xref: /netbsd-src/lib/libcrypt/crypt.c (revision 4d92dbe90eae91beded70db613c2e6a1fd6dd84a)
1 /*	$NetBSD: crypt.c,v 1.41 2024/07/23 22:37:11 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Tom Truscott.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #if !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
39 #else
40 __RCSID("$NetBSD: crypt.c,v 1.41 2024/07/23 22:37:11 riastradh Exp $");
41 #endif
42 #endif /* not lint */
43 
44 #include <limits.h>
45 #include <pwd.h>
46 #include <stdlib.h>
47 #include <string.h> /* for strcmp */
48 #include <unistd.h>
49 #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
50 #include <stdio.h>
51 #endif
52 
53 #include "crypt.h"
54 
55 /*
56  * UNIX password, and DES, encryption.
57  * By Tom Truscott, trt@rti.rti.org,
58  * from algorithms by Robert W. Baldwin and James Gillogly.
59  *
60  * References:
61  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
62  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
63  *
64  * "Password Security: A Case History," R. Morris and Ken Thompson,
65  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
66  *
67  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
68  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
69  */
70 
71 /* =====  Configuration ==================== */
72 
73 /*
74  * define "MUST_ALIGN" if your compiler cannot load/store
75  * long integers at arbitrary (e.g. odd) memory locations.
76  * (Either that or never pass unaligned addresses to des_cipher!)
77  */
78 #if !defined(__vax__) && !defined(__i386__)
79 #define	MUST_ALIGN
80 #endif
81 
82 #ifdef CHAR_BITS
83 #if CHAR_BITS != 8
84 	#error C_block structure assumes 8 bit characters
85 #endif
86 #endif
87 
88 /*
89  * define "B64" to be the declaration for a 64 bit integer.
90  * XXX this feature is currently unused, see "endian" comment below.
91  */
92 #if defined(cray)
93 #define	B64	long
94 #endif
95 #if defined(convex)
96 #define	B64	long long
97 #endif
98 
99 /*
100  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
101  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
102  * little effect on crypt().
103  */
104 #if defined(notdef)
105 #define	LARGEDATA
106 #endif
107 
108 /* compile with "-DSTATIC=void" when profiling */
109 #ifndef STATIC
110 #define	STATIC	static void
111 #endif
112 
113 /* ==================================== */
114 
115 /*
116  * Cipher-block representation (Bob Baldwin):
117  *
118  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
119  * representation is to store one bit per byte in an array of bytes.  Bit N of
120  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
121  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
122  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
123  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
124  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
125  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
126  * converted to LSB format, and the output 64-bit block is converted back into
127  * MSB format.
128  *
129  * DES operates internally on groups of 32 bits which are expanded to 48 bits
130  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
131  * the computation, the expansion is applied only once, the expanded
132  * representation is maintained during the encryption, and a compression
133  * permutation is applied only at the end.  To speed up the S-box lookups,
134  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
135  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
136  * most significant ones.  The low two bits of each byte are zero.  (Thus,
137  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
138  * first byte in the eight byte representation, bit 2 of the 48 bit value is
139  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
140  * used, in which the output is the 64 bit result of an S-box lookup which
141  * has been permuted by P and expanded by E, and is ready for use in the next
142  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
143  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
144  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
145  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
146  * 8*64*8 = 4K bytes.
147  *
148  * To speed up bit-parallel operations (such as XOR), the 8 byte
149  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
150  * machines which support it, a 64 bit value "b64".  This data structure,
151  * "C_block", has two problems.  First, alignment restrictions must be
152  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
153  * the architecture becomes visible.
154  *
155  * The byte-order problem is unfortunate, since on the one hand it is good
156  * to have a machine-independent C_block representation (bits 1..8 in the
157  * first byte, etc.), and on the other hand it is good for the LSB of the
158  * first byte to be the LSB of i0.  We cannot have both these things, so we
159  * currently use the "little-endian" representation and avoid any multi-byte
160  * operations that depend on byte order.  This largely precludes use of the
161  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
162  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
163  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
164  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
165  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
166  * requires a 128 kilobyte table, so perhaps this is not a big loss.
167  *
168  * Permutation representation (Jim Gillogly):
169  *
170  * A transformation is defined by its effect on each of the 8 bytes of the
171  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
172  * the input distributed appropriately.  The transformation is then the OR
173  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
174  * each transformation.  Unless LARGEDATA is defined, however, a more compact
175  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
176  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
177  * is slower but tolerable, particularly for password encryption in which
178  * the SPE transformation is iterated many times.  The small tables total 9K
179  * bytes, the large tables total 72K bytes.
180  *
181  * The transformations used are:
182  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
183  *	This is done by collecting the 32 even-numbered bits and applying
184  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
185  *	bits and applying the same transformation.  Since there are only
186  *	32 input bits, the IE3264 transformation table is half the size of
187  *	the usual table.
188  * CF6464: Compression, final permutation, and LSB->MSB conversion.
189  *	This is done by two trivial 48->32 bit compressions to obtain
190  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
191  *	followed by a 64->64 bit "cleanup" transformation.  (It would
192  *	be possible to group the bits in the 64-bit block so that 2
193  *	identical 32->32 bit transformations could be used instead,
194  *	saving a factor of 4 in space and possibly 2 in time, but
195  *	byte-ordering and other complications rear their ugly head.
196  *	Similar opportunities/problems arise in the key schedule
197  *	transforms.)
198  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
199  *	This admittedly baroque 64->64 bit transformation is used to
200  *	produce the first code (in 8*(6+2) format) of the key schedule.
201  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
202  *	It would be possible to define 15 more transformations, each
203  *	with a different rotation, to generate the entire key schedule.
204  *	To save space, however, we instead permute each code into the
205  *	next by using a transformation that "undoes" the PC2 permutation,
206  *	rotates the code, and then applies PC2.  Unfortunately, PC2
207  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
208  *	invertible.  We get around that problem by using a modified PC2
209  *	which retains the 8 otherwise-lost bits in the unused low-order
210  *	bits of each byte.  The low-order bits are cleared when the
211  *	codes are stored into the key schedule.
212  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
213  *	This is faster than applying PC2ROT[0] twice,
214  *
215  * The Bell Labs "salt" (Bob Baldwin):
216  *
217  * The salting is a simple permutation applied to the 48-bit result of E.
218  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
219  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
220  * 16777216 possible values.  (The original salt was 12 bits and could not
221  * swap bits 13..24 with 36..48.)
222  *
223  * It is possible, but ugly, to warp the SPE table to account for the salt
224  * permutation.  Fortunately, the conditional bit swapping requires only
225  * about four machine instructions and can be done on-the-fly with about an
226  * 8% performance penalty.
227  */
228 
229 typedef union {
230 	unsigned char b[8];
231 	struct {
232 		int32_t	i0;
233 		int32_t	i1;
234 	} b32;
235 #if defined(B64)
236 	B64	b64;
237 #endif
238 } C_block;
239 
240 /*
241  * Convert twenty-four-bit long in host-order
242  * to six bits (and 2 low-order zeroes) per char little-endian format.
243  */
244 #define	TO_SIX_BIT(rslt, src) {				\
245 		C_block cvt;				\
246 		cvt.b[0] = src; src >>= 6;		\
247 		cvt.b[1] = src; src >>= 6;		\
248 		cvt.b[2] = src; src >>= 6;		\
249 		cvt.b[3] = src;				\
250 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
251 	}
252 
253 /*
254  * These macros may someday permit efficient use of 64-bit integers.
255  */
256 #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
257 #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
258 #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
259 #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
260 #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
261 #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
262 
263 #if defined(LARGEDATA)
264 	/* Waste memory like crazy.  Also, do permutations in line */
265 #define	LGCHUNKBITS	3
266 #define	CHUNKBITS	(1<<LGCHUNKBITS)
267 #define	PERM6464(d,d0,d1,cpp,p)				\
268 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
269 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
270 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
271 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
272 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
273 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
274 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
275 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
276 #define	PERM3264(d,d0,d1,cpp,p)				\
277 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
278 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
279 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
280 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
281 #else
282 	/* "small data" */
283 #define	LGCHUNKBITS	2
284 #define	CHUNKBITS	(1<<LGCHUNKBITS)
285 #define	PERM6464(d,d0,d1,cpp,p)				\
286 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
287 #define	PERM3264(d,d0,d1,cpp,p)				\
288 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
289 #endif /* LARGEDATA */
290 
291 STATIC	init_des(void);
292 STATIC	init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
293 		       const unsigned char [64], int, int);
294 #ifndef LARGEDATA
295 STATIC	permute(const unsigned char *, C_block *, C_block *, int);
296 #endif
297 #ifdef DEBUG
298 STATIC	prtab(const char *, unsigned char *, int);
299 #endif
300 
301 
302 #ifndef LARGEDATA
303 STATIC
304 permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
305 {
306 	DCL_BLOCK(D,D0,D1);
307 	C_block *tp;
308 	int t;
309 
310 	ZERO(D,D0,D1);
311 	do {
312 		t = *cp++;
313 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
315 	} while (--chars_in > 0);
316 	STORE(D,D0,D1,*out);
317 }
318 #endif /* LARGEDATA */
319 
320 
321 /* =====  (mostly) Standard DES Tables ==================== */
322 
323 static const unsigned char IP[] = {	/* initial permutation */
324 	58, 50, 42, 34, 26, 18, 10,  2,
325 	60, 52, 44, 36, 28, 20, 12,  4,
326 	62, 54, 46, 38, 30, 22, 14,  6,
327 	64, 56, 48, 40, 32, 24, 16,  8,
328 	57, 49, 41, 33, 25, 17,  9,  1,
329 	59, 51, 43, 35, 27, 19, 11,  3,
330 	61, 53, 45, 37, 29, 21, 13,  5,
331 	63, 55, 47, 39, 31, 23, 15,  7,
332 };
333 
334 /* The final permutation is the inverse of IP - no table is necessary */
335 
336 static const unsigned char ExpandTr[] = {	/* expansion operation */
337 	32,  1,  2,  3,  4,  5,
338 	 4,  5,  6,  7,  8,  9,
339 	 8,  9, 10, 11, 12, 13,
340 	12, 13, 14, 15, 16, 17,
341 	16, 17, 18, 19, 20, 21,
342 	20, 21, 22, 23, 24, 25,
343 	24, 25, 26, 27, 28, 29,
344 	28, 29, 30, 31, 32,  1,
345 };
346 
347 static const unsigned char PC1[] = {	/* permuted choice table 1 */
348 	57, 49, 41, 33, 25, 17,  9,
349 	 1, 58, 50, 42, 34, 26, 18,
350 	10,  2, 59, 51, 43, 35, 27,
351 	19, 11,  3, 60, 52, 44, 36,
352 
353 	63, 55, 47, 39, 31, 23, 15,
354 	 7, 62, 54, 46, 38, 30, 22,
355 	14,  6, 61, 53, 45, 37, 29,
356 	21, 13,  5, 28, 20, 12,  4,
357 };
358 
359 static const unsigned char Rotates[] = {/* PC1 rotation schedule */
360 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
361 };
362 
363 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
364 static const unsigned char PC2[] = {	/* permuted choice table 2 */
365 	 9, 18,    14, 17, 11, 24,  1,  5,
366 	22, 25,     3, 28, 15,  6, 21, 10,
367 	35, 38,    23, 19, 12,  4, 26,  8,
368 	43, 54,    16,  7, 27, 20, 13,  2,
369 
370 	 0,  0,    41, 52, 31, 37, 47, 55,
371 	 0,  0,    30, 40, 51, 45, 33, 48,
372 	 0,  0,    44, 49, 39, 56, 34, 53,
373 	 0,  0,    46, 42, 50, 36, 29, 32,
374 };
375 
376 static const unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
377 					/* S[1]			*/
378 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
379 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
380 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
381 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
382 					/* S[2]			*/
383 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
384 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
385 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
386 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
387 					/* S[3]			*/
388 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
389 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
390 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
391 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
392 					/* S[4]			*/
393 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
394 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
395 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
396 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
397 					/* S[5]			*/
398 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
399 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
400 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
401 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
402 					/* S[6]			*/
403 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
404 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
405 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
406 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
407 					/* S[7]			*/
408 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
409 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
410 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
411 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
412 					/* S[8]			*/
413 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
414 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
415 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
416 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
417 };
418 
419 static const unsigned char P32Tr[] = {	/* 32-bit permutation function */
420 	16,  7, 20, 21,
421 	29, 12, 28, 17,
422 	 1, 15, 23, 26,
423 	 5, 18, 31, 10,
424 	 2,  8, 24, 14,
425 	32, 27,  3,  9,
426 	19, 13, 30,  6,
427 	22, 11,  4, 25,
428 };
429 
430 static const unsigned char CIFP[] = {	/* compressed/interleaved permutation */
431 	 1,  2,  3,  4,   17, 18, 19, 20,
432 	 5,  6,  7,  8,   21, 22, 23, 24,
433 	 9, 10, 11, 12,   25, 26, 27, 28,
434 	13, 14, 15, 16,   29, 30, 31, 32,
435 
436 	33, 34, 35, 36,   49, 50, 51, 52,
437 	37, 38, 39, 40,   53, 54, 55, 56,
438 	41, 42, 43, 44,   57, 58, 59, 60,
439 	45, 46, 47, 48,   61, 62, 63, 64,
440 };
441 
442 static const unsigned char itoa64[] =		/* 0..63 => ascii-64 */
443 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
444 
445 
446 /* =====  Tables that are initialized at run time  ==================== */
447 
448 
449 /* Initial key schedule permutation */
450 static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
451 
452 /* Subsequent key schedule rotation permutations */
453 static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
454 
455 /* Initial permutation/expansion table */
456 static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
457 
458 /* Table that combines the S, P, and E operations.  */
459 static int32_t SPE[2][8][64];
460 
461 /* compressed/interleaved => final permutation table */
462 static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
463 
464 
465 /* ==================================== */
466 
467 
468 static C_block	constdatablock;			/* encryption constant */
469 static char	cryptresult[1+4+4+11+1];	/* encrypted result */
470 
471 /*
472  * We match the behavior of UFC-crypt on systems where "char" is signed by
473  * default (the majority), regardless of char's signedness on our system.
474  */
475 static inline int
476 ascii_to_bin(char ch)
477 {
478 	signed char sch = ch;
479 	int retval;
480 
481 	if (sch >= 'a')
482 		retval = sch - ('a' - 38);
483 	else if (sch >= 'A')
484 		retval = sch - ('A' - 12);
485 	else
486 		retval = sch - '.';
487 
488 	return retval & 0x3f;
489 }
490 
491 /*
492  * When we choose to "support" invalid salts, nevertheless disallow those
493  * containing characters that would violate the passwd file format.
494  */
495 static inline int
496 ascii_is_unsafe(char ch)
497 {
498 	return !ch || ch == '\n' || ch == ':';
499 }
500 
501 /*
502  * We extract the scheme from setting str to allow for
503  * full scheme name comparison
504  * Updated to reflect alc suggestion(s)
505  *
506  * returns boolean 0 on failure, 1 on success,
507  */
508 static int
509 nondes_scheme_substr(const char * setting,char * scheme, unsigned int len)
510 {
511 	const char * start;
512 	const char * sep;
513 
514 	/* initialize head pointer */
515 	start = setting;
516 
517 	/* clear out scheme buffer regardless of result */
518 	memset(scheme, 0, len);
519 
520 	/* make sure we are working on non-des scheme string */
521 	if (*start != _PASSWORD_NONDES) {
522 		return 0;
523 	}
524 
525 	/* increment passed initial _PASSWORD_NONDES */
526 	start++;
527 
528 	if ((sep = memchr(start, _PASSWORD_NONDES,len-1)) == NULL) {
529 		return 0;
530 	}
531 
532 	/* if empty string, we are done */
533 	if (sep == start) {
534 		return 1;
535 	}
536 
537 	/* copy scheme substr to buffer */
538 	memcpy(scheme, start, (size_t)(sep - start));
539 
540 	return 1;
541 }
542 
543 /*
544  * Return a pointer to static data consisting of the "setting"
545  * followed by an encryption produced by the "key" and "setting".
546  */
547 static char *
548 __crypt(const char *key, const char *setting)
549 {
550 	char *encp;
551 	char scheme[12];
552 	int32_t i;
553 	int t;
554 	int r;
555 	int32_t salt;
556 	int num_iter, salt_size;
557 	C_block keyblock, rsltblock;
558 
559 	/* Non-DES encryption schemes hook in here. */
560 	if (setting[0] == _PASSWORD_NONDES) {
561 		r = nondes_scheme_substr(
562 			setting, scheme, sizeof(scheme));
563 
564 		/* return NULL if we are unable to extract substring */
565 		if (!r) {
566 			return NULL;
567 		}
568 
569 		/* $2a$ found in bcrypt.c:encode_salt  */
570 		if (strcmp(scheme, "2a") == 0) {
571 			return (__bcrypt(key, setting));
572 		} else if (strcmp(scheme, "sha1") == 0) {
573 		     /* $sha1$ found in crypt.h:SHA1_MAGIC */
574 			return (__crypt_sha1(key, setting));
575 		} else if (strcmp(scheme, "1") == 0) {
576 		     /* $1$ found in pw_gensalt.c:__gensalt_md5 */
577 			return (__md5crypt(key, setting));
578 #ifdef HAVE_ARGON2
579 		/* explicit argon2 variant */
580 		} else if (strcmp(scheme, "argon2id") == 0) {
581 		     /* $argon2id$ found in pw_gensalt.c:__gensalt_argon2 */
582 			return (__crypt_argon2(key, setting));
583 		} else if (strcmp(scheme, "argon2i") == 0) {
584 		     /* $argon2i$ found in pw_gensalt.c:__gensalt_argon2 */
585 			return (__crypt_argon2(key, setting));
586 		} else if (strcmp(scheme, "argon2d") == 0) {
587 		     /* $argon2d$ found in pw_gensalt.c:__gensalt_argon2 */
588 			return (__crypt_argon2(key, setting));
589 #endif /* HAVE_ARGON2 */
590 		} else {
591 		     /* invalid scheme, including empty string */
592 			return NULL;
593 		}
594 	}
595 	/* End non-DES handling */
596 
597 	for (i = 0; i < 8; i++) {
598 		if ((t = 2*(unsigned char)(*key)) != 0)
599 			key++;
600 		keyblock.b[i] = t;
601 	}
602 	if (des_setkey((char *)keyblock.b))
603 		return (NULL);
604 
605 	encp = &cryptresult[0];
606 	switch (*setting) {
607 	case _PASSWORD_EFMT1:
608 		/*
609 		 * Involve the rest of the password 8 characters at a time.
610 		 */
611 		while (*key) {
612 			if (des_cipher((char *)(void *)&keyblock,
613 			    (char *)(void *)&keyblock, 0L, 1))
614 				return (NULL);
615 			for (i = 0; i < 8; i++) {
616 				if ((t = 2*(unsigned char)(*key)) != 0)
617 					key++;
618 				keyblock.b[i] ^= t;
619 			}
620 			if (des_setkey((char *)keyblock.b))
621 				return (NULL);
622 		}
623 
624 		*encp++ = *setting++;
625 
626 		/* get iteration count */
627 		num_iter = 0;
628 		for (i = 4; --i >= 0; ) {
629 			int value = ascii_to_bin(setting[i]);
630 			if (itoa64[value] != setting[i])
631 				return NULL;
632 			encp[i] = setting[i];
633 			num_iter = (num_iter << 6) | value;
634 		}
635 		if (num_iter == 0)
636 			return NULL;
637 		setting += 4;
638 		encp += 4;
639 		salt_size = 4;
640 		break;
641 	default:
642 		num_iter = 25;
643 		salt_size = 2;
644 		if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
645 			return NULL;
646 	}
647 
648 	salt = 0;
649 	for (i = salt_size; --i >= 0; ) {
650 		int value = ascii_to_bin(setting[i]);
651 		if (salt_size > 2 && itoa64[value] != setting[i])
652 			return NULL;
653 		encp[i] = setting[i];
654 		salt = (salt << 6) | value;
655 	}
656 	encp += salt_size;
657 	if (des_cipher((char *)(void *)&constdatablock,
658 	    (char *)(void *)&rsltblock, salt, num_iter))
659 		return (NULL);
660 
661 	/*
662 	 * Encode the 64 cipher bits as 11 ascii characters.
663 	 */
664 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
665 	    rsltblock.b[2];
666 	encp[3] = itoa64[i&0x3f];	i >>= 6;
667 	encp[2] = itoa64[i&0x3f];	i >>= 6;
668 	encp[1] = itoa64[i&0x3f];	i >>= 6;
669 	encp[0] = itoa64[i];		encp += 4;
670 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
671 	    rsltblock.b[5];
672 	encp[3] = itoa64[i&0x3f];	i >>= 6;
673 	encp[2] = itoa64[i&0x3f];	i >>= 6;
674 	encp[1] = itoa64[i&0x3f];	i >>= 6;
675 	encp[0] = itoa64[i];		encp += 4;
676 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
677 	encp[2] = itoa64[i&0x3f];	i >>= 6;
678 	encp[1] = itoa64[i&0x3f];	i >>= 6;
679 	encp[0] = itoa64[i];
680 
681 	encp[3] = 0;
682 
683 	return (cryptresult);
684 }
685 
686 char *
687 crypt(const char *key, const char *salt)
688 {
689 	char *res = __crypt(key, salt);
690 
691 	if (res)
692 		return res;
693 	/* How do I handle errors ? Return "*0" or "*1" */
694 	return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0");
695 }
696 
697 /*
698  * The Key Schedule, filled in by des_setkey() or setkey().
699  */
700 #define	KS_SIZE	16
701 static C_block	KS[KS_SIZE];
702 
703 /*
704  * Set up the key schedule from the key.
705  */
706 int
707 des_setkey(const char *key)
708 {
709 	DCL_BLOCK(K, K0, K1);
710 	C_block *help, *ptabp;
711 	int i;
712 	static int des_ready = 0;
713 
714 	if (!des_ready) {
715 		init_des();
716 		des_ready = 1;
717 	}
718 
719 	PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
720 	help = &KS[0];
721 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
722 	for (i = 1; i < 16; i++) {
723 		help++;
724 		STORE(K,K0,K1,*help);
725 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
726 		PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
727 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
728 	}
729 	return (0);
730 }
731 
732 /*
733  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
734  * iterations of DES, using the given 24-bit salt and the pre-computed key
735  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
736  *
737  * NOTE: the performance of this routine is critically dependent on your
738  * compiler and machine architecture.
739  */
740 int
741 des_cipher(const char *in, char *out, long salt, int num_iter)
742 {
743 	/* variables that we want in registers, most important first */
744 #if defined(pdp11)
745 	int j;
746 #endif
747 	int32_t L0, L1, R0, R1, k;
748 	C_block *kp;
749 	int ks_inc, loop_count;
750 	C_block B;
751 
752 	L0 = salt;
753 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
754 
755 #if defined(__vax__) || defined(pdp11)
756 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
757 #define	SALT (~salt)
758 #else
759 #define	SALT salt
760 #endif
761 
762 #if defined(MUST_ALIGN)
763 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
764 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
765 	LOAD(L,L0,L1,B);
766 #else
767 	LOAD(L,L0,L1,*(const C_block *)in);
768 #endif
769 	LOADREG(R,R0,R1,L,L0,L1);
770 	L0 &= 0x55555555L;
771 	L1 &= 0x55555555L;
772 	L0 = ((uint32_t)L0 << 1) | L1;	/* L0 is the even-numbered input bits */
773 	R0 &= 0xaaaaaaaaL;
774 	R1 = ((uint32_t)R1 >> 1) & 0x55555555L;
775 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
776 	STORE(L,L0,L1,B);
777 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
778 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
779 
780 	if (num_iter >= 0)
781 	{		/* encryption */
782 		kp = &KS[0];
783 		ks_inc  = sizeof(*kp);
784 	}
785 	else
786 	{		/* decryption */
787 		num_iter = -num_iter;
788 		kp = &KS[KS_SIZE-1];
789 		ks_inc  = -(long)sizeof(*kp);
790 	}
791 
792 	while (--num_iter >= 0) {
793 		loop_count = 8;
794 		do {
795 
796 #define	SPTAB(t, i) \
797 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
798 #if defined(gould)
799 			/* use this if B.b[i] is evaluated just once ... */
800 #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
801 #else
802 #if defined(pdp11)
803 			/* use this if your "long" int indexing is slow */
804 #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
805 #else
806 			/* use this if "k" is allocated to a register ... */
807 #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
808 #endif
809 #endif
810 
811 #define	CRUNCH(p0, p1, q0, q1)	\
812 			k = (q0 ^ q1) & SALT;	\
813 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
814 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
815 			kp = (C_block *)((char *)kp+ks_inc);	\
816 							\
817 			DOXOR(p0, p1, 0);		\
818 			DOXOR(p0, p1, 1);		\
819 			DOXOR(p0, p1, 2);		\
820 			DOXOR(p0, p1, 3);		\
821 			DOXOR(p0, p1, 4);		\
822 			DOXOR(p0, p1, 5);		\
823 			DOXOR(p0, p1, 6);		\
824 			DOXOR(p0, p1, 7);
825 
826 			CRUNCH(L0, L1, R0, R1);
827 			CRUNCH(R0, R1, L0, L1);
828 		} while (--loop_count != 0);
829 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
830 
831 
832 		/* swap L and R */
833 		L0 ^= R0;  L1 ^= R1;
834 		R0 ^= L0;  R1 ^= L1;
835 		L0 ^= R0;  L1 ^= R1;
836 	}
837 
838 	/* store the encrypted (or decrypted) result */
839 	L0 = (((uint32_t)L0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)L1 << 1) & 0xf0f0f0f0L);
840 	L1 = (((uint32_t)R0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)R1 << 1) & 0xf0f0f0f0L);
841 	STORE(L,L0,L1,B);
842 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
843 #if defined(MUST_ALIGN)
844 	STORE(L,L0,L1,B);
845 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
846 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
847 #else
848 	STORE(L,L0,L1,*(C_block *)out);
849 #endif
850 	return (0);
851 }
852 
853 
854 /*
855  * Initialize various tables.  This need only be done once.  It could even be
856  * done at compile time, if the compiler were capable of that sort of thing.
857  */
858 STATIC
859 init_des(void)
860 {
861 	int i, j;
862 	int32_t k;
863 	int tableno;
864 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
865 
866 	/*
867 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
868 	 */
869 	for (i = 0; i < 64; i++)
870 		perm[i] = 0;
871 	for (i = 0; i < 64; i++) {
872 		if ((k = PC2[i]) == 0)
873 			continue;
874 		k += Rotates[0]-1;
875 		if ((k%28) < Rotates[0]) k -= 28;
876 		k = PC1[k];
877 		if (k > 0) {
878 			k--;
879 			k = (k|07) - (k&07);
880 			k++;
881 		}
882 		perm[i] = k;
883 	}
884 #ifdef DEBUG
885 	prtab("pc1tab", perm, 8);
886 #endif
887 	init_perm(PC1ROT, perm, 8, 8);
888 
889 	/*
890 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
891 	 */
892 	for (j = 0; j < 2; j++) {
893 		unsigned char pc2inv[64];
894 		for (i = 0; i < 64; i++)
895 			perm[i] = pc2inv[i] = 0;
896 		for (i = 0; i < 64; i++) {
897 			if ((k = PC2[i]) == 0)
898 				continue;
899 			pc2inv[k-1] = i+1;
900 		}
901 		for (i = 0; i < 64; i++) {
902 			if ((k = PC2[i]) == 0)
903 				continue;
904 			k += j;
905 			if ((k%28) <= j) k -= 28;
906 			perm[i] = pc2inv[k];
907 		}
908 #ifdef DEBUG
909 		prtab("pc2tab", perm, 8);
910 #endif
911 		init_perm(PC2ROT[j], perm, 8, 8);
912 	}
913 
914 	/*
915 	 * Bit reverse, then initial permutation, then expansion.
916 	 */
917 	for (i = 0; i < 8; i++) {
918 		for (j = 0; j < 8; j++) {
919 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
920 			if (k > 32)
921 				k -= 32;
922 			else if (k > 0)
923 				k--;
924 			if (k > 0) {
925 				k--;
926 				k = (k|07) - (k&07);
927 				k++;
928 			}
929 			perm[i*8+j] = k;
930 		}
931 	}
932 #ifdef DEBUG
933 	prtab("ietab", perm, 8);
934 #endif
935 	init_perm(IE3264, perm, 4, 8);
936 
937 	/*
938 	 * Compression, then final permutation, then bit reverse.
939 	 */
940 	for (i = 0; i < 64; i++) {
941 		k = IP[CIFP[i]-1];
942 		if (k > 0) {
943 			k--;
944 			k = (k|07) - (k&07);
945 			k++;
946 		}
947 		perm[k-1] = i+1;
948 	}
949 #ifdef DEBUG
950 	prtab("cftab", perm, 8);
951 #endif
952 	init_perm(CF6464, perm, 8, 8);
953 
954 	/*
955 	 * SPE table
956 	 */
957 	for (i = 0; i < 48; i++)
958 		perm[i] = P32Tr[ExpandTr[i]-1];
959 	for (tableno = 0; tableno < 8; tableno++) {
960 		for (j = 0; j < 64; j++)  {
961 			k = (((j >> 0) &01) << 5)|
962 			    (((j >> 1) &01) << 3)|
963 			    (((j >> 2) &01) << 2)|
964 			    (((j >> 3) &01) << 1)|
965 			    (((j >> 4) &01) << 0)|
966 			    (((j >> 5) &01) << 4);
967 			k = S[tableno][k];
968 			k = (((k >> 3)&01) << 0)|
969 			    (((k >> 2)&01) << 1)|
970 			    (((k >> 1)&01) << 2)|
971 			    (((k >> 0)&01) << 3);
972 			for (i = 0; i < 32; i++)
973 				tmp32[i] = 0;
974 			for (i = 0; i < 4; i++)
975 				tmp32[4 * tableno + i] = (k >> i) & 01;
976 			k = 0;
977 			for (i = 24; --i >= 0; )
978 				k = (k<<1) | tmp32[perm[i]-1];
979 			TO_SIX_BIT(SPE[0][tableno][j], k);
980 			k = 0;
981 			for (i = 24; --i >= 0; )
982 				k = (k<<1) | tmp32[perm[i+24]-1];
983 			TO_SIX_BIT(SPE[1][tableno][j], k);
984 		}
985 	}
986 }
987 
988 /*
989  * Initialize "perm" to represent transformation "p", which rearranges
990  * (perhaps with expansion and/or contraction) one packed array of bits
991  * (of size "chars_in" characters) into another array (of size "chars_out"
992  * characters).
993  *
994  * "perm" must be all-zeroes on entry to this routine.
995  */
996 STATIC
997 init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
998     int chars_in, int chars_out)
999 {
1000 	int i, j, k, l;
1001 
1002 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
1003 		l = p[k] - 1;		/* where this bit comes from */
1004 		if (l < 0)
1005 			continue;	/* output bit is always 0 */
1006 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
1007 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
1008 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
1009 			if ((j & l) != 0)
1010 				perm[i][j].b[k>>3] |= 1<<(k&07);
1011 		}
1012 	}
1013 }
1014 
1015 /*
1016  * "setkey" routine (for backwards compatibility)
1017  */
1018 int
1019 setkey(const char *key)
1020 {
1021 	int i, j, k;
1022 	C_block keyblock;
1023 
1024 	for (i = 0; i < 8; i++) {
1025 		k = 0;
1026 		for (j = 0; j < 8; j++) {
1027 			k <<= 1;
1028 			k |= (unsigned char)*key++;
1029 		}
1030 		keyblock.b[i] = k;
1031 	}
1032 	return (des_setkey((char *)keyblock.b));
1033 }
1034 
1035 /*
1036  * "encrypt" routine (for backwards compatibility)
1037  */
1038 int
1039 encrypt(char *block, int flag)
1040 {
1041 	int i, j, k;
1042 	C_block cblock;
1043 
1044 	for (i = 0; i < 8; i++) {
1045 		k = 0;
1046 		for (j = 0; j < 8; j++) {
1047 			k <<= 1;
1048 			k |= (unsigned char)*block++;
1049 		}
1050 		cblock.b[i] = k;
1051 	}
1052 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
1053 		return (1);
1054 	for (i = 7; i >= 0; i--) {
1055 		k = cblock.b[i];
1056 		for (j = 7; j >= 0; j--) {
1057 			*--block = k&01;
1058 			k >>= 1;
1059 		}
1060 	}
1061 	return (0);
1062 }
1063 
1064 #ifdef DEBUG
1065 STATIC
1066 prtab(const char *s, unsigned char *t, int num_rows)
1067 {
1068 	int i, j;
1069 
1070 	(void)printf("%s:\n", s);
1071 	for (i = 0; i < num_rows; i++) {
1072 		for (j = 0; j < 8; j++) {
1073 			 (void)printf("%3d", t[i*8+j]);
1074 		}
1075 		(void)printf("\n");
1076 	}
1077 	(void)printf("\n");
1078 }
1079 #endif
1080 
1081 #if defined(MAIN) || defined(UNIT_TEST)
1082 #include <err.h>
1083 
1084 int
1085 main(int argc, char *argv[])
1086 {
1087 	if (argc < 2) {
1088 		fprintf(stderr, "Usage: %s password [salt]\n", getprogname());
1089 		return EXIT_FAILURE;
1090 	}
1091 
1092 	printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
1093 	return EXIT_SUCCESS;
1094 }
1095 #endif
1096