xref: /netbsd-src/lib/libm/arch/i387/fenv.c (revision f9faf20aeffd68c90a9d1a577a17402726208619)
1 /* $NetBSD: fenv.c,v 1.10 2021/09/03 21:54:59 andvar Exp $ */
2 
3 /*-
4  * Copyright (c) 2004-2005 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __RCSID("$NetBSD: fenv.c,v 1.10 2021/09/03 21:54:59 andvar Exp $");
31 
32 #include "namespace.h"
33 
34 #include <sys/param.h>
35 #include <sys/sysctl.h>
36 #include <assert.h>
37 #include <fenv.h>
38 #include <stddef.h>
39 #include <string.h>
40 
41 #ifdef __weak_alias
42 __weak_alias(feclearexcept,_feclearexcept)
43 __weak_alias(fedisableexcept,_fedisableexcept)
44 __weak_alias(feenableexcept,_feenableexcept)
45 __weak_alias(fegetenv,_fegetenv)
46 __weak_alias(fegetexcept,_fegetexcept)
47 __weak_alias(fegetexceptflag,_fegetexceptflag)
48 __weak_alias(fegetround,_fegetround)
49 __weak_alias(feholdexcept,_feholdexcept)
50 __weak_alias(feraiseexcept,_feraiseexcept)
51 __weak_alias(fesetenv,_fesetenv)
52 __weak_alias(fesetexceptflag,_fesetexceptflag)
53 __weak_alias(fesetround,_fesetround)
54 __weak_alias(fetestexcept,_fetestexcept)
55 __weak_alias(feupdateenv,_feupdateenv)
56 #endif
57 
58 /* Load x87 Control Word */
59 #define	__fldcw(__cw)		__asm__ __volatile__	\
60 	("fldcw %0" : : "m" (__cw))
61 
62 /* No-Wait Store Control Word */
63 #define	__fnstcw(__cw)		__asm__ __volatile__	\
64 	("fnstcw %0" : "=m" (*(__cw)))
65 
66 /* No-Wait Store Status Word */
67 #define	__fnstsw(__sw)		__asm__ __volatile__	\
68 	("fnstsw %0" : "=am" (*(__sw)))
69 
70 /* No-Wait Clear Exception Flags */
71 #define	__fnclex()		__asm__ __volatile__	\
72 	("fnclex")
73 
74 /* Load x87 Environment */
75 #define	__fldenv(__env)		__asm__ __volatile__	\
76 	("fldenv %0" : : "m" (__env))
77 
78 /* No-Wait Store x87 environment */
79 #define	__fnstenv(__env)	__asm__ __volatile__	\
80 	("fnstenv %0" : "=m" (*(__env)))
81 
82 /* Check for and handle pending unmasked x87 pending FPU exceptions */
83 #define	__fwait(__env)		__asm__	__volatile__	\
84 	("fwait")
85 
86 /* Load the MXCSR register */
87 #define	__ldmxcsr(__mxcsr)	__asm__ __volatile__	\
88 	("ldmxcsr %0" : : "m" (__mxcsr))
89 
90 /* Store the MXCSR register state */
91 #define	__stmxcsr(__mxcsr)	__asm__ __volatile__	\
92 	("stmxcsr %0" : "=m" (*(__mxcsr)))
93 
94 /*
95  * The following constant represents the default floating-point environment
96  * (that is, the one installed at program startup) and has type pointer to
97  * const-qualified fenv_t.
98  *
99  * It can be used as an argument to the functions within the <fenv.h> header
100  * that manage the floating-point environment, namely fesetenv() and
101  * feupdateenv().
102  *
103  * x87 fpu registers are 16bit wide. The upper bits, 31-16, are marked as
104  * RESERVED. We provide a partial floating-point environment, where we
105  * define only the lower bits. The reserved bits are extracted and set by the
106  * consumers of FE_DFL_ENV, during runtime.
107  */
108 fenv_t __fe_dfl_env = {
109 	.x87 = {
110 		.control = __NetBSD_NPXCW__,    /* Control word register */
111 		.unused1 = 0,			/* Unused */
112 		.status = 0,  		     	/* Status word register */
113 		.unused2 = 0,			/* Unused */
114 		.tag = 0xffff,          	/* Tag word register */
115 		.unused3 = 0,			/* Unused */
116 		.others = {
117 			0, 0, 0, 0x0000ffff,
118 		}
119 	},
120 	.mxcsr = __INITIAL_MXCSR__		/* MXCSR register */
121 };
122 
123 /*
124  * Test for SSE support on this processor.
125  *
126  * We need to use ldmxcsr/stmxcsr to get correct results if any part
127  * of the program was compiled to use SSE floating-point, but we can't
128  * use SSE on older processors.
129  *
130  * In order to do so, we need to query the processor capabilities via the CPUID
131  * instruction. We can make it even simpler though, by querying the machdep.sse
132  * sysctl.
133  */
134 static int __HAS_SSE = 0;
135 
136 static void __init_libm(void) __attribute__ ((constructor, used));
137 
__init_libm(void)138 static void __init_libm(void)
139 {
140 	size_t oldlen = sizeof(__HAS_SSE);
141 	int rv;
142 	uint16_t control;
143 
144 	rv = sysctlbyname("machdep.sse", &__HAS_SSE, &oldlen, NULL, 0);
145 	if (rv == -1)
146 		__HAS_SSE = 0;
147 
148 	__fnstcw(&control);
149 	__fe_dfl_env.x87.control = control;
150 }
151 
152 /*
153  * The feclearexcept() function clears the supported floating-point exceptions
154  * represented by `excepts'.
155  */
156 int
feclearexcept(int excepts)157 feclearexcept(int excepts)
158 {
159 	fenv_t env;
160 	uint32_t mxcsr;
161 	int ex;
162 
163 	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
164 
165 	ex = excepts & FE_ALL_EXCEPT;
166 
167 	/* It's ~3x faster to call fnclex, than store/load fp env */
168 	if (ex == FE_ALL_EXCEPT) {
169 		__fnclex();
170 	} else {
171 		__fnstenv(&env);
172 		env.x87.status &= ~ex;
173 		__fldenv(env);
174 	}
175 
176 	if (__HAS_SSE) {
177 		__stmxcsr(&mxcsr);
178 		mxcsr &= ~ex;
179 		__ldmxcsr(mxcsr);
180 	}
181 
182 	/* Success */
183 	return (0);
184 }
185 
186 /*
187  * The fegetexceptflag() function stores an implementation-defined
188  * representation of the states of the floating-point status flags indicated by
189  * the argument excepts in the object pointed to by the argument flagp.
190  */
191 int
fegetexceptflag(fexcept_t * flagp,int excepts)192 fegetexceptflag(fexcept_t *flagp, int excepts)
193 {
194 	uint32_t mxcsr;
195 	uint16_t status;
196 	int ex;
197 
198 	_DIAGASSERT(flagp != NULL);
199 	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
200 
201 	ex = excepts & FE_ALL_EXCEPT;
202 
203 	__fnstsw(&status);
204 	if (__HAS_SSE)
205 		__stmxcsr(&mxcsr);
206 	else
207 		mxcsr = 0;
208 
209 	*flagp = (mxcsr | status) & ex;
210 
211 	/* Success */
212 	return (0);
213 }
214 
215 /*
216  * The feraiseexcept() function raises the supported floating-point exceptions
217  * represented by the argument `excepts'.
218  *
219  * The standard explicitly allows us to execute an instruction that has the
220  * exception as a side effect, but we choose to manipulate the status register
221  * directly.
222  *
223  * The validation of input is being deferred to fesetexceptflag().
224  */
225 int
feraiseexcept(int excepts)226 feraiseexcept(int excepts)
227 {
228 	fexcept_t ex;
229 
230 	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
231 
232 	ex = excepts & FE_ALL_EXCEPT;
233 	fesetexceptflag(&ex, excepts);
234 	__fwait();
235 
236 	/* Success */
237 	return (0);
238 }
239 
240 /*
241  * This function sets the floating-point status flags indicated by the argument
242  * `excepts' to the states stored in the object pointed to by `flagp'. It does
243  * NOT raise any floating-point exceptions, but only sets the state of the flags.
244  */
245 int
fesetexceptflag(const fexcept_t * flagp,int excepts)246 fesetexceptflag(const fexcept_t *flagp, int excepts)
247 {
248 	fenv_t env;
249 	uint32_t mxcsr;
250 	int ex;
251 
252 	_DIAGASSERT(flagp != NULL);
253 	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
254 
255 	ex = excepts & FE_ALL_EXCEPT;
256 
257 	__fnstenv(&env);
258 	env.x87.status &= ~ex;
259 	env.x87.status |= *flagp & ex;
260 	__fldenv(env);
261 
262 	if (__HAS_SSE) {
263 		__stmxcsr(&mxcsr);
264 		mxcsr &= ~ex;
265 		mxcsr |= *flagp & ex;
266 		__ldmxcsr(mxcsr);
267 	}
268 
269 	/* Success */
270 	return (0);
271 }
272 
273 /*
274  * The fetestexcept() function determines which of a specified subset of the
275  * floating-point exception flags are currently set. The `excepts' argument
276  * specifies the floating-point status flags to be queried.
277  */
278 int
fetestexcept(int excepts)279 fetestexcept(int excepts)
280 {
281 	uint32_t mxcsr;
282 	uint16_t status;
283 	int ex;
284 
285 	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);
286 
287 	ex = excepts & FE_ALL_EXCEPT;
288 
289 	__fnstsw(&status);
290 	if (__HAS_SSE)
291 		__stmxcsr(&mxcsr);
292 	else
293 		mxcsr = 0;
294 
295 	return ((status | mxcsr) & ex);
296 }
297 
298 int
fegetround(void)299 fegetround(void)
300 {
301 	uint16_t control;
302 
303 	/*
304 	 * We assume that the x87 and the SSE unit agree on the
305 	 * rounding mode.  Reading the control word on the x87 turns
306 	 * out to be about 5 times faster than reading it on the SSE
307 	 * unit on an Opteron 244.
308 	 */
309 	__fnstcw(&control);
310 
311 	return (control & __X87_ROUND_MASK);
312 }
313 
314 /*
315  * The fesetround() function shall establish the rounding direction represented
316  * by its argument round. If the argument is not equal to the value of a
317  * rounding direction macro, the rounding direction is not changed.
318  */
319 int
fesetround(int round)320 fesetround(int round)
321 {
322 	uint32_t mxcsr;
323 	uint16_t control;
324 
325 	if (round & ~__X87_ROUND_MASK) {
326 		/* Failure */
327 		return (-1);
328 	}
329 
330 	__fnstcw(&control);
331 	control &= ~__X87_ROUND_MASK;
332 	control |= round;
333 	__fldcw(control);
334 
335 	if (__HAS_SSE) {
336 		__stmxcsr(&mxcsr);
337 		mxcsr &= ~(__X87_ROUND_MASK << __SSE_ROUND_SHIFT);
338 		mxcsr |= round << __SSE_ROUND_SHIFT;
339 		__ldmxcsr(mxcsr);
340 	}
341 
342 	/* Success */
343 	return (0);
344 }
345 
346 /*
347  * The fegetenv() function attempts to store the current floating-point
348  * environment in the object pointed to by envp.
349  */
350 int
fegetenv(fenv_t * envp)351 fegetenv(fenv_t *envp)
352 {
353 	uint32_t mxcsr;
354 
355 	_DIAGASSERT(flagp != NULL);
356 
357 	/*
358 	 * fnstenv masks all exceptions, so we need to restore the old control
359 	 * word to avoid this side effect.
360 	 */
361 	__fnstenv(envp);
362 	__fldcw(envp->x87.control);
363 	if (__HAS_SSE) {
364 		__stmxcsr(&mxcsr);
365 		envp->mxcsr = mxcsr;
366 	}
367 
368 	/* Success */
369 	return (0);
370 }
371 
372 /*
373  * The feholdexcept() function saves the current floating-point environment in
374  * the object pointed to by envp, clears the floating-point status flags, and
375  * then installs a non-stop (continue on floating-point exceptions) mode, if
376  * available, for all floating-point exceptions.
377  */
378 int
feholdexcept(fenv_t * envp)379 feholdexcept(fenv_t *envp)
380 {
381 	uint32_t mxcsr;
382 
383 	_DIAGASSERT(envp != NULL);
384 
385 	__fnstenv(envp);
386 	__fnclex();
387 	if (__HAS_SSE) {
388 		__stmxcsr(&mxcsr);
389 		envp->mxcsr = mxcsr;
390 		mxcsr &= ~FE_ALL_EXCEPT;
391 		mxcsr |= FE_ALL_EXCEPT << __SSE_EMASK_SHIFT;
392 		__ldmxcsr(mxcsr);
393 	}
394 
395 	/* Success */
396 	return (0);
397 }
398 
399 /*
400  * The fesetenv() function attempts to establish the floating-point environment
401  * represented by the object pointed to by envp. The argument `envp' points
402  * to an object set by a call to fegetenv() or feholdexcept(), or equal a
403  * floating-point environment macro. The fesetenv() function does not raise
404  * floating-point exceptions, but only installs the state of the floating-point
405  * status flags represented through its argument.
406  */
407 int
fesetenv(const fenv_t * envp)408 fesetenv(const fenv_t *envp)
409 {
410 	fenv_t env;
411 
412 	_DIAGASSERT(envp != NULL);
413 
414 	/* Store the x87 floating-point environment */
415 	memset(&env, 0, sizeof(env));
416 	__fnstenv(&env);
417 
418 	__fe_dfl_env.x87.unused1 = env.x87.unused1;
419 	__fe_dfl_env.x87.unused2 = env.x87.unused2;
420 	__fe_dfl_env.x87.unused3 = env.x87.unused3;
421 	memcpy(__fe_dfl_env.x87.others, env.x87.others,
422 	    sizeof(__fe_dfl_env.x87.others));
423 
424 	__fldenv(envp->x87);
425 	if (__HAS_SSE)
426 		__ldmxcsr(envp->mxcsr);
427 
428 	/* Success */
429 	return (0);
430 }
431 
432 /*
433  * The feupdateenv() function saves the currently raised floating-point
434  * exceptions in its automatic storage, installs the floating-point environment
435  * represented by the object pointed to by `envp', and then raises the saved
436  * floating-point exceptions. The argument `envp' shall point to an object set
437  * by a call to feholdexcept() or fegetenv(), or equal a floating-point
438  * environment macro.
439  */
440 int
feupdateenv(const fenv_t * envp)441 feupdateenv(const fenv_t *envp)
442 {
443 	fenv_t env;
444 	uint32_t mxcsr;
445 	uint16_t status;
446 
447 	_DIAGASSERT(envp != NULL);
448 
449 	/* Store the x87 floating-point environment */
450 	memset(&env, 0, sizeof(env));
451 	__fnstenv(&env);
452 
453 	__fe_dfl_env.x87.unused1 = env.x87.unused1;
454 	__fe_dfl_env.x87.unused2 = env.x87.unused2;
455 	__fe_dfl_env.x87.unused3 = env.x87.unused3;
456 	memcpy(__fe_dfl_env.x87.others, env.x87.others,
457 	    sizeof(__fe_dfl_env.x87.others));
458 
459 	__fnstsw(&status);
460 	if (__HAS_SSE)
461 		__stmxcsr(&mxcsr);
462 	else
463 		mxcsr = 0;
464 	fesetenv(envp);
465 	feraiseexcept((mxcsr | status) & FE_ALL_EXCEPT);
466 
467 	/* Success */
468 	return (0);
469 }
470 
471 /*
472  * The following functions are extensions to the standard
473  */
474 int
feenableexcept(int mask)475 feenableexcept(int mask)
476 {
477 	uint32_t mxcsr, omask;
478 	uint16_t control;
479 
480 	mask &= FE_ALL_EXCEPT;
481 	__fnstcw(&control);
482 	if (__HAS_SSE)
483 		__stmxcsr(&mxcsr);
484 	else
485 		mxcsr = 0;
486 
487 	omask = (control | mxcsr >> __SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
488 	control &= ~mask;
489 	__fldcw(control);
490 	if (__HAS_SSE) {
491 		mxcsr &= ~(mask << __SSE_EMASK_SHIFT);
492 		__ldmxcsr(mxcsr);
493 	}
494 
495 	return (FE_ALL_EXCEPT & ~omask);
496 }
497 
498 int
fedisableexcept(int mask)499 fedisableexcept(int mask)
500 {
501 	uint32_t mxcsr, omask;
502 	uint16_t control;
503 
504 	mask &= FE_ALL_EXCEPT;
505 	__fnstcw(&control);
506 	if (__HAS_SSE)
507 		__stmxcsr(&mxcsr);
508 	else
509 		mxcsr = 0;
510 
511 	omask = (control | mxcsr >> __SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
512 	control |= mask;
513 	__fldcw(control);
514 	if (__HAS_SSE) {
515 		mxcsr |= mask << __SSE_EMASK_SHIFT;
516 		__ldmxcsr(mxcsr);
517 	}
518 
519 	return (FE_ALL_EXCEPT & ~omask);
520 }
521 
522 int
fegetexcept(void)523 fegetexcept(void)
524 {
525 	uint16_t control;
526 
527 	/*
528 	 * We assume that the masks for the x87 and the SSE unit are
529 	 * the same.
530 	 */
531 	__fnstcw(&control);
532 
533 	return (~control & FE_ALL_EXCEPT);
534 }
535