xref: /netbsd-src/sys/arch/arm/xilinx/zynq_xadc.c (revision 5754a6ff213a9a342c74094c40f8c974d80dffb3)
1 /* $NetBSD: zynq_xadc.c,v 1.1 2022/11/11 20:31:30 jmcneill Exp $ */
2 
3 /*-
4  * Copyright (c) 2022 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Xilinx 7 series ADC ("XADC")
31  *
32  * Documentation can be found on the Xilinx web site:
33  *  - Zynq-7000 SoC Technical Reference Manual UG585 (v1.13)
34  *  - XADC User Guide 3 UG480 (v1.11)
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: zynq_xadc.c,v 1.1 2022/11/11 20:31:30 jmcneill Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/bitops.h>
42 #include <sys/bus.h>
43 #include <sys/device.h>
44 #include <sys/intr.h>
45 #include <sys/kmem.h>
46 #include <sys/lwp.h>
47 #include <sys/mutex.h>
48 #include <sys/systm.h>
49 
50 #include <dev/sysmon/sysmonvar.h>
51 #include <dev/fdt/fdtvar.h>
52 
53 /* PS-XADC interface registers */
54 #define	XADCIF_CFG		0x00
55 #define	 CFG_ENABLE		__BIT(31)
56 #define	 CFG_WEDGE		__BIT(13)
57 #define	 CFG_REDGE		__BIT(12)
58 #define	 CFG_TCKRATE		__BITS(9,8)
59 #define	 CFG_TCKRATE_DIV4	1
60 #define	XADCIF_INT_STS		0x04
61 #define	XADCIF_INT_MASK		0x08
62 #define	XADCIF_MSTS		0x0c
63 #define	 MSTS_CFIFOE		__BIT(10)
64 #define	XADCIF_CMDFIFO		0x10
65 #define	XADCIF_RDFIFO		0x14
66 #define	XADCIF_MCTL		0x18
67 
68 /* XADC registers */
69 #define	XADC_STATUS_TEMP	0x00
70 #define	XADC_STATUS_VCCINT	0x01
71 #define	XADC_STATUS_VCCAUX	0x02
72 #define	XADC_STATUS_VPVN	0x03
73 #define	XADC_STATUS_VREFP	0x04
74 #define	XADC_STATUS_VREFN	0x05
75 #define	XADC_STATUS_VCCBRAM	0x06
76 #define	XADC_STATUS_VCCPINT	0x0d
77 #define	XADC_STATUS_VCCPAUX	0x0e
78 #define	XADC_STATUS_VCCO_DDR	0x0f
79 #define	XADC_STATUS_FLAG	0x3f
80 #define	 FLAG_OT		__BIT(3)
81 #define	XADC_CONF(n)		(0x40 + (n))
82 #define	 CONF1_SEQ		__BITS(15,12)
83 #define	 CONF1_SEQ_CONT		2
84 #define	XADC_SEQ(n)		(0x48 + (n))
85 #define	 SEQ0_CALIB		__BIT(0)
86 #define	 SEQ0_ALL		__BITS(5,14)
87 #define	 SEQ4_VREFN		__BIT(13)
88 
89 /* XADC commands */
90 #define	XADC_COMMAND_CMD	__BITS(29,26)
91 #define	XADC_COMMAND_DRP_ADDR	__BITS(25,16)
92 #define	XADC_COMMAND_DRP_DATA	__BITS(15,0)
93 #define	XADC_COMMAND(cmd, addr, data)			\
94 	(__SHIFTIN(cmd, XADC_COMMAND_CMD) |		\
95 	 __SHIFTIN(addr, XADC_COMMAND_DRP_ADDR) |	\
96 	 __SHIFTIN(data, XADC_COMMAND_DRP_DATA))
97 #define	XADC_CMD_NOP	0
98 #define	XADC_CMD_READ	1
99 #define	XADC_CMD_WRITE	2
100 
101 enum {
102 	XADC_SENSOR_TEMP,
103 	XADC_SENSOR_VCCINT,
104 	XADC_SENSOR_VCCAUX,
105 	XADC_SENSOR_VPVN,
106 	XADC_SENSOR_VREFP,
107 	XADC_SENSOR_VREFN,
108 	XADC_SENSOR_VCCBRAM,
109 	XADC_SENSOR_VCCPINT,
110 	XADC_SENSOR_VCCPAUX,
111 	XADC_SENSOR_VCCO_DDR,
112 	XADC_NSENSOR
113 };
114 
115 static const struct {
116 	const char *name;
117 	uint32_t units;
118 	uint16_t reg;
119 } zynq_xadc_sensors[] = {
120 	[XADC_SENSOR_TEMP] = { "temperature", ENVSYS_STEMP, XADC_STATUS_TEMP },
121 	[XADC_SENSOR_VCCINT] = { "vccint", ENVSYS_SVOLTS_DC, XADC_STATUS_VCCINT },
122 	[XADC_SENSOR_VCCAUX] = { "vccaux", ENVSYS_SVOLTS_DC, XADC_STATUS_VCCAUX },
123 	[XADC_SENSOR_VPVN] = { "vp/vn", ENVSYS_SVOLTS_DC, XADC_STATUS_VPVN },
124 	[XADC_SENSOR_VREFP] = { "vrefp", ENVSYS_SVOLTS_DC, XADC_STATUS_VREFP },
125 	[XADC_SENSOR_VREFN] = { "vrefn", ENVSYS_SVOLTS_DC, XADC_STATUS_VREFN },
126 	[XADC_SENSOR_VCCBRAM] = { "vccbram", ENVSYS_SVOLTS_DC, XADC_STATUS_VCCBRAM },
127 	[XADC_SENSOR_VCCPINT] = { "vccpint", ENVSYS_SVOLTS_DC, XADC_STATUS_VCCPINT },
128 	[XADC_SENSOR_VCCPAUX] = { "vccpaux", ENVSYS_SVOLTS_DC, XADC_STATUS_VCCPAUX },
129 	[XADC_SENSOR_VCCO_DDR] = { "vcco_ddr", ENVSYS_SVOLTS_DC, XADC_STATUS_VCCO_DDR },
130 };
131 
132 static const struct device_compatible_entry compat_data[] = {
133 	{ .compat = "xlnx,zynq-xadc-1.00.a" },
134 	DEVICE_COMPAT_EOL
135 };
136 
137 struct zynq_xadc_softc {
138 	device_t sc_dev;
139 	bus_space_tag_t sc_bst;
140 	bus_space_handle_t sc_bsh;
141 	kmutex_t sc_lock;
142 
143 	struct sysmon_envsys *sc_sme;
144 	envsys_data_t sc_sensor[XADC_NSENSOR];
145 };
146 
147 #define RD4(sc, reg) 		\
148     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
149 #define WR4(sc, reg, val) 	\
150     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
151 
152 static int	zynq_xadc_match(device_t, cfdata_t, void *);
153 static void	zynq_xadc_attach(device_t, device_t, void *);
154 
155 CFATTACH_DECL_NEW(zynqxadc, sizeof(struct zynq_xadc_softc),
156 	zynq_xadc_match, zynq_xadc_attach, NULL, NULL);
157 
158 static void
zynq_xadc_write(struct zynq_xadc_softc * sc,uint16_t reg,uint16_t data)159 zynq_xadc_write(struct zynq_xadc_softc *sc, uint16_t reg,
160     uint16_t data)
161 {
162 	int retry = 10000;
163 
164 	/*
165 	 * Write sequence is:
166 	 *
167 	 * 1. Prepare write command
168 	 * 2. Write data to Command FIFO
169 	 * 3. Wait until the Command FIFO becomes empty
170 	 */
171 
172 	WR4(sc, XADCIF_CMDFIFO, XADC_COMMAND(XADC_CMD_WRITE, reg, data));
173 	while (--retry > 0) {
174 		if ((RD4(sc, XADCIF_MSTS) & MSTS_CFIFOE) != 0) {
175 			break;
176 		}
177 		delay(10);
178 	}
179 	if (retry == 0) {
180 		device_printf(sc->sc_dev, "command FIFO timeout (write)\n");
181 	}
182 	/*
183 	 * Every write to Command FIFO shifts data into Read FIFO, so
184 	 * drain that after the command completes.
185 	 */
186 	RD4(sc, XADCIF_RDFIFO);
187 }
188 
189 static uint16_t
zynq_xadc_read(struct zynq_xadc_softc * sc,uint16_t reg)190 zynq_xadc_read(struct zynq_xadc_softc *sc, uint16_t reg)
191 {
192 	int retry = 10000;
193 	uint32_t val;
194 
195 	/*
196 	 * Read sequence is:
197 	 *
198 	 * 1. Prepare read command
199 	 * 2. Write data to Command FIFO
200 	 * 3. Wait until the Command FIFO becomes empty
201 	 * 4. Read dummy data from the Read Data FIFO
202 	 * 5. Prepare nop command
203 	 * 6. Write data to Command FIFO
204 	 * 7. Read the Read Data FIFO
205 	 */
206 
207 	WR4(sc, XADCIF_CMDFIFO, XADC_COMMAND(XADC_CMD_READ, reg, 0));
208 	WR4(sc, XADCIF_CMDFIFO, XADC_COMMAND(XADC_CMD_NOP, 0, 0));
209 	while (--retry > 0) {
210 		if ((RD4(sc, XADCIF_MSTS) & MSTS_CFIFOE) != 0) {
211 			break;
212 		}
213 		delay(10);
214 	}
215 	if (retry == 0) {
216 		device_printf(sc->sc_dev, "command FIFO timeout (read)\n");
217 		return 0xffff;
218 	}
219 	val = RD4(sc, XADCIF_RDFIFO);
220 	val = RD4(sc, XADCIF_RDFIFO);
221 
222 	return val & 0xffff;
223 }
224 
225 static void
zynq_xadc_init(struct zynq_xadc_softc * sc,struct clk * clk)226 zynq_xadc_init(struct zynq_xadc_softc *sc, struct clk *clk)
227 {
228 	uint32_t val;
229 
230 	/* Enable the PS-XADC interface */
231 	val = RD4(sc, XADCIF_CFG);
232 	val |= CFG_ENABLE;
233 	val &= ~CFG_TCKRATE;
234 	val |= __SHIFTIN(CFG_TCKRATE_DIV4, CFG_TCKRATE);
235 	val |= CFG_WEDGE | CFG_REDGE;
236 	WR4(sc, XADCIF_CFG, val);
237 	WR4(sc, XADCIF_MCTL, 0);
238 
239 	/* Turn on continuous sampling for all ADC channels we monitor */
240 	zynq_xadc_write(sc, XADC_SEQ(0), SEQ0_CALIB | SEQ0_ALL);
241 	zynq_xadc_write(sc, XADC_SEQ(4), SEQ4_VREFN);
242 	zynq_xadc_write(sc, XADC_CONF(0), 0);
243 	zynq_xadc_write(sc, XADC_CONF(1),
244 	    __SHIFTIN(CONF1_SEQ_CONT, CONF1_SEQ));
245 
246 }
247 
248 static void
zynq_xadc_sensors_refresh(struct sysmon_envsys * sme,envsys_data_t * edata)249 zynq_xadc_sensors_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
250 {
251 	struct zynq_xadc_softc *sc = sme->sme_cookie;
252 	union {
253 		uint16_t u16;
254 		int16_t s16;
255 	} val;
256 	int64_t temp;
257 
258 
259 	val.u16 = zynq_xadc_read(sc, zynq_xadc_sensors[edata->sensor].reg);
260 	if (edata->units == ENVSYS_STEMP) {
261 		if (val.u16 == 0) {
262 			edata->state = ENVSYS_SINVALID;
263 		} else {
264         		temp = ((int64_t)(val.u16 >> 4) * 503975) / 4096;
265 			edata->value_cur = 1000 * temp;
266 			edata->state = ENVSYS_SVALID;
267 		}
268 
269 		val.u16 = zynq_xadc_read(sc, XADC_STATUS_FLAG);
270 		if ((val.u16 & FLAG_OT) != 0) {
271 			edata->state = ENVSYS_SCRITOVER;
272 		}
273 	} else {
274 		KASSERT(edata->units == ENVSYS_SVOLTS_DC);
275 		switch (edata->sensor) {
276 		case XADC_SENSOR_VPVN:
277 			edata->value_cur = (((val.u16 >> 4) * 1000) / 4096) * 1000;
278 			break;
279 		case XADC_SENSOR_VREFN:
280 			edata->value_cur = (((val.s16 >> 4) * 3000) / 4096) * 1000;
281 			break;
282 		default:
283 			edata->value_cur = (((val.u16 >> 4) * 3000) / 4096) * 1000;
284 			break;
285 		}
286 		edata->state = ENVSYS_SVALID;
287 	}
288 }
289 
290 static int
zynq_xadc_match(device_t parent,cfdata_t cf,void * aux)291 zynq_xadc_match(device_t parent, cfdata_t cf, void *aux)
292 {
293 	struct fdt_attach_args * const faa = aux;
294 
295 	return of_compatible_match(faa->faa_phandle, compat_data);
296 }
297 
298 static void
zynq_xadc_attach(device_t parent,device_t self,void * aux)299 zynq_xadc_attach(device_t parent, device_t self, void *aux)
300 {
301 	struct zynq_xadc_softc * const sc = device_private(self);
302 	struct fdt_attach_args * const faa = aux;
303 	const int phandle = faa->faa_phandle;
304 	struct clk *clk;
305 	bus_addr_t addr;
306 	bus_size_t size;
307 	u_int n;
308 
309 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
310 		aprint_error(": couldn't get registers\n");
311 		return;
312 	}
313 	clk = fdtbus_clock_get_index(phandle, 0);
314 	if (clk == NULL || clk_enable(clk) != 0) {
315 		aprint_error(": couldn't enable clock\n");
316 		return;
317 	}
318 
319 	sc->sc_dev = self;
320 	sc->sc_bst = faa->faa_bst;
321 	if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
322 		aprint_error(": couldn't map registers\n");
323 		return;
324 	}
325 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
326 
327 	aprint_naive("\n");
328 	aprint_normal(": ADC\n");
329 
330 	zynq_xadc_init(sc, clk);
331 
332 	sc->sc_sme = sysmon_envsys_create();
333 	sc->sc_sme->sme_name = device_xname(self);
334 	sc->sc_sme->sme_cookie = sc;
335 	sc->sc_sme->sme_refresh = zynq_xadc_sensors_refresh;
336 
337 	for (n = 0; n < XADC_NSENSOR; n++) {
338 		sc->sc_sensor[n].units = zynq_xadc_sensors[n].units;
339 		sc->sc_sensor[n].state = ENVSYS_SINVALID;
340 		sc->sc_sensor[n].flags = ENVSYS_FHAS_ENTROPY;
341 		if (zynq_xadc_sensors[n].units == ENVSYS_STEMP) {
342 			sc->sc_sensor[n].flags |= ENVSYS_FMONCRITICAL;
343 		}
344 		strncpy(sc->sc_sensor[n].desc, zynq_xadc_sensors[n].name,
345 		    sizeof(sc->sc_sensor[n].desc));
346 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[n]);
347 	}
348 
349 	sysmon_envsys_register(sc->sc_sme);
350 }
351