xref: /netbsd-src/sys/arch/aarch64/include/asan.h (revision 4def9d8babeb63d4624e044b3ee90c28f8d5cb82)
1 /*	$NetBSD: asan.h,v 1.19 2023/04/16 14:01:51 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5  * All rights reserved.
6  *
7  * This code is part of the KASAN subsystem of the NetBSD kernel.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/atomic.h>
32 #include <sys/ksyms.h>
33 
34 #include <uvm/uvm.h>
35 
36 #include <aarch64/pmap.h>
37 #include <aarch64/vmparam.h>
38 #include <aarch64/armreg.h>
39 #include <aarch64/machdep.h>
40 
41 #include <arm/cpufunc.h>
42 
43 #define __MD_VIRTUAL_SHIFT	48	/* 49bit address space, cut half */
44 #define __MD_KERNMEM_BASE	0xFFFF000000000000 /* kern mem base address */
45 
46 #define __MD_SHADOW_SIZE	(1ULL << (__MD_VIRTUAL_SHIFT - KASAN_SHADOW_SCALE_SHIFT))
47 #define KASAN_MD_SHADOW_START	(AARCH64_DIRECTMAP_END)
48 #define KASAN_MD_SHADOW_END	(KASAN_MD_SHADOW_START + __MD_SHADOW_SIZE)
49 
50 static bool __md_early __read_mostly = true;
51 
52 static inline int8_t *
kasan_md_addr_to_shad(const void * addr)53 kasan_md_addr_to_shad(const void *addr)
54 {
55 	vaddr_t va = (vaddr_t)addr;
56 	return (int8_t *)(KASAN_MD_SHADOW_START +
57 	    ((va - __MD_KERNMEM_BASE) >> KASAN_SHADOW_SCALE_SHIFT));
58 }
59 
60 static inline bool
kasan_md_unsupported(vaddr_t addr)61 kasan_md_unsupported(vaddr_t addr)
62 {
63 	return (addr < VM_MIN_KERNEL_ADDRESS) ||
64 	    (addr >= VM_KERNEL_IO_BASE);
65 }
66 
67 static paddr_t
__md_palloc(void)68 __md_palloc(void)
69 {
70 	paddr_t pa;
71 
72 	if (__predict_false(__md_early)) {
73 		pa = (paddr_t)pmapboot_pagealloc();
74 		return pa;
75 	}
76 
77 	vaddr_t va;
78 	if (!uvm.page_init_done) {
79 		va = uvm_pageboot_alloc(PAGE_SIZE);
80 		pa = AARCH64_KVA_TO_PA(va);
81 	} else {
82 		struct vm_page *pg;
83 retry:
84 		pg = uvm_pagealloc(NULL, 0, NULL, 0);
85 		if (pg == NULL) {
86 			uvm_wait(__func__);
87 			goto retry;
88 		}
89 
90 		pa = VM_PAGE_TO_PHYS(pg);
91 		va = AARCH64_PA_TO_KVA(pa);
92 	}
93 
94 	__builtin_memset((void *)va, 0, PAGE_SIZE);
95 	return pa;
96 }
97 
98 static inline paddr_t
__md_palloc_large(void)99 __md_palloc_large(void)
100 {
101 	struct pglist pglist;
102 	int ret;
103 
104 	if (!uvm.page_init_done)
105 		return 0;
106 
107 	ret = uvm_pglistalloc(L2_SIZE, 0, ~0UL, L2_SIZE, 0,
108 	    &pglist, 1, 0);
109 	if (ret != 0)
110 		return 0;
111 
112 	/* The page may not be zeroed. */
113 	return VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
114 }
115 
116 static void
kasan_md_shadow_map_page(vaddr_t va)117 kasan_md_shadow_map_page(vaddr_t va)
118 {
119 	pd_entry_t *l0, *l1, *l2, *l3;
120 	paddr_t l0pa, pa;
121 	pd_entry_t pde;
122 	size_t idx;
123 
124 	l0pa = reg_ttbr1_el1_read();
125 	if (__predict_false(__md_early)) {
126 		l0 = (void *)KERN_PHYSTOV(l0pa);
127 	} else {
128 		l0 = (void *)AARCH64_PA_TO_KVA(l0pa);
129 	}
130 
131 	idx = l0pde_index(va);
132 	pde = l0[idx];
133 	if (!l0pde_valid(pde)) {
134 		pa = __md_palloc();
135 		atomic_swap_64(&l0[idx], pa | L0_TABLE);
136 	} else {
137 		pa = l0pde_pa(pde);
138 	}
139 	if (__predict_false(__md_early)) {
140 		l1 = (void *)KERN_PHYSTOV(pa);
141 	} else {
142 		l1 = (void *)AARCH64_PA_TO_KVA(pa);
143 	}
144 
145 	idx = l1pde_index(va);
146 	pde = l1[idx];
147 	if (!l1pde_valid(pde)) {
148 		pa = __md_palloc();
149 		atomic_swap_64(&l1[idx], pa | L1_TABLE);
150 	} else {
151 		pa = l1pde_pa(pde);
152 	}
153 	if (__predict_false(__md_early)) {
154 		l2 = (void *)KERN_PHYSTOV(pa);
155 	} else {
156 		l2 = (void *)AARCH64_PA_TO_KVA(pa);
157 	}
158 
159 	idx = l2pde_index(va);
160 	pde = l2[idx];
161 	if (!l2pde_valid(pde)) {
162 		/* If possible, use L2_BLOCK to map it in advance. */
163 		if ((pa = __md_palloc_large()) != 0) {
164 			atomic_swap_64(&l2[idx], pa | L2_BLOCK |
165 			    LX_BLKPAG_UXN | LX_BLKPAG_PXN | LX_BLKPAG_AF |
166 			    LX_BLKPAG_SH_IS | LX_BLKPAG_AP_RW);
167 			aarch64_tlbi_by_va(va);
168 			__builtin_memset((void *)va, 0, L2_SIZE);
169 			return;
170 		}
171 		pa = __md_palloc();
172 		atomic_swap_64(&l2[idx], pa | L2_TABLE);
173 	} else if (l2pde_is_block(pde)) {
174 		/* This VA is already mapped as a block. */
175 		return;
176 	} else {
177 		pa = l2pde_pa(pde);
178 	}
179 	if (__predict_false(__md_early)) {
180 		l3 = (void *)KERN_PHYSTOV(pa);
181 	} else {
182 		l3 = (void *)AARCH64_PA_TO_KVA(pa);
183 	}
184 
185 	idx = l3pte_index(va);
186 	pde = l3[idx];
187 	if (!l3pte_valid(pde)) {
188 		pa = __md_palloc();
189 		atomic_swap_64(&l3[idx], pa | L3_PAGE | LX_BLKPAG_UXN |
190 		    LX_BLKPAG_PXN | LX_BLKPAG_AF | LX_BLKPAG_SH_IS |
191 		    LX_BLKPAG_AP_RW | LX_BLKPAG_ATTR_NORMAL_WB);
192 	}
193 	dsb(ishst);
194 	isb();
195 }
196 
197 static void
kasan_md_early_init(void * stack)198 kasan_md_early_init(void *stack)
199 {
200 	kasan_shadow_map(stack, USPACE);
201 	__md_early = false;
202 }
203 
204 static void
kasan_md_init(void)205 kasan_md_init(void)
206 {
207 
208 	CTASSERT((__MD_SHADOW_SIZE / L0_SIZE) == 64);
209 
210 	extern vaddr_t kasan_kernelstart;
211 	extern vaddr_t kasan_kernelsize;
212 
213 	kasan_shadow_map((void *)kasan_kernelstart, kasan_kernelsize);
214 
215 	/* The VAs we've created until now. */
216 	vaddr_t eva = pmap_growkernel(VM_KERNEL_VM_BASE);
217 	kasan_shadow_map((void *)VM_KERNEL_VM_BASE, eva - VM_KERNEL_VM_BASE);
218 }
219 
220 static inline bool
__md_unwind_end(const char * name)221 __md_unwind_end(const char *name)
222 {
223 	if (!strncmp(name, "el0_trap", 8) ||
224 	    !strncmp(name, "el1_trap", 8)) {
225 		return true;
226 	}
227 
228 	return false;
229 }
230 
231 static void
kasan_md_unwind(void)232 kasan_md_unwind(void)
233 {
234 	uint64_t lr, *fp;
235 	const char *mod;
236 	const char *sym;
237 	size_t nsym;
238 	int error;
239 
240 	fp = (uint64_t *)__builtin_frame_address(0);
241 	nsym = 0;
242 
243 	while (1) {
244 		/*
245 		 * normal stack frame
246 		 *  fp[0]  saved fp(x29) value
247 		 *  fp[1]  saved lr(x30) value
248 		 */
249 		lr = fp[1];
250 
251 		if (lr < VM_MIN_KERNEL_ADDRESS) {
252 			break;
253 		}
254 		error = ksyms_getname(&mod, &sym, (vaddr_t)lr, KSYMS_PROC);
255 		if (error) {
256 			break;
257 		}
258 		printf("#%zu %p in %s <%s>\n", nsym, (void *)lr, sym, mod);
259 		if (__md_unwind_end(sym)) {
260 			break;
261 		}
262 
263 		fp = (uint64_t *)fp[0];
264 		if (fp == NULL) {
265 			break;
266 		}
267 		nsym++;
268 
269 		if (nsym >= 15) {
270 			break;
271 		}
272 	}
273 }
274