1.\" $NetBSD: cproj.3,v 1.5 2017/09/27 09:20:27 maya Exp $ 2.\" Copyright (c) 2001-2003 The Open Group, All Rights Reserved 3.Dd September 27, 2017 4.Dt CPROJ 3 5.Os 6.Sh NAME 7.Nm cproj , 8.Nm cprojf , 9.Nm cprojl 10.Nd complex projection functions 11.Sh SYNOPSIS 12.In complex.h 13.Ft double 14.Fn cproj "double complex z" 15.Ft float 16.Fn cprojf "float complex z" 17.Ft long double 18.Fn cprojl "long double complex z" 19.In tgmath.h 20.Ft complex-floating 21.Fn cproj "complex-floating z" 22.Sh DESCRIPTION 23These functions compute a projection of 24.Ar z 25onto the Riemann sphere: 26.Ar z 27projects to 28.Ar z , 29except that all complex infinities (even those 30with one infinite part and one NaN part) project to positive infinity on the 31real axis. 32If 33.Ar z 34has an infinite part, then 35.Fn cproj 36shall be equivalent to: 37.Bd -literal -offset indent 38INFINITY + I * copysign(0.0, cimag(z)) 39.Ed 40.Sh RETURN VALUES 41These functions return the value of the projection onto the Riemann sphere. 42.Sh ERRORS 43No errors are defined. 44.Sh SEE ALSO 45.Xr carg 3 , 46.Xr cimag 3 , 47.Xr conj 3 , 48.Xr creal 3 , 49.St -p1003.1-2001 50.Aq Pa complex.h 51.Sh COPYRIGHT 52Portions of this text are reprinted and reproduced in electronic form 53from IEEE Std 1003.1, 2003 Edition, Standard for Information Technology 54-- Portable Operating System Interface (POSIX), The Open Group Base 55Specifications Issue 6, Copyright (C) 2001-2003 by the Institute of 56Electrical and Electronics Engineers, Inc and The Open Group. 57In the 58event of any discrepancy between this version and the original IEEE and 59The Open Group Standard, the original IEEE and The Open Group Standard 60is the referee document. 61The original Standard can be obtained online at 62http://www.opengroup.org/unix/online.html . 63