xref: /netbsd-src/sys/arch/arm/sunxi/sunxi_emac.c (revision 62e8bc8becdcf056a79516983589c7292bb8f36d)
1 /* $NetBSD: sunxi_emac.c,v 1.37 2022/09/18 15:44:29 thorpej Exp $ */
2 
3 /*-
4  * Copyright (c) 2016-2017 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Allwinner Gigabit Ethernet MAC (EMAC) controller
31  */
32 
33 #include "opt_net_mpsafe.h"
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.37 2022/09/18 15:44:29 thorpej Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/gpio.h>
47 #include <sys/cprng.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/bpf.h>
54 
55 #include <dev/mii/miivar.h>
56 
57 #include <dev/fdt/fdtvar.h>
58 #include <dev/fdt/syscon.h>
59 
60 #include <arm/sunxi/sunxi_emac.h>
61 
62 #ifdef NET_MPSAFE
63 #define	EMAC_MPSAFE		1
64 #define	CALLOUT_FLAGS		CALLOUT_MPSAFE
65 #define	FDT_INTR_FLAGS		FDT_INTR_MPSAFE
66 #else
67 #define	CALLOUT_FLAGS		0
68 #define	FDT_INTR_FLAGS		0
69 #endif
70 
71 #define	EMAC_IFNAME		"emac%d"
72 
73 #define	EMAC_LOCK(sc)		mutex_enter(&(sc)->mtx)
74 #define	EMAC_UNLOCK(sc)		mutex_exit(&(sc)->mtx)
75 #define	EMAC_ASSERT_LOCKED(sc)	KASSERT(mutex_owned(&(sc)->mtx))
76 
77 #define	DESC_ALIGN		sizeof(struct sunxi_emac_desc)
78 #define	TX_DESC_COUNT		1024
79 #define	TX_DESC_SIZE		(sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
80 #define	RX_DESC_COUNT		256
81 #define	RX_DESC_SIZE		(sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
82 
83 #define	DESC_OFF(n)		((n) * sizeof(struct sunxi_emac_desc))
84 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
85 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
86 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
87 
88 #define	TX_MAX_SEGS		128
89 
90 #define	SOFT_RST_RETRY		1000
91 #define	MII_BUSY_RETRY		1000
92 #define	MDIO_FREQ		2500000
93 
94 #define	BURST_LEN_DEFAULT	8
95 #define	RX_TX_PRI_DEFAULT	0
96 #define	PAUSE_TIME_DEFAULT	0x400
97 
98 /* syscon EMAC clock register */
99 #define	EMAC_CLK_REG		0x30
100 #define	 EMAC_CLK_EPHY_ADDR		(0x1f << 20)	/* H3 */
101 #define	 EMAC_CLK_EPHY_ADDR_SHIFT	20
102 #define	 EMAC_CLK_EPHY_LED_POL		(1 << 17)	/* H3 */
103 #define	 EMAC_CLK_EPHY_SHUTDOWN		(1 << 16)	/* H3 */
104 #define	 EMAC_CLK_EPHY_SELECT		(1 << 15)	/* H3 */
105 #define	 EMAC_CLK_RMII_EN		(1 << 13)
106 #define	 EMAC_CLK_ETXDC			(0x7 << 10)
107 #define	 EMAC_CLK_ETXDC_SHIFT		10
108 #define	 EMAC_CLK_ERXDC			(0x1f << 5)
109 #define	 EMAC_CLK_ERXDC_SHIFT		5
110 #define	 EMAC_CLK_PIT			(0x1 << 2)
111 #define	  EMAC_CLK_PIT_MII		(0 << 2)
112 #define	  EMAC_CLK_PIT_RGMII		(1 << 2)
113 #define	 EMAC_CLK_SRC			(0x3 << 0)
114 #define	  EMAC_CLK_SRC_MII		(0 << 0)
115 #define	  EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
116 #define	  EMAC_CLK_SRC_RGMII		(2 << 0)
117 
118 /* Burst length of RX and TX DMA transfers */
119 static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
120 
121 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
122 static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
123 
124 /* Pause time field in the transmitted control frame */
125 static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
126 
127 enum sunxi_emac_type {
128 	EMAC_A64 = 1,
129 	EMAC_A83T,
130 	EMAC_H3,
131 	EMAC_H6,
132 };
133 
134 static const struct device_compatible_entry compat_data[] = {
135 	{ .compat = "allwinner,sun8i-a83t-emac",	.value = EMAC_A83T },
136 	{ .compat = "allwinner,sun8i-h3-emac",		.value = EMAC_H3 },
137 	{ .compat = "allwinner,sun8i-v3s-emac",		.value = EMAC_H3 },
138 	{ .compat = "allwinner,sun50i-a64-emac",	.value = EMAC_A64 },
139 	{ .compat = "allwinner,sun50i-h6-emac",		.value = EMAC_H6 },
140 	DEVICE_COMPAT_EOL
141 };
142 
143 struct sunxi_emac_bufmap {
144 	bus_dmamap_t		map;
145 	struct mbuf		*mbuf;
146 };
147 
148 struct sunxi_emac_txring {
149 	bus_dma_tag_t		desc_tag;
150 	bus_dmamap_t		desc_map;
151 	bus_dma_segment_t	desc_dmaseg;
152 	struct sunxi_emac_desc	*desc_ring;
153 	bus_addr_t		desc_ring_paddr;
154 	bus_dma_tag_t		buf_tag;
155 	struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
156 	u_int			cur, next, queued;
157 };
158 
159 struct sunxi_emac_rxring {
160 	bus_dma_tag_t		desc_tag;
161 	bus_dmamap_t		desc_map;
162 	bus_dma_segment_t	desc_dmaseg;
163 	struct sunxi_emac_desc	*desc_ring;
164 	bus_addr_t		desc_ring_paddr;
165 	bus_dma_tag_t		buf_tag;
166 	struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
167 	u_int			cur;
168 };
169 
170 struct sunxi_emac_softc {
171 	device_t		dev;
172 	int			phandle;
173 	enum sunxi_emac_type	type;
174 	bus_space_tag_t		bst;
175 	bus_dma_tag_t		dmat;
176 
177 	bus_space_handle_t	bsh;
178 	struct clk		*clk_ahb;
179 	struct clk		*clk_ephy;
180 	struct fdtbus_reset	*rst_ahb;
181 	struct fdtbus_reset	*rst_ephy;
182 	struct fdtbus_regulator	*reg_phy;
183 	struct fdtbus_gpio_pin	*pin_reset;
184 
185 	struct syscon		*syscon;
186 
187 	int			phy_id;
188 
189 	kmutex_t		mtx;
190 	struct ethercom		ec;
191 	struct mii_data		mii;
192 	callout_t		stat_ch;
193 	void			*ih;
194 	u_int			mdc_div_ratio_m;
195 
196 	struct sunxi_emac_txring	tx;
197 	struct sunxi_emac_rxring	rx;
198 };
199 
200 #define	RD4(sc, reg)			\
201 	bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
202 #define	WR4(sc, reg, val)		\
203 	bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
204 
205 static int
sunxi_emac_mii_readreg(device_t dev,int phy,int reg,uint16_t * val)206 sunxi_emac_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
207 {
208 	struct sunxi_emac_softc *sc = device_private(dev);
209 	int retry;
210 
211 	WR4(sc, EMAC_MII_CMD,
212 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
213 	    (phy << PHY_ADDR_SHIFT) |
214 	    (reg << PHY_REG_ADDR_SHIFT) |
215 	    MII_BUSY);
216 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
217 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
218 			*val = RD4(sc, EMAC_MII_DATA) & 0xffff;
219 			break;
220 		}
221 		delay(10);
222 	}
223 
224 	if (retry == 0) {
225 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
226 		    phy, reg);
227 		return ETIMEDOUT;
228 	}
229 
230 	return 0;
231 }
232 
233 static int
sunxi_emac_mii_writereg(device_t dev,int phy,int reg,uint16_t val)234 sunxi_emac_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
235 {
236 	struct sunxi_emac_softc *sc = device_private(dev);
237 	int retry;
238 
239 	WR4(sc, EMAC_MII_DATA, val);
240 	WR4(sc, EMAC_MII_CMD,
241 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
242 	    (phy << PHY_ADDR_SHIFT) |
243 	    (reg << PHY_REG_ADDR_SHIFT) |
244 	    MII_WR | MII_BUSY);
245 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
246 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
247 			break;
248 		delay(10);
249 	}
250 
251 	if (retry == 0) {
252 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
253 		    phy, reg);
254 		return ETIMEDOUT;
255 	}
256 
257 	return 0;
258 }
259 
260 static void
sunxi_emac_update_link(struct sunxi_emac_softc * sc)261 sunxi_emac_update_link(struct sunxi_emac_softc *sc)
262 {
263 	struct mii_data *mii = &sc->mii;
264 	uint32_t val;
265 
266 	val = RD4(sc, EMAC_BASIC_CTL_0);
267 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
268 
269 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
270 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
271 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
272 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
273 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
274 	else
275 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
276 
277 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
278 		val |= BASIC_CTL_DUPLEX;
279 
280 	WR4(sc, EMAC_BASIC_CTL_0, val);
281 
282 	val = RD4(sc, EMAC_RX_CTL_0);
283 	val &= ~RX_FLOW_CTL_EN;
284 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
285 		val |= RX_FLOW_CTL_EN;
286 	WR4(sc, EMAC_RX_CTL_0, val);
287 
288 	val = RD4(sc, EMAC_TX_FLOW_CTL);
289 	val &= ~(PAUSE_TIME | TX_FLOW_CTL_EN);
290 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
291 		val |= TX_FLOW_CTL_EN;
292 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
293 		val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
294 	WR4(sc, EMAC_TX_FLOW_CTL, val);
295 }
296 
297 static void
sunxi_emac_mii_statchg(struct ifnet * ifp)298 sunxi_emac_mii_statchg(struct ifnet *ifp)
299 {
300 	struct sunxi_emac_softc * const sc = ifp->if_softc;
301 
302 	sunxi_emac_update_link(sc);
303 }
304 
305 static void
sunxi_emac_dma_sync(struct sunxi_emac_softc * sc,bus_dma_tag_t dmat,bus_dmamap_t map,int start,int end,int total,int flags)306 sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
307     bus_dmamap_t map, int start, int end, int total, int flags)
308 {
309 	if (end > start) {
310 		bus_dmamap_sync(dmat, map, DESC_OFF(start),
311 		    DESC_OFF(end) - DESC_OFF(start), flags);
312 	} else {
313 		bus_dmamap_sync(dmat, map, DESC_OFF(start),
314 		    DESC_OFF(total) - DESC_OFF(start), flags);
315 		if (DESC_OFF(end) - DESC_OFF(0) > 0)
316 			bus_dmamap_sync(dmat, map, DESC_OFF(0),
317 			    DESC_OFF(end) - DESC_OFF(0), flags);
318 	}
319 }
320 
321 static void
sunxi_emac_setup_txdesc(struct sunxi_emac_softc * sc,int index,int flags,bus_addr_t paddr,u_int len)322 sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
323     bus_addr_t paddr, u_int len)
324 {
325 	uint32_t status, size;
326 
327 	if (paddr == 0 || len == 0) {
328 		status = 0;
329 		size = 0;
330 		--sc->tx.queued;
331 	} else {
332 		status = TX_DESC_CTL;
333 		size = flags | len;
334 		++sc->tx.queued;
335 	}
336 
337 	sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
338 	sc->tx.desc_ring[index].size = htole32(size);
339 	sc->tx.desc_ring[index].status = htole32(status);
340 }
341 
342 static int
sunxi_emac_setup_txbuf(struct sunxi_emac_softc * sc,int index,struct mbuf * m)343 sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
344 {
345 	bus_dma_segment_t *segs;
346 	int error, nsegs, cur, i, flags;
347 	u_int csum_flags;
348 
349 	error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
350 	    sc->tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
351 	if (error == EFBIG) {
352 		device_printf(sc->dev,
353 		    "TX packet needs too many DMA segments, dropping...\n");
354 		/* Caller will dequeue and free packet. */
355 		return -1;
356 	}
357 	if (error != 0)
358 		return 0;
359 
360 	segs = sc->tx.buf_map[index].map->dm_segs;
361 	nsegs = sc->tx.buf_map[index].map->dm_nsegs;
362 
363 	flags = TX_FIR_DESC;
364 	if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
365 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
366 			csum_flags = TX_CHECKSUM_CTL_FULL;
367 		else
368 			csum_flags = TX_CHECKSUM_CTL_IP;
369 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
370 	}
371 
372 	for (cur = index, i = 0; i < nsegs; i++) {
373 		sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
374 		if (i == nsegs - 1)
375 			flags |= TX_LAST_DESC | TX_INT_CTL;
376 
377 		sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
378 		    segs[i].ds_len);
379 		flags &= ~TX_FIR_DESC;
380 		cur = TX_NEXT(cur);
381 	}
382 
383 	bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
384 	    0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
385 
386 	return nsegs;
387 }
388 
389 static void
sunxi_emac_setup_rxdesc(struct sunxi_emac_softc * sc,int index,bus_addr_t paddr)390 sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
391     bus_addr_t paddr)
392 {
393 	uint32_t status, size;
394 
395 	status = RX_DESC_CTL;
396 	size = MCLBYTES - 1;
397 
398 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
399 	sc->rx.desc_ring[index].size = htole32(size);
400 	sc->rx.desc_ring[index].next =
401 	    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
402 	sc->rx.desc_ring[index].status = htole32(status);
403 }
404 
405 static int
sunxi_emac_setup_rxbuf(struct sunxi_emac_softc * sc,int index,struct mbuf * m)406 sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
407 {
408 	int error;
409 
410 	m_adj(m, ETHER_ALIGN);
411 
412 	error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
413 	    sc->rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT);
414 	if (error != 0)
415 		return error;
416 
417 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
418 	    0, sc->rx.buf_map[index].map->dm_mapsize,
419 	    BUS_DMASYNC_PREREAD);
420 
421 	sc->rx.buf_map[index].mbuf = m;
422 	sunxi_emac_setup_rxdesc(sc, index,
423 	    sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
424 
425 	return 0;
426 }
427 
428 static struct mbuf *
sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc * sc)429 sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
430 {
431 	struct mbuf *m;
432 
433 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
434 	if (m != NULL)
435 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
436 
437 	return m;
438 }
439 
440 static void
sunxi_emac_start_locked(struct sunxi_emac_softc * sc)441 sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
442 {
443 	struct ifnet *ifp = &sc->ec.ec_if;
444 	struct mbuf *m;
445 	uint32_t val;
446 	int cnt, nsegs, start;
447 
448 	EMAC_ASSERT_LOCKED(sc);
449 
450 	if ((ifp->if_flags & IFF_RUNNING) == 0)
451 		return;
452 
453 	for (cnt = 0, start = sc->tx.cur; ; cnt++) {
454 		if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
455 			break;
456 		}
457 
458 		IFQ_POLL(&ifp->if_snd, m);
459 		if (m == NULL)
460 			break;
461 
462 		nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
463 		if (__predict_false(nsegs <= 0)) {
464 			if (nsegs == -1) {
465 				/*
466 				 * We're being asked to discard this packet,
467 				 * but we can try to continue.
468 				 */
469 				IFQ_DEQUEUE(&ifp->if_snd, m);
470 				m_freem(m);
471 				continue;
472 			}
473 			break;
474 		}
475 		IFQ_DEQUEUE(&ifp->if_snd, m);
476 		bpf_mtap(ifp, m, BPF_D_OUT);
477 
478 		sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
479 	}
480 
481 	if (cnt != 0) {
482 		sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
483 		    start, sc->tx.cur, TX_DESC_COUNT,
484 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
485 
486 		/* Start and run TX DMA */
487 		val = RD4(sc, EMAC_TX_CTL_1);
488 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
489 	}
490 }
491 
492 static void
sunxi_emac_start(struct ifnet * ifp)493 sunxi_emac_start(struct ifnet *ifp)
494 {
495 	struct sunxi_emac_softc *sc = ifp->if_softc;
496 
497 	EMAC_LOCK(sc);
498 	sunxi_emac_start_locked(sc);
499 	EMAC_UNLOCK(sc);
500 }
501 
502 static void
sunxi_emac_tick(void * softc)503 sunxi_emac_tick(void *softc)
504 {
505 	struct sunxi_emac_softc *sc = softc;
506 	struct mii_data *mii = &sc->mii;
507 #ifndef EMAC_MPSAFE
508 	int s = splnet();
509 #endif
510 
511 	EMAC_LOCK(sc);
512 	mii_tick(mii);
513 	callout_schedule(&sc->stat_ch, hz);
514 	EMAC_UNLOCK(sc);
515 
516 #ifndef EMAC_MPSAFE
517 	splx(s);
518 #endif
519 }
520 
521 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
522 static uint32_t
bitrev32(uint32_t x)523 bitrev32(uint32_t x)
524 {
525 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
526 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
527 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
528 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
529 
530 	return (x >> 16) | (x << 16);
531 }
532 
533 static void
sunxi_emac_setup_rxfilter(struct sunxi_emac_softc * sc)534 sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
535 {
536 	struct ethercom *ec = &sc->ec;
537 	struct ifnet *ifp = &ec->ec_if;
538 	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
539 	struct ether_multi *enm;
540 	struct ether_multistep step;
541 	const uint8_t *eaddr;
542 
543 	EMAC_ASSERT_LOCKED(sc);
544 
545 	val = 0;
546 	hash[0] = hash[1] = 0;
547 
548 	if ((ifp->if_flags & IFF_PROMISC) != 0)
549 		val |= DIS_ADDR_FILTER;
550 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
551 		val |= RX_ALL_MULTICAST;
552 		hash[0] = hash[1] = ~0;
553 	} else {
554 		val |= HASH_MULTICAST;
555 		ETHER_LOCK(ec);
556 		ETHER_FIRST_MULTI(step, ec, enm);
557 		while (enm != NULL) {
558 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
559 			crc &= 0x7f;
560 			crc = bitrev32(~crc) >> 26;
561 			hashreg = (crc >> 5);
562 			hashbit = (crc & 0x1f);
563 			hash[hashreg] |= (1 << hashbit);
564 			ETHER_NEXT_MULTI(step, enm);
565 		}
566 		ETHER_UNLOCK(ec);
567 	}
568 
569 	/* Write our unicast address */
570 	eaddr = CLLADDR(ifp->if_sadl);
571 	machi = (eaddr[5] << 8) | eaddr[4];
572 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
573 	   (eaddr[0] << 0);
574 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
575 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
576 
577 	/* Multicast hash filters */
578 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
579 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
580 
581 	/* RX frame filter config */
582 	WR4(sc, EMAC_RX_FRM_FLT, val);
583 }
584 
585 static void
sunxi_emac_enable_intr(struct sunxi_emac_softc * sc)586 sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
587 {
588 	/* Enable interrupts */
589 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
590 }
591 
592 static void
sunxi_emac_disable_intr(struct sunxi_emac_softc * sc)593 sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
594 {
595 	/* Disable interrupts */
596 	WR4(sc, EMAC_INT_EN, 0);
597 }
598 
599 #ifdef SUNXI_EMAC_DEBUG
600 static void
sunxi_emac_dump_regs(struct sunxi_emac_softc * sc)601 sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
602 {
603 	static const struct {
604 		const char *name;
605 		u_int reg;
606 	} regs[] = {
607 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
608 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
609 		{ "INT_STA", EMAC_INT_STA },
610 		{ "INT_EN", EMAC_INT_EN },
611 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
612 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
613 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
614 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
615 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
616 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
617 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
618 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
619 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
620 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
621 		{ "MII_CMD", EMAC_MII_CMD },
622 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
623 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
624 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
625 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
626 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
627 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
628 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
629 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
630 		{ "RGMII_STA", EMAC_RGMII_STA },
631 	};
632 	u_int n;
633 
634 	for (n = 0; n < __arraycount(regs); n++)
635 		device_printf(sc->dev, "  %-20s %08x\n", regs[n].name,
636 		    RD4(sc, regs[n].reg));
637 }
638 #endif
639 
640 static int
sunxi_emac_reset(struct sunxi_emac_softc * sc)641 sunxi_emac_reset(struct sunxi_emac_softc *sc)
642 {
643 	int retry;
644 
645 	/* Soft reset all registers and logic */
646 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
647 
648 	/* Wait for soft reset bit to self-clear */
649 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
650 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
651 			break;
652 		delay(10);
653 	}
654 	if (retry == 0) {
655 		aprint_debug_dev(sc->dev, "soft reset timed out\n");
656 #ifdef SUNXI_EMAC_DEBUG
657 		sunxi_emac_dump_regs(sc);
658 #endif
659 		return ETIMEDOUT;
660 	}
661 
662 	return 0;
663 }
664 
665 static int
sunxi_emac_init_locked(struct sunxi_emac_softc * sc)666 sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
667 {
668 	struct ifnet *ifp = &sc->ec.ec_if;
669 	struct mii_data *mii = &sc->mii;
670 	uint32_t val;
671 
672 	EMAC_ASSERT_LOCKED(sc);
673 
674 	if ((ifp->if_flags & IFF_RUNNING) != 0)
675 		return 0;
676 
677 	/* Soft reset EMAC core */
678 	sunxi_emac_reset(sc);
679 
680 	/* Write transmit and receive descriptor base address registers */
681 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
682 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
683 
684 	sunxi_emac_setup_rxfilter(sc);
685 
686 	/* Configure DMA burst length and priorities */
687 	val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
688 	if (sunxi_emac_rx_tx_pri)
689 		val |= BASIC_CTL_RX_TX_PRI;
690 	WR4(sc, EMAC_BASIC_CTL_1, val);
691 
692 	/* Enable interrupts */
693 	sunxi_emac_enable_intr(sc);
694 
695 	/* Enable transmit DMA */
696 	val = RD4(sc, EMAC_TX_CTL_1);
697 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
698 
699 	/* Enable receive DMA */
700 	val = RD4(sc, EMAC_RX_CTL_1);
701 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
702 
703 	/* Enable transmitter */
704 	val = RD4(sc, EMAC_TX_CTL_0);
705 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
706 
707 	/* Enable receiver */
708 	val = RD4(sc, EMAC_RX_CTL_0);
709 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
710 
711 	ifp->if_flags |= IFF_RUNNING;
712 
713 	mii_mediachg(mii);
714 	callout_schedule(&sc->stat_ch, hz);
715 
716 	return 0;
717 }
718 
719 static int
sunxi_emac_init(struct ifnet * ifp)720 sunxi_emac_init(struct ifnet *ifp)
721 {
722 	struct sunxi_emac_softc *sc = ifp->if_softc;
723 	int error;
724 
725 	EMAC_LOCK(sc);
726 	error = sunxi_emac_init_locked(sc);
727 	EMAC_UNLOCK(sc);
728 
729 	return error;
730 }
731 
732 static void
sunxi_emac_stop_locked(struct sunxi_emac_softc * sc,int disable)733 sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
734 {
735 	struct ifnet *ifp = &sc->ec.ec_if;
736 	uint32_t val;
737 
738 	EMAC_ASSERT_LOCKED(sc);
739 
740 	callout_stop(&sc->stat_ch);
741 
742 	mii_down(&sc->mii);
743 
744 	/* Stop transmit DMA and flush data in the TX FIFO */
745 	val = RD4(sc, EMAC_TX_CTL_1);
746 	val &= ~TX_DMA_EN;
747 	val |= FLUSH_TX_FIFO;
748 	WR4(sc, EMAC_TX_CTL_1, val);
749 
750 	/* Disable transmitter */
751 	val = RD4(sc, EMAC_TX_CTL_0);
752 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
753 
754 	/* Disable receiver */
755 	val = RD4(sc, EMAC_RX_CTL_0);
756 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
757 
758 	/* Disable interrupts */
759 	sunxi_emac_disable_intr(sc);
760 
761 	/* Disable transmit DMA */
762 	val = RD4(sc, EMAC_TX_CTL_1);
763 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
764 
765 	/* Disable receive DMA */
766 	val = RD4(sc, EMAC_RX_CTL_1);
767 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
768 
769 	ifp->if_flags &= ~IFF_RUNNING;
770 }
771 
772 static void
sunxi_emac_stop(struct ifnet * ifp,int disable)773 sunxi_emac_stop(struct ifnet *ifp, int disable)
774 {
775 	struct sunxi_emac_softc * const sc = ifp->if_softc;
776 
777 	EMAC_LOCK(sc);
778 	sunxi_emac_stop_locked(sc, disable);
779 	EMAC_UNLOCK(sc);
780 }
781 
782 static int
sunxi_emac_rxintr(struct sunxi_emac_softc * sc)783 sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
784 {
785 	struct ifnet *ifp = &sc->ec.ec_if;
786 	int error, index, len, npkt;
787 	struct mbuf *m, *m0;
788 	uint32_t status;
789 
790 	npkt = 0;
791 
792 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
793 		sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
794 		    index, index + 1, RX_DESC_COUNT,
795 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
796 
797 		status = le32toh(sc->rx.desc_ring[index].status);
798 		if ((status & RX_DESC_CTL) != 0)
799 			break;
800 
801 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
802 		    0, sc->rx.buf_map[index].map->dm_mapsize,
803 		    BUS_DMASYNC_POSTREAD);
804 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
805 
806 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
807 		if (len != 0) {
808 			m = sc->rx.buf_map[index].mbuf;
809 			m_set_rcvif(m, ifp);
810 			m->m_flags |= M_HASFCS;
811 			m->m_pkthdr.len = len;
812 			m->m_len = len;
813 			m->m_nextpkt = NULL;
814 
815 			if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
816 			    (status & RX_FRM_TYPE) != 0) {
817 				m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
818 				    M_CSUM_TCPv4 | M_CSUM_UDPv4;
819 				if ((status & RX_HEADER_ERR) != 0)
820 					m->m_pkthdr.csum_flags |=
821 					    M_CSUM_IPv4_BAD;
822 				if ((status & RX_PAYLOAD_ERR) != 0)
823 					m->m_pkthdr.csum_flags |=
824 					    M_CSUM_TCP_UDP_BAD;
825 			}
826 
827 			++npkt;
828 
829 			if_percpuq_enqueue(ifp->if_percpuq, m);
830 		}
831 
832 		if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
833 			error = sunxi_emac_setup_rxbuf(sc, index, m0);
834 			if (error != 0) {
835 				/* XXX hole in RX ring */
836 			}
837 		} else
838 			if_statinc(ifp, if_ierrors);
839 
840 		sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
841 		    index, index + 1,
842 		    RX_DESC_COUNT, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
843 	}
844 
845 	sc->rx.cur = index;
846 
847 	return npkt;
848 }
849 
850 static void
sunxi_emac_txintr(struct sunxi_emac_softc * sc)851 sunxi_emac_txintr(struct sunxi_emac_softc *sc)
852 {
853 	struct ifnet *ifp = &sc->ec.ec_if;
854 	struct sunxi_emac_bufmap *bmap;
855 	struct sunxi_emac_desc *desc;
856 	uint32_t status;
857 	int i;
858 
859 	EMAC_ASSERT_LOCKED(sc);
860 
861 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
862 		KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
863 		sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
864 		    i, i + 1, TX_DESC_COUNT,
865 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866 		desc = &sc->tx.desc_ring[i];
867 		status = le32toh(desc->status);
868 		if ((status & TX_DESC_CTL) != 0)
869 			break;
870 		bmap = &sc->tx.buf_map[i];
871 		if (bmap->mbuf != NULL) {
872 			bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
873 			    0, bmap->map->dm_mapsize,
874 			    BUS_DMASYNC_POSTWRITE);
875 			bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
876 			m_freem(bmap->mbuf);
877 			bmap->mbuf = NULL;
878 		}
879 
880 		sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
881 		sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
882 		    i, i + 1, TX_DESC_COUNT,
883 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
884 
885 		if_statinc(ifp, if_opackets);
886 	}
887 
888 	sc->tx.next = i;
889 }
890 
891 static int
sunxi_emac_intr(void * arg)892 sunxi_emac_intr(void *arg)
893 {
894 	struct sunxi_emac_softc *sc = arg;
895 	struct ifnet *ifp = &sc->ec.ec_if;
896 	uint32_t val;
897 
898 	EMAC_LOCK(sc);
899 
900 	val = RD4(sc, EMAC_INT_STA);
901 	WR4(sc, EMAC_INT_STA, val);
902 
903 	if (val & RX_INT)
904 		sunxi_emac_rxintr(sc);
905 
906 	if (val & (TX_INT | TX_BUF_UA_INT)) {
907 		sunxi_emac_txintr(sc);
908 		if_schedule_deferred_start(ifp);
909 	}
910 
911 	EMAC_UNLOCK(sc);
912 
913 	return 1;
914 }
915 
916 static int
sunxi_emac_ioctl(struct ifnet * ifp,u_long cmd,void * data)917 sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
918 {
919 	struct sunxi_emac_softc *sc = ifp->if_softc;
920 	int error, s;
921 
922 #ifndef EMAC_MPSAFE
923 	s = splnet();
924 #endif
925 
926 	switch (cmd) {
927 	default:
928 #ifdef EMAC_MPSAFE
929 		s = splnet();
930 #endif
931 		error = ether_ioctl(ifp, cmd, data);
932 #ifdef EMAC_MPSAFE
933 		splx(s);
934 #endif
935 		if (error != ENETRESET)
936 			break;
937 
938 		error = 0;
939 
940 		if (cmd == SIOCSIFCAP)
941 			error = if_init(ifp);
942 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
943 			;
944 		else if ((ifp->if_flags & IFF_RUNNING) != 0) {
945 			EMAC_LOCK(sc);
946 			sunxi_emac_setup_rxfilter(sc);
947 			EMAC_UNLOCK(sc);
948 		}
949 		break;
950 	}
951 
952 #ifndef EMAC_MPSAFE
953 	splx(s);
954 #endif
955 
956 	return error;
957 }
958 
959 static bool
sunxi_emac_has_internal_phy(struct sunxi_emac_softc * sc)960 sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
961 {
962 	static const struct device_compatible_entry mdio_internal_compat[] = {
963 		{ .compat = "allwinner,sun8i-h3-mdio-internal" },
964 		DEVICE_COMPAT_EOL
965 	};
966 	int phy;
967 
968 	/* Non-standard property, for compatible with old dts files */
969 	if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
970 		return true;
971 
972 	phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
973 	if (phy == -1)
974 		return false;
975 
976 	/* For internal PHY, check compatible string of parent node */
977 	return of_compatible_match(OF_parent(phy), mdio_internal_compat);
978 }
979 
980 static int
sunxi_emac_setup_phy(struct sunxi_emac_softc * sc)981 sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
982 {
983 	uint32_t reg, tx_delay, rx_delay;
984 	const char *phy_type;
985 
986 	phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
987 	if (phy_type == NULL)
988 		return 0;
989 
990 	aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
991 
992 	syscon_lock(sc->syscon);
993 	reg = syscon_read_4(sc->syscon, EMAC_CLK_REG);
994 
995 	reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
996 	if (strncmp(phy_type, "rgmii", 5) == 0)
997 		reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
998 	else if (strcmp(phy_type, "rmii") == 0)
999 		reg |= EMAC_CLK_RMII_EN;
1000 	else
1001 		reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
1002 
1003 	if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
1004 	    &tx_delay) == 0) {
1005 		reg &= ~EMAC_CLK_ETXDC;
1006 		reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
1007 	} else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
1008 		reg &= ~EMAC_CLK_ETXDC;
1009 		reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1010 	}
1011 	if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
1012 	    &rx_delay) == 0) {
1013 		reg &= ~EMAC_CLK_ERXDC;
1014 		reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
1015 	} else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
1016 		reg &= ~EMAC_CLK_ERXDC;
1017 		reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1018 	}
1019 
1020 	if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
1021 		if (sunxi_emac_has_internal_phy(sc)) {
1022 			reg |= EMAC_CLK_EPHY_SELECT;
1023 			reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1024 			if (of_hasprop(sc->phandle,
1025 			    "allwinner,leds-active-low"))
1026 				reg |= EMAC_CLK_EPHY_LED_POL;
1027 			else
1028 				reg &= ~EMAC_CLK_EPHY_LED_POL;
1029 
1030 			/* Set internal PHY addr to 1 */
1031 			reg &= ~EMAC_CLK_EPHY_ADDR;
1032 			reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1033 		} else {
1034 			reg &= ~EMAC_CLK_EPHY_SELECT;
1035 		}
1036 	}
1037 
1038 	aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
1039 
1040 	syscon_write_4(sc->syscon, EMAC_CLK_REG, reg);
1041 	syscon_unlock(sc->syscon);
1042 
1043 	return 0;
1044 }
1045 
1046 static int
sunxi_emac_setup_resources(struct sunxi_emac_softc * sc)1047 sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
1048 {
1049 	u_int freq;
1050 	int error, div;
1051 
1052 	/* Configure PHY for MII or RGMII mode */
1053 	if (sunxi_emac_setup_phy(sc) != 0)
1054 		return ENXIO;
1055 
1056 	/* Enable clocks */
1057 	error = clk_enable(sc->clk_ahb);
1058 	if (error != 0) {
1059 		aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
1060 		return error;
1061 	}
1062 
1063 	if (sc->clk_ephy != NULL) {
1064 		error = clk_enable(sc->clk_ephy);
1065 		if (error != 0) {
1066 			aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
1067 			return error;
1068 		}
1069 	}
1070 
1071 	/* De-assert reset */
1072 	error = fdtbus_reset_deassert(sc->rst_ahb);
1073 	if (error != 0) {
1074 		aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1075 		return error;
1076 	}
1077 	if (sc->rst_ephy != NULL) {
1078 		error = fdtbus_reset_deassert(sc->rst_ephy);
1079 		if (error != 0) {
1080 			aprint_error_dev(sc->dev,
1081 			    "cannot de-assert ephy reset\n");
1082 			return error;
1083 		}
1084 	}
1085 
1086 	/* Enable PHY regulator if applicable */
1087 	if (sc->reg_phy != NULL) {
1088 		error = fdtbus_regulator_enable(sc->reg_phy);
1089 		if (error != 0) {
1090 			aprint_error_dev(sc->dev,
1091 			    "cannot enable PHY regulator\n");
1092 			return error;
1093 		}
1094 	}
1095 
1096 	/* Determine MDC clock divide ratio based on AHB clock */
1097 	freq = clk_get_rate(sc->clk_ahb);
1098 	if (freq == 0) {
1099 		aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1100 		return ENXIO;
1101 	}
1102 	div = freq / MDIO_FREQ;
1103 	if (div <= 16)
1104 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1105 	else if (div <= 32)
1106 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1107 	else if (div <= 64)
1108 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1109 	else if (div <= 128)
1110 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1111 	else {
1112 		aprint_error_dev(sc->dev,
1113 		    "cannot determine MDC clock divide ratio\n");
1114 		return ENXIO;
1115 	}
1116 
1117 	aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1118 	    freq, sc->mdc_div_ratio_m);
1119 
1120 	return 0;
1121 }
1122 
1123 static void
sunxi_emac_get_eaddr(struct sunxi_emac_softc * sc,uint8_t * eaddr)1124 sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1125 {
1126 	uint32_t maclo, machi;
1127 #if notyet
1128 	u_char rootkey[16];
1129 #endif
1130 
1131 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1132 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1133 
1134 	if (maclo == 0xffffffff && machi == 0xffff) {
1135 #if notyet
1136 		/* MAC address in hardware is invalid, create one */
1137 		if (aw_sid_get_rootkey(rootkey) == 0 &&
1138 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1139 		     rootkey[15]) != 0) {
1140 			/* MAC address is derived from the root key in SID */
1141 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1142 				(rootkey[3] << 8) | 0x02;
1143 			machi = (rootkey[15] << 8) | rootkey[14];
1144 		} else {
1145 #endif
1146 			/* Create one */
1147 			maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1148 			machi = cprng_strong32() & 0xffff;
1149 #if notyet
1150 		}
1151 #endif
1152 	}
1153 
1154 	eaddr[0] = maclo & 0xff;
1155 	eaddr[1] = (maclo >> 8) & 0xff;
1156 	eaddr[2] = (maclo >> 16) & 0xff;
1157 	eaddr[3] = (maclo >> 24) & 0xff;
1158 	eaddr[4] = machi & 0xff;
1159 	eaddr[5] = (machi >> 8) & 0xff;
1160 }
1161 
1162 static int
sunxi_emac_phy_reset(struct sunxi_emac_softc * sc)1163 sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1164 {
1165 	uint32_t delay_prop[3];
1166 	int pin_value;
1167 
1168 	if (sc->pin_reset == NULL)
1169 		return 0;
1170 
1171 	if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1172 	    sizeof(delay_prop)) <= 0)
1173 		return ENXIO;
1174 
1175 	pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1176 
1177 	fdtbus_gpio_write(sc->pin_reset, pin_value);
1178 	delay(htole32(delay_prop[0]));
1179 	fdtbus_gpio_write(sc->pin_reset, !pin_value);
1180 	delay(htole32(delay_prop[1]));
1181 	fdtbus_gpio_write(sc->pin_reset, pin_value);
1182 	delay(htole32(delay_prop[2]));
1183 
1184 	return 0;
1185 }
1186 
1187 static int
sunxi_emac_setup_dma(struct sunxi_emac_softc * sc)1188 sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1189 {
1190 	struct mbuf *m;
1191 	int error, nsegs, i;
1192 
1193 	/* Setup TX ring */
1194 	sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1195 	error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1196 	    BUS_DMA_WAITOK, &sc->tx.desc_map);
1197 	if (error)
1198 		return error;
1199 	error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1200 	    &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1201 	if (error)
1202 		return error;
1203 	error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1204 	    TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1205 	    BUS_DMA_WAITOK);
1206 	if (error)
1207 		return error;
1208 	error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1209 	    TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1210 	if (error)
1211 		return error;
1212 	sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1213 
1214 	memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1215 	bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1216 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1217 
1218 	for (i = 0; i < TX_DESC_COUNT; i++)
1219 		sc->tx.desc_ring[i].next =
1220 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1221 
1222 	sc->tx.queued = TX_DESC_COUNT;
1223 	for (i = 0; i < TX_DESC_COUNT; i++) {
1224 		error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1225 		    TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1226 		    &sc->tx.buf_map[i].map);
1227 		if (error != 0) {
1228 			device_printf(sc->dev, "cannot create TX buffer map\n");
1229 			return error;
1230 		}
1231 		sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1232 	}
1233 
1234 	/* Setup RX ring */
1235 	sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1236 	error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1237 	    BUS_DMA_WAITOK, &sc->rx.desc_map);
1238 	if (error)
1239 		return error;
1240 	error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1241 	    &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1242 	if (error)
1243 		return error;
1244 	error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1245 	    RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1246 	    BUS_DMA_WAITOK);
1247 	if (error)
1248 		return error;
1249 	error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1250 	    RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1251 	if (error)
1252 		return error;
1253 	sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1254 
1255 	memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1256 
1257 	for (i = 0; i < RX_DESC_COUNT; i++) {
1258 		error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1259 		    RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1260 		    &sc->rx.buf_map[i].map);
1261 		if (error != 0) {
1262 			device_printf(sc->dev, "cannot create RX buffer map\n");
1263 			return error;
1264 		}
1265 		if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1266 			device_printf(sc->dev, "cannot allocate RX mbuf\n");
1267 			return ENOMEM;
1268 		}
1269 		error = sunxi_emac_setup_rxbuf(sc, i, m);
1270 		if (error != 0) {
1271 			device_printf(sc->dev, "cannot create RX buffer\n");
1272 			return error;
1273 		}
1274 	}
1275 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1276 	    0, sc->rx.desc_map->dm_mapsize,
1277 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1278 
1279 	return 0;
1280 }
1281 
1282 static int
sunxi_emac_get_resources(struct sunxi_emac_softc * sc)1283 sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1284 {
1285 	const int phandle = sc->phandle;
1286 	bus_addr_t addr, size;
1287 
1288 	/* Map EMAC registers */
1289 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
1290 		aprint_error_dev(sc->dev, "unable to get registers\n");
1291 		return ENXIO;
1292 	}
1293 	if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh) != 0) {
1294 		aprint_error_dev(sc->dev, "unable to map registers\n");
1295 		return ENXIO;
1296 	}
1297 
1298 	/* Get SYSCON registers */
1299 	sc->syscon = fdtbus_syscon_acquire(phandle, "syscon");
1300 	if (sc->syscon == NULL) {
1301 		aprint_error_dev(sc->dev, "unable to acquire syscon\n");
1302 		return ENXIO;
1303 	}
1304 
1305 	/* The "ahb"/"stmmaceth" clock and reset is required */
1306 	if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1307 	    (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL) {
1308 		aprint_error_dev(sc->dev, "unable to get clock\n");
1309 		return ENXIO;
1310 	}
1311 	if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1312 	    (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL) {
1313 		aprint_error_dev(sc->dev, "unable to get reset\n");
1314 		return ENXIO;
1315 	}
1316 
1317 	/* Internal PHY clock and reset are optional properties. */
1318 	sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1319 	if (sc->clk_ephy == NULL) {
1320 		int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1321 		if (phy_phandle != -1)
1322 			sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1323 	}
1324 	sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1325 	if (sc->rst_ephy == NULL) {
1326 		int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1327 		if (phy_phandle != -1)
1328 			sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1329 	}
1330 
1331 	/* Regulator is optional */
1332 	sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1333 
1334 	/* Reset GPIO is optional */
1335 	sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1336 	    "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1337 
1338 	return 0;
1339 }
1340 
1341 static int
sunxi_emac_get_phyid(struct sunxi_emac_softc * sc)1342 sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1343 {
1344 	bus_addr_t addr;
1345 	int phy_phandle;
1346 
1347 	phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1348 	if (phy_phandle == -1)
1349 		phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1350 	if (phy_phandle == -1)
1351 		return MII_PHY_ANY;
1352 
1353 	if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1354 		return MII_PHY_ANY;
1355 
1356 	return (int)addr;
1357 }
1358 
1359 static int
sunxi_emac_match(device_t parent,cfdata_t cf,void * aux)1360 sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1361 {
1362 	struct fdt_attach_args * const faa = aux;
1363 
1364 	return of_compatible_match(faa->faa_phandle, compat_data);
1365 }
1366 
1367 static void
sunxi_emac_attach(device_t parent,device_t self,void * aux)1368 sunxi_emac_attach(device_t parent, device_t self, void *aux)
1369 {
1370 	struct fdt_attach_args * const faa = aux;
1371 	struct sunxi_emac_softc * const sc = device_private(self);
1372 	const int phandle = faa->faa_phandle;
1373 	struct mii_data *mii = &sc->mii;
1374 	struct ifnet *ifp = &sc->ec.ec_if;
1375 	uint8_t eaddr[ETHER_ADDR_LEN];
1376 	char intrstr[128];
1377 
1378 	sc->dev = self;
1379 	sc->phandle = phandle;
1380 	sc->bst = faa->faa_bst;
1381 	sc->dmat = faa->faa_dmat;
1382 	sc->type = of_compatible_lookup(phandle, compat_data)->value;
1383 	sc->phy_id = sunxi_emac_get_phyid(sc);
1384 
1385 	aprint_naive("\n");
1386 	aprint_normal(": EMAC\n");
1387 
1388 	if (sunxi_emac_get_resources(sc) != 0) {
1389 		aprint_error_dev(self,
1390 		    "cannot allocate resources for device\n");
1391 		return;
1392 	}
1393 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1394 		aprint_error_dev(self, "cannot decode interrupt\n");
1395 		return;
1396 	}
1397 
1398 	mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1399 	callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1400 	callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1401 
1402 	/* Setup clocks and regulators */
1403 	if (sunxi_emac_setup_resources(sc) != 0)
1404 		return;
1405 
1406 	/* Read MAC address before resetting the chip */
1407 	sunxi_emac_get_eaddr(sc, eaddr);
1408 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1409 
1410 	/* Reset PHY if necessary */
1411 	if (sunxi_emac_phy_reset(sc) != 0) {
1412 		aprint_error_dev(self, "failed to reset PHY\n");
1413 		return;
1414 	}
1415 
1416 	/* Setup DMA descriptors */
1417 	if (sunxi_emac_setup_dma(sc) != 0) {
1418 		aprint_error_dev(self, "failed to setup DMA descriptors\n");
1419 		return;
1420 	}
1421 
1422 	/* Install interrupt handler */
1423 	sc->ih = fdtbus_intr_establish_xname(phandle, 0, IPL_NET,
1424 	    FDT_INTR_FLAGS, sunxi_emac_intr, sc, device_xname(self));
1425 	if (sc->ih == NULL) {
1426 		aprint_error_dev(self, "failed to establish interrupt on %s\n",
1427 		    intrstr);
1428 		return;
1429 	}
1430 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1431 
1432 	/* Setup ethernet interface */
1433 	ifp->if_softc = sc;
1434 	snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1435 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1436 #ifdef EMAC_MPSAFE
1437 	ifp->if_extflags = IFEF_MPSAFE;
1438 #endif
1439 	ifp->if_start = sunxi_emac_start;
1440 	ifp->if_ioctl = sunxi_emac_ioctl;
1441 	ifp->if_init = sunxi_emac_init;
1442 	ifp->if_stop = sunxi_emac_stop;
1443 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1444 			       IFCAP_CSUM_IPv4_Tx |
1445 			       IFCAP_CSUM_TCPv4_Rx |
1446 			       IFCAP_CSUM_TCPv4_Tx |
1447 			       IFCAP_CSUM_UDPv4_Rx |
1448 			       IFCAP_CSUM_UDPv4_Tx;
1449 	ifp->if_capenable = ifp->if_capabilities;
1450 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1451 	IFQ_SET_READY(&ifp->if_snd);
1452 
1453 	/* 802.1Q VLAN-sized frames are supported */
1454 	sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1455 
1456 	/* Attach MII driver */
1457 	sc->ec.ec_mii = mii;
1458 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1459 	mii->mii_ifp = ifp;
1460 	mii->mii_readreg = sunxi_emac_mii_readreg;
1461 	mii->mii_writereg = sunxi_emac_mii_writereg;
1462 	mii->mii_statchg = sunxi_emac_mii_statchg;
1463 	mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1464 	    MIIF_DOPAUSE);
1465 
1466 	if (LIST_EMPTY(&mii->mii_phys)) {
1467 		aprint_error_dev(self, "no PHY found!\n");
1468 		return;
1469 	}
1470 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1471 
1472 	/* Attach interface */
1473 	if_attach(ifp);
1474 	if_deferred_start_init(ifp, NULL);
1475 
1476 	/* Attach ethernet interface */
1477 	ether_ifattach(ifp, eaddr);
1478 }
1479 
1480 CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1481     sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1482