 0;
509 }
510 
511 static int
rtcread(dev_t dev,struct uio * uio,int flags)512 rtcread(dev_t dev, struct uio *uio, int flags)
513 {
514 	mc_todregs		clkregs;
515 	int			s, length;
516 	char			buffer[16 + 1];
517 
518 	s = splhigh();
519 	MC146818_GETTOD(RTC, &clkregs);
520 	splx(s);
521 
522 	snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
523 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
524 	    clkregs[MC_MONTH], clkregs[MC_DOM],
525 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
526 
527 	if (uio->uio_offset > strlen(buffer))
528 		return 0;
529 
530 	length = strlen(buffer) - uio->uio_offset;
531 	if (length > uio->uio_resid)
532 		length = uio->uio_resid;
533 
534 	return uiomove((void *)buffer, length, uio);
535 }
536 
537 static int
twodigits(char * buffer,int pos)538 twodigits(char *buffer, int pos)
539 {
540 	int result = 0;
541 
542 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
543 		result = (buffer[pos] - '0') * 10;
544 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
545 		result += (buffer[pos+1] - '0');
546 	return result;
547 }
548 
549 static int
rtcwrite(dev_t dev,struct uio * uio,int flags)550 rtcwrite(dev_t dev, struct uio *uio, int flags)
551 {
552 	mc_todregs		clkregs;
553 	int			s, length, error;
554 	char			buffer[16];
555 
556 	/*
557 	 * We require atomic updates!
558 	 */
559 	length = uio->uio_resid;
560 	if (uio->uio_offset || (length != sizeof(buffer)
561 	    && length != sizeof(buffer) - 1))
562 		return EINVAL;
563 
564 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
565 		return error;
566 
567 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
568 		return EINVAL;
569 
570 	s = splclock();
571 	mc146818_write(RTC, MC_REGB,
572 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
573 	MC146818_GETTOD(RTC, &clkregs);
574 	splx(s);
575 
576 	clkregs[MC_SEC]   = twodigits(buffer, 13);
577 	clkregs[MC_MIN]   = twodigits(buffer, 10);
578 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
579 	clkregs[MC_DOM]   = twodigits(buffer, 6);
580 	clkregs[MC_MONTH] = twodigits(buffer, 4);
581 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
582 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
583 
584 	s = splclock();
585 	MC146818_PUTTOD(RTC, &clkregs);
586 	splx(s);
587 
588 	return 0;
589 }
590