1 /* Implementation of the GDB variable objects API. 2 3 Copyright (C) 1999-2023 Free Software Foundation, Inc. 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 3 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 17 18 #include "defs.h" 19 #include "value.h" 20 #include "expression.h" 21 #include "frame.h" 22 #include "language.h" 23 #include "gdbcmd.h" 24 #include "block.h" 25 #include "valprint.h" 26 #include "gdbsupport/gdb_regex.h" 27 28 #include "varobj.h" 29 #include "gdbthread.h" 30 #include "inferior.h" 31 #include "varobj-iter.h" 32 #include "parser-defs.h" 33 #include "gdbarch.h" 34 #include <algorithm> 35 #include "observable.h" 36 37 #if HAVE_PYTHON 38 #include "python/python.h" 39 #include "python/python-internal.h" 40 #else 41 typedef int PyObject; 42 #endif 43 44 /* See varobj.h. */ 45 46 unsigned int varobjdebug = 0; 47 static void 48 show_varobjdebug (struct ui_file *file, int from_tty, 49 struct cmd_list_element *c, const char *value) 50 { 51 gdb_printf (file, _("Varobj debugging is %s.\n"), value); 52 } 53 54 /* String representations of gdb's format codes. */ 55 const char *varobj_format_string[] = 56 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" }; 57 58 /* True if we want to allow Python-based pretty-printing. */ 59 static bool pretty_printing = false; 60 61 void 62 varobj_enable_pretty_printing (void) 63 { 64 pretty_printing = true; 65 } 66 67 /* Data structures */ 68 69 /* Every root variable has one of these structures saved in its 70 varobj. */ 71 struct varobj_root 72 { 73 /* The expression for this parent. */ 74 expression_up exp; 75 76 /* Cached arch from exp, for use in case exp gets invalidated. */ 77 struct gdbarch *gdbarch = nullptr; 78 79 /* Cached language from exp, for use in case exp gets invalidated. */ 80 const struct language_defn *language_defn = nullptr; 81 82 /* Block for which this expression is valid. */ 83 const struct block *valid_block = NULL; 84 85 /* The frame for this expression. This field is set iff valid_block is 86 not NULL. */ 87 struct frame_id frame = null_frame_id; 88 89 /* The global thread ID that this varobj_root belongs to. This field 90 is only valid if valid_block is not NULL. 91 When not 0, indicates which thread 'frame' belongs to. 92 When 0, indicates that the thread list was empty when the varobj_root 93 was created. */ 94 int thread_id = 0; 95 96 /* If true, the -var-update always recomputes the value in the 97 current thread and frame. Otherwise, variable object is 98 always updated in the specific scope/thread/frame. */ 99 bool floating = false; 100 101 /* Flag that indicates validity: set to false when this varobj_root refers 102 to symbols that do not exist anymore. */ 103 bool is_valid = true; 104 105 /* Set to true if the varobj was created as tracking a global. */ 106 bool global = false; 107 108 /* Language-related operations for this variable and its 109 children. */ 110 const struct lang_varobj_ops *lang_ops = NULL; 111 112 /* The varobj for this root node. */ 113 struct varobj *rootvar = NULL; 114 }; 115 116 /* Dynamic part of varobj. */ 117 118 struct varobj_dynamic 119 { 120 /* Whether the children of this varobj were requested. This field is 121 used to decide if dynamic varobj should recompute their children. 122 In the event that the frontend never asked for the children, we 123 can avoid that. */ 124 bool children_requested = false; 125 126 /* The pretty-printer constructor. If NULL, then the default 127 pretty-printer will be looked up. If None, then no 128 pretty-printer will be installed. */ 129 PyObject *constructor = NULL; 130 131 /* The pretty-printer that has been constructed. If NULL, then a 132 new printer object is needed, and one will be constructed. */ 133 PyObject *pretty_printer = NULL; 134 135 /* The iterator returned by the printer's 'children' method, or NULL 136 if not available. */ 137 std::unique_ptr<varobj_iter> child_iter; 138 139 /* We request one extra item from the iterator, so that we can 140 report to the caller whether there are more items than we have 141 already reported. However, we don't want to install this value 142 when we read it, because that will mess up future updates. So, 143 we stash it here instead. */ 144 std::unique_ptr<varobj_item> saved_item; 145 }; 146 147 /* Private function prototypes */ 148 149 /* Helper functions for the above subcommands. */ 150 151 static int delete_variable (struct varobj *, bool); 152 153 static void delete_variable_1 (int *, struct varobj *, bool, bool); 154 155 static void install_variable (struct varobj *); 156 157 static void uninstall_variable (struct varobj *); 158 159 static struct varobj *create_child (struct varobj *, int, std::string &); 160 161 static struct varobj * 162 create_child_with_value (struct varobj *parent, int index, 163 struct varobj_item *item); 164 165 /* Utility routines */ 166 167 static enum varobj_display_formats variable_default_display (struct varobj *); 168 169 static bool update_type_if_necessary (struct varobj *var, 170 struct value *new_value); 171 172 static bool install_new_value (struct varobj *var, struct value *value, 173 bool initial); 174 175 /* Language-specific routines. */ 176 177 static int number_of_children (const struct varobj *); 178 179 static std::string name_of_variable (const struct varobj *); 180 181 static std::string name_of_child (struct varobj *, int); 182 183 static struct value *value_of_root (struct varobj **var_handle, bool *); 184 185 static struct value *value_of_child (const struct varobj *parent, int index); 186 187 static std::string my_value_of_variable (struct varobj *var, 188 enum varobj_display_formats format); 189 190 static bool is_root_p (const struct varobj *var); 191 192 static struct varobj *varobj_add_child (struct varobj *var, 193 struct varobj_item *item); 194 195 /* Private data */ 196 197 /* Mappings of varobj_display_formats enums to gdb's format codes. */ 198 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' }; 199 200 /* List of root variable objects. */ 201 static std::list<struct varobj_root *> rootlist; 202 203 /* Pointer to the varobj hash table (built at run time). */ 204 static htab_t varobj_table; 205 206 207 208 /* API Implementation */ 209 static bool 210 is_root_p (const struct varobj *var) 211 { 212 return (var->root->rootvar == var); 213 } 214 215 #ifdef HAVE_PYTHON 216 217 /* See python-internal.h. */ 218 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var) 219 : gdbpy_enter (var->root->gdbarch, var->root->language_defn) 220 { 221 } 222 223 #endif 224 225 /* Return the full FRAME which corresponds to the given CORE_ADDR 226 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ 227 228 static frame_info_ptr 229 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) 230 { 231 frame_info_ptr frame = NULL; 232 233 if (frame_addr == (CORE_ADDR) 0) 234 return NULL; 235 236 for (frame = get_current_frame (); 237 frame != NULL; 238 frame = get_prev_frame (frame)) 239 { 240 /* The CORE_ADDR we get as argument was parsed from a string GDB 241 output as $fp. This output got truncated to gdbarch_addr_bit. 242 Truncate the frame base address in the same manner before 243 comparing it against our argument. */ 244 CORE_ADDR frame_base = get_frame_base_address (frame); 245 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame)); 246 247 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) 248 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1; 249 250 if (frame_base == frame_addr) 251 return frame; 252 } 253 254 return NULL; 255 } 256 257 /* Creates a varobj (not its children). */ 258 259 struct varobj * 260 varobj_create (const char *objname, 261 const char *expression, CORE_ADDR frame, enum varobj_type type) 262 { 263 /* Fill out a varobj structure for the (root) variable being constructed. */ 264 std::unique_ptr<varobj> var (new varobj (new varobj_root)); 265 266 if (expression != NULL) 267 { 268 frame_info_ptr fi; 269 struct frame_id old_id = null_frame_id; 270 const struct block *block; 271 const char *p; 272 struct value *value = NULL; 273 CORE_ADDR pc; 274 275 /* Parse and evaluate the expression, filling in as much of the 276 variable's data as possible. */ 277 278 if (has_stack_frames ()) 279 { 280 /* Allow creator to specify context of variable. */ 281 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) 282 fi = get_selected_frame (NULL); 283 else 284 /* FIXME: cagney/2002-11-23: This code should be doing a 285 lookup using the frame ID and not just the frame's 286 ``address''. This, of course, means an interface 287 change. However, with out that interface change ISAs, 288 such as the ia64 with its two stacks, won't work. 289 Similar goes for the case where there is a frameless 290 function. */ 291 fi = find_frame_addr_in_frame_chain (frame); 292 } 293 else 294 fi = NULL; 295 296 if (type == USE_SELECTED_FRAME) 297 var->root->floating = true; 298 299 pc = 0; 300 block = NULL; 301 if (fi != NULL) 302 { 303 block = get_frame_block (fi, 0); 304 pc = get_frame_pc (fi); 305 } 306 307 p = expression; 308 309 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS 310 | INNERMOST_BLOCK_FOR_REGISTERS); 311 /* Wrap the call to parse expression, so we can 312 return a sensible error. */ 313 try 314 { 315 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker); 316 317 /* Cache gdbarch and language_defn as they might be used even 318 after var is invalidated and var->root->exp cleared. */ 319 var->root->gdbarch = var->root->exp->gdbarch; 320 var->root->language_defn = var->root->exp->language_defn; 321 } 322 323 catch (const gdb_exception_error &except) 324 { 325 return NULL; 326 } 327 328 /* Don't allow variables to be created for types. */ 329 enum exp_opcode opcode = var->root->exp->first_opcode (); 330 if (opcode == OP_TYPE 331 || opcode == OP_TYPEOF 332 || opcode == OP_DECLTYPE) 333 { 334 gdb_printf (gdb_stderr, "Attempt to use a type name" 335 " as an expression.\n"); 336 return NULL; 337 } 338 339 var->format = variable_default_display (var.get ()); 340 var->root->valid_block = 341 var->root->floating ? NULL : tracker.block (); 342 var->root->global 343 = var->root->floating ? false : var->root->valid_block == nullptr; 344 var->name = expression; 345 /* For a root var, the name and the expr are the same. */ 346 var->path_expr = expression; 347 348 /* When the frame is different from the current frame, 349 we must select the appropriate frame before parsing 350 the expression, otherwise the value will not be current. 351 Since select_frame is so benign, just call it for all cases. */ 352 if (var->root->valid_block) 353 { 354 /* User could specify explicit FRAME-ADDR which was not found but 355 EXPRESSION is frame specific and we would not be able to evaluate 356 it correctly next time. With VALID_BLOCK set we must also set 357 FRAME and THREAD_ID. */ 358 if (fi == NULL) 359 error (_("Failed to find the specified frame")); 360 361 var->root->frame = get_frame_id (fi); 362 var->root->thread_id = inferior_thread ()->global_num; 363 old_id = get_frame_id (get_selected_frame (NULL)); 364 select_frame (fi); 365 } 366 367 /* We definitely need to catch errors here. 368 If evaluate_expression succeeds we got the value we wanted. 369 But if it fails, we still go on with a call to evaluate_type(). */ 370 try 371 { 372 value = evaluate_expression (var->root->exp.get ()); 373 } 374 catch (const gdb_exception_error &except) 375 { 376 /* Error getting the value. Try to at least get the 377 right type. */ 378 struct value *type_only_value = evaluate_type (var->root->exp.get ()); 379 380 var->type = value_type (type_only_value); 381 } 382 383 if (value != NULL) 384 { 385 int real_type_found = 0; 386 387 var->type = value_actual_type (value, 0, &real_type_found); 388 if (real_type_found) 389 value = value_cast (var->type, value); 390 } 391 392 /* Set language info */ 393 var->root->lang_ops = var->root->exp->language_defn->varobj_ops (); 394 395 install_new_value (var.get (), value, 1 /* Initial assignment */); 396 397 /* Set ourselves as our root. */ 398 var->root->rootvar = var.get (); 399 400 /* Reset the selected frame. */ 401 if (frame_id_p (old_id)) 402 select_frame (frame_find_by_id (old_id)); 403 } 404 405 /* If the variable object name is null, that means this 406 is a temporary variable, so don't install it. */ 407 408 if ((var != NULL) && (objname != NULL)) 409 { 410 var->obj_name = objname; 411 install_variable (var.get ()); 412 } 413 414 return var.release (); 415 } 416 417 /* Generates an unique name that can be used for a varobj. */ 418 419 std::string 420 varobj_gen_name (void) 421 { 422 static int id = 0; 423 424 /* Generate a name for this object. */ 425 id++; 426 return string_printf ("var%d", id); 427 } 428 429 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call 430 error if OBJNAME cannot be found. */ 431 432 struct varobj * 433 varobj_get_handle (const char *objname) 434 { 435 varobj *var = (varobj *) htab_find_with_hash (varobj_table, objname, 436 htab_hash_string (objname)); 437 438 if (var == NULL) 439 error (_("Variable object not found")); 440 441 return var; 442 } 443 444 /* Given the handle, return the name of the object. */ 445 446 const char * 447 varobj_get_objname (const struct varobj *var) 448 { 449 return var->obj_name.c_str (); 450 } 451 452 /* Given the handle, return the expression represented by the 453 object. */ 454 455 std::string 456 varobj_get_expression (const struct varobj *var) 457 { 458 return name_of_variable (var); 459 } 460 461 /* See varobj.h. */ 462 463 int 464 varobj_delete (struct varobj *var, bool only_children) 465 { 466 return delete_variable (var, only_children); 467 } 468 469 #if HAVE_PYTHON 470 471 /* Convenience function for varobj_set_visualizer. Instantiate a 472 pretty-printer for a given value. */ 473 static PyObject * 474 instantiate_pretty_printer (PyObject *constructor, struct value *value) 475 { 476 gdbpy_ref<> val_obj (value_to_value_object (value)); 477 if (val_obj == nullptr) 478 return NULL; 479 480 return PyObject_CallFunctionObjArgs (constructor, val_obj.get (), NULL); 481 } 482 483 #endif 484 485 /* Set/Get variable object display format. */ 486 487 enum varobj_display_formats 488 varobj_set_display_format (struct varobj *var, 489 enum varobj_display_formats format) 490 { 491 switch (format) 492 { 493 case FORMAT_NATURAL: 494 case FORMAT_BINARY: 495 case FORMAT_DECIMAL: 496 case FORMAT_HEXADECIMAL: 497 case FORMAT_OCTAL: 498 case FORMAT_ZHEXADECIMAL: 499 var->format = format; 500 break; 501 502 default: 503 var->format = variable_default_display (var); 504 } 505 506 if (varobj_value_is_changeable_p (var) 507 && var->value != nullptr && !value_lazy (var->value.get ())) 508 { 509 var->print_value = varobj_value_get_print_value (var->value.get (), 510 var->format, var); 511 } 512 513 return var->format; 514 } 515 516 enum varobj_display_formats 517 varobj_get_display_format (const struct varobj *var) 518 { 519 return var->format; 520 } 521 522 gdb::unique_xmalloc_ptr<char> 523 varobj_get_display_hint (const struct varobj *var) 524 { 525 gdb::unique_xmalloc_ptr<char> result; 526 527 #if HAVE_PYTHON 528 if (!gdb_python_initialized) 529 return NULL; 530 531 gdbpy_enter_varobj enter_py (var); 532 533 if (var->dynamic->pretty_printer != NULL) 534 result = gdbpy_get_display_hint (var->dynamic->pretty_printer); 535 #endif 536 537 return result; 538 } 539 540 /* Return true if the varobj has items after TO, false otherwise. */ 541 542 bool 543 varobj_has_more (const struct varobj *var, int to) 544 { 545 if (var->children.size () > to) 546 return true; 547 548 return ((to == -1 || var->children.size () == to) 549 && (var->dynamic->saved_item != NULL)); 550 } 551 552 /* If the variable object is bound to a specific thread, that 553 is its evaluation can always be done in context of a frame 554 inside that thread, returns GDB id of the thread -- which 555 is always positive. Otherwise, returns -1. */ 556 int 557 varobj_get_thread_id (const struct varobj *var) 558 { 559 if (var->root->valid_block && var->root->thread_id > 0) 560 return var->root->thread_id; 561 else 562 return -1; 563 } 564 565 void 566 varobj_set_frozen (struct varobj *var, bool frozen) 567 { 568 /* When a variable is unfrozen, we don't fetch its value. 569 The 'not_fetched' flag remains set, so next -var-update 570 won't complain. 571 572 We don't fetch the value, because for structures the client 573 should do -var-update anyway. It would be bad to have different 574 client-size logic for structure and other types. */ 575 var->frozen = frozen; 576 } 577 578 bool 579 varobj_get_frozen (const struct varobj *var) 580 { 581 return var->frozen; 582 } 583 584 /* A helper function that updates the contents of FROM and TO based on the 585 size of the vector CHILDREN. If the contents of either FROM or TO are 586 negative the entire range is used. */ 587 588 void 589 varobj_restrict_range (const std::vector<varobj *> &children, 590 int *from, int *to) 591 { 592 int len = children.size (); 593 594 if (*from < 0 || *to < 0) 595 { 596 *from = 0; 597 *to = len; 598 } 599 else 600 { 601 if (*from > len) 602 *from = len; 603 if (*to > len) 604 *to = len; 605 if (*from > *to) 606 *from = *to; 607 } 608 } 609 610 /* A helper for update_dynamic_varobj_children that installs a new 611 child when needed. */ 612 613 static void 614 install_dynamic_child (struct varobj *var, 615 std::vector<varobj *> *changed, 616 std::vector<varobj *> *type_changed, 617 std::vector<varobj *> *newobj, 618 std::vector<varobj *> *unchanged, 619 bool *cchanged, 620 int index, 621 struct varobj_item *item) 622 { 623 if (var->children.size () < index + 1) 624 { 625 /* There's no child yet. */ 626 struct varobj *child = varobj_add_child (var, item); 627 628 if (newobj != NULL) 629 { 630 newobj->push_back (child); 631 *cchanged = true; 632 } 633 } 634 else 635 { 636 varobj *existing = var->children[index]; 637 bool type_updated = update_type_if_necessary (existing, 638 item->value.get ()); 639 640 if (type_updated) 641 { 642 if (type_changed != NULL) 643 type_changed->push_back (existing); 644 } 645 if (install_new_value (existing, item->value.get (), 0)) 646 { 647 if (!type_updated && changed != NULL) 648 changed->push_back (existing); 649 } 650 else if (!type_updated && unchanged != NULL) 651 unchanged->push_back (existing); 652 } 653 } 654 655 #if HAVE_PYTHON 656 657 static bool 658 dynamic_varobj_has_child_method (const struct varobj *var) 659 { 660 PyObject *printer = var->dynamic->pretty_printer; 661 662 if (!gdb_python_initialized) 663 return false; 664 665 gdbpy_enter_varobj enter_py (var); 666 return PyObject_HasAttr (printer, gdbpy_children_cst); 667 } 668 #endif 669 670 /* A factory for creating dynamic varobj's iterators. Returns an 671 iterator object suitable for iterating over VAR's children. */ 672 673 static std::unique_ptr<varobj_iter> 674 varobj_get_iterator (struct varobj *var) 675 { 676 #if HAVE_PYTHON 677 if (var->dynamic->pretty_printer) 678 { 679 value_print_options opts; 680 varobj_formatted_print_options (&opts, var->format); 681 return py_varobj_get_iterator (var, var->dynamic->pretty_printer, &opts); 682 } 683 #endif 684 685 gdb_assert_not_reached ("requested an iterator from a non-dynamic varobj"); 686 } 687 688 static bool 689 update_dynamic_varobj_children (struct varobj *var, 690 std::vector<varobj *> *changed, 691 std::vector<varobj *> *type_changed, 692 std::vector<varobj *> *newobj, 693 std::vector<varobj *> *unchanged, 694 bool *cchanged, 695 bool update_children, 696 int from, 697 int to) 698 { 699 int i; 700 701 *cchanged = false; 702 703 if (update_children || var->dynamic->child_iter == NULL) 704 { 705 var->dynamic->child_iter = varobj_get_iterator (var); 706 var->dynamic->saved_item.reset (nullptr); 707 708 i = 0; 709 710 if (var->dynamic->child_iter == NULL) 711 return false; 712 } 713 else 714 i = var->children.size (); 715 716 /* We ask for one extra child, so that MI can report whether there 717 are more children. */ 718 for (; to < 0 || i < to + 1; ++i) 719 { 720 std::unique_ptr<varobj_item> item; 721 722 /* See if there was a leftover from last time. */ 723 if (var->dynamic->saved_item != NULL) 724 item = std::move (var->dynamic->saved_item); 725 else 726 item = var->dynamic->child_iter->next (); 727 728 if (item == NULL) 729 { 730 /* Iteration is done. Remove iterator from VAR. */ 731 var->dynamic->child_iter.reset (nullptr); 732 break; 733 } 734 /* We don't want to push the extra child on any report list. */ 735 if (to < 0 || i < to) 736 { 737 bool can_mention = from < 0 || i >= from; 738 739 install_dynamic_child (var, can_mention ? changed : NULL, 740 can_mention ? type_changed : NULL, 741 can_mention ? newobj : NULL, 742 can_mention ? unchanged : NULL, 743 can_mention ? cchanged : NULL, i, 744 item.get ()); 745 } 746 else 747 { 748 var->dynamic->saved_item = std::move (item); 749 750 /* We want to truncate the child list just before this 751 element. */ 752 break; 753 } 754 } 755 756 if (i < var->children.size ()) 757 { 758 *cchanged = true; 759 for (int j = i; j < var->children.size (); ++j) 760 varobj_delete (var->children[j], 0); 761 762 var->children.resize (i); 763 } 764 765 /* If there are fewer children than requested, note that the list of 766 children changed. */ 767 if (to >= 0 && var->children.size () < to) 768 *cchanged = true; 769 770 var->num_children = var->children.size (); 771 772 return true; 773 } 774 775 int 776 varobj_get_num_children (struct varobj *var) 777 { 778 if (var->num_children == -1) 779 { 780 if (varobj_is_dynamic_p (var)) 781 { 782 bool dummy; 783 784 /* If we have a dynamic varobj, don't report -1 children. 785 So, try to fetch some children first. */ 786 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy, 787 false, 0, 0); 788 } 789 else 790 var->num_children = number_of_children (var); 791 } 792 793 return var->num_children >= 0 ? var->num_children : 0; 794 } 795 796 /* Creates a list of the immediate children of a variable object; 797 the return code is the number of such children or -1 on error. */ 798 799 const std::vector<varobj *> & 800 varobj_list_children (struct varobj *var, int *from, int *to) 801 { 802 var->dynamic->children_requested = true; 803 804 if (varobj_is_dynamic_p (var)) 805 { 806 bool children_changed; 807 808 /* This, in theory, can result in the number of children changing without 809 frontend noticing. But well, calling -var-list-children on the same 810 varobj twice is not something a sane frontend would do. */ 811 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, 812 &children_changed, false, 0, *to); 813 varobj_restrict_range (var->children, from, to); 814 return var->children; 815 } 816 817 if (var->num_children == -1) 818 var->num_children = number_of_children (var); 819 820 /* If that failed, give up. */ 821 if (var->num_children == -1) 822 return var->children; 823 824 /* If we're called when the list of children is not yet initialized, 825 allocate enough elements in it. */ 826 while (var->children.size () < var->num_children) 827 var->children.push_back (NULL); 828 829 for (int i = 0; i < var->num_children; i++) 830 { 831 if (var->children[i] == NULL) 832 { 833 /* Either it's the first call to varobj_list_children for 834 this variable object, and the child was never created, 835 or it was explicitly deleted by the client. */ 836 std::string name = name_of_child (var, i); 837 var->children[i] = create_child (var, i, name); 838 } 839 } 840 841 varobj_restrict_range (var->children, from, to); 842 return var->children; 843 } 844 845 static struct varobj * 846 varobj_add_child (struct varobj *var, struct varobj_item *item) 847 { 848 varobj *v = create_child_with_value (var, var->children.size (), item); 849 850 var->children.push_back (v); 851 852 return v; 853 } 854 855 /* Obtain the type of an object Variable as a string similar to the one gdb 856 prints on the console. The caller is responsible for freeing the string. 857 */ 858 859 std::string 860 varobj_get_type (struct varobj *var) 861 { 862 /* For the "fake" variables, do not return a type. (Its type is 863 NULL, too.) 864 Do not return a type for invalid variables as well. */ 865 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) 866 return std::string (); 867 868 return type_to_string (var->type); 869 } 870 871 /* Obtain the type of an object variable. */ 872 873 struct type * 874 varobj_get_gdb_type (const struct varobj *var) 875 { 876 return var->type; 877 } 878 879 /* Is VAR a path expression parent, i.e., can it be used to construct 880 a valid path expression? */ 881 882 static bool 883 is_path_expr_parent (const struct varobj *var) 884 { 885 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL); 886 return var->root->lang_ops->is_path_expr_parent (var); 887 } 888 889 /* Is VAR a path expression parent, i.e., can it be used to construct 890 a valid path expression? By default we assume any VAR can be a path 891 parent. */ 892 893 bool 894 varobj_default_is_path_expr_parent (const struct varobj *var) 895 { 896 return true; 897 } 898 899 /* Return the path expression parent for VAR. */ 900 901 const struct varobj * 902 varobj_get_path_expr_parent (const struct varobj *var) 903 { 904 const struct varobj *parent = var; 905 906 while (!is_root_p (parent) && !is_path_expr_parent (parent)) 907 parent = parent->parent; 908 909 /* Computation of full rooted expression for children of dynamic 910 varobjs is not supported. */ 911 if (varobj_is_dynamic_p (parent)) 912 error (_("Invalid variable object (child of a dynamic varobj)")); 913 914 return parent; 915 } 916 917 /* Return a pointer to the full rooted expression of varobj VAR. 918 If it has not been computed yet, compute it. */ 919 920 const char * 921 varobj_get_path_expr (const struct varobj *var) 922 { 923 if (var->path_expr.empty ()) 924 { 925 /* For root varobjs, we initialize path_expr 926 when creating varobj, so here it should be 927 child varobj. */ 928 struct varobj *mutable_var = (struct varobj *) var; 929 gdb_assert (!is_root_p (var)); 930 931 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var); 932 } 933 934 return var->path_expr.c_str (); 935 } 936 937 const struct language_defn * 938 varobj_get_language (const struct varobj *var) 939 { 940 return var->root->exp->language_defn; 941 } 942 943 int 944 varobj_get_attributes (const struct varobj *var) 945 { 946 int attributes = 0; 947 948 if (varobj_editable_p (var)) 949 /* FIXME: define masks for attributes. */ 950 attributes |= 0x00000001; /* Editable */ 951 952 return attributes; 953 } 954 955 /* Return true if VAR is a dynamic varobj. */ 956 957 bool 958 varobj_is_dynamic_p (const struct varobj *var) 959 { 960 return var->dynamic->pretty_printer != NULL; 961 } 962 963 std::string 964 varobj_get_formatted_value (struct varobj *var, 965 enum varobj_display_formats format) 966 { 967 return my_value_of_variable (var, format); 968 } 969 970 std::string 971 varobj_get_value (struct varobj *var) 972 { 973 return my_value_of_variable (var, var->format); 974 } 975 976 /* Set the value of an object variable (if it is editable) to the 977 value of the given expression. */ 978 /* Note: Invokes functions that can call error(). */ 979 980 bool 981 varobj_set_value (struct varobj *var, const char *expression) 982 { 983 struct value *val = NULL; /* Initialize to keep gcc happy. */ 984 /* The argument "expression" contains the variable's new value. 985 We need to first construct a legal expression for this -- ugh! */ 986 /* Does this cover all the bases? */ 987 struct value *value = NULL; /* Initialize to keep gcc happy. */ 988 int saved_input_radix = input_radix; 989 const char *s = expression; 990 991 gdb_assert (varobj_editable_p (var)); 992 993 input_radix = 10; /* ALWAYS reset to decimal temporarily. */ 994 expression_up exp = parse_exp_1 (&s, 0, 0, 0); 995 try 996 { 997 value = evaluate_expression (exp.get ()); 998 } 999 1000 catch (const gdb_exception_error &except) 1001 { 1002 /* We cannot proceed without a valid expression. */ 1003 return false; 1004 } 1005 1006 /* All types that are editable must also be changeable. */ 1007 gdb_assert (varobj_value_is_changeable_p (var)); 1008 1009 /* The value of a changeable variable object must not be lazy. */ 1010 gdb_assert (!value_lazy (var->value.get ())); 1011 1012 /* Need to coerce the input. We want to check if the 1013 value of the variable object will be different 1014 after assignment, and the first thing value_assign 1015 does is coerce the input. 1016 For example, if we are assigning an array to a pointer variable we 1017 should compare the pointer with the array's address, not with the 1018 array's content. */ 1019 value = coerce_array (value); 1020 1021 /* The new value may be lazy. value_assign, or 1022 rather value_contents, will take care of this. */ 1023 try 1024 { 1025 val = value_assign (var->value.get (), value); 1026 } 1027 1028 catch (const gdb_exception_error &except) 1029 { 1030 return false; 1031 } 1032 1033 /* If the value has changed, record it, so that next -var-update can 1034 report this change. If a variable had a value of '1', we've set it 1035 to '333' and then set again to '1', when -var-update will report this 1036 variable as changed -- because the first assignment has set the 1037 'updated' flag. There's no need to optimize that, because return value 1038 of -var-update should be considered an approximation. */ 1039 var->updated = install_new_value (var, val, false /* Compare values. */); 1040 input_radix = saved_input_radix; 1041 return true; 1042 } 1043 1044 #if HAVE_PYTHON 1045 1046 /* A helper function to install a constructor function and visualizer 1047 in a varobj_dynamic. */ 1048 1049 static void 1050 install_visualizer (struct varobj_dynamic *var, PyObject *constructor, 1051 PyObject *visualizer) 1052 { 1053 Py_XDECREF (var->constructor); 1054 var->constructor = constructor; 1055 1056 Py_XDECREF (var->pretty_printer); 1057 var->pretty_printer = visualizer; 1058 1059 var->child_iter.reset (nullptr); 1060 } 1061 1062 /* Install the default visualizer for VAR. */ 1063 1064 static void 1065 install_default_visualizer (struct varobj *var) 1066 { 1067 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */ 1068 if (CPLUS_FAKE_CHILD (var)) 1069 return; 1070 1071 if (pretty_printing) 1072 { 1073 gdbpy_ref<> pretty_printer; 1074 1075 if (var->value != nullptr) 1076 { 1077 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ()); 1078 if (pretty_printer == nullptr) 1079 { 1080 gdbpy_print_stack (); 1081 error (_("Cannot instantiate printer for default visualizer")); 1082 } 1083 } 1084 1085 if (pretty_printer == Py_None) 1086 pretty_printer.reset (nullptr); 1087 1088 install_visualizer (var->dynamic, NULL, pretty_printer.release ()); 1089 } 1090 } 1091 1092 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to 1093 make a new object. */ 1094 1095 static void 1096 construct_visualizer (struct varobj *var, PyObject *constructor) 1097 { 1098 PyObject *pretty_printer; 1099 1100 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */ 1101 if (CPLUS_FAKE_CHILD (var)) 1102 return; 1103 1104 Py_INCREF (constructor); 1105 if (constructor == Py_None) 1106 pretty_printer = NULL; 1107 else 1108 { 1109 pretty_printer = instantiate_pretty_printer (constructor, 1110 var->value.get ()); 1111 if (! pretty_printer) 1112 { 1113 gdbpy_print_stack (); 1114 Py_DECREF (constructor); 1115 constructor = Py_None; 1116 Py_INCREF (constructor); 1117 } 1118 1119 if (pretty_printer == Py_None) 1120 { 1121 Py_DECREF (pretty_printer); 1122 pretty_printer = NULL; 1123 } 1124 } 1125 1126 install_visualizer (var->dynamic, constructor, pretty_printer); 1127 } 1128 1129 #endif /* HAVE_PYTHON */ 1130 1131 /* A helper function for install_new_value. This creates and installs 1132 a visualizer for VAR, if appropriate. */ 1133 1134 static void 1135 install_new_value_visualizer (struct varobj *var) 1136 { 1137 #if HAVE_PYTHON 1138 /* If the constructor is None, then we want the raw value. If VAR 1139 does not have a value, just skip this. */ 1140 if (!gdb_python_initialized) 1141 return; 1142 1143 if (var->dynamic->constructor != Py_None && var->value != NULL) 1144 { 1145 gdbpy_enter_varobj enter_py (var); 1146 1147 if (var->dynamic->constructor == NULL) 1148 install_default_visualizer (var); 1149 else 1150 construct_visualizer (var, var->dynamic->constructor); 1151 } 1152 #else 1153 /* Do nothing. */ 1154 #endif 1155 } 1156 1157 /* When using RTTI to determine variable type it may be changed in runtime when 1158 the variable value is changed. This function checks whether type of varobj 1159 VAR will change when a new value NEW_VALUE is assigned and if it is so 1160 updates the type of VAR. */ 1161 1162 static bool 1163 update_type_if_necessary (struct varobj *var, struct value *new_value) 1164 { 1165 if (new_value) 1166 { 1167 struct value_print_options opts; 1168 1169 get_user_print_options (&opts); 1170 if (opts.objectprint) 1171 { 1172 struct type *new_type = value_actual_type (new_value, 0, 0); 1173 std::string new_type_str = type_to_string (new_type); 1174 std::string curr_type_str = varobj_get_type (var); 1175 1176 /* Did the type name change? */ 1177 if (curr_type_str != new_type_str) 1178 { 1179 var->type = new_type; 1180 1181 /* This information may be not valid for a new type. */ 1182 varobj_delete (var, 1); 1183 var->children.clear (); 1184 var->num_children = -1; 1185 return true; 1186 } 1187 } 1188 } 1189 1190 return false; 1191 } 1192 1193 /* Assign a new value to a variable object. If INITIAL is true, 1194 this is the first assignment after the variable object was just 1195 created, or changed type. In that case, just assign the value 1196 and return false. 1197 Otherwise, assign the new value, and return true if the value is 1198 different from the current one, false otherwise. The comparison is 1199 done on textual representation of value. Therefore, some types 1200 need not be compared. E.g. for structures the reported value is 1201 always "{...}", so no comparison is necessary here. If the old 1202 value was NULL and new one is not, or vice versa, we always return true. 1203 1204 The VALUE parameter should not be released -- the function will 1205 take care of releasing it when needed. */ 1206 static bool 1207 install_new_value (struct varobj *var, struct value *value, bool initial) 1208 { 1209 bool changeable; 1210 bool need_to_fetch; 1211 bool changed = false; 1212 bool intentionally_not_fetched = false; 1213 1214 /* We need to know the varobj's type to decide if the value should 1215 be fetched or not. C++ fake children (public/protected/private) 1216 don't have a type. */ 1217 gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); 1218 changeable = varobj_value_is_changeable_p (var); 1219 1220 /* If the type has custom visualizer, we consider it to be always 1221 changeable. FIXME: need to make sure this behaviour will not 1222 mess up read-sensitive values. */ 1223 if (var->dynamic->pretty_printer != NULL) 1224 changeable = true; 1225 1226 need_to_fetch = changeable; 1227 1228 /* We are not interested in the address of references, and given 1229 that in C++ a reference is not rebindable, it cannot 1230 meaningfully change. So, get hold of the real value. */ 1231 if (value) 1232 value = coerce_ref (value); 1233 1234 if (var->type && var->type->code () == TYPE_CODE_UNION) 1235 /* For unions, we need to fetch the value implicitly because 1236 of implementation of union member fetch. When gdb 1237 creates a value for a field and the value of the enclosing 1238 structure is not lazy, it immediately copies the necessary 1239 bytes from the enclosing values. If the enclosing value is 1240 lazy, the call to value_fetch_lazy on the field will read 1241 the data from memory. For unions, that means we'll read the 1242 same memory more than once, which is not desirable. So 1243 fetch now. */ 1244 need_to_fetch = true; 1245 1246 /* The new value might be lazy. If the type is changeable, 1247 that is we'll be comparing values of this type, fetch the 1248 value now. Otherwise, on the next update the old value 1249 will be lazy, which means we've lost that old value. */ 1250 if (need_to_fetch && value && value_lazy (value)) 1251 { 1252 const struct varobj *parent = var->parent; 1253 bool frozen = var->frozen; 1254 1255 for (; !frozen && parent; parent = parent->parent) 1256 frozen |= parent->frozen; 1257 1258 if (frozen && initial) 1259 { 1260 /* For variables that are frozen, or are children of frozen 1261 variables, we don't do fetch on initial assignment. 1262 For non-initial assignment we do the fetch, since it means we're 1263 explicitly asked to compare the new value with the old one. */ 1264 intentionally_not_fetched = true; 1265 } 1266 else 1267 { 1268 1269 try 1270 { 1271 value_fetch_lazy (value); 1272 } 1273 1274 catch (const gdb_exception_error &except) 1275 { 1276 /* Set the value to NULL, so that for the next -var-update, 1277 we don't try to compare the new value with this value, 1278 that we couldn't even read. */ 1279 value = NULL; 1280 } 1281 } 1282 } 1283 1284 /* Get a reference now, before possibly passing it to any Python 1285 code that might release it. */ 1286 value_ref_ptr value_holder; 1287 if (value != NULL) 1288 value_holder = value_ref_ptr::new_reference (value); 1289 1290 /* Below, we'll be comparing string rendering of old and new 1291 values. Don't get string rendering if the value is 1292 lazy -- if it is, the code above has decided that the value 1293 should not be fetched. */ 1294 std::string print_value; 1295 if (value != NULL && !value_lazy (value) 1296 && var->dynamic->pretty_printer == NULL) 1297 print_value = varobj_value_get_print_value (value, var->format, var); 1298 1299 /* If the type is changeable, compare the old and the new values. 1300 If this is the initial assignment, we don't have any old value 1301 to compare with. */ 1302 if (!initial && changeable) 1303 { 1304 /* If the value of the varobj was changed by -var-set-value, 1305 then the value in the varobj and in the target is the same. 1306 However, that value is different from the value that the 1307 varobj had after the previous -var-update. So need to the 1308 varobj as changed. */ 1309 if (var->updated) 1310 changed = true; 1311 else if (var->dynamic->pretty_printer == NULL) 1312 { 1313 /* Try to compare the values. That requires that both 1314 values are non-lazy. */ 1315 if (var->not_fetched && value_lazy (var->value.get ())) 1316 { 1317 /* This is a frozen varobj and the value was never read. 1318 Presumably, UI shows some "never read" indicator. 1319 Now that we've fetched the real value, we need to report 1320 this varobj as changed so that UI can show the real 1321 value. */ 1322 changed = true; 1323 } 1324 else if (var->value == NULL && value == NULL) 1325 /* Equal. */ 1326 ; 1327 else if (var->value == NULL || value == NULL) 1328 { 1329 changed = true; 1330 } 1331 else 1332 { 1333 gdb_assert (!value_lazy (var->value.get ())); 1334 gdb_assert (!value_lazy (value)); 1335 1336 gdb_assert (!var->print_value.empty () && !print_value.empty ()); 1337 if (var->print_value != print_value) 1338 changed = true; 1339 } 1340 } 1341 } 1342 1343 if (!initial && !changeable) 1344 { 1345 /* For values that are not changeable, we don't compare the values. 1346 However, we want to notice if a value was not NULL and now is NULL, 1347 or vise versa, so that we report when top-level varobjs come in scope 1348 and leave the scope. */ 1349 changed = (var->value != NULL) != (value != NULL); 1350 } 1351 1352 /* We must always keep the new value, since children depend on it. */ 1353 var->value = value_holder; 1354 if (value && value_lazy (value) && intentionally_not_fetched) 1355 var->not_fetched = true; 1356 else 1357 var->not_fetched = false; 1358 var->updated = false; 1359 1360 install_new_value_visualizer (var); 1361 1362 /* If we installed a pretty-printer, re-compare the printed version 1363 to see if the variable changed. */ 1364 if (var->dynamic->pretty_printer != NULL) 1365 { 1366 print_value = varobj_value_get_print_value (var->value.get (), 1367 var->format, var); 1368 if (var->print_value != print_value) 1369 changed = true; 1370 } 1371 var->print_value = print_value; 1372 1373 gdb_assert (var->value == nullptr || value_type (var->value.get ())); 1374 1375 return changed; 1376 } 1377 1378 /* Return the requested range for a varobj. VAR is the varobj. FROM 1379 and TO are out parameters; *FROM and *TO will be set to the 1380 selected sub-range of VAR. If no range was selected using 1381 -var-set-update-range, then both will be -1. */ 1382 void 1383 varobj_get_child_range (const struct varobj *var, int *from, int *to) 1384 { 1385 *from = var->from; 1386 *to = var->to; 1387 } 1388 1389 /* Set the selected sub-range of children of VAR to start at index 1390 FROM and end at index TO. If either FROM or TO is less than zero, 1391 this is interpreted as a request for all children. */ 1392 void 1393 varobj_set_child_range (struct varobj *var, int from, int to) 1394 { 1395 var->from = from; 1396 var->to = to; 1397 } 1398 1399 void 1400 varobj_set_visualizer (struct varobj *var, const char *visualizer) 1401 { 1402 #if HAVE_PYTHON 1403 PyObject *mainmod; 1404 1405 if (!gdb_python_initialized) 1406 return; 1407 1408 gdbpy_enter_varobj enter_py (var); 1409 1410 mainmod = PyImport_AddModule ("__main__"); 1411 gdbpy_ref<> globals 1412 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod)); 1413 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input, 1414 globals.get (), globals.get ())); 1415 1416 if (constructor == NULL) 1417 { 1418 gdbpy_print_stack (); 1419 error (_("Could not evaluate visualizer expression: %s"), visualizer); 1420 } 1421 1422 construct_visualizer (var, constructor.get ()); 1423 1424 /* If there are any children now, wipe them. */ 1425 varobj_delete (var, 1 /* children only */); 1426 var->num_children = -1; 1427 #else 1428 error (_("Python support required")); 1429 #endif 1430 } 1431 1432 /* If NEW_VALUE is the new value of the given varobj (var), return 1433 true if var has mutated. In other words, if the type of 1434 the new value is different from the type of the varobj's old 1435 value. 1436 1437 NEW_VALUE may be NULL, if the varobj is now out of scope. */ 1438 1439 static bool 1440 varobj_value_has_mutated (const struct varobj *var, struct value *new_value, 1441 struct type *new_type) 1442 { 1443 /* If we haven't previously computed the number of children in var, 1444 it does not matter from the front-end's perspective whether 1445 the type has mutated or not. For all intents and purposes, 1446 it has not mutated. */ 1447 if (var->num_children < 0) 1448 return false; 1449 1450 if (var->root->lang_ops->value_has_mutated != NULL) 1451 { 1452 /* The varobj module, when installing new values, explicitly strips 1453 references, saying that we're not interested in those addresses. 1454 But detection of mutation happens before installing the new 1455 value, so our value may be a reference that we need to strip 1456 in order to remain consistent. */ 1457 if (new_value != NULL) 1458 new_value = coerce_ref (new_value); 1459 return var->root->lang_ops->value_has_mutated (var, new_value, new_type); 1460 } 1461 else 1462 return false; 1463 } 1464 1465 /* Update the values for a variable and its children. This is a 1466 two-pronged attack. First, re-parse the value for the root's 1467 expression to see if it's changed. Then go all the way 1468 through its children, reconstructing them and noting if they've 1469 changed. 1470 1471 The IS_EXPLICIT parameter specifies if this call is result 1472 of MI request to update this specific variable, or 1473 result of implicit -var-update *. For implicit request, we don't 1474 update frozen variables. 1475 1476 NOTE: This function may delete the caller's varobj. If it 1477 returns TYPE_CHANGED, then it has done this and VARP will be modified 1478 to point to the new varobj. */ 1479 1480 std::vector<varobj_update_result> 1481 varobj_update (struct varobj **varp, bool is_explicit) 1482 { 1483 bool type_changed = false; 1484 struct value *newobj; 1485 std::vector<varobj_update_result> stack; 1486 std::vector<varobj_update_result> result; 1487 1488 /* Frozen means frozen -- we don't check for any change in 1489 this varobj, including its going out of scope, or 1490 changing type. One use case for frozen varobjs is 1491 retaining previously evaluated expressions, and we don't 1492 want them to be reevaluated at all. */ 1493 if (!is_explicit && (*varp)->frozen) 1494 return result; 1495 1496 if (!(*varp)->root->is_valid) 1497 { 1498 result.emplace_back (*varp, VAROBJ_INVALID); 1499 return result; 1500 } 1501 1502 if ((*varp)->root->rootvar == *varp) 1503 { 1504 varobj_update_result r (*varp); 1505 1506 /* Update the root variable. value_of_root can return NULL 1507 if the variable is no longer around, i.e. we stepped out of 1508 the frame in which a local existed. We are letting the 1509 value_of_root variable dispose of the varobj if the type 1510 has changed. */ 1511 newobj = value_of_root (varp, &type_changed); 1512 if (update_type_if_necessary (*varp, newobj)) 1513 type_changed = true; 1514 r.varobj = *varp; 1515 r.type_changed = type_changed; 1516 if (install_new_value ((*varp), newobj, type_changed)) 1517 r.changed = true; 1518 1519 if (newobj == NULL) 1520 r.status = VAROBJ_NOT_IN_SCOPE; 1521 r.value_installed = true; 1522 1523 if (r.status == VAROBJ_NOT_IN_SCOPE) 1524 { 1525 if (r.type_changed || r.changed) 1526 result.push_back (std::move (r)); 1527 1528 return result; 1529 } 1530 1531 stack.push_back (std::move (r)); 1532 } 1533 else 1534 stack.emplace_back (*varp); 1535 1536 /* Walk through the children, reconstructing them all. */ 1537 while (!stack.empty ()) 1538 { 1539 varobj_update_result r = std::move (stack.back ()); 1540 stack.pop_back (); 1541 struct varobj *v = r.varobj; 1542 1543 /* Update this variable, unless it's a root, which is already 1544 updated. */ 1545 if (!r.value_installed) 1546 { 1547 struct type *new_type; 1548 1549 newobj = value_of_child (v->parent, v->index); 1550 if (update_type_if_necessary (v, newobj)) 1551 r.type_changed = true; 1552 if (newobj) 1553 new_type = value_type (newobj); 1554 else 1555 new_type = v->root->lang_ops->type_of_child (v->parent, v->index); 1556 1557 if (varobj_value_has_mutated (v, newobj, new_type)) 1558 { 1559 /* The children are no longer valid; delete them now. 1560 Report the fact that its type changed as well. */ 1561 varobj_delete (v, 1 /* only_children */); 1562 v->num_children = -1; 1563 v->to = -1; 1564 v->from = -1; 1565 v->type = new_type; 1566 r.type_changed = true; 1567 } 1568 1569 if (install_new_value (v, newobj, r.type_changed)) 1570 { 1571 r.changed = true; 1572 v->updated = false; 1573 } 1574 } 1575 1576 /* We probably should not get children of a dynamic varobj, but 1577 for which -var-list-children was never invoked. */ 1578 if (varobj_is_dynamic_p (v)) 1579 { 1580 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec; 1581 bool children_changed = false; 1582 1583 if (v->frozen) 1584 continue; 1585 1586 if (!v->dynamic->children_requested) 1587 { 1588 bool dummy; 1589 1590 /* If we initially did not have potential children, but 1591 now we do, consider the varobj as changed. 1592 Otherwise, if children were never requested, consider 1593 it as unchanged -- presumably, such varobj is not yet 1594 expanded in the UI, so we need not bother getting 1595 it. */ 1596 if (!varobj_has_more (v, 0)) 1597 { 1598 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL, 1599 &dummy, false, 0, 0); 1600 if (varobj_has_more (v, 0)) 1601 r.changed = true; 1602 } 1603 1604 if (r.changed) 1605 result.push_back (std::move (r)); 1606 1607 continue; 1608 } 1609 1610 /* If update_dynamic_varobj_children returns false, then we have 1611 a non-conforming pretty-printer, so we skip it. */ 1612 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec, 1613 &newobj_vec, 1614 &unchanged, &children_changed, 1615 true, v->from, v->to)) 1616 { 1617 if (children_changed || !newobj_vec.empty ()) 1618 { 1619 r.children_changed = true; 1620 r.newobj = std::move (newobj_vec); 1621 } 1622 /* Push in reverse order so that the first child is 1623 popped from the work stack first, and so will be 1624 added to result first. This does not affect 1625 correctness, just "nicer". */ 1626 for (int i = type_changed_vec.size () - 1; i >= 0; --i) 1627 { 1628 varobj_update_result item (type_changed_vec[i]); 1629 1630 /* Type may change only if value was changed. */ 1631 item.changed = true; 1632 item.type_changed = true; 1633 item.value_installed = true; 1634 1635 stack.push_back (std::move (item)); 1636 } 1637 for (int i = changed.size () - 1; i >= 0; --i) 1638 { 1639 varobj_update_result item (changed[i]); 1640 1641 item.changed = true; 1642 item.value_installed = true; 1643 1644 stack.push_back (std::move (item)); 1645 } 1646 for (int i = unchanged.size () - 1; i >= 0; --i) 1647 { 1648 if (!unchanged[i]->frozen) 1649 { 1650 varobj_update_result item (unchanged[i]); 1651 1652 item.value_installed = true; 1653 1654 stack.push_back (std::move (item)); 1655 } 1656 } 1657 if (r.changed || r.children_changed) 1658 result.push_back (std::move (r)); 1659 1660 continue; 1661 } 1662 } 1663 1664 /* Push any children. Use reverse order so that the first 1665 child is popped from the work stack first, and so 1666 will be added to result first. This does not 1667 affect correctness, just "nicer". */ 1668 for (int i = v->children.size () - 1; i >= 0; --i) 1669 { 1670 varobj *c = v->children[i]; 1671 1672 /* Child may be NULL if explicitly deleted by -var-delete. */ 1673 if (c != NULL && !c->frozen) 1674 stack.emplace_back (c); 1675 } 1676 1677 if (r.changed || r.type_changed) 1678 result.push_back (std::move (r)); 1679 } 1680 1681 return result; 1682 } 1683 1684 /* Helper functions */ 1685 1686 /* 1687 * Variable object construction/destruction 1688 */ 1689 1690 static int 1691 delete_variable (struct varobj *var, bool only_children_p) 1692 { 1693 int delcount = 0; 1694 1695 delete_variable_1 (&delcount, var, only_children_p, 1696 true /* remove_from_parent_p */ ); 1697 1698 return delcount; 1699 } 1700 1701 /* Delete the variable object VAR and its children. */ 1702 /* IMPORTANT NOTE: If we delete a variable which is a child 1703 and the parent is not removed we dump core. It must be always 1704 initially called with remove_from_parent_p set. */ 1705 static void 1706 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p, 1707 bool remove_from_parent_p) 1708 { 1709 /* Delete any children of this variable, too. */ 1710 for (varobj *child : var->children) 1711 { 1712 if (!child) 1713 continue; 1714 1715 if (!remove_from_parent_p) 1716 child->parent = NULL; 1717 1718 delete_variable_1 (delcountp, child, false, only_children_p); 1719 } 1720 var->children.clear (); 1721 1722 /* if we were called to delete only the children we are done here. */ 1723 if (only_children_p) 1724 return; 1725 1726 /* Otherwise, add it to the list of deleted ones and proceed to do so. */ 1727 /* If the name is empty, this is a temporary variable, that has not 1728 yet been installed, don't report it, it belongs to the caller... */ 1729 if (!var->obj_name.empty ()) 1730 { 1731 *delcountp = *delcountp + 1; 1732 } 1733 1734 /* If this variable has a parent, remove it from its parent's list. */ 1735 /* OPTIMIZATION: if the parent of this variable is also being deleted, 1736 (as indicated by remove_from_parent_p) we don't bother doing an 1737 expensive list search to find the element to remove when we are 1738 discarding the list afterwards. */ 1739 if ((remove_from_parent_p) && (var->parent != NULL)) 1740 var->parent->children[var->index] = NULL; 1741 1742 if (!var->obj_name.empty ()) 1743 uninstall_variable (var); 1744 1745 /* Free memory associated with this variable. */ 1746 delete var; 1747 } 1748 1749 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ 1750 static void 1751 install_variable (struct varobj *var) 1752 { 1753 hashval_t hash = htab_hash_string (var->obj_name.c_str ()); 1754 void **slot = htab_find_slot_with_hash (varobj_table, 1755 var->obj_name.c_str (), 1756 hash, INSERT); 1757 if (*slot != nullptr) 1758 error (_("Duplicate variable object name")); 1759 1760 /* Add varobj to hash table. */ 1761 *slot = var; 1762 1763 /* If root, add varobj to root list. */ 1764 if (is_root_p (var)) 1765 rootlist.push_front (var->root); 1766 } 1767 1768 /* Uninstall the object VAR. */ 1769 static void 1770 uninstall_variable (struct varobj *var) 1771 { 1772 hashval_t hash = htab_hash_string (var->obj_name.c_str ()); 1773 htab_remove_elt_with_hash (varobj_table, var->obj_name.c_str (), hash); 1774 1775 if (varobjdebug) 1776 gdb_printf (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ()); 1777 1778 /* If root, remove varobj from root list. */ 1779 if (is_root_p (var)) 1780 { 1781 auto iter = std::find (rootlist.begin (), rootlist.end (), var->root); 1782 rootlist.erase (iter); 1783 } 1784 } 1785 1786 /* Create and install a child of the parent of the given name. 1787 1788 The created VAROBJ takes ownership of the allocated NAME. */ 1789 1790 static struct varobj * 1791 create_child (struct varobj *parent, int index, std::string &name) 1792 { 1793 struct varobj_item item; 1794 1795 std::swap (item.name, name); 1796 item.value = release_value (value_of_child (parent, index)); 1797 1798 return create_child_with_value (parent, index, &item); 1799 } 1800 1801 static struct varobj * 1802 create_child_with_value (struct varobj *parent, int index, 1803 struct varobj_item *item) 1804 { 1805 varobj *child = new varobj (parent->root); 1806 1807 /* NAME is allocated by caller. */ 1808 std::swap (child->name, item->name); 1809 child->index = index; 1810 child->parent = parent; 1811 1812 if (varobj_is_anonymous_child (child)) 1813 child->obj_name = string_printf ("%s.%d_anonymous", 1814 parent->obj_name.c_str (), index); 1815 else 1816 child->obj_name = string_printf ("%s.%s", 1817 parent->obj_name.c_str (), 1818 child->name.c_str ()); 1819 1820 install_variable (child); 1821 1822 /* Compute the type of the child. Must do this before 1823 calling install_new_value. */ 1824 if (item->value != NULL) 1825 /* If the child had no evaluation errors, var->value 1826 will be non-NULL and contain a valid type. */ 1827 child->type = value_actual_type (item->value.get (), 0, NULL); 1828 else 1829 /* Otherwise, we must compute the type. */ 1830 child->type = (*child->root->lang_ops->type_of_child) (child->parent, 1831 child->index); 1832 install_new_value (child, item->value.get (), 1); 1833 1834 return child; 1835 } 1836 1837 1838 /* 1839 * Miscellaneous utility functions. 1840 */ 1841 1842 /* Allocate memory and initialize a new variable. */ 1843 varobj::varobj (varobj_root *root_) 1844 : root (root_), dynamic (new varobj_dynamic) 1845 { 1846 } 1847 1848 /* Free any allocated memory associated with VAR. */ 1849 1850 varobj::~varobj () 1851 { 1852 varobj *var = this; 1853 1854 #if HAVE_PYTHON 1855 if (var->dynamic->pretty_printer != NULL) 1856 { 1857 gdbpy_enter_varobj enter_py (var); 1858 1859 Py_XDECREF (var->dynamic->constructor); 1860 Py_XDECREF (var->dynamic->pretty_printer); 1861 } 1862 #endif 1863 1864 /* This must be deleted before the root object, because Python-based 1865 destructors need access to some components. */ 1866 delete var->dynamic; 1867 1868 if (is_root_p (var)) 1869 delete var->root; 1870 } 1871 1872 /* Return the type of the value that's stored in VAR, 1873 or that would have being stored there if the 1874 value were accessible. 1875 1876 This differs from VAR->type in that VAR->type is always 1877 the true type of the expression in the source language. 1878 The return value of this function is the type we're 1879 actually storing in varobj, and using for displaying 1880 the values and for comparing previous and new values. 1881 1882 For example, top-level references are always stripped. */ 1883 struct type * 1884 varobj_get_value_type (const struct varobj *var) 1885 { 1886 struct type *type; 1887 1888 if (var->value != nullptr) 1889 type = value_type (var->value.get ()); 1890 else 1891 type = var->type; 1892 1893 type = check_typedef (type); 1894 1895 if (TYPE_IS_REFERENCE (type)) 1896 type = get_target_type (type); 1897 1898 type = check_typedef (type); 1899 1900 return type; 1901 } 1902 1903 /* What is the default display for this variable? We assume that 1904 everything is "natural". Any exceptions? */ 1905 static enum varobj_display_formats 1906 variable_default_display (struct varobj *var) 1907 { 1908 return FORMAT_NATURAL; 1909 } 1910 1911 /* 1912 * Language-dependencies 1913 */ 1914 1915 /* Common entry points */ 1916 1917 /* Return the number of children for a given variable. 1918 The result of this function is defined by the language 1919 implementation. The number of children returned by this function 1920 is the number of children that the user will see in the variable 1921 display. */ 1922 static int 1923 number_of_children (const struct varobj *var) 1924 { 1925 return (*var->root->lang_ops->number_of_children) (var); 1926 } 1927 1928 /* What is the expression for the root varobj VAR? */ 1929 1930 static std::string 1931 name_of_variable (const struct varobj *var) 1932 { 1933 return (*var->root->lang_ops->name_of_variable) (var); 1934 } 1935 1936 /* What is the name of the INDEX'th child of VAR? */ 1937 1938 static std::string 1939 name_of_child (struct varobj *var, int index) 1940 { 1941 return (*var->root->lang_ops->name_of_child) (var, index); 1942 } 1943 1944 /* If frame associated with VAR can be found, switch 1945 to it and return true. Otherwise, return false. */ 1946 1947 static bool 1948 check_scope (const struct varobj *var) 1949 { 1950 frame_info_ptr fi; 1951 bool scope; 1952 1953 fi = frame_find_by_id (var->root->frame); 1954 scope = fi != NULL; 1955 1956 if (fi) 1957 { 1958 CORE_ADDR pc = get_frame_pc (fi); 1959 1960 if (pc < var->root->valid_block->start () || 1961 pc >= var->root->valid_block->end ()) 1962 scope = false; 1963 else 1964 select_frame (fi); 1965 } 1966 return scope; 1967 } 1968 1969 /* Helper function to value_of_root. */ 1970 1971 static struct value * 1972 value_of_root_1 (struct varobj **var_handle) 1973 { 1974 struct value *new_val = NULL; 1975 struct varobj *var = *var_handle; 1976 bool within_scope = false; 1977 1978 /* Only root variables can be updated... */ 1979 if (!is_root_p (var)) 1980 /* Not a root var. */ 1981 return NULL; 1982 1983 scoped_restore_current_thread restore_thread; 1984 1985 /* Determine whether the variable is still around. */ 1986 if (var->root->valid_block == NULL || var->root->floating) 1987 within_scope = true; 1988 else if (var->root->thread_id == 0) 1989 { 1990 /* The program was single-threaded when the variable object was 1991 created. Technically, it's possible that the program became 1992 multi-threaded since then, but we don't support such 1993 scenario yet. */ 1994 within_scope = check_scope (var); 1995 } 1996 else 1997 { 1998 thread_info *thread = find_thread_global_id (var->root->thread_id); 1999 2000 if (thread != NULL) 2001 { 2002 switch_to_thread (thread); 2003 within_scope = check_scope (var); 2004 } 2005 } 2006 2007 if (within_scope) 2008 { 2009 2010 /* We need to catch errors here, because if evaluate 2011 expression fails we want to just return NULL. */ 2012 try 2013 { 2014 new_val = evaluate_expression (var->root->exp.get ()); 2015 } 2016 catch (const gdb_exception_error &except) 2017 { 2018 } 2019 } 2020 2021 return new_val; 2022 } 2023 2024 /* What is the ``struct value *'' of the root variable VAR? 2025 For floating variable object, evaluation can get us a value 2026 of different type from what is stored in varobj already. In 2027 that case: 2028 - *type_changed will be set to 1 2029 - old varobj will be freed, and new one will be 2030 created, with the same name. 2031 - *var_handle will be set to the new varobj 2032 Otherwise, *type_changed will be set to 0. */ 2033 static struct value * 2034 value_of_root (struct varobj **var_handle, bool *type_changed) 2035 { 2036 struct varobj *var; 2037 2038 if (var_handle == NULL) 2039 return NULL; 2040 2041 var = *var_handle; 2042 2043 /* This should really be an exception, since this should 2044 only get called with a root variable. */ 2045 2046 if (!is_root_p (var)) 2047 return NULL; 2048 2049 if (var->root->floating) 2050 { 2051 struct varobj *tmp_var; 2052 2053 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0, 2054 USE_SELECTED_FRAME); 2055 if (tmp_var == NULL) 2056 { 2057 return NULL; 2058 } 2059 std::string old_type = varobj_get_type (var); 2060 std::string new_type = varobj_get_type (tmp_var); 2061 if (old_type == new_type) 2062 { 2063 /* The expression presently stored inside var->root->exp 2064 remembers the locations of local variables relatively to 2065 the frame where the expression was created (in DWARF location 2066 button, for example). Naturally, those locations are not 2067 correct in other frames, so update the expression. */ 2068 2069 std::swap (var->root->exp, tmp_var->root->exp); 2070 2071 varobj_delete (tmp_var, 0); 2072 *type_changed = 0; 2073 } 2074 else 2075 { 2076 tmp_var->obj_name = var->obj_name; 2077 tmp_var->from = var->from; 2078 tmp_var->to = var->to; 2079 varobj_delete (var, 0); 2080 2081 install_variable (tmp_var); 2082 *var_handle = tmp_var; 2083 var = *var_handle; 2084 *type_changed = true; 2085 } 2086 } 2087 else 2088 { 2089 *type_changed = 0; 2090 } 2091 2092 { 2093 struct value *value; 2094 2095 value = value_of_root_1 (var_handle); 2096 if (var->value == NULL || value == NULL) 2097 { 2098 /* For root varobj-s, a NULL value indicates a scoping issue. 2099 So, nothing to do in terms of checking for mutations. */ 2100 } 2101 else if (varobj_value_has_mutated (var, value, value_type (value))) 2102 { 2103 /* The type has mutated, so the children are no longer valid. 2104 Just delete them, and tell our caller that the type has 2105 changed. */ 2106 varobj_delete (var, 1 /* only_children */); 2107 var->num_children = -1; 2108 var->to = -1; 2109 var->from = -1; 2110 *type_changed = true; 2111 } 2112 return value; 2113 } 2114 } 2115 2116 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ 2117 static struct value * 2118 value_of_child (const struct varobj *parent, int index) 2119 { 2120 struct value *value; 2121 2122 value = (*parent->root->lang_ops->value_of_child) (parent, index); 2123 2124 return value; 2125 } 2126 2127 /* GDB already has a command called "value_of_variable". Sigh. */ 2128 static std::string 2129 my_value_of_variable (struct varobj *var, enum varobj_display_formats format) 2130 { 2131 if (var->root->is_valid) 2132 { 2133 if (var->dynamic->pretty_printer != NULL) 2134 return varobj_value_get_print_value (var->value.get (), var->format, 2135 var); 2136 return (*var->root->lang_ops->value_of_variable) (var, format); 2137 } 2138 else 2139 return std::string (); 2140 } 2141 2142 void 2143 varobj_formatted_print_options (struct value_print_options *opts, 2144 enum varobj_display_formats format) 2145 { 2146 get_formatted_print_options (opts, format_code[(int) format]); 2147 opts->deref_ref = 0; 2148 opts->raw = !pretty_printing; 2149 } 2150 2151 std::string 2152 varobj_value_get_print_value (struct value *value, 2153 enum varobj_display_formats format, 2154 const struct varobj *var) 2155 { 2156 struct value_print_options opts; 2157 struct type *type = NULL; 2158 long len = 0; 2159 gdb::unique_xmalloc_ptr<char> encoding; 2160 /* Initialize it just to avoid a GCC false warning. */ 2161 CORE_ADDR str_addr = 0; 2162 bool string_print = false; 2163 2164 if (value == NULL) 2165 return std::string (); 2166 2167 string_file stb; 2168 std::string thevalue; 2169 2170 varobj_formatted_print_options (&opts, format); 2171 2172 #if HAVE_PYTHON 2173 if (gdb_python_initialized) 2174 { 2175 PyObject *value_formatter = var->dynamic->pretty_printer; 2176 2177 gdbpy_enter_varobj enter_py (var); 2178 2179 if (value_formatter) 2180 { 2181 /* First check to see if we have any children at all. If so, 2182 we simply return {...}. */ 2183 if (dynamic_varobj_has_child_method (var)) 2184 return "{...}"; 2185 2186 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst)) 2187 { 2188 struct value *replacement; 2189 2190 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter, 2191 &replacement, 2192 &stb, 2193 &opts); 2194 2195 /* If we have string like output ... */ 2196 if (output != NULL) 2197 { 2198 /* If this is a lazy string, extract it. For lazy 2199 strings we always print as a string, so set 2200 string_print. */ 2201 if (gdbpy_is_lazy_string (output.get ())) 2202 { 2203 gdbpy_extract_lazy_string (output.get (), &str_addr, 2204 &type, &len, &encoding); 2205 string_print = true; 2206 } 2207 else 2208 { 2209 /* If it is a regular (non-lazy) string, extract 2210 it and copy the contents into THEVALUE. If the 2211 hint says to print it as a string, set 2212 string_print. Otherwise just return the extracted 2213 string as a value. */ 2214 2215 gdb::unique_xmalloc_ptr<char> s 2216 = python_string_to_target_string (output.get ()); 2217 2218 if (s) 2219 { 2220 struct gdbarch *gdbarch; 2221 2222 gdb::unique_xmalloc_ptr<char> hint 2223 = gdbpy_get_display_hint (value_formatter); 2224 if (hint) 2225 { 2226 if (!strcmp (hint.get (), "string")) 2227 string_print = true; 2228 } 2229 2230 thevalue = std::string (s.get ()); 2231 len = thevalue.size (); 2232 gdbarch = value_type (value)->arch (); 2233 type = builtin_type (gdbarch)->builtin_char; 2234 2235 if (!string_print) 2236 return thevalue; 2237 } 2238 else 2239 gdbpy_print_stack (); 2240 } 2241 } 2242 /* If the printer returned a replacement value, set VALUE 2243 to REPLACEMENT. If there is not a replacement value, 2244 just use the value passed to this function. */ 2245 if (replacement) 2246 value = replacement; 2247 } 2248 } 2249 } 2250 #endif 2251 2252 /* If the THEVALUE has contents, it is a regular string. */ 2253 if (!thevalue.empty ()) 2254 current_language->printstr (&stb, type, (gdb_byte *) thevalue.c_str (), 2255 len, encoding.get (), 0, &opts); 2256 else if (string_print) 2257 /* Otherwise, if string_print is set, and it is not a regular 2258 string, it is a lazy string. */ 2259 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts); 2260 else 2261 /* All other cases. */ 2262 common_val_print (value, &stb, 0, &opts, current_language); 2263 2264 return stb.release (); 2265 } 2266 2267 bool 2268 varobj_editable_p (const struct varobj *var) 2269 { 2270 struct type *type; 2271 2272 if (!(var->root->is_valid && var->value != nullptr 2273 && VALUE_LVAL (var->value.get ()))) 2274 return false; 2275 2276 type = varobj_get_value_type (var); 2277 2278 switch (type->code ()) 2279 { 2280 case TYPE_CODE_STRUCT: 2281 case TYPE_CODE_UNION: 2282 case TYPE_CODE_ARRAY: 2283 case TYPE_CODE_FUNC: 2284 case TYPE_CODE_METHOD: 2285 return false; 2286 break; 2287 2288 default: 2289 return true; 2290 break; 2291 } 2292 } 2293 2294 /* Call VAR's value_is_changeable_p language-specific callback. */ 2295 2296 bool 2297 varobj_value_is_changeable_p (const struct varobj *var) 2298 { 2299 return var->root->lang_ops->value_is_changeable_p (var); 2300 } 2301 2302 /* Return true if that varobj is floating, that is is always evaluated in the 2303 selected frame, and not bound to thread/frame. Such variable objects 2304 are created using '@' as frame specifier to -var-create. */ 2305 bool 2306 varobj_floating_p (const struct varobj *var) 2307 { 2308 return var->root->floating; 2309 } 2310 2311 /* Implement the "value_is_changeable_p" varobj callback for most 2312 languages. */ 2313 2314 bool 2315 varobj_default_value_is_changeable_p (const struct varobj *var) 2316 { 2317 bool r; 2318 struct type *type; 2319 2320 if (CPLUS_FAKE_CHILD (var)) 2321 return false; 2322 2323 type = varobj_get_value_type (var); 2324 2325 switch (type->code ()) 2326 { 2327 case TYPE_CODE_STRUCT: 2328 case TYPE_CODE_UNION: 2329 case TYPE_CODE_ARRAY: 2330 r = false; 2331 break; 2332 2333 default: 2334 r = true; 2335 } 2336 2337 return r; 2338 } 2339 2340 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback 2341 for each one. */ 2342 2343 void 2344 all_root_varobjs (gdb::function_view<void (struct varobj *var)> func) 2345 { 2346 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */ 2347 auto iter = rootlist.begin (); 2348 auto end = rootlist.end (); 2349 while (iter != end) 2350 { 2351 auto self = iter++; 2352 func ((*self)->rootvar); 2353 } 2354 } 2355 2356 /* Try to recreate the varobj VAR if it is a global or floating. This is a 2357 helper function for varobj_re_set. */ 2358 2359 static void 2360 varobj_re_set_iter (struct varobj *var) 2361 { 2362 /* Invalidated global varobjs must be re-evaluated. */ 2363 if (!var->root->is_valid && var->root->global) 2364 { 2365 struct varobj *tmp_var; 2366 2367 /* Try to create a varobj with same expression. If we succeed 2368 and have a global replace the old varobj. */ 2369 tmp_var = varobj_create (nullptr, var->name.c_str (), (CORE_ADDR) 0, 2370 USE_CURRENT_FRAME); 2371 if (tmp_var != nullptr && tmp_var->root->global) 2372 { 2373 tmp_var->obj_name = var->obj_name; 2374 varobj_delete (var, 0); 2375 install_variable (tmp_var); 2376 } 2377 } 2378 } 2379 2380 /* See varobj.h. */ 2381 2382 void 2383 varobj_re_set (void) 2384 { 2385 all_root_varobjs (varobj_re_set_iter); 2386 } 2387 2388 /* Ensure that no varobj keep references to OBJFILE. */ 2389 2390 static void 2391 varobj_invalidate_if_uses_objfile (struct objfile *objfile) 2392 { 2393 if (objfile->separate_debug_objfile_backlink != nullptr) 2394 objfile = objfile->separate_debug_objfile_backlink; 2395 2396 all_root_varobjs ([objfile] (struct varobj *var) 2397 { 2398 if (var->root->valid_block != nullptr) 2399 { 2400 struct objfile *bl_objfile = block_objfile (var->root->valid_block); 2401 if (bl_objfile->separate_debug_objfile_backlink != nullptr) 2402 bl_objfile = bl_objfile->separate_debug_objfile_backlink; 2403 2404 if (bl_objfile == objfile) 2405 { 2406 /* The varobj is tied to a block which is going away. There is 2407 no way to reconstruct something later, so invalidate the 2408 varobj completly and drop the reference to the block which is 2409 being freed. */ 2410 var->root->is_valid = false; 2411 var->root->valid_block = nullptr; 2412 } 2413 } 2414 2415 if (var->root->exp != nullptr 2416 && exp_uses_objfile (var->root->exp.get (), objfile)) 2417 { 2418 /* The varobj's current expression references the objfile. For 2419 globals and floating, it is possible that when we try to 2420 re-evaluate the expression later it is still valid with 2421 whatever is in scope at that moment. Just invalidate the 2422 expression for now. */ 2423 var->root->exp.reset (); 2424 2425 /* It only makes sense to keep a floating varobj around. */ 2426 if (!var->root->floating) 2427 var->root->is_valid = false; 2428 } 2429 2430 /* var->value->type and var->type might also reference the objfile. 2431 This is taken care of in value.c:preserve_values which deals with 2432 making sure that objfile-owend types are replaced with 2433 gdbarch-owned equivalents. */ 2434 }); 2435 } 2436 2437 /* A hash function for a varobj. */ 2438 2439 static hashval_t 2440 hash_varobj (const void *a) 2441 { 2442 const varobj *obj = (const varobj *) a; 2443 return htab_hash_string (obj->obj_name.c_str ()); 2444 } 2445 2446 /* A hash table equality function for varobjs. */ 2447 2448 static int 2449 eq_varobj_and_string (const void *a, const void *b) 2450 { 2451 const varobj *obj = (const varobj *) a; 2452 const char *name = (const char *) b; 2453 2454 return obj->obj_name == name; 2455 } 2456 2457 void _initialize_varobj (); 2458 void 2459 _initialize_varobj () 2460 { 2461 varobj_table = htab_create_alloc (5, hash_varobj, eq_varobj_and_string, 2462 nullptr, xcalloc, xfree); 2463 2464 add_setshow_zuinteger_cmd ("varobj", class_maintenance, 2465 &varobjdebug, 2466 _("Set varobj debugging."), 2467 _("Show varobj debugging."), 2468 _("When non-zero, varobj debugging is enabled."), 2469 NULL, show_varobjdebug, 2470 &setdebuglist, &showdebuglist); 2471 2472 gdb::observers::free_objfile.attach (varobj_invalidate_if_uses_objfile, 2473 "varobj"); 2474 } 2475