xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/varobj.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* Implementation of the GDB variable objects API.
2 
3    Copyright (C) 1999-2023 Free Software Foundation, Inc.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17 
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdbsupport/gdb_regex.h"
27 
28 #include "varobj.h"
29 #include "gdbthread.h"
30 #include "inferior.h"
31 #include "varobj-iter.h"
32 #include "parser-defs.h"
33 #include "gdbarch.h"
34 #include <algorithm>
35 #include "observable.h"
36 
37 #if HAVE_PYTHON
38 #include "python/python.h"
39 #include "python/python-internal.h"
40 #else
41 typedef int PyObject;
42 #endif
43 
44 /* See varobj.h.  */
45 
46 unsigned int varobjdebug = 0;
47 static void
48 show_varobjdebug (struct ui_file *file, int from_tty,
49 		  struct cmd_list_element *c, const char *value)
50 {
51   gdb_printf (file, _("Varobj debugging is %s.\n"), value);
52 }
53 
54 /* String representations of gdb's format codes.  */
55 const char *varobj_format_string[] =
56   { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
57 
58 /* True if we want to allow Python-based pretty-printing.  */
59 static bool pretty_printing = false;
60 
61 void
62 varobj_enable_pretty_printing (void)
63 {
64   pretty_printing = true;
65 }
66 
67 /* Data structures */
68 
69 /* Every root variable has one of these structures saved in its
70    varobj.  */
71 struct varobj_root
72 {
73   /* The expression for this parent.  */
74   expression_up exp;
75 
76   /* Cached arch from exp, for use in case exp gets invalidated.  */
77   struct gdbarch *gdbarch = nullptr;
78 
79   /* Cached language from exp, for use in case exp gets invalidated.  */
80   const struct language_defn *language_defn = nullptr;
81 
82   /* Block for which this expression is valid.  */
83   const struct block *valid_block = NULL;
84 
85   /* The frame for this expression.  This field is set iff valid_block is
86      not NULL.  */
87   struct frame_id frame = null_frame_id;
88 
89   /* The global thread ID that this varobj_root belongs to.  This field
90      is only valid if valid_block is not NULL.
91      When not 0, indicates which thread 'frame' belongs to.
92      When 0, indicates that the thread list was empty when the varobj_root
93      was created.  */
94   int thread_id = 0;
95 
96   /* If true, the -var-update always recomputes the value in the
97      current thread and frame.  Otherwise, variable object is
98      always updated in the specific scope/thread/frame.  */
99   bool floating = false;
100 
101   /* Flag that indicates validity: set to false when this varobj_root refers
102      to symbols that do not exist anymore.  */
103   bool is_valid = true;
104 
105   /* Set to true if the varobj was created as tracking a global.  */
106   bool global = false;
107 
108   /* Language-related operations for this variable and its
109      children.  */
110   const struct lang_varobj_ops *lang_ops = NULL;
111 
112   /* The varobj for this root node.  */
113   struct varobj *rootvar = NULL;
114 };
115 
116 /* Dynamic part of varobj.  */
117 
118 struct varobj_dynamic
119 {
120   /* Whether the children of this varobj were requested.  This field is
121      used to decide if dynamic varobj should recompute their children.
122      In the event that the frontend never asked for the children, we
123      can avoid that.  */
124   bool children_requested = false;
125 
126   /* The pretty-printer constructor.  If NULL, then the default
127      pretty-printer will be looked up.  If None, then no
128      pretty-printer will be installed.  */
129   PyObject *constructor = NULL;
130 
131   /* The pretty-printer that has been constructed.  If NULL, then a
132      new printer object is needed, and one will be constructed.  */
133   PyObject *pretty_printer = NULL;
134 
135   /* The iterator returned by the printer's 'children' method, or NULL
136      if not available.  */
137   std::unique_ptr<varobj_iter> child_iter;
138 
139   /* We request one extra item from the iterator, so that we can
140      report to the caller whether there are more items than we have
141      already reported.  However, we don't want to install this value
142      when we read it, because that will mess up future updates.  So,
143      we stash it here instead.  */
144   std::unique_ptr<varobj_item> saved_item;
145 };
146 
147 /* Private function prototypes */
148 
149 /* Helper functions for the above subcommands.  */
150 
151 static int delete_variable (struct varobj *, bool);
152 
153 static void delete_variable_1 (int *, struct varobj *, bool, bool);
154 
155 static void install_variable (struct varobj *);
156 
157 static void uninstall_variable (struct varobj *);
158 
159 static struct varobj *create_child (struct varobj *, int, std::string &);
160 
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 			 struct varobj_item *item);
164 
165 /* Utility routines */
166 
167 static enum varobj_display_formats variable_default_display (struct varobj *);
168 
169 static bool update_type_if_necessary (struct varobj *var,
170 				      struct value *new_value);
171 
172 static bool install_new_value (struct varobj *var, struct value *value,
173 			       bool initial);
174 
175 /* Language-specific routines.  */
176 
177 static int number_of_children (const struct varobj *);
178 
179 static std::string name_of_variable (const struct varobj *);
180 
181 static std::string name_of_child (struct varobj *, int);
182 
183 static struct value *value_of_root (struct varobj **var_handle, bool *);
184 
185 static struct value *value_of_child (const struct varobj *parent, int index);
186 
187 static std::string my_value_of_variable (struct varobj *var,
188 					 enum varobj_display_formats format);
189 
190 static bool is_root_p (const struct varobj *var);
191 
192 static struct varobj *varobj_add_child (struct varobj *var,
193 					struct varobj_item *item);
194 
195 /* Private data */
196 
197 /* Mappings of varobj_display_formats enums to gdb's format codes.  */
198 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
199 
200 /* List of root variable objects.  */
201 static std::list<struct varobj_root *> rootlist;
202 
203 /* Pointer to the varobj hash table (built at run time).  */
204 static htab_t varobj_table;
205 
206 
207 
208 /* API Implementation */
209 static bool
210 is_root_p (const struct varobj *var)
211 {
212   return (var->root->rootvar == var);
213 }
214 
215 #ifdef HAVE_PYTHON
216 
217 /* See python-internal.h.  */
218 gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
219 : gdbpy_enter (var->root->gdbarch, var->root->language_defn)
220 {
221 }
222 
223 #endif
224 
225 /* Return the full FRAME which corresponds to the given CORE_ADDR
226    or NULL if no FRAME on the chain corresponds to CORE_ADDR.  */
227 
228 static frame_info_ptr
229 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
230 {
231   frame_info_ptr frame = NULL;
232 
233   if (frame_addr == (CORE_ADDR) 0)
234     return NULL;
235 
236   for (frame = get_current_frame ();
237        frame != NULL;
238        frame = get_prev_frame (frame))
239     {
240       /* The CORE_ADDR we get as argument was parsed from a string GDB
241 	 output as $fp.  This output got truncated to gdbarch_addr_bit.
242 	 Truncate the frame base address in the same manner before
243 	 comparing it against our argument.  */
244       CORE_ADDR frame_base = get_frame_base_address (frame);
245       int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
246 
247       if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
248 	frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
249 
250       if (frame_base == frame_addr)
251 	return frame;
252     }
253 
254   return NULL;
255 }
256 
257 /* Creates a varobj (not its children).  */
258 
259 struct varobj *
260 varobj_create (const char *objname,
261 	       const char *expression, CORE_ADDR frame, enum varobj_type type)
262 {
263   /* Fill out a varobj structure for the (root) variable being constructed.  */
264   std::unique_ptr<varobj> var (new varobj (new varobj_root));
265 
266   if (expression != NULL)
267     {
268       frame_info_ptr fi;
269       struct frame_id old_id = null_frame_id;
270       const struct block *block;
271       const char *p;
272       struct value *value = NULL;
273       CORE_ADDR pc;
274 
275       /* Parse and evaluate the expression, filling in as much of the
276 	 variable's data as possible.  */
277 
278       if (has_stack_frames ())
279 	{
280 	  /* Allow creator to specify context of variable.  */
281 	  if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
282 	    fi = get_selected_frame (NULL);
283 	  else
284 	    /* FIXME: cagney/2002-11-23: This code should be doing a
285 	       lookup using the frame ID and not just the frame's
286 	       ``address''.  This, of course, means an interface
287 	       change.  However, with out that interface change ISAs,
288 	       such as the ia64 with its two stacks, won't work.
289 	       Similar goes for the case where there is a frameless
290 	       function.  */
291 	    fi = find_frame_addr_in_frame_chain (frame);
292 	}
293       else
294 	fi = NULL;
295 
296       if (type == USE_SELECTED_FRAME)
297 	var->root->floating = true;
298 
299       pc = 0;
300       block = NULL;
301       if (fi != NULL)
302 	{
303 	  block = get_frame_block (fi, 0);
304 	  pc = get_frame_pc (fi);
305 	}
306 
307       p = expression;
308 
309       innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
310 				       | INNERMOST_BLOCK_FOR_REGISTERS);
311       /* Wrap the call to parse expression, so we can
312 	 return a sensible error.  */
313       try
314 	{
315 	  var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
316 
317 	  /* Cache gdbarch and language_defn as they might be used even
318 	     after var is invalidated and var->root->exp cleared.  */
319 	  var->root->gdbarch = var->root->exp->gdbarch;
320 	  var->root->language_defn = var->root->exp->language_defn;
321 	}
322 
323       catch (const gdb_exception_error &except)
324 	{
325 	  return NULL;
326 	}
327 
328       /* Don't allow variables to be created for types.  */
329       enum exp_opcode opcode = var->root->exp->first_opcode ();
330       if (opcode == OP_TYPE
331 	  || opcode == OP_TYPEOF
332 	  || opcode == OP_DECLTYPE)
333 	{
334 	  gdb_printf (gdb_stderr, "Attempt to use a type name"
335 		      " as an expression.\n");
336 	  return NULL;
337 	}
338 
339       var->format = variable_default_display (var.get ());
340       var->root->valid_block =
341 	var->root->floating ? NULL : tracker.block ();
342       var->root->global
343 	= var->root->floating ? false : var->root->valid_block == nullptr;
344       var->name = expression;
345       /* For a root var, the name and the expr are the same.  */
346       var->path_expr = expression;
347 
348       /* When the frame is different from the current frame,
349 	 we must select the appropriate frame before parsing
350 	 the expression, otherwise the value will not be current.
351 	 Since select_frame is so benign, just call it for all cases.  */
352       if (var->root->valid_block)
353 	{
354 	  /* User could specify explicit FRAME-ADDR which was not found but
355 	     EXPRESSION is frame specific and we would not be able to evaluate
356 	     it correctly next time.  With VALID_BLOCK set we must also set
357 	     FRAME and THREAD_ID.  */
358 	  if (fi == NULL)
359 	    error (_("Failed to find the specified frame"));
360 
361 	  var->root->frame = get_frame_id (fi);
362 	  var->root->thread_id = inferior_thread ()->global_num;
363 	  old_id = get_frame_id (get_selected_frame (NULL));
364 	  select_frame (fi);
365 	}
366 
367       /* We definitely need to catch errors here.
368 	 If evaluate_expression succeeds we got the value we wanted.
369 	 But if it fails, we still go on with a call to evaluate_type().  */
370       try
371 	{
372 	  value = evaluate_expression (var->root->exp.get ());
373 	}
374       catch (const gdb_exception_error &except)
375 	{
376 	  /* Error getting the value.  Try to at least get the
377 	     right type.  */
378 	  struct value *type_only_value = evaluate_type (var->root->exp.get ());
379 
380 	  var->type = value_type (type_only_value);
381 	}
382 
383       if (value != NULL)
384 	{
385 	  int real_type_found = 0;
386 
387 	  var->type = value_actual_type (value, 0, &real_type_found);
388 	  if (real_type_found)
389 	    value = value_cast (var->type, value);
390 	}
391 
392       /* Set language info */
393       var->root->lang_ops = var->root->exp->language_defn->varobj_ops ();
394 
395       install_new_value (var.get (), value, 1 /* Initial assignment */);
396 
397       /* Set ourselves as our root.  */
398       var->root->rootvar = var.get ();
399 
400       /* Reset the selected frame.  */
401       if (frame_id_p (old_id))
402 	select_frame (frame_find_by_id (old_id));
403     }
404 
405   /* If the variable object name is null, that means this
406      is a temporary variable, so don't install it.  */
407 
408   if ((var != NULL) && (objname != NULL))
409     {
410       var->obj_name = objname;
411       install_variable (var.get ());
412     }
413 
414   return var.release ();
415 }
416 
417 /* Generates an unique name that can be used for a varobj.  */
418 
419 std::string
420 varobj_gen_name (void)
421 {
422   static int id = 0;
423 
424   /* Generate a name for this object.  */
425   id++;
426   return string_printf ("var%d", id);
427 }
428 
429 /* Given an OBJNAME, returns the pointer to the corresponding varobj.  Call
430    error if OBJNAME cannot be found.  */
431 
432 struct varobj *
433 varobj_get_handle (const char *objname)
434 {
435   varobj *var = (varobj *) htab_find_with_hash (varobj_table, objname,
436 						htab_hash_string (objname));
437 
438   if (var == NULL)
439     error (_("Variable object not found"));
440 
441   return var;
442 }
443 
444 /* Given the handle, return the name of the object.  */
445 
446 const char *
447 varobj_get_objname (const struct varobj *var)
448 {
449   return var->obj_name.c_str ();
450 }
451 
452 /* Given the handle, return the expression represented by the
453    object.  */
454 
455 std::string
456 varobj_get_expression (const struct varobj *var)
457 {
458   return name_of_variable (var);
459 }
460 
461 /* See varobj.h.  */
462 
463 int
464 varobj_delete (struct varobj *var, bool only_children)
465 {
466   return delete_variable (var, only_children);
467 }
468 
469 #if HAVE_PYTHON
470 
471 /* Convenience function for varobj_set_visualizer.  Instantiate a
472    pretty-printer for a given value.  */
473 static PyObject *
474 instantiate_pretty_printer (PyObject *constructor, struct value *value)
475 {
476   gdbpy_ref<> val_obj (value_to_value_object (value));
477   if (val_obj == nullptr)
478     return NULL;
479 
480   return PyObject_CallFunctionObjArgs (constructor, val_obj.get (), NULL);
481 }
482 
483 #endif
484 
485 /* Set/Get variable object display format.  */
486 
487 enum varobj_display_formats
488 varobj_set_display_format (struct varobj *var,
489 			   enum varobj_display_formats format)
490 {
491   switch (format)
492     {
493     case FORMAT_NATURAL:
494     case FORMAT_BINARY:
495     case FORMAT_DECIMAL:
496     case FORMAT_HEXADECIMAL:
497     case FORMAT_OCTAL:
498     case FORMAT_ZHEXADECIMAL:
499       var->format = format;
500       break;
501 
502     default:
503       var->format = variable_default_display (var);
504     }
505 
506   if (varobj_value_is_changeable_p (var)
507       && var->value != nullptr && !value_lazy (var->value.get ()))
508     {
509       var->print_value = varobj_value_get_print_value (var->value.get (),
510 						       var->format, var);
511     }
512 
513   return var->format;
514 }
515 
516 enum varobj_display_formats
517 varobj_get_display_format (const struct varobj *var)
518 {
519   return var->format;
520 }
521 
522 gdb::unique_xmalloc_ptr<char>
523 varobj_get_display_hint (const struct varobj *var)
524 {
525   gdb::unique_xmalloc_ptr<char> result;
526 
527 #if HAVE_PYTHON
528   if (!gdb_python_initialized)
529     return NULL;
530 
531   gdbpy_enter_varobj enter_py (var);
532 
533   if (var->dynamic->pretty_printer != NULL)
534     result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
535 #endif
536 
537   return result;
538 }
539 
540 /* Return true if the varobj has items after TO, false otherwise.  */
541 
542 bool
543 varobj_has_more (const struct varobj *var, int to)
544 {
545   if (var->children.size () > to)
546     return true;
547 
548   return ((to == -1 || var->children.size () == to)
549 	  && (var->dynamic->saved_item != NULL));
550 }
551 
552 /* If the variable object is bound to a specific thread, that
553    is its evaluation can always be done in context of a frame
554    inside that thread, returns GDB id of the thread -- which
555    is always positive.  Otherwise, returns -1.  */
556 int
557 varobj_get_thread_id (const struct varobj *var)
558 {
559   if (var->root->valid_block && var->root->thread_id > 0)
560     return var->root->thread_id;
561   else
562     return -1;
563 }
564 
565 void
566 varobj_set_frozen (struct varobj *var, bool frozen)
567 {
568   /* When a variable is unfrozen, we don't fetch its value.
569      The 'not_fetched' flag remains set, so next -var-update
570      won't complain.
571 
572      We don't fetch the value, because for structures the client
573      should do -var-update anyway.  It would be bad to have different
574      client-size logic for structure and other types.  */
575   var->frozen = frozen;
576 }
577 
578 bool
579 varobj_get_frozen (const struct varobj *var)
580 {
581   return var->frozen;
582 }
583 
584 /* A helper function that updates the contents of FROM and TO based on the
585    size of the vector CHILDREN.  If the contents of either FROM or TO are
586    negative the entire range is used.  */
587 
588 void
589 varobj_restrict_range (const std::vector<varobj *> &children,
590 		       int *from, int *to)
591 {
592   int len = children.size ();
593 
594   if (*from < 0 || *to < 0)
595     {
596       *from = 0;
597       *to = len;
598     }
599   else
600     {
601       if (*from > len)
602 	*from = len;
603       if (*to > len)
604 	*to = len;
605       if (*from > *to)
606 	*from = *to;
607     }
608 }
609 
610 /* A helper for update_dynamic_varobj_children that installs a new
611    child when needed.  */
612 
613 static void
614 install_dynamic_child (struct varobj *var,
615 		       std::vector<varobj *> *changed,
616 		       std::vector<varobj *> *type_changed,
617 		       std::vector<varobj *> *newobj,
618 		       std::vector<varobj *> *unchanged,
619 		       bool *cchanged,
620 		       int index,
621 		       struct varobj_item *item)
622 {
623   if (var->children.size () < index + 1)
624     {
625       /* There's no child yet.  */
626       struct varobj *child = varobj_add_child (var, item);
627 
628       if (newobj != NULL)
629 	{
630 	  newobj->push_back (child);
631 	  *cchanged = true;
632 	}
633     }
634   else
635     {
636       varobj *existing = var->children[index];
637       bool type_updated = update_type_if_necessary (existing,
638 						    item->value.get ());
639 
640       if (type_updated)
641 	{
642 	  if (type_changed != NULL)
643 	    type_changed->push_back (existing);
644 	}
645       if (install_new_value (existing, item->value.get (), 0))
646 	{
647 	  if (!type_updated && changed != NULL)
648 	    changed->push_back (existing);
649 	}
650       else if (!type_updated && unchanged != NULL)
651 	unchanged->push_back (existing);
652     }
653 }
654 
655 #if HAVE_PYTHON
656 
657 static bool
658 dynamic_varobj_has_child_method (const struct varobj *var)
659 {
660   PyObject *printer = var->dynamic->pretty_printer;
661 
662   if (!gdb_python_initialized)
663     return false;
664 
665   gdbpy_enter_varobj enter_py (var);
666   return PyObject_HasAttr (printer, gdbpy_children_cst);
667 }
668 #endif
669 
670 /* A factory for creating dynamic varobj's iterators.  Returns an
671    iterator object suitable for iterating over VAR's children.  */
672 
673 static std::unique_ptr<varobj_iter>
674 varobj_get_iterator (struct varobj *var)
675 {
676 #if HAVE_PYTHON
677   if (var->dynamic->pretty_printer)
678     {
679       value_print_options opts;
680       varobj_formatted_print_options (&opts, var->format);
681       return py_varobj_get_iterator (var, var->dynamic->pretty_printer, &opts);
682     }
683 #endif
684 
685   gdb_assert_not_reached ("requested an iterator from a non-dynamic varobj");
686 }
687 
688 static bool
689 update_dynamic_varobj_children (struct varobj *var,
690 				std::vector<varobj *> *changed,
691 				std::vector<varobj *> *type_changed,
692 				std::vector<varobj *> *newobj,
693 				std::vector<varobj *> *unchanged,
694 				bool *cchanged,
695 				bool update_children,
696 				int from,
697 				int to)
698 {
699   int i;
700 
701   *cchanged = false;
702 
703   if (update_children || var->dynamic->child_iter == NULL)
704     {
705       var->dynamic->child_iter = varobj_get_iterator (var);
706       var->dynamic->saved_item.reset (nullptr);
707 
708       i = 0;
709 
710       if (var->dynamic->child_iter == NULL)
711 	return false;
712     }
713   else
714     i = var->children.size ();
715 
716   /* We ask for one extra child, so that MI can report whether there
717      are more children.  */
718   for (; to < 0 || i < to + 1; ++i)
719     {
720       std::unique_ptr<varobj_item> item;
721 
722       /* See if there was a leftover from last time.  */
723       if (var->dynamic->saved_item != NULL)
724 	item = std::move (var->dynamic->saved_item);
725       else
726 	item = var->dynamic->child_iter->next ();
727 
728       if (item == NULL)
729 	{
730 	  /* Iteration is done.  Remove iterator from VAR.  */
731 	  var->dynamic->child_iter.reset (nullptr);
732 	  break;
733 	}
734       /* We don't want to push the extra child on any report list.  */
735       if (to < 0 || i < to)
736 	{
737 	  bool can_mention = from < 0 || i >= from;
738 
739 	  install_dynamic_child (var, can_mention ? changed : NULL,
740 				 can_mention ? type_changed : NULL,
741 				 can_mention ? newobj : NULL,
742 				 can_mention ? unchanged : NULL,
743 				 can_mention ? cchanged : NULL, i,
744 				 item.get ());
745 	}
746       else
747 	{
748 	  var->dynamic->saved_item = std::move (item);
749 
750 	  /* We want to truncate the child list just before this
751 	     element.  */
752 	  break;
753 	}
754     }
755 
756   if (i < var->children.size ())
757     {
758       *cchanged = true;
759       for (int j = i; j < var->children.size (); ++j)
760 	varobj_delete (var->children[j], 0);
761 
762       var->children.resize (i);
763     }
764 
765   /* If there are fewer children than requested, note that the list of
766      children changed.  */
767   if (to >= 0 && var->children.size () < to)
768     *cchanged = true;
769 
770   var->num_children = var->children.size ();
771 
772   return true;
773 }
774 
775 int
776 varobj_get_num_children (struct varobj *var)
777 {
778   if (var->num_children == -1)
779     {
780       if (varobj_is_dynamic_p (var))
781 	{
782 	  bool dummy;
783 
784 	  /* If we have a dynamic varobj, don't report -1 children.
785 	     So, try to fetch some children first.  */
786 	  update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
787 					  false, 0, 0);
788 	}
789       else
790 	var->num_children = number_of_children (var);
791     }
792 
793   return var->num_children >= 0 ? var->num_children : 0;
794 }
795 
796 /* Creates a list of the immediate children of a variable object;
797    the return code is the number of such children or -1 on error.  */
798 
799 const std::vector<varobj *> &
800 varobj_list_children (struct varobj *var, int *from, int *to)
801 {
802   var->dynamic->children_requested = true;
803 
804   if (varobj_is_dynamic_p (var))
805     {
806       bool children_changed;
807 
808       /* This, in theory, can result in the number of children changing without
809 	 frontend noticing.  But well, calling -var-list-children on the same
810 	 varobj twice is not something a sane frontend would do.  */
811       update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
812 				      &children_changed, false, 0, *to);
813       varobj_restrict_range (var->children, from, to);
814       return var->children;
815     }
816 
817   if (var->num_children == -1)
818     var->num_children = number_of_children (var);
819 
820   /* If that failed, give up.  */
821   if (var->num_children == -1)
822     return var->children;
823 
824   /* If we're called when the list of children is not yet initialized,
825      allocate enough elements in it.  */
826   while (var->children.size () < var->num_children)
827     var->children.push_back (NULL);
828 
829   for (int i = 0; i < var->num_children; i++)
830     {
831       if (var->children[i] == NULL)
832 	{
833 	  /* Either it's the first call to varobj_list_children for
834 	     this variable object, and the child was never created,
835 	     or it was explicitly deleted by the client.  */
836 	  std::string name = name_of_child (var, i);
837 	  var->children[i] = create_child (var, i, name);
838 	}
839     }
840 
841   varobj_restrict_range (var->children, from, to);
842   return var->children;
843 }
844 
845 static struct varobj *
846 varobj_add_child (struct varobj *var, struct varobj_item *item)
847 {
848   varobj *v = create_child_with_value (var, var->children.size (), item);
849 
850   var->children.push_back (v);
851 
852   return v;
853 }
854 
855 /* Obtain the type of an object Variable as a string similar to the one gdb
856    prints on the console.  The caller is responsible for freeing the string.
857    */
858 
859 std::string
860 varobj_get_type (struct varobj *var)
861 {
862   /* For the "fake" variables, do not return a type.  (Its type is
863      NULL, too.)
864      Do not return a type for invalid variables as well.  */
865   if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
866     return std::string ();
867 
868   return type_to_string (var->type);
869 }
870 
871 /* Obtain the type of an object variable.  */
872 
873 struct type *
874 varobj_get_gdb_type (const struct varobj *var)
875 {
876   return var->type;
877 }
878 
879 /* Is VAR a path expression parent, i.e., can it be used to construct
880    a valid path expression?  */
881 
882 static bool
883 is_path_expr_parent (const struct varobj *var)
884 {
885   gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
886   return var->root->lang_ops->is_path_expr_parent (var);
887 }
888 
889 /* Is VAR a path expression parent, i.e., can it be used to construct
890    a valid path expression?  By default we assume any VAR can be a path
891    parent.  */
892 
893 bool
894 varobj_default_is_path_expr_parent (const struct varobj *var)
895 {
896   return true;
897 }
898 
899 /* Return the path expression parent for VAR.  */
900 
901 const struct varobj *
902 varobj_get_path_expr_parent (const struct varobj *var)
903 {
904   const struct varobj *parent = var;
905 
906   while (!is_root_p (parent) && !is_path_expr_parent (parent))
907     parent = parent->parent;
908 
909   /* Computation of full rooted expression for children of dynamic
910      varobjs is not supported.  */
911   if (varobj_is_dynamic_p (parent))
912     error (_("Invalid variable object (child of a dynamic varobj)"));
913 
914   return parent;
915 }
916 
917 /* Return a pointer to the full rooted expression of varobj VAR.
918    If it has not been computed yet, compute it.  */
919 
920 const char *
921 varobj_get_path_expr (const struct varobj *var)
922 {
923   if (var->path_expr.empty ())
924     {
925       /* For root varobjs, we initialize path_expr
926 	 when creating varobj, so here it should be
927 	 child varobj.  */
928       struct varobj *mutable_var = (struct varobj *) var;
929       gdb_assert (!is_root_p (var));
930 
931       mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
932     }
933 
934   return var->path_expr.c_str ();
935 }
936 
937 const struct language_defn *
938 varobj_get_language (const struct varobj *var)
939 {
940   return var->root->exp->language_defn;
941 }
942 
943 int
944 varobj_get_attributes (const struct varobj *var)
945 {
946   int attributes = 0;
947 
948   if (varobj_editable_p (var))
949     /* FIXME: define masks for attributes.  */
950     attributes |= 0x00000001;	/* Editable */
951 
952   return attributes;
953 }
954 
955 /* Return true if VAR is a dynamic varobj.  */
956 
957 bool
958 varobj_is_dynamic_p (const struct varobj *var)
959 {
960   return var->dynamic->pretty_printer != NULL;
961 }
962 
963 std::string
964 varobj_get_formatted_value (struct varobj *var,
965 			    enum varobj_display_formats format)
966 {
967   return my_value_of_variable (var, format);
968 }
969 
970 std::string
971 varobj_get_value (struct varobj *var)
972 {
973   return my_value_of_variable (var, var->format);
974 }
975 
976 /* Set the value of an object variable (if it is editable) to the
977    value of the given expression.  */
978 /* Note: Invokes functions that can call error().  */
979 
980 bool
981 varobj_set_value (struct varobj *var, const char *expression)
982 {
983   struct value *val = NULL; /* Initialize to keep gcc happy.  */
984   /* The argument "expression" contains the variable's new value.
985      We need to first construct a legal expression for this -- ugh!  */
986   /* Does this cover all the bases?  */
987   struct value *value = NULL; /* Initialize to keep gcc happy.  */
988   int saved_input_radix = input_radix;
989   const char *s = expression;
990 
991   gdb_assert (varobj_editable_p (var));
992 
993   input_radix = 10;		/* ALWAYS reset to decimal temporarily.  */
994   expression_up exp = parse_exp_1 (&s, 0, 0, 0);
995   try
996     {
997       value = evaluate_expression (exp.get ());
998     }
999 
1000   catch (const gdb_exception_error &except)
1001     {
1002       /* We cannot proceed without a valid expression.  */
1003       return false;
1004     }
1005 
1006   /* All types that are editable must also be changeable.  */
1007   gdb_assert (varobj_value_is_changeable_p (var));
1008 
1009   /* The value of a changeable variable object must not be lazy.  */
1010   gdb_assert (!value_lazy (var->value.get ()));
1011 
1012   /* Need to coerce the input.  We want to check if the
1013      value of the variable object will be different
1014      after assignment, and the first thing value_assign
1015      does is coerce the input.
1016      For example, if we are assigning an array to a pointer variable we
1017      should compare the pointer with the array's address, not with the
1018      array's content.  */
1019   value = coerce_array (value);
1020 
1021   /* The new value may be lazy.  value_assign, or
1022      rather value_contents, will take care of this.  */
1023   try
1024     {
1025       val = value_assign (var->value.get (), value);
1026     }
1027 
1028   catch (const gdb_exception_error &except)
1029     {
1030       return false;
1031     }
1032 
1033   /* If the value has changed, record it, so that next -var-update can
1034      report this change.  If a variable had a value of '1', we've set it
1035      to '333' and then set again to '1', when -var-update will report this
1036      variable as changed -- because the first assignment has set the
1037      'updated' flag.  There's no need to optimize that, because return value
1038      of -var-update should be considered an approximation.  */
1039   var->updated = install_new_value (var, val, false /* Compare values.  */);
1040   input_radix = saved_input_radix;
1041   return true;
1042 }
1043 
1044 #if HAVE_PYTHON
1045 
1046 /* A helper function to install a constructor function and visualizer
1047    in a varobj_dynamic.  */
1048 
1049 static void
1050 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1051 		    PyObject *visualizer)
1052 {
1053   Py_XDECREF (var->constructor);
1054   var->constructor = constructor;
1055 
1056   Py_XDECREF (var->pretty_printer);
1057   var->pretty_printer = visualizer;
1058 
1059   var->child_iter.reset (nullptr);
1060 }
1061 
1062 /* Install the default visualizer for VAR.  */
1063 
1064 static void
1065 install_default_visualizer (struct varobj *var)
1066 {
1067   /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
1068   if (CPLUS_FAKE_CHILD (var))
1069     return;
1070 
1071   if (pretty_printing)
1072     {
1073       gdbpy_ref<> pretty_printer;
1074 
1075       if (var->value != nullptr)
1076 	{
1077 	  pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
1078 	  if (pretty_printer == nullptr)
1079 	    {
1080 	      gdbpy_print_stack ();
1081 	      error (_("Cannot instantiate printer for default visualizer"));
1082 	    }
1083 	}
1084 
1085       if (pretty_printer == Py_None)
1086 	pretty_printer.reset (nullptr);
1087 
1088       install_visualizer (var->dynamic, NULL, pretty_printer.release ());
1089     }
1090 }
1091 
1092 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1093    make a new object.  */
1094 
1095 static void
1096 construct_visualizer (struct varobj *var, PyObject *constructor)
1097 {
1098   PyObject *pretty_printer;
1099 
1100   /* Do not install a visualizer on a CPLUS_FAKE_CHILD.  */
1101   if (CPLUS_FAKE_CHILD (var))
1102     return;
1103 
1104   Py_INCREF (constructor);
1105   if (constructor == Py_None)
1106     pretty_printer = NULL;
1107   else
1108     {
1109       pretty_printer = instantiate_pretty_printer (constructor,
1110 						   var->value.get ());
1111       if (! pretty_printer)
1112 	{
1113 	  gdbpy_print_stack ();
1114 	  Py_DECREF (constructor);
1115 	  constructor = Py_None;
1116 	  Py_INCREF (constructor);
1117 	}
1118 
1119       if (pretty_printer == Py_None)
1120 	{
1121 	  Py_DECREF (pretty_printer);
1122 	  pretty_printer = NULL;
1123 	}
1124     }
1125 
1126   install_visualizer (var->dynamic, constructor, pretty_printer);
1127 }
1128 
1129 #endif /* HAVE_PYTHON */
1130 
1131 /* A helper function for install_new_value.  This creates and installs
1132    a visualizer for VAR, if appropriate.  */
1133 
1134 static void
1135 install_new_value_visualizer (struct varobj *var)
1136 {
1137 #if HAVE_PYTHON
1138   /* If the constructor is None, then we want the raw value.  If VAR
1139      does not have a value, just skip this.  */
1140   if (!gdb_python_initialized)
1141     return;
1142 
1143   if (var->dynamic->constructor != Py_None && var->value != NULL)
1144     {
1145       gdbpy_enter_varobj enter_py (var);
1146 
1147       if (var->dynamic->constructor == NULL)
1148 	install_default_visualizer (var);
1149       else
1150 	construct_visualizer (var, var->dynamic->constructor);
1151     }
1152 #else
1153   /* Do nothing.  */
1154 #endif
1155 }
1156 
1157 /* When using RTTI to determine variable type it may be changed in runtime when
1158    the variable value is changed.  This function checks whether type of varobj
1159    VAR will change when a new value NEW_VALUE is assigned and if it is so
1160    updates the type of VAR.  */
1161 
1162 static bool
1163 update_type_if_necessary (struct varobj *var, struct value *new_value)
1164 {
1165   if (new_value)
1166     {
1167       struct value_print_options opts;
1168 
1169       get_user_print_options (&opts);
1170       if (opts.objectprint)
1171 	{
1172 	  struct type *new_type = value_actual_type (new_value, 0, 0);
1173 	  std::string new_type_str = type_to_string (new_type);
1174 	  std::string curr_type_str = varobj_get_type (var);
1175 
1176 	  /* Did the type name change?  */
1177 	  if (curr_type_str != new_type_str)
1178 	    {
1179 	      var->type = new_type;
1180 
1181 	      /* This information may be not valid for a new type.  */
1182 	      varobj_delete (var, 1);
1183 	      var->children.clear ();
1184 	      var->num_children = -1;
1185 	      return true;
1186 	    }
1187 	}
1188     }
1189 
1190   return false;
1191 }
1192 
1193 /* Assign a new value to a variable object.  If INITIAL is true,
1194    this is the first assignment after the variable object was just
1195    created, or changed type.  In that case, just assign the value
1196    and return false.
1197    Otherwise, assign the new value, and return true if the value is
1198    different from the current one, false otherwise.  The comparison is
1199    done on textual representation of value.  Therefore, some types
1200    need not be compared.  E.g.  for structures the reported value is
1201    always "{...}", so no comparison is necessary here.  If the old
1202    value was NULL and new one is not, or vice versa, we always return true.
1203 
1204    The VALUE parameter should not be released -- the function will
1205    take care of releasing it when needed.  */
1206 static bool
1207 install_new_value (struct varobj *var, struct value *value, bool initial)
1208 {
1209   bool changeable;
1210   bool need_to_fetch;
1211   bool changed = false;
1212   bool intentionally_not_fetched = false;
1213 
1214   /* We need to know the varobj's type to decide if the value should
1215      be fetched or not.  C++ fake children (public/protected/private)
1216      don't have a type.  */
1217   gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1218   changeable = varobj_value_is_changeable_p (var);
1219 
1220   /* If the type has custom visualizer, we consider it to be always
1221      changeable.  FIXME: need to make sure this behaviour will not
1222      mess up read-sensitive values.  */
1223   if (var->dynamic->pretty_printer != NULL)
1224     changeable = true;
1225 
1226   need_to_fetch = changeable;
1227 
1228   /* We are not interested in the address of references, and given
1229      that in C++ a reference is not rebindable, it cannot
1230      meaningfully change.  So, get hold of the real value.  */
1231   if (value)
1232     value = coerce_ref (value);
1233 
1234   if (var->type && var->type->code () == TYPE_CODE_UNION)
1235     /* For unions, we need to fetch the value implicitly because
1236        of implementation of union member fetch.  When gdb
1237        creates a value for a field and the value of the enclosing
1238        structure is not lazy,  it immediately copies the necessary
1239        bytes from the enclosing values.  If the enclosing value is
1240        lazy, the call to value_fetch_lazy on the field will read
1241        the data from memory.  For unions, that means we'll read the
1242        same memory more than once, which is not desirable.  So
1243        fetch now.  */
1244     need_to_fetch = true;
1245 
1246   /* The new value might be lazy.  If the type is changeable,
1247      that is we'll be comparing values of this type, fetch the
1248      value now.  Otherwise, on the next update the old value
1249      will be lazy, which means we've lost that old value.  */
1250   if (need_to_fetch && value && value_lazy (value))
1251     {
1252       const struct varobj *parent = var->parent;
1253       bool frozen = var->frozen;
1254 
1255       for (; !frozen && parent; parent = parent->parent)
1256 	frozen |= parent->frozen;
1257 
1258       if (frozen && initial)
1259 	{
1260 	  /* For variables that are frozen, or are children of frozen
1261 	     variables, we don't do fetch on initial assignment.
1262 	     For non-initial assignment we do the fetch, since it means we're
1263 	     explicitly asked to compare the new value with the old one.  */
1264 	  intentionally_not_fetched = true;
1265 	}
1266       else
1267 	{
1268 
1269 	  try
1270 	    {
1271 	      value_fetch_lazy (value);
1272 	    }
1273 
1274 	  catch (const gdb_exception_error &except)
1275 	    {
1276 	      /* Set the value to NULL, so that for the next -var-update,
1277 		 we don't try to compare the new value with this value,
1278 		 that we couldn't even read.  */
1279 	      value = NULL;
1280 	    }
1281 	}
1282     }
1283 
1284   /* Get a reference now, before possibly passing it to any Python
1285      code that might release it.  */
1286   value_ref_ptr value_holder;
1287   if (value != NULL)
1288     value_holder = value_ref_ptr::new_reference (value);
1289 
1290   /* Below, we'll be comparing string rendering of old and new
1291      values.  Don't get string rendering if the value is
1292      lazy -- if it is, the code above has decided that the value
1293      should not be fetched.  */
1294   std::string print_value;
1295   if (value != NULL && !value_lazy (value)
1296       && var->dynamic->pretty_printer == NULL)
1297     print_value = varobj_value_get_print_value (value, var->format, var);
1298 
1299   /* If the type is changeable, compare the old and the new values.
1300      If this is the initial assignment, we don't have any old value
1301      to compare with.  */
1302   if (!initial && changeable)
1303     {
1304       /* If the value of the varobj was changed by -var-set-value,
1305 	 then the value in the varobj and in the target is the same.
1306 	 However, that value is different from the value that the
1307 	 varobj had after the previous -var-update.  So need to the
1308 	 varobj as changed.  */
1309       if (var->updated)
1310 	changed = true;
1311       else if (var->dynamic->pretty_printer == NULL)
1312 	{
1313 	  /* Try to compare the values.  That requires that both
1314 	     values are non-lazy.  */
1315 	  if (var->not_fetched && value_lazy (var->value.get ()))
1316 	    {
1317 	      /* This is a frozen varobj and the value was never read.
1318 		 Presumably, UI shows some "never read" indicator.
1319 		 Now that we've fetched the real value, we need to report
1320 		 this varobj as changed so that UI can show the real
1321 		 value.  */
1322 	      changed = true;
1323 	    }
1324 	  else  if (var->value == NULL && value == NULL)
1325 	    /* Equal.  */
1326 	    ;
1327 	  else if (var->value == NULL || value == NULL)
1328 	    {
1329 	      changed = true;
1330 	    }
1331 	  else
1332 	    {
1333 	      gdb_assert (!value_lazy (var->value.get ()));
1334 	      gdb_assert (!value_lazy (value));
1335 
1336 	      gdb_assert (!var->print_value.empty () && !print_value.empty ());
1337 	      if (var->print_value != print_value)
1338 		changed = true;
1339 	    }
1340 	}
1341     }
1342 
1343   if (!initial && !changeable)
1344     {
1345       /* For values that are not changeable, we don't compare the values.
1346 	 However, we want to notice if a value was not NULL and now is NULL,
1347 	 or vise versa, so that we report when top-level varobjs come in scope
1348 	 and leave the scope.  */
1349       changed = (var->value != NULL) != (value != NULL);
1350     }
1351 
1352   /* We must always keep the new value, since children depend on it.  */
1353   var->value = value_holder;
1354   if (value && value_lazy (value) && intentionally_not_fetched)
1355     var->not_fetched = true;
1356   else
1357     var->not_fetched = false;
1358   var->updated = false;
1359 
1360   install_new_value_visualizer (var);
1361 
1362   /* If we installed a pretty-printer, re-compare the printed version
1363      to see if the variable changed.  */
1364   if (var->dynamic->pretty_printer != NULL)
1365     {
1366       print_value = varobj_value_get_print_value (var->value.get (),
1367 						  var->format, var);
1368       if (var->print_value != print_value)
1369 	changed = true;
1370     }
1371   var->print_value = print_value;
1372 
1373   gdb_assert (var->value == nullptr || value_type (var->value.get ()));
1374 
1375   return changed;
1376 }
1377 
1378 /* Return the requested range for a varobj.  VAR is the varobj.  FROM
1379    and TO are out parameters; *FROM and *TO will be set to the
1380    selected sub-range of VAR.  If no range was selected using
1381    -var-set-update-range, then both will be -1.  */
1382 void
1383 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1384 {
1385   *from = var->from;
1386   *to = var->to;
1387 }
1388 
1389 /* Set the selected sub-range of children of VAR to start at index
1390    FROM and end at index TO.  If either FROM or TO is less than zero,
1391    this is interpreted as a request for all children.  */
1392 void
1393 varobj_set_child_range (struct varobj *var, int from, int to)
1394 {
1395   var->from = from;
1396   var->to = to;
1397 }
1398 
1399 void
1400 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1401 {
1402 #if HAVE_PYTHON
1403   PyObject *mainmod;
1404 
1405   if (!gdb_python_initialized)
1406     return;
1407 
1408   gdbpy_enter_varobj enter_py (var);
1409 
1410   mainmod = PyImport_AddModule ("__main__");
1411   gdbpy_ref<> globals
1412     = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
1413   gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1414 					 globals.get (), globals.get ()));
1415 
1416   if (constructor == NULL)
1417     {
1418       gdbpy_print_stack ();
1419       error (_("Could not evaluate visualizer expression: %s"), visualizer);
1420     }
1421 
1422   construct_visualizer (var, constructor.get ());
1423 
1424   /* If there are any children now, wipe them.  */
1425   varobj_delete (var, 1 /* children only */);
1426   var->num_children = -1;
1427 #else
1428   error (_("Python support required"));
1429 #endif
1430 }
1431 
1432 /* If NEW_VALUE is the new value of the given varobj (var), return
1433    true if var has mutated.  In other words, if the type of
1434    the new value is different from the type of the varobj's old
1435    value.
1436 
1437    NEW_VALUE may be NULL, if the varobj is now out of scope.  */
1438 
1439 static bool
1440 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1441 			  struct type *new_type)
1442 {
1443   /* If we haven't previously computed the number of children in var,
1444      it does not matter from the front-end's perspective whether
1445      the type has mutated or not.  For all intents and purposes,
1446      it has not mutated.  */
1447   if (var->num_children < 0)
1448     return false;
1449 
1450   if (var->root->lang_ops->value_has_mutated != NULL)
1451     {
1452       /* The varobj module, when installing new values, explicitly strips
1453 	 references, saying that we're not interested in those addresses.
1454 	 But detection of mutation happens before installing the new
1455 	 value, so our value may be a reference that we need to strip
1456 	 in order to remain consistent.  */
1457       if (new_value != NULL)
1458 	new_value = coerce_ref (new_value);
1459       return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1460     }
1461   else
1462     return false;
1463 }
1464 
1465 /* Update the values for a variable and its children.  This is a
1466    two-pronged attack.  First, re-parse the value for the root's
1467    expression to see if it's changed.  Then go all the way
1468    through its children, reconstructing them and noting if they've
1469    changed.
1470 
1471    The IS_EXPLICIT parameter specifies if this call is result
1472    of MI request to update this specific variable, or
1473    result of implicit -var-update *.  For implicit request, we don't
1474    update frozen variables.
1475 
1476    NOTE: This function may delete the caller's varobj.  If it
1477    returns TYPE_CHANGED, then it has done this and VARP will be modified
1478    to point to the new varobj.  */
1479 
1480 std::vector<varobj_update_result>
1481 varobj_update (struct varobj **varp, bool is_explicit)
1482 {
1483   bool type_changed = false;
1484   struct value *newobj;
1485   std::vector<varobj_update_result> stack;
1486   std::vector<varobj_update_result> result;
1487 
1488   /* Frozen means frozen -- we don't check for any change in
1489      this varobj, including its going out of scope, or
1490      changing type.  One use case for frozen varobjs is
1491      retaining previously evaluated expressions, and we don't
1492      want them to be reevaluated at all.  */
1493   if (!is_explicit && (*varp)->frozen)
1494     return result;
1495 
1496   if (!(*varp)->root->is_valid)
1497     {
1498       result.emplace_back (*varp, VAROBJ_INVALID);
1499       return result;
1500     }
1501 
1502   if ((*varp)->root->rootvar == *varp)
1503     {
1504       varobj_update_result r (*varp);
1505 
1506       /* Update the root variable.  value_of_root can return NULL
1507 	 if the variable is no longer around, i.e. we stepped out of
1508 	 the frame in which a local existed.  We are letting the
1509 	 value_of_root variable dispose of the varobj if the type
1510 	 has changed.  */
1511       newobj = value_of_root (varp, &type_changed);
1512       if (update_type_if_necessary (*varp, newobj))
1513 	  type_changed = true;
1514       r.varobj = *varp;
1515       r.type_changed = type_changed;
1516       if (install_new_value ((*varp), newobj, type_changed))
1517 	r.changed = true;
1518 
1519       if (newobj == NULL)
1520 	r.status = VAROBJ_NOT_IN_SCOPE;
1521       r.value_installed = true;
1522 
1523       if (r.status == VAROBJ_NOT_IN_SCOPE)
1524 	{
1525 	  if (r.type_changed || r.changed)
1526 	    result.push_back (std::move (r));
1527 
1528 	  return result;
1529 	}
1530 
1531       stack.push_back (std::move (r));
1532     }
1533   else
1534     stack.emplace_back (*varp);
1535 
1536   /* Walk through the children, reconstructing them all.  */
1537   while (!stack.empty ())
1538     {
1539       varobj_update_result r = std::move (stack.back ());
1540       stack.pop_back ();
1541       struct varobj *v = r.varobj;
1542 
1543       /* Update this variable, unless it's a root, which is already
1544 	 updated.  */
1545       if (!r.value_installed)
1546 	{
1547 	  struct type *new_type;
1548 
1549 	  newobj = value_of_child (v->parent, v->index);
1550 	  if (update_type_if_necessary (v, newobj))
1551 	    r.type_changed = true;
1552 	  if (newobj)
1553 	    new_type = value_type (newobj);
1554 	  else
1555 	    new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1556 
1557 	  if (varobj_value_has_mutated (v, newobj, new_type))
1558 	    {
1559 	      /* The children are no longer valid; delete them now.
1560 		 Report the fact that its type changed as well.  */
1561 	      varobj_delete (v, 1 /* only_children */);
1562 	      v->num_children = -1;
1563 	      v->to = -1;
1564 	      v->from = -1;
1565 	      v->type = new_type;
1566 	      r.type_changed = true;
1567 	    }
1568 
1569 	  if (install_new_value (v, newobj, r.type_changed))
1570 	    {
1571 	      r.changed = true;
1572 	      v->updated = false;
1573 	    }
1574 	}
1575 
1576       /* We probably should not get children of a dynamic varobj, but
1577 	 for which -var-list-children was never invoked.  */
1578       if (varobj_is_dynamic_p (v))
1579 	{
1580 	  std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
1581 	  bool children_changed = false;
1582 
1583 	  if (v->frozen)
1584 	    continue;
1585 
1586 	  if (!v->dynamic->children_requested)
1587 	    {
1588 	      bool dummy;
1589 
1590 	      /* If we initially did not have potential children, but
1591 		 now we do, consider the varobj as changed.
1592 		 Otherwise, if children were never requested, consider
1593 		 it as unchanged -- presumably, such varobj is not yet
1594 		 expanded in the UI, so we need not bother getting
1595 		 it.  */
1596 	      if (!varobj_has_more (v, 0))
1597 		{
1598 		  update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1599 						  &dummy, false, 0, 0);
1600 		  if (varobj_has_more (v, 0))
1601 		    r.changed = true;
1602 		}
1603 
1604 	      if (r.changed)
1605 		result.push_back (std::move (r));
1606 
1607 	      continue;
1608 	    }
1609 
1610 	  /* If update_dynamic_varobj_children returns false, then we have
1611 	     a non-conforming pretty-printer, so we skip it.  */
1612 	  if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1613 					      &newobj_vec,
1614 					      &unchanged, &children_changed,
1615 					      true, v->from, v->to))
1616 	    {
1617 	      if (children_changed || !newobj_vec.empty ())
1618 		{
1619 		  r.children_changed = true;
1620 		  r.newobj = std::move (newobj_vec);
1621 		}
1622 	      /* Push in reverse order so that the first child is
1623 		 popped from the work stack first, and so will be
1624 		 added to result first.  This does not affect
1625 		 correctness, just "nicer".  */
1626 	      for (int i = type_changed_vec.size () - 1; i >= 0; --i)
1627 		{
1628 		  varobj_update_result item (type_changed_vec[i]);
1629 
1630 		  /* Type may change only if value was changed.  */
1631 		  item.changed = true;
1632 		  item.type_changed = true;
1633 		  item.value_installed = true;
1634 
1635 		  stack.push_back (std::move (item));
1636 		}
1637 	      for (int i = changed.size () - 1; i >= 0; --i)
1638 		{
1639 		  varobj_update_result item (changed[i]);
1640 
1641 		  item.changed = true;
1642 		  item.value_installed = true;
1643 
1644 		  stack.push_back (std::move (item));
1645 		}
1646 	      for (int i = unchanged.size () - 1; i >= 0; --i)
1647 		{
1648 		  if (!unchanged[i]->frozen)
1649 		    {
1650 		      varobj_update_result item (unchanged[i]);
1651 
1652 		      item.value_installed = true;
1653 
1654 		      stack.push_back (std::move (item));
1655 		    }
1656 		}
1657 	      if (r.changed || r.children_changed)
1658 		result.push_back (std::move (r));
1659 
1660 	      continue;
1661 	    }
1662 	}
1663 
1664       /* Push any children.  Use reverse order so that the first
1665 	 child is popped from the work stack first, and so
1666 	 will be added to result first.  This does not
1667 	 affect correctness, just "nicer".  */
1668       for (int i = v->children.size () - 1; i >= 0; --i)
1669 	{
1670 	  varobj *c = v->children[i];
1671 
1672 	  /* Child may be NULL if explicitly deleted by -var-delete.  */
1673 	  if (c != NULL && !c->frozen)
1674 	    stack.emplace_back (c);
1675 	}
1676 
1677       if (r.changed || r.type_changed)
1678 	result.push_back (std::move (r));
1679     }
1680 
1681   return result;
1682 }
1683 
1684 /* Helper functions */
1685 
1686 /*
1687  * Variable object construction/destruction
1688  */
1689 
1690 static int
1691 delete_variable (struct varobj *var, bool only_children_p)
1692 {
1693   int delcount = 0;
1694 
1695   delete_variable_1 (&delcount, var, only_children_p,
1696 		     true /* remove_from_parent_p */ );
1697 
1698   return delcount;
1699 }
1700 
1701 /* Delete the variable object VAR and its children.  */
1702 /* IMPORTANT NOTE: If we delete a variable which is a child
1703    and the parent is not removed we dump core.  It must be always
1704    initially called with remove_from_parent_p set.  */
1705 static void
1706 delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1707 		   bool remove_from_parent_p)
1708 {
1709   /* Delete any children of this variable, too.  */
1710   for (varobj *child : var->children)
1711     {
1712       if (!child)
1713 	continue;
1714 
1715       if (!remove_from_parent_p)
1716 	child->parent = NULL;
1717 
1718       delete_variable_1 (delcountp, child, false, only_children_p);
1719     }
1720   var->children.clear ();
1721 
1722   /* if we were called to delete only the children we are done here.  */
1723   if (only_children_p)
1724     return;
1725 
1726   /* Otherwise, add it to the list of deleted ones and proceed to do so.  */
1727   /* If the name is empty, this is a temporary variable, that has not
1728      yet been installed, don't report it, it belongs to the caller...  */
1729   if (!var->obj_name.empty ())
1730     {
1731       *delcountp = *delcountp + 1;
1732     }
1733 
1734   /* If this variable has a parent, remove it from its parent's list.  */
1735   /* OPTIMIZATION: if the parent of this variable is also being deleted,
1736      (as indicated by remove_from_parent_p) we don't bother doing an
1737      expensive list search to find the element to remove when we are
1738      discarding the list afterwards.  */
1739   if ((remove_from_parent_p) && (var->parent != NULL))
1740     var->parent->children[var->index] = NULL;
1741 
1742   if (!var->obj_name.empty ())
1743     uninstall_variable (var);
1744 
1745   /* Free memory associated with this variable.  */
1746   delete var;
1747 }
1748 
1749 /* Install the given variable VAR with the object name VAR->OBJ_NAME.  */
1750 static void
1751 install_variable (struct varobj *var)
1752 {
1753   hashval_t hash = htab_hash_string (var->obj_name.c_str ());
1754   void **slot = htab_find_slot_with_hash (varobj_table,
1755 					  var->obj_name.c_str (),
1756 					  hash, INSERT);
1757   if (*slot != nullptr)
1758     error (_("Duplicate variable object name"));
1759 
1760   /* Add varobj to hash table.  */
1761   *slot = var;
1762 
1763   /* If root, add varobj to root list.  */
1764   if (is_root_p (var))
1765     rootlist.push_front (var->root);
1766 }
1767 
1768 /* Uninstall the object VAR.  */
1769 static void
1770 uninstall_variable (struct varobj *var)
1771 {
1772   hashval_t hash = htab_hash_string (var->obj_name.c_str ());
1773   htab_remove_elt_with_hash (varobj_table, var->obj_name.c_str (), hash);
1774 
1775   if (varobjdebug)
1776     gdb_printf (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
1777 
1778   /* If root, remove varobj from root list.  */
1779   if (is_root_p (var))
1780     {
1781       auto iter = std::find (rootlist.begin (), rootlist.end (), var->root);
1782       rootlist.erase (iter);
1783     }
1784 }
1785 
1786 /* Create and install a child of the parent of the given name.
1787 
1788    The created VAROBJ takes ownership of the allocated NAME.  */
1789 
1790 static struct varobj *
1791 create_child (struct varobj *parent, int index, std::string &name)
1792 {
1793   struct varobj_item item;
1794 
1795   std::swap (item.name, name);
1796   item.value = release_value (value_of_child (parent, index));
1797 
1798   return create_child_with_value (parent, index, &item);
1799 }
1800 
1801 static struct varobj *
1802 create_child_with_value (struct varobj *parent, int index,
1803 			 struct varobj_item *item)
1804 {
1805   varobj *child = new varobj (parent->root);
1806 
1807   /* NAME is allocated by caller.  */
1808   std::swap (child->name, item->name);
1809   child->index = index;
1810   child->parent = parent;
1811 
1812   if (varobj_is_anonymous_child (child))
1813     child->obj_name = string_printf ("%s.%d_anonymous",
1814 				     parent->obj_name.c_str (), index);
1815   else
1816     child->obj_name = string_printf ("%s.%s",
1817 				     parent->obj_name.c_str (),
1818 				     child->name.c_str ());
1819 
1820   install_variable (child);
1821 
1822   /* Compute the type of the child.  Must do this before
1823      calling install_new_value.  */
1824   if (item->value != NULL)
1825     /* If the child had no evaluation errors, var->value
1826        will be non-NULL and contain a valid type.  */
1827     child->type = value_actual_type (item->value.get (), 0, NULL);
1828   else
1829     /* Otherwise, we must compute the type.  */
1830     child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1831 							   child->index);
1832   install_new_value (child, item->value.get (), 1);
1833 
1834   return child;
1835 }
1836 
1837 
1838 /*
1839  * Miscellaneous utility functions.
1840  */
1841 
1842 /* Allocate memory and initialize a new variable.  */
1843 varobj::varobj (varobj_root *root_)
1844 : root (root_), dynamic (new varobj_dynamic)
1845 {
1846 }
1847 
1848 /* Free any allocated memory associated with VAR.  */
1849 
1850 varobj::~varobj ()
1851 {
1852   varobj *var = this;
1853 
1854 #if HAVE_PYTHON
1855   if (var->dynamic->pretty_printer != NULL)
1856     {
1857       gdbpy_enter_varobj enter_py (var);
1858 
1859       Py_XDECREF (var->dynamic->constructor);
1860       Py_XDECREF (var->dynamic->pretty_printer);
1861     }
1862 #endif
1863 
1864   /* This must be deleted before the root object, because Python-based
1865      destructors need access to some components.  */
1866   delete var->dynamic;
1867 
1868   if (is_root_p (var))
1869     delete var->root;
1870 }
1871 
1872 /* Return the type of the value that's stored in VAR,
1873    or that would have being stored there if the
1874    value were accessible.
1875 
1876    This differs from VAR->type in that VAR->type is always
1877    the true type of the expression in the source language.
1878    The return value of this function is the type we're
1879    actually storing in varobj, and using for displaying
1880    the values and for comparing previous and new values.
1881 
1882    For example, top-level references are always stripped.  */
1883 struct type *
1884 varobj_get_value_type (const struct varobj *var)
1885 {
1886   struct type *type;
1887 
1888   if (var->value != nullptr)
1889     type = value_type (var->value.get ());
1890   else
1891     type = var->type;
1892 
1893   type = check_typedef (type);
1894 
1895   if (TYPE_IS_REFERENCE (type))
1896     type = get_target_type (type);
1897 
1898   type = check_typedef (type);
1899 
1900   return type;
1901 }
1902 
1903 /* What is the default display for this variable? We assume that
1904    everything is "natural".  Any exceptions?  */
1905 static enum varobj_display_formats
1906 variable_default_display (struct varobj *var)
1907 {
1908   return FORMAT_NATURAL;
1909 }
1910 
1911 /*
1912  * Language-dependencies
1913  */
1914 
1915 /* Common entry points */
1916 
1917 /* Return the number of children for a given variable.
1918    The result of this function is defined by the language
1919    implementation.  The number of children returned by this function
1920    is the number of children that the user will see in the variable
1921    display.  */
1922 static int
1923 number_of_children (const struct varobj *var)
1924 {
1925   return (*var->root->lang_ops->number_of_children) (var);
1926 }
1927 
1928 /* What is the expression for the root varobj VAR? */
1929 
1930 static std::string
1931 name_of_variable (const struct varobj *var)
1932 {
1933   return (*var->root->lang_ops->name_of_variable) (var);
1934 }
1935 
1936 /* What is the name of the INDEX'th child of VAR?  */
1937 
1938 static std::string
1939 name_of_child (struct varobj *var, int index)
1940 {
1941   return (*var->root->lang_ops->name_of_child) (var, index);
1942 }
1943 
1944 /* If frame associated with VAR can be found, switch
1945    to it and return true.  Otherwise, return false.  */
1946 
1947 static bool
1948 check_scope (const struct varobj *var)
1949 {
1950   frame_info_ptr fi;
1951   bool scope;
1952 
1953   fi = frame_find_by_id (var->root->frame);
1954   scope = fi != NULL;
1955 
1956   if (fi)
1957     {
1958       CORE_ADDR pc = get_frame_pc (fi);
1959 
1960       if (pc <  var->root->valid_block->start () ||
1961 	  pc >= var->root->valid_block->end ())
1962 	scope = false;
1963       else
1964 	select_frame (fi);
1965     }
1966   return scope;
1967 }
1968 
1969 /* Helper function to value_of_root.  */
1970 
1971 static struct value *
1972 value_of_root_1 (struct varobj **var_handle)
1973 {
1974   struct value *new_val = NULL;
1975   struct varobj *var = *var_handle;
1976   bool within_scope = false;
1977 
1978   /*  Only root variables can be updated...  */
1979   if (!is_root_p (var))
1980     /* Not a root var.  */
1981     return NULL;
1982 
1983   scoped_restore_current_thread restore_thread;
1984 
1985   /* Determine whether the variable is still around.  */
1986   if (var->root->valid_block == NULL || var->root->floating)
1987     within_scope = true;
1988   else if (var->root->thread_id == 0)
1989     {
1990       /* The program was single-threaded when the variable object was
1991 	 created.  Technically, it's possible that the program became
1992 	 multi-threaded since then, but we don't support such
1993 	 scenario yet.  */
1994       within_scope = check_scope (var);
1995     }
1996   else
1997     {
1998       thread_info *thread = find_thread_global_id (var->root->thread_id);
1999 
2000       if (thread != NULL)
2001 	{
2002 	  switch_to_thread (thread);
2003 	  within_scope = check_scope (var);
2004 	}
2005     }
2006 
2007   if (within_scope)
2008     {
2009 
2010       /* We need to catch errors here, because if evaluate
2011 	 expression fails we want to just return NULL.  */
2012       try
2013 	{
2014 	  new_val = evaluate_expression (var->root->exp.get ());
2015 	}
2016       catch (const gdb_exception_error &except)
2017 	{
2018 	}
2019     }
2020 
2021   return new_val;
2022 }
2023 
2024 /* What is the ``struct value *'' of the root variable VAR?
2025    For floating variable object, evaluation can get us a value
2026    of different type from what is stored in varobj already.  In
2027    that case:
2028    - *type_changed will be set to 1
2029    - old varobj will be freed, and new one will be
2030    created, with the same name.
2031    - *var_handle will be set to the new varobj
2032    Otherwise, *type_changed will be set to 0.  */
2033 static struct value *
2034 value_of_root (struct varobj **var_handle, bool *type_changed)
2035 {
2036   struct varobj *var;
2037 
2038   if (var_handle == NULL)
2039     return NULL;
2040 
2041   var = *var_handle;
2042 
2043   /* This should really be an exception, since this should
2044      only get called with a root variable.  */
2045 
2046   if (!is_root_p (var))
2047     return NULL;
2048 
2049   if (var->root->floating)
2050     {
2051       struct varobj *tmp_var;
2052 
2053       tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
2054 			       USE_SELECTED_FRAME);
2055       if (tmp_var == NULL)
2056 	{
2057 	  return NULL;
2058 	}
2059       std::string old_type = varobj_get_type (var);
2060       std::string new_type = varobj_get_type (tmp_var);
2061       if (old_type == new_type)
2062 	{
2063 	  /* The expression presently stored inside var->root->exp
2064 	     remembers the locations of local variables relatively to
2065 	     the frame where the expression was created (in DWARF location
2066 	     button, for example).  Naturally, those locations are not
2067 	     correct in other frames, so update the expression.  */
2068 
2069 	  std::swap (var->root->exp, tmp_var->root->exp);
2070 
2071 	  varobj_delete (tmp_var, 0);
2072 	  *type_changed = 0;
2073 	}
2074       else
2075 	{
2076 	  tmp_var->obj_name = var->obj_name;
2077 	  tmp_var->from = var->from;
2078 	  tmp_var->to = var->to;
2079 	  varobj_delete (var, 0);
2080 
2081 	  install_variable (tmp_var);
2082 	  *var_handle = tmp_var;
2083 	  var = *var_handle;
2084 	  *type_changed = true;
2085 	}
2086     }
2087   else
2088     {
2089       *type_changed = 0;
2090     }
2091 
2092   {
2093     struct value *value;
2094 
2095     value = value_of_root_1 (var_handle);
2096     if (var->value == NULL || value == NULL)
2097       {
2098 	/* For root varobj-s, a NULL value indicates a scoping issue.
2099 	   So, nothing to do in terms of checking for mutations.  */
2100       }
2101     else if (varobj_value_has_mutated (var, value, value_type (value)))
2102       {
2103 	/* The type has mutated, so the children are no longer valid.
2104 	   Just delete them, and tell our caller that the type has
2105 	   changed.  */
2106 	varobj_delete (var, 1 /* only_children */);
2107 	var->num_children = -1;
2108 	var->to = -1;
2109 	var->from = -1;
2110 	*type_changed = true;
2111       }
2112     return value;
2113   }
2114 }
2115 
2116 /* What is the ``struct value *'' for the INDEX'th child of PARENT?  */
2117 static struct value *
2118 value_of_child (const struct varobj *parent, int index)
2119 {
2120   struct value *value;
2121 
2122   value = (*parent->root->lang_ops->value_of_child) (parent, index);
2123 
2124   return value;
2125 }
2126 
2127 /* GDB already has a command called "value_of_variable".  Sigh.  */
2128 static std::string
2129 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2130 {
2131   if (var->root->is_valid)
2132     {
2133       if (var->dynamic->pretty_printer != NULL)
2134 	return varobj_value_get_print_value (var->value.get (), var->format,
2135 					     var);
2136       return (*var->root->lang_ops->value_of_variable) (var, format);
2137     }
2138   else
2139     return std::string ();
2140 }
2141 
2142 void
2143 varobj_formatted_print_options (struct value_print_options *opts,
2144 				enum varobj_display_formats format)
2145 {
2146   get_formatted_print_options (opts, format_code[(int) format]);
2147   opts->deref_ref = 0;
2148   opts->raw = !pretty_printing;
2149 }
2150 
2151 std::string
2152 varobj_value_get_print_value (struct value *value,
2153 			      enum varobj_display_formats format,
2154 			      const struct varobj *var)
2155 {
2156   struct value_print_options opts;
2157   struct type *type = NULL;
2158   long len = 0;
2159   gdb::unique_xmalloc_ptr<char> encoding;
2160   /* Initialize it just to avoid a GCC false warning.  */
2161   CORE_ADDR str_addr = 0;
2162   bool string_print = false;
2163 
2164   if (value == NULL)
2165     return std::string ();
2166 
2167   string_file stb;
2168   std::string thevalue;
2169 
2170   varobj_formatted_print_options (&opts, format);
2171 
2172 #if HAVE_PYTHON
2173   if (gdb_python_initialized)
2174     {
2175       PyObject *value_formatter =  var->dynamic->pretty_printer;
2176 
2177       gdbpy_enter_varobj enter_py (var);
2178 
2179       if (value_formatter)
2180 	{
2181 	  /* First check to see if we have any children at all.  If so,
2182 	     we simply return {...}.  */
2183 	  if (dynamic_varobj_has_child_method (var))
2184 	    return "{...}";
2185 
2186 	  if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2187 	    {
2188 	      struct value *replacement;
2189 
2190 	      gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2191 								&replacement,
2192 								&stb,
2193 								&opts);
2194 
2195 	      /* If we have string like output ...  */
2196 	      if (output != NULL)
2197 		{
2198 		  /* If this is a lazy string, extract it.  For lazy
2199 		     strings we always print as a string, so set
2200 		     string_print.  */
2201 		  if (gdbpy_is_lazy_string (output.get ()))
2202 		    {
2203 		      gdbpy_extract_lazy_string (output.get (), &str_addr,
2204 						 &type, &len, &encoding);
2205 		      string_print = true;
2206 		    }
2207 		  else
2208 		    {
2209 		      /* If it is a regular (non-lazy) string, extract
2210 			 it and copy the contents into THEVALUE.  If the
2211 			 hint says to print it as a string, set
2212 			 string_print.  Otherwise just return the extracted
2213 			 string as a value.  */
2214 
2215 		      gdb::unique_xmalloc_ptr<char> s
2216 			= python_string_to_target_string (output.get ());
2217 
2218 		      if (s)
2219 			{
2220 			  struct gdbarch *gdbarch;
2221 
2222 			  gdb::unique_xmalloc_ptr<char> hint
2223 			    = gdbpy_get_display_hint (value_formatter);
2224 			  if (hint)
2225 			    {
2226 			      if (!strcmp (hint.get (), "string"))
2227 				string_print = true;
2228 			    }
2229 
2230 			  thevalue = std::string (s.get ());
2231 			  len = thevalue.size ();
2232 			  gdbarch = value_type (value)->arch ();
2233 			  type = builtin_type (gdbarch)->builtin_char;
2234 
2235 			  if (!string_print)
2236 			    return thevalue;
2237 			}
2238 		      else
2239 			gdbpy_print_stack ();
2240 		    }
2241 		}
2242 	      /* If the printer returned a replacement value, set VALUE
2243 		 to REPLACEMENT.  If there is not a replacement value,
2244 		 just use the value passed to this function.  */
2245 	      if (replacement)
2246 		value = replacement;
2247 	    }
2248 	}
2249     }
2250 #endif
2251 
2252   /* If the THEVALUE has contents, it is a regular string.  */
2253   if (!thevalue.empty ())
2254     current_language->printstr (&stb, type, (gdb_byte *) thevalue.c_str (),
2255 				len, encoding.get (), 0, &opts);
2256   else if (string_print)
2257     /* Otherwise, if string_print is set, and it is not a regular
2258        string, it is a lazy string.  */
2259     val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
2260   else
2261     /* All other cases.  */
2262     common_val_print (value, &stb, 0, &opts, current_language);
2263 
2264   return stb.release ();
2265 }
2266 
2267 bool
2268 varobj_editable_p (const struct varobj *var)
2269 {
2270   struct type *type;
2271 
2272   if (!(var->root->is_valid && var->value != nullptr
2273 	&& VALUE_LVAL (var->value.get ())))
2274     return false;
2275 
2276   type = varobj_get_value_type (var);
2277 
2278   switch (type->code ())
2279     {
2280     case TYPE_CODE_STRUCT:
2281     case TYPE_CODE_UNION:
2282     case TYPE_CODE_ARRAY:
2283     case TYPE_CODE_FUNC:
2284     case TYPE_CODE_METHOD:
2285       return false;
2286       break;
2287 
2288     default:
2289       return true;
2290       break;
2291     }
2292 }
2293 
2294 /* Call VAR's value_is_changeable_p language-specific callback.  */
2295 
2296 bool
2297 varobj_value_is_changeable_p (const struct varobj *var)
2298 {
2299   return var->root->lang_ops->value_is_changeable_p (var);
2300 }
2301 
2302 /* Return true if that varobj is floating, that is is always evaluated in the
2303    selected frame, and not bound to thread/frame.  Such variable objects
2304    are created using '@' as frame specifier to -var-create.  */
2305 bool
2306 varobj_floating_p (const struct varobj *var)
2307 {
2308   return var->root->floating;
2309 }
2310 
2311 /* Implement the "value_is_changeable_p" varobj callback for most
2312    languages.  */
2313 
2314 bool
2315 varobj_default_value_is_changeable_p (const struct varobj *var)
2316 {
2317   bool r;
2318   struct type *type;
2319 
2320   if (CPLUS_FAKE_CHILD (var))
2321     return false;
2322 
2323   type = varobj_get_value_type (var);
2324 
2325   switch (type->code ())
2326     {
2327     case TYPE_CODE_STRUCT:
2328     case TYPE_CODE_UNION:
2329     case TYPE_CODE_ARRAY:
2330       r = false;
2331       break;
2332 
2333     default:
2334       r = true;
2335     }
2336 
2337   return r;
2338 }
2339 
2340 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback
2341    for each one.  */
2342 
2343 void
2344 all_root_varobjs (gdb::function_view<void (struct varobj *var)> func)
2345 {
2346   /* Iterate "safely" - handle if the callee deletes its passed VAROBJ.  */
2347   auto iter = rootlist.begin ();
2348   auto end = rootlist.end ();
2349   while (iter != end)
2350     {
2351       auto self = iter++;
2352       func ((*self)->rootvar);
2353     }
2354 }
2355 
2356 /* Try to recreate the varobj VAR if it is a global or floating.  This is a
2357    helper function for varobj_re_set.  */
2358 
2359 static void
2360 varobj_re_set_iter (struct varobj *var)
2361 {
2362   /* Invalidated global varobjs must be re-evaluated.  */
2363   if (!var->root->is_valid && var->root->global)
2364     {
2365       struct varobj *tmp_var;
2366 
2367       /* Try to create a varobj with same expression.  If we succeed
2368 	 and have a global replace the old varobj.  */
2369       tmp_var = varobj_create (nullptr, var->name.c_str (), (CORE_ADDR) 0,
2370 			       USE_CURRENT_FRAME);
2371       if (tmp_var != nullptr && tmp_var->root->global)
2372 	{
2373 	  tmp_var->obj_name = var->obj_name;
2374 	  varobj_delete (var, 0);
2375 	  install_variable (tmp_var);
2376 	}
2377     }
2378 }
2379 
2380 /* See varobj.h.  */
2381 
2382 void
2383 varobj_re_set (void)
2384 {
2385   all_root_varobjs (varobj_re_set_iter);
2386 }
2387 
2388 /* Ensure that no varobj keep references to OBJFILE.  */
2389 
2390 static void
2391 varobj_invalidate_if_uses_objfile (struct objfile *objfile)
2392 {
2393   if (objfile->separate_debug_objfile_backlink != nullptr)
2394     objfile = objfile->separate_debug_objfile_backlink;
2395 
2396   all_root_varobjs ([objfile] (struct varobj *var)
2397     {
2398       if (var->root->valid_block != nullptr)
2399 	{
2400 	  struct objfile *bl_objfile = block_objfile (var->root->valid_block);
2401 	  if (bl_objfile->separate_debug_objfile_backlink != nullptr)
2402 	    bl_objfile = bl_objfile->separate_debug_objfile_backlink;
2403 
2404 	  if (bl_objfile == objfile)
2405 	    {
2406 	      /* The varobj is tied to a block which is going away.  There is
2407 		 no way to reconstruct something later, so invalidate the
2408 		 varobj completly and drop the reference to the block which is
2409 		 being freed.  */
2410 	      var->root->is_valid = false;
2411 	      var->root->valid_block = nullptr;
2412 	    }
2413 	}
2414 
2415       if (var->root->exp != nullptr
2416 	  && exp_uses_objfile (var->root->exp.get (), objfile))
2417 	{
2418 	  /* The varobj's current expression references the objfile.  For
2419 	     globals and floating, it is possible that when we try to
2420 	     re-evaluate the expression later it is still valid with
2421 	     whatever is in scope at that moment.  Just invalidate the
2422 	     expression for now.  */
2423 	  var->root->exp.reset ();
2424 
2425 	  /* It only makes sense to keep a floating varobj around.  */
2426 	  if (!var->root->floating)
2427 	    var->root->is_valid = false;
2428 	}
2429 
2430       /* var->value->type and var->type might also reference the objfile.
2431 	 This is taken care of in value.c:preserve_values which deals with
2432 	 making sure that objfile-owend types are replaced with
2433 	 gdbarch-owned equivalents.  */
2434     });
2435 }
2436 
2437 /* A hash function for a varobj.  */
2438 
2439 static hashval_t
2440 hash_varobj (const void *a)
2441 {
2442   const varobj *obj = (const varobj *) a;
2443   return htab_hash_string (obj->obj_name.c_str ());
2444 }
2445 
2446 /* A hash table equality function for varobjs.  */
2447 
2448 static int
2449 eq_varobj_and_string (const void *a, const void *b)
2450 {
2451   const varobj *obj = (const varobj *) a;
2452   const char *name = (const char *) b;
2453 
2454   return obj->obj_name == name;
2455 }
2456 
2457 void _initialize_varobj ();
2458 void
2459 _initialize_varobj ()
2460 {
2461   varobj_table = htab_create_alloc (5, hash_varobj, eq_varobj_and_string,
2462 				    nullptr, xcalloc, xfree);
2463 
2464   add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2465 			     &varobjdebug,
2466 			     _("Set varobj debugging."),
2467 			     _("Show varobj debugging."),
2468 			     _("When non-zero, varobj debugging is enabled."),
2469 			     NULL, show_varobjdebug,
2470 			     &setdebuglist, &showdebuglist);
2471 
2472   gdb::observers::free_objfile.attach (varobj_invalidate_if_uses_objfile,
2473 				       "varobj");
2474 }
2475