1 /* Symbol table definitions for GDB. 2 3 Copyright (C) 1986-2023 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #if !defined (SYMTAB_H) 21 #define SYMTAB_H 1 22 23 #include <array> 24 #include <vector> 25 #include <string> 26 #include <set> 27 #include "gdbsupport/gdb_vecs.h" 28 #include "gdbtypes.h" 29 #include "gdbsupport/gdb_obstack.h" 30 #include "gdbsupport/gdb_regex.h" 31 #include "gdbsupport/enum-flags.h" 32 #include "gdbsupport/function-view.h" 33 #include "gdbsupport/gdb_optional.h" 34 #include "gdbsupport/gdb_string_view.h" 35 #include "gdbsupport/next-iterator.h" 36 #include "gdbsupport/iterator-range.h" 37 #include "completer.h" 38 #include "gdb-demangle.h" 39 #include "split-name.h" 40 41 /* Opaque declarations. */ 42 struct ui_file; 43 class frame_info_ptr; 44 struct symbol; 45 struct obstack; 46 struct objfile; 47 struct block; 48 struct blockvector; 49 struct axs_value; 50 struct agent_expr; 51 struct program_space; 52 struct language_defn; 53 struct common_block; 54 struct obj_section; 55 struct cmd_list_element; 56 class probe; 57 struct lookup_name_info; 58 struct code_breakpoint; 59 60 /* How to match a lookup name against a symbol search name. */ 61 enum class symbol_name_match_type 62 { 63 /* Wild matching. Matches unqualified symbol names in all 64 namespace/module/packages, etc. */ 65 WILD, 66 67 /* Full matching. The lookup name indicates a fully-qualified name, 68 and only matches symbol search names in the specified 69 namespace/module/package. */ 70 FULL, 71 72 /* Search name matching. This is like FULL, but the search name did 73 not come from the user; instead it is already a search name 74 retrieved from a search_name () call. 75 For Ada, this avoids re-encoding an already-encoded search name 76 (which would potentially incorrectly lowercase letters in the 77 linkage/search name that should remain uppercase). For C++, it 78 avoids trying to demangle a name we already know is 79 demangled. */ 80 SEARCH_NAME, 81 82 /* Expression matching. The same as FULL matching in most 83 languages. The same as WILD matching in Ada. */ 84 EXPRESSION, 85 }; 86 87 /* Hash the given symbol search name according to LANGUAGE's 88 rules. */ 89 extern unsigned int search_name_hash (enum language language, 90 const char *search_name); 91 92 /* Ada-specific bits of a lookup_name_info object. This is lazily 93 constructed on demand. */ 94 95 class ada_lookup_name_info final 96 { 97 public: 98 /* Construct. */ 99 explicit ada_lookup_name_info (const lookup_name_info &lookup_name); 100 101 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE 102 as name match type. Returns true if there's a match, false 103 otherwise. If non-NULL, store the matching results in MATCH. */ 104 bool matches (const char *symbol_search_name, 105 symbol_name_match_type match_type, 106 completion_match_result *comp_match_res) const; 107 108 /* The Ada-encoded lookup name. */ 109 const std::string &lookup_name () const 110 { return m_encoded_name; } 111 112 /* Return true if we're supposed to be doing a wild match look 113 up. */ 114 bool wild_match_p () const 115 { return m_wild_match_p; } 116 117 /* Return true if we're looking up a name inside package 118 Standard. */ 119 bool standard_p () const 120 { return m_standard_p; } 121 122 /* Return true if doing a verbatim match. */ 123 bool verbatim_p () const 124 { return m_verbatim_p; } 125 126 /* A wrapper for ::split_name that handles some Ada-specific 127 peculiarities. */ 128 std::vector<gdb::string_view> split_name () const 129 { 130 if (m_verbatim_p || m_standard_p) 131 { 132 std::vector<gdb::string_view> result; 133 if (m_standard_p) 134 result.emplace_back ("standard"); 135 result.emplace_back (m_encoded_name); 136 return result; 137 } 138 return ::split_name (m_encoded_name.c_str (), split_style::UNDERSCORE); 139 } 140 141 private: 142 /* The Ada-encoded lookup name. */ 143 std::string m_encoded_name; 144 145 /* Whether the user-provided lookup name was Ada encoded. If so, 146 then return encoded names in the 'matches' method's 'completion 147 match result' output. */ 148 bool m_encoded_p : 1; 149 150 /* True if really doing wild matching. Even if the user requests 151 wild matching, some cases require full matching. */ 152 bool m_wild_match_p : 1; 153 154 /* True if doing a verbatim match. This is true if the decoded 155 version of the symbol name is wrapped in '<'/'>'. This is an 156 escape hatch users can use to look up symbols the Ada encoding 157 does not understand. */ 158 bool m_verbatim_p : 1; 159 160 /* True if the user specified a symbol name that is inside package 161 Standard. Symbol names inside package Standard are handled 162 specially. We always do a non-wild match of the symbol name 163 without the "standard__" prefix, and only search static and 164 global symbols. This was primarily introduced in order to allow 165 the user to specifically access the standard exceptions using, 166 for instance, Standard.Constraint_Error when Constraint_Error is 167 ambiguous (due to the user defining its own Constraint_Error 168 entity inside its program). */ 169 bool m_standard_p : 1; 170 }; 171 172 /* Language-specific bits of a lookup_name_info object, for languages 173 that do name searching using demangled names (C++/D/Go). This is 174 lazily constructed on demand. */ 175 176 struct demangle_for_lookup_info final 177 { 178 public: 179 demangle_for_lookup_info (const lookup_name_info &lookup_name, 180 language lang); 181 182 /* The demangled lookup name. */ 183 const std::string &lookup_name () const 184 { return m_demangled_name; } 185 186 private: 187 /* The demangled lookup name. */ 188 std::string m_demangled_name; 189 }; 190 191 /* Object that aggregates all information related to a symbol lookup 192 name. I.e., the name that is matched against the symbol's search 193 name. Caches per-language information so that it doesn't require 194 recomputing it for every symbol comparison, like for example the 195 Ada encoded name and the symbol's name hash for a given language. 196 The object is conceptually immutable once constructed, and thus has 197 no setters. This is to prevent some code path from tweaking some 198 property of the lookup name for some local reason and accidentally 199 altering the results of any continuing search(es). 200 lookup_name_info objects are generally passed around as a const 201 reference to reinforce that. (They're not passed around by value 202 because they're not small.) */ 203 class lookup_name_info final 204 { 205 public: 206 /* We delete this overload so that the callers are required to 207 explicitly handle the lifetime of the name. */ 208 lookup_name_info (std::string &&name, 209 symbol_name_match_type match_type, 210 bool completion_mode = false, 211 bool ignore_parameters = false) = delete; 212 213 /* This overload requires that NAME have a lifetime at least as long 214 as the lifetime of this object. */ 215 lookup_name_info (const std::string &name, 216 symbol_name_match_type match_type, 217 bool completion_mode = false, 218 bool ignore_parameters = false) 219 : m_match_type (match_type), 220 m_completion_mode (completion_mode), 221 m_ignore_parameters (ignore_parameters), 222 m_name (name) 223 {} 224 225 /* This overload requires that NAME have a lifetime at least as long 226 as the lifetime of this object. */ 227 lookup_name_info (const char *name, 228 symbol_name_match_type match_type, 229 bool completion_mode = false, 230 bool ignore_parameters = false) 231 : m_match_type (match_type), 232 m_completion_mode (completion_mode), 233 m_ignore_parameters (ignore_parameters), 234 m_name (name) 235 {} 236 237 /* Getters. See description of each corresponding field. */ 238 symbol_name_match_type match_type () const { return m_match_type; } 239 bool completion_mode () const { return m_completion_mode; } 240 gdb::string_view name () const { return m_name; } 241 const bool ignore_parameters () const { return m_ignore_parameters; } 242 243 /* Like the "name" method but guarantees that the returned string is 244 \0-terminated. */ 245 const char *c_str () const 246 { 247 /* Actually this is always guaranteed due to how the class is 248 constructed. */ 249 return m_name.data (); 250 } 251 252 /* Return a version of this lookup name that is usable with 253 comparisons against symbols have no parameter info, such as 254 psymbols and GDB index symbols. */ 255 lookup_name_info make_ignore_params () const 256 { 257 return lookup_name_info (c_str (), m_match_type, m_completion_mode, 258 true /* ignore params */); 259 } 260 261 /* Get the search name hash for searches in language LANG. */ 262 unsigned int search_name_hash (language lang) const 263 { 264 /* Only compute each language's hash once. */ 265 if (!m_demangled_hashes_p[lang]) 266 { 267 m_demangled_hashes[lang] 268 = ::search_name_hash (lang, language_lookup_name (lang)); 269 m_demangled_hashes_p[lang] = true; 270 } 271 return m_demangled_hashes[lang]; 272 } 273 274 /* Get the search name for searches in language LANG. */ 275 const char *language_lookup_name (language lang) const 276 { 277 switch (lang) 278 { 279 case language_ada: 280 return ada ().lookup_name ().c_str (); 281 case language_cplus: 282 return cplus ().lookup_name ().c_str (); 283 case language_d: 284 return d ().lookup_name ().c_str (); 285 case language_go: 286 return go ().lookup_name ().c_str (); 287 default: 288 return m_name.data (); 289 } 290 } 291 292 /* A wrapper for ::split_name (see split-name.h) that splits this 293 name, and that handles any language-specific peculiarities. */ 294 std::vector<gdb::string_view> split_name (language lang) const 295 { 296 if (lang == language_ada) 297 return ada ().split_name (); 298 split_style style = split_style::NONE; 299 switch (lang) 300 { 301 case language_cplus: 302 case language_rust: 303 style = split_style::CXX; 304 break; 305 case language_d: 306 case language_go: 307 style = split_style::DOT; 308 break; 309 } 310 return ::split_name (language_lookup_name (lang), style); 311 } 312 313 /* Get the Ada-specific lookup info. */ 314 const ada_lookup_name_info &ada () const 315 { 316 maybe_init (m_ada); 317 return *m_ada; 318 } 319 320 /* Get the C++-specific lookup info. */ 321 const demangle_for_lookup_info &cplus () const 322 { 323 maybe_init (m_cplus, language_cplus); 324 return *m_cplus; 325 } 326 327 /* Get the D-specific lookup info. */ 328 const demangle_for_lookup_info &d () const 329 { 330 maybe_init (m_d, language_d); 331 return *m_d; 332 } 333 334 /* Get the Go-specific lookup info. */ 335 const demangle_for_lookup_info &go () const 336 { 337 maybe_init (m_go, language_go); 338 return *m_go; 339 } 340 341 /* Get a reference to a lookup_name_info object that matches any 342 symbol name. */ 343 static const lookup_name_info &match_any (); 344 345 private: 346 /* Initialize FIELD, if not initialized yet. */ 347 template<typename Field, typename... Args> 348 void maybe_init (Field &field, Args&&... args) const 349 { 350 if (!field) 351 field.emplace (*this, std::forward<Args> (args)...); 352 } 353 354 /* The lookup info as passed to the ctor. */ 355 symbol_name_match_type m_match_type; 356 bool m_completion_mode; 357 bool m_ignore_parameters; 358 gdb::string_view m_name; 359 360 /* Language-specific info. These fields are filled lazily the first 361 time a lookup is done in the corresponding language. They're 362 mutable because lookup_name_info objects are typically passed 363 around by const reference (see intro), and they're conceptually 364 "cache" that can always be reconstructed from the non-mutable 365 fields. */ 366 mutable gdb::optional<ada_lookup_name_info> m_ada; 367 mutable gdb::optional<demangle_for_lookup_info> m_cplus; 368 mutable gdb::optional<demangle_for_lookup_info> m_d; 369 mutable gdb::optional<demangle_for_lookup_info> m_go; 370 371 /* The demangled hashes. Stored in an array with one entry for each 372 possible language. The second array records whether we've 373 already computed the each language's hash. (These are separate 374 arrays instead of a single array of optional<unsigned> to avoid 375 alignment padding). */ 376 mutable std::array<unsigned int, nr_languages> m_demangled_hashes; 377 mutable std::array<bool, nr_languages> m_demangled_hashes_p {}; 378 }; 379 380 /* Comparison function for completion symbol lookup. 381 382 Returns true if the symbol name matches against LOOKUP_NAME. 383 384 SYMBOL_SEARCH_NAME should be a symbol's "search" name. 385 386 On success and if non-NULL, COMP_MATCH_RES->match is set to point 387 to the symbol name as should be presented to the user as a 388 completion match list element. In most languages, this is the same 389 as the symbol's search name, but in some, like Ada, the display 390 name is dynamically computed within the comparison routine. 391 392 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd 393 points the part of SYMBOL_SEARCH_NAME that was considered to match 394 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is 395 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD 396 points to "function()" inside SYMBOL_SEARCH_NAME. */ 397 typedef bool (symbol_name_matcher_ftype) 398 (const char *symbol_search_name, 399 const lookup_name_info &lookup_name, 400 completion_match_result *comp_match_res); 401 402 /* Some of the structures in this file are space critical. 403 The space-critical structures are: 404 405 struct general_symbol_info 406 struct symbol 407 struct partial_symbol 408 409 These structures are laid out to encourage good packing. 410 They use ENUM_BITFIELD and short int fields, and they order the 411 structure members so that fields less than a word are next 412 to each other so they can be packed together. */ 413 414 /* Rearranged: used ENUM_BITFIELD and rearranged field order in 415 all the space critical structures (plus struct minimal_symbol). 416 Memory usage dropped from 99360768 bytes to 90001408 bytes. 417 I measured this with before-and-after tests of 418 "HEAD-old-gdb -readnow HEAD-old-gdb" and 419 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu, 420 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug, 421 typing "maint space 1" at the first command prompt. 422 423 Here is another measurement (from andrew c): 424 # no /usr/lib/debug, just plain glibc, like a normal user 425 gdb HEAD-old-gdb 426 (gdb) break internal_error 427 (gdb) run 428 (gdb) maint internal-error 429 (gdb) backtrace 430 (gdb) maint space 1 431 432 gdb gdb_6_0_branch 2003-08-19 space used: 8896512 433 gdb HEAD 2003-08-19 space used: 8904704 434 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h) 435 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h) 436 437 The third line shows the savings from the optimizations in symtab.h. 438 The fourth line shows the savings from the optimizations in 439 gdbtypes.h. Both optimizations are in gdb HEAD now. 440 441 --chastain 2003-08-21 */ 442 443 /* Define a structure for the information that is common to all symbol types, 444 including minimal symbols, partial symbols, and full symbols. In a 445 multilanguage environment, some language specific information may need to 446 be recorded along with each symbol. */ 447 448 /* This structure is space critical. See space comments at the top. */ 449 450 struct general_symbol_info 451 { 452 /* Short version as to when to use which name accessor: 453 Use natural_name () to refer to the name of the symbol in the original 454 source code. Use linkage_name () if you want to know what the linker 455 thinks the symbol's name is. Use print_name () for output. Use 456 demangled_name () if you specifically need to know whether natural_name () 457 and linkage_name () are different. */ 458 459 const char *linkage_name () const 460 { return m_name; } 461 462 /* Return SYMBOL's "natural" name, i.e. the name that it was called in 463 the original source code. In languages like C++ where symbols may 464 be mangled for ease of manipulation by the linker, this is the 465 demangled name. */ 466 const char *natural_name () const; 467 468 /* Returns a version of the name of a symbol that is 469 suitable for output. In C++ this is the "demangled" form of the 470 name if demangle is on and the "mangled" form of the name if 471 demangle is off. In other languages this is just the symbol name. 472 The result should never be NULL. Don't use this for internal 473 purposes (e.g. storing in a hashtable): it's only suitable for output. */ 474 const char *print_name () const 475 { return demangle ? natural_name () : linkage_name (); } 476 477 /* Return the demangled name for a symbol based on the language for 478 that symbol. If no demangled name exists, return NULL. */ 479 const char *demangled_name () const; 480 481 /* Returns the name to be used when sorting and searching symbols. 482 In C++, we search for the demangled form of a name, 483 and so sort symbols accordingly. In Ada, however, we search by mangled 484 name. If there is no distinct demangled name, then this 485 returns the same value (same pointer) as linkage_name (). */ 486 const char *search_name () const; 487 488 /* Set just the linkage name of a symbol; do not try to demangle 489 it. Used for constructs which do not have a mangled name, 490 e.g. struct tags. Unlike compute_and_set_names, linkage_name must 491 be terminated and either already on the objfile's obstack or 492 permanently allocated. */ 493 void set_linkage_name (const char *linkage_name) 494 { m_name = linkage_name; } 495 496 /* Set the demangled name of this symbol to NAME. NAME must be 497 already correctly allocated. If the symbol's language is Ada, 498 then the name is ignored and the obstack is set. */ 499 void set_demangled_name (const char *name, struct obstack *obstack); 500 501 enum language language () const 502 { return m_language; } 503 504 /* Initializes the language dependent portion of a symbol 505 depending upon the language for the symbol. */ 506 void set_language (enum language language, struct obstack *obstack); 507 508 /* Set the linkage and natural names of a symbol, by demangling 509 the linkage name. If linkage_name may not be nullterminated, 510 copy_name must be set to true. */ 511 void compute_and_set_names (gdb::string_view linkage_name, bool copy_name, 512 struct objfile_per_bfd_storage *per_bfd, 513 gdb::optional<hashval_t> hash 514 = gdb::optional<hashval_t> ()); 515 516 CORE_ADDR value_address () const 517 { 518 return m_value.address; 519 } 520 521 void set_value_address (CORE_ADDR address) 522 { 523 m_value.address = address; 524 } 525 526 /* Name of the symbol. This is a required field. Storage for the 527 name is allocated on the objfile_obstack for the associated 528 objfile. For languages like C++ that make a distinction between 529 the mangled name and demangled name, this is the mangled 530 name. */ 531 532 const char *m_name; 533 534 /* Value of the symbol. Which member of this union to use, and what 535 it means, depends on what kind of symbol this is and its 536 SYMBOL_CLASS. See comments there for more details. All of these 537 are in host byte order (though what they point to might be in 538 target byte order, e.g. LOC_CONST_BYTES). */ 539 540 union 541 { 542 LONGEST ivalue; 543 544 const struct block *block; 545 546 const gdb_byte *bytes; 547 548 CORE_ADDR address; 549 550 /* A common block. Used with LOC_COMMON_BLOCK. */ 551 552 const struct common_block *common_block; 553 554 /* For opaque typedef struct chain. */ 555 556 struct symbol *chain; 557 } 558 m_value; 559 560 /* Since one and only one language can apply, wrap the language specific 561 information inside a union. */ 562 563 union 564 { 565 /* A pointer to an obstack that can be used for storage associated 566 with this symbol. This is only used by Ada, and only when the 567 'ada_mangled' field is zero. */ 568 struct obstack *obstack; 569 570 /* This is used by languages which wish to store a demangled name. 571 currently used by Ada, C++, and Objective C. */ 572 const char *demangled_name; 573 } 574 language_specific; 575 576 /* Record the source code language that applies to this symbol. 577 This is used to select one of the fields from the language specific 578 union above. */ 579 580 ENUM_BITFIELD(language) m_language : LANGUAGE_BITS; 581 582 /* This is only used by Ada. If set, then the 'demangled_name' field 583 of language_specific is valid. Otherwise, the 'obstack' field is 584 valid. */ 585 unsigned int ada_mangled : 1; 586 587 /* Which section is this symbol in? This is an index into 588 section_offsets for this objfile. Negative means that the symbol 589 does not get relocated relative to a section. */ 590 591 short m_section; 592 593 /* Set the index into the obj_section list (within the containing 594 objfile) for the section that contains this symbol. See M_SECTION 595 for more details. */ 596 597 void set_section_index (short idx) 598 { m_section = idx; } 599 600 /* Return the index into the obj_section list (within the containing 601 objfile) for the section that contains this symbol. See M_SECTION 602 for more details. */ 603 604 short section_index () const 605 { return m_section; } 606 607 /* Return the obj_section from OBJFILE for this symbol. The symbol 608 returned is based on the SECTION member variable, and can be nullptr 609 if SECTION is negative. */ 610 611 struct obj_section *obj_section (const struct objfile *objfile) const; 612 }; 613 614 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *); 615 616 /* Return the address of SYM. The MAYBE_COPIED flag must be set on 617 SYM. If SYM appears in the main program's minimal symbols, then 618 that minsym's address is returned; otherwise, SYM's address is 619 returned. This should generally only be used via the 620 SYMBOL_VALUE_ADDRESS macro. */ 621 622 extern CORE_ADDR get_symbol_address (const struct symbol *sym); 623 624 /* Try to determine the demangled name for a symbol, based on the 625 language of that symbol. If the language is set to language_auto, 626 it will attempt to find any demangling algorithm that works and 627 then set the language appropriately. The returned name is allocated 628 by the demangler and should be xfree'd. */ 629 630 extern gdb::unique_xmalloc_ptr<char> symbol_find_demangled_name 631 (struct general_symbol_info *gsymbol, const char *mangled); 632 633 /* Return true if NAME matches the "search" name of GSYMBOL, according 634 to the symbol's language. */ 635 extern bool symbol_matches_search_name 636 (const struct general_symbol_info *gsymbol, 637 const lookup_name_info &name); 638 639 /* Compute the hash of the given symbol search name of a symbol of 640 language LANGUAGE. */ 641 extern unsigned int search_name_hash (enum language language, 642 const char *search_name); 643 644 /* Classification types for a minimal symbol. These should be taken as 645 "advisory only", since if gdb can't easily figure out a 646 classification it simply selects mst_unknown. It may also have to 647 guess when it can't figure out which is a better match between two 648 types (mst_data versus mst_bss) for example. Since the minimal 649 symbol info is sometimes derived from the BFD library's view of a 650 file, we need to live with what information bfd supplies. */ 651 652 enum minimal_symbol_type 653 { 654 mst_unknown = 0, /* Unknown type, the default */ 655 mst_text, /* Generally executable instructions */ 656 657 /* A GNU ifunc symbol, in the .text section. GDB uses to know 658 whether the user is setting a breakpoint on a GNU ifunc function, 659 and thus GDB needs to actually set the breakpoint on the target 660 function. It is also used to know whether the program stepped 661 into an ifunc resolver -- the resolver may get a separate 662 symbol/alias under a different name, but it'll have the same 663 address as the ifunc symbol. */ 664 mst_text_gnu_ifunc, /* Executable code returning address 665 of executable code */ 666 667 /* A GNU ifunc function descriptor symbol, in a data section 668 (typically ".opd"). Seen on architectures that use function 669 descriptors, like PPC64/ELFv1. In this case, this symbol's value 670 is the address of the descriptor. There'll be a corresponding 671 mst_text_gnu_ifunc synthetic symbol for the text/entry 672 address. */ 673 mst_data_gnu_ifunc, /* Executable code returning address 674 of executable code */ 675 676 mst_slot_got_plt, /* GOT entries for .plt sections */ 677 mst_data, /* Generally initialized data */ 678 mst_bss, /* Generally uninitialized data */ 679 mst_abs, /* Generally absolute (nonrelocatable) */ 680 /* GDB uses mst_solib_trampoline for the start address of a shared 681 library trampoline entry. Breakpoints for shared library functions 682 are put there if the shared library is not yet loaded. 683 After the shared library is loaded, lookup_minimal_symbol will 684 prefer the minimal symbol from the shared library (usually 685 a mst_text symbol) over the mst_solib_trampoline symbol, and the 686 breakpoints will be moved to their true address in the shared 687 library via breakpoint_re_set. */ 688 mst_solib_trampoline, /* Shared library trampoline code */ 689 /* For the mst_file* types, the names are only guaranteed to be unique 690 within a given .o file. */ 691 mst_file_text, /* Static version of mst_text */ 692 mst_file_data, /* Static version of mst_data */ 693 mst_file_bss, /* Static version of mst_bss */ 694 nr_minsym_types 695 }; 696 697 /* The number of enum minimal_symbol_type values, with some padding for 698 reasonable growth. */ 699 #define MINSYM_TYPE_BITS 4 700 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS)); 701 702 /* Return the address of MINSYM, which comes from OBJF. The 703 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the 704 main program's minimal symbols, then that minsym's address is 705 returned; otherwise, MINSYM's address is returned. This should 706 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */ 707 708 extern CORE_ADDR get_msymbol_address (struct objfile *objf, 709 const struct minimal_symbol *minsym); 710 711 /* Define a simple structure used to hold some very basic information about 712 all defined global symbols (text, data, bss, abs, etc). The only required 713 information is the general_symbol_info. 714 715 In many cases, even if a file was compiled with no special options for 716 debugging at all, as long as was not stripped it will contain sufficient 717 information to build a useful minimal symbol table using this structure. 718 Even when a file contains enough debugging information to build a full 719 symbol table, these minimal symbols are still useful for quickly mapping 720 between names and addresses, and vice versa. They are also sometimes 721 used to figure out what full symbol table entries need to be read in. */ 722 723 struct minimal_symbol : public general_symbol_info 724 { 725 LONGEST value_longest () const 726 { 727 return m_value.ivalue; 728 } 729 730 /* The relocated address of the minimal symbol, using the section 731 offsets from OBJFILE. */ 732 CORE_ADDR value_address (objfile *objfile) const; 733 734 /* The unrelocated address of the minimal symbol. */ 735 CORE_ADDR value_raw_address () const 736 { 737 return m_value.address; 738 } 739 740 /* Return this minimal symbol's type. */ 741 742 minimal_symbol_type type () const 743 { 744 return m_type; 745 } 746 747 /* Set this minimal symbol's type. */ 748 749 void set_type (minimal_symbol_type type) 750 { 751 m_type = type; 752 } 753 754 /* Return this minimal symbol's size. */ 755 756 unsigned long size () const 757 { 758 return m_size; 759 } 760 761 /* Set this minimal symbol's size. */ 762 763 void set_size (unsigned long size) 764 { 765 m_size = size; 766 m_has_size = 1; 767 } 768 769 /* Return true if this minimal symbol's size is known. */ 770 771 bool has_size () const 772 { 773 return m_has_size; 774 } 775 776 /* Return this minimal symbol's first target-specific flag. */ 777 778 bool target_flag_1 () const 779 { 780 return m_target_flag_1; 781 } 782 783 /* Set this minimal symbol's first target-specific flag. */ 784 785 void set_target_flag_1 (bool target_flag_1) 786 { 787 m_target_flag_1 = target_flag_1; 788 } 789 790 /* Return this minimal symbol's second target-specific flag. */ 791 792 bool target_flag_2 () const 793 { 794 return m_target_flag_2; 795 } 796 797 /* Set this minimal symbol's second target-specific flag. */ 798 799 void set_target_flag_2 (bool target_flag_2) 800 { 801 m_target_flag_2 = target_flag_2; 802 } 803 804 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this 805 information to calculate the end of the partial symtab based on the 806 address of the last symbol plus the size of the last symbol. */ 807 808 unsigned long m_size; 809 810 /* Which source file is this symbol in? Only relevant for mst_file_*. */ 811 const char *filename; 812 813 /* Classification type for this minimal symbol. */ 814 815 ENUM_BITFIELD(minimal_symbol_type) m_type : MINSYM_TYPE_BITS; 816 817 /* Non-zero if this symbol was created by gdb. 818 Such symbols do not appear in the output of "info var|fun". */ 819 unsigned int created_by_gdb : 1; 820 821 /* Two flag bits provided for the use of the target. */ 822 unsigned int m_target_flag_1 : 1; 823 unsigned int m_target_flag_2 : 1; 824 825 /* Nonzero iff the size of the minimal symbol has been set. 826 Symbol size information can sometimes not be determined, because 827 the object file format may not carry that piece of information. */ 828 unsigned int m_has_size : 1; 829 830 /* For data symbols only, if this is set, then the symbol might be 831 subject to copy relocation. In this case, a minimal symbol 832 matching the symbol's linkage name is first looked for in the 833 main objfile. If found, then that address is used; otherwise the 834 address in this symbol is used. */ 835 836 unsigned maybe_copied : 1; 837 838 /* Non-zero if this symbol ever had its demangled name set (even if 839 it was set to NULL). */ 840 unsigned int name_set : 1; 841 842 /* Minimal symbols with the same hash key are kept on a linked 843 list. This is the link. */ 844 845 struct minimal_symbol *hash_next; 846 847 /* Minimal symbols are stored in two different hash tables. This is 848 the `next' pointer for the demangled hash table. */ 849 850 struct minimal_symbol *demangled_hash_next; 851 852 /* True if this symbol is of some data type. */ 853 854 bool data_p () const; 855 856 /* True if MSYMBOL is of some text type. */ 857 858 bool text_p () const; 859 }; 860 861 #include "minsyms.h" 862 863 864 865 /* Represent one symbol name; a variable, constant, function or typedef. */ 866 867 /* Different name domains for symbols. Looking up a symbol specifies a 868 domain and ignores symbol definitions in other name domains. */ 869 870 enum domain_enum 871 { 872 /* UNDEF_DOMAIN is used when a domain has not been discovered or 873 none of the following apply. This usually indicates an error either 874 in the symbol information or in gdb's handling of symbols. */ 875 876 UNDEF_DOMAIN, 877 878 /* VAR_DOMAIN is the usual domain. In C, this contains variables, 879 function names, typedef names and enum type values. */ 880 881 VAR_DOMAIN, 882 883 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names. 884 Thus, if `struct foo' is used in a C program, it produces a symbol named 885 `foo' in the STRUCT_DOMAIN. */ 886 887 STRUCT_DOMAIN, 888 889 /* MODULE_DOMAIN is used in Fortran to hold module type names. */ 890 891 MODULE_DOMAIN, 892 893 /* LABEL_DOMAIN may be used for names of labels (for gotos). */ 894 895 LABEL_DOMAIN, 896 897 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN. 898 They also always use LOC_COMMON_BLOCK. */ 899 COMMON_BLOCK_DOMAIN, 900 901 /* This must remain last. */ 902 NR_DOMAINS 903 }; 904 905 /* The number of bits in a symbol used to represent the domain. */ 906 907 #define SYMBOL_DOMAIN_BITS 3 908 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS)); 909 910 extern const char *domain_name (domain_enum); 911 912 /* Searching domains, used when searching for symbols. Element numbers are 913 hardcoded in GDB, check all enum uses before changing it. */ 914 915 enum search_domain 916 { 917 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and 918 TYPES_DOMAIN. */ 919 VARIABLES_DOMAIN = 0, 920 921 /* All functions -- for some reason not methods, though. */ 922 FUNCTIONS_DOMAIN = 1, 923 924 /* All defined types */ 925 TYPES_DOMAIN = 2, 926 927 /* All modules. */ 928 MODULES_DOMAIN = 3, 929 930 /* Any type. */ 931 ALL_DOMAIN = 4 932 }; 933 934 extern const char *search_domain_name (enum search_domain); 935 936 /* An address-class says where to find the value of a symbol. */ 937 938 enum address_class 939 { 940 /* Not used; catches errors. */ 941 942 LOC_UNDEF, 943 944 /* Value is constant int SYMBOL_VALUE, host byteorder. */ 945 946 LOC_CONST, 947 948 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */ 949 950 LOC_STATIC, 951 952 /* Value is in register. SYMBOL_VALUE is the register number 953 in the original debug format. SYMBOL_REGISTER_OPS holds a 954 function that can be called to transform this into the 955 actual register number this represents in a specific target 956 architecture (gdbarch). 957 958 For some symbol formats (stabs, for some compilers at least), 959 the compiler generates two symbols, an argument and a register. 960 In some cases we combine them to a single LOC_REGISTER in symbol 961 reading, but currently not for all cases (e.g. it's passed on the 962 stack and then loaded into a register). */ 963 964 LOC_REGISTER, 965 966 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */ 967 968 LOC_ARG, 969 970 /* Value address is at SYMBOL_VALUE offset in arglist. */ 971 972 LOC_REF_ARG, 973 974 /* Value is in specified register. Just like LOC_REGISTER except the 975 register holds the address of the argument instead of the argument 976 itself. This is currently used for the passing of structs and unions 977 on sparc and hppa. It is also used for call by reference where the 978 address is in a register, at least by mipsread.c. */ 979 980 LOC_REGPARM_ADDR, 981 982 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */ 983 984 LOC_LOCAL, 985 986 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain 987 STRUCT_DOMAIN all have this class. */ 988 989 LOC_TYPEDEF, 990 991 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */ 992 993 LOC_LABEL, 994 995 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'. 996 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address 997 of the block. Function names have this class. */ 998 999 LOC_BLOCK, 1000 1001 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in 1002 target byte order. */ 1003 1004 LOC_CONST_BYTES, 1005 1006 /* Value is at fixed address, but the address of the variable has 1007 to be determined from the minimal symbol table whenever the 1008 variable is referenced. 1009 This happens if debugging information for a global symbol is 1010 emitted and the corresponding minimal symbol is defined 1011 in another object file or runtime common storage. 1012 The linker might even remove the minimal symbol if the global 1013 symbol is never referenced, in which case the symbol remains 1014 unresolved. 1015 1016 GDB would normally find the symbol in the minimal symbol table if it will 1017 not find it in the full symbol table. But a reference to an external 1018 symbol in a local block shadowing other definition requires full symbol 1019 without possibly having its address available for LOC_STATIC. Testcase 1020 is provided as `gdb.dwarf2/dw2-unresolved.exp'. 1021 1022 This is also used for thread local storage (TLS) variables. In this case, 1023 the address of the TLS variable must be determined when the variable is 1024 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset 1025 of the TLS variable in the thread local storage of the shared 1026 library/object. */ 1027 1028 LOC_UNRESOLVED, 1029 1030 /* The variable does not actually exist in the program. 1031 The value is ignored. */ 1032 1033 LOC_OPTIMIZED_OUT, 1034 1035 /* The variable's address is computed by a set of location 1036 functions (see "struct symbol_computed_ops" below). */ 1037 LOC_COMPUTED, 1038 1039 /* The variable uses general_symbol_info->value->common_block field. 1040 It also always uses COMMON_BLOCK_DOMAIN. */ 1041 LOC_COMMON_BLOCK, 1042 1043 /* Not used, just notes the boundary of the enum. */ 1044 LOC_FINAL_VALUE 1045 }; 1046 1047 /* The number of bits needed for values in enum address_class, with some 1048 padding for reasonable growth, and room for run-time registered address 1049 classes. See symtab.c:MAX_SYMBOL_IMPLS. 1050 This is a #define so that we can have a assertion elsewhere to 1051 verify that we have reserved enough space for synthetic address 1052 classes. */ 1053 #define SYMBOL_ACLASS_BITS 5 1054 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS)); 1055 1056 /* The methods needed to implement LOC_COMPUTED. These methods can 1057 use the symbol's .aux_value for additional per-symbol information. 1058 1059 At present this is only used to implement location expressions. */ 1060 1061 struct symbol_computed_ops 1062 { 1063 1064 /* Return the value of the variable SYMBOL, relative to the stack 1065 frame FRAME. If the variable has been optimized out, return 1066 zero. 1067 1068 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then 1069 FRAME may be zero. */ 1070 1071 struct value *(*read_variable) (struct symbol * symbol, 1072 frame_info_ptr frame); 1073 1074 /* Read variable SYMBOL like read_variable at (callee) FRAME's function 1075 entry. SYMBOL should be a function parameter, otherwise 1076 NO_ENTRY_VALUE_ERROR will be thrown. */ 1077 struct value *(*read_variable_at_entry) (struct symbol *symbol, 1078 frame_info_ptr frame); 1079 1080 /* Find the "symbol_needs_kind" value for the given symbol. This 1081 value determines whether reading the symbol needs memory (e.g., a 1082 global variable), just registers (a thread-local), or a frame (a 1083 local variable). */ 1084 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol); 1085 1086 /* Write to STREAM a natural-language description of the location of 1087 SYMBOL, in the context of ADDR. */ 1088 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr, 1089 struct ui_file * stream); 1090 1091 /* Non-zero if this symbol's address computation is dependent on PC. */ 1092 unsigned char location_has_loclist; 1093 1094 /* Tracepoint support. Append bytecodes to the tracepoint agent 1095 expression AX that push the address of the object SYMBOL. Set 1096 VALUE appropriately. Note --- for objects in registers, this 1097 needn't emit any code; as long as it sets VALUE properly, then 1098 the caller will generate the right code in the process of 1099 treating this as an lvalue or rvalue. */ 1100 1101 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax, 1102 struct axs_value *value); 1103 1104 /* Generate C code to compute the location of SYMBOL. The C code is 1105 emitted to STREAM. GDBARCH is the current architecture and PC is 1106 the PC at which SYMBOL's location should be evaluated. 1107 REGISTERS_USED is a vector indexed by register number; the 1108 generator function should set an element in this vector if the 1109 corresponding register is needed by the location computation. 1110 The generated C code must assign the location to a local 1111 variable; this variable's name is RESULT_NAME. */ 1112 1113 void (*generate_c_location) (struct symbol *symbol, string_file *stream, 1114 struct gdbarch *gdbarch, 1115 std::vector<bool> ®isters_used, 1116 CORE_ADDR pc, const char *result_name); 1117 1118 }; 1119 1120 /* The methods needed to implement LOC_BLOCK for inferior functions. 1121 These methods can use the symbol's .aux_value for additional 1122 per-symbol information. */ 1123 1124 struct symbol_block_ops 1125 { 1126 /* Fill in *START and *LENGTH with DWARF block data of function 1127 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to 1128 zero if such location is not valid for PC; *START is left 1129 uninitialized in such case. */ 1130 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc, 1131 const gdb_byte **start, size_t *length); 1132 1133 /* Return the frame base address. FRAME is the frame for which we want to 1134 compute the base address while FRAMEFUNC is the symbol for the 1135 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the 1136 information we need). 1137 1138 This method is designed to work with static links (nested functions 1139 handling). Static links are function properties whose evaluation returns 1140 the frame base address for the enclosing frame. However, there are 1141 multiple definitions for "frame base": the content of the frame base 1142 register, the CFA as defined by DWARF unwinding information, ... 1143 1144 So this specific method is supposed to compute the frame base address such 1145 as for nested functions, the static link computes the same address. For 1146 instance, considering DWARF debugging information, the static link is 1147 computed with DW_AT_static_link and this method must be used to compute 1148 the corresponding DW_AT_frame_base attribute. */ 1149 CORE_ADDR (*get_frame_base) (struct symbol *framefunc, 1150 frame_info_ptr frame); 1151 }; 1152 1153 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */ 1154 1155 struct symbol_register_ops 1156 { 1157 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch); 1158 }; 1159 1160 /* Objects of this type are used to find the address class and the 1161 various computed ops vectors of a symbol. */ 1162 1163 struct symbol_impl 1164 { 1165 enum address_class aclass; 1166 1167 /* Used with LOC_COMPUTED. */ 1168 const struct symbol_computed_ops *ops_computed; 1169 1170 /* Used with LOC_BLOCK. */ 1171 const struct symbol_block_ops *ops_block; 1172 1173 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */ 1174 const struct symbol_register_ops *ops_register; 1175 }; 1176 1177 /* struct symbol has some subclasses. This enum is used to 1178 differentiate between them. */ 1179 1180 enum symbol_subclass_kind 1181 { 1182 /* Plain struct symbol. */ 1183 SYMBOL_NONE, 1184 1185 /* struct template_symbol. */ 1186 SYMBOL_TEMPLATE, 1187 1188 /* struct rust_vtable_symbol. */ 1189 SYMBOL_RUST_VTABLE 1190 }; 1191 1192 extern gdb::array_view<const struct symbol_impl> symbol_impls; 1193 1194 /* This structure is space critical. See space comments at the top. */ 1195 1196 struct symbol : public general_symbol_info, public allocate_on_obstack 1197 { 1198 symbol () 1199 /* Class-initialization of bitfields is only allowed in C++20. */ 1200 : m_domain (UNDEF_DOMAIN), 1201 m_aclass_index (0), 1202 m_is_objfile_owned (1), 1203 m_is_argument (0), 1204 m_is_inlined (0), 1205 maybe_copied (0), 1206 subclass (SYMBOL_NONE), 1207 m_artificial (false) 1208 { 1209 /* We can't use an initializer list for members of a base class, and 1210 general_symbol_info needs to stay a POD type. */ 1211 m_name = nullptr; 1212 m_value.ivalue = 0; 1213 language_specific.obstack = nullptr; 1214 m_language = language_unknown; 1215 ada_mangled = 0; 1216 m_section = -1; 1217 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class- 1218 initialization of unions, so we initialize it manually here. */ 1219 owner.symtab = nullptr; 1220 } 1221 1222 symbol (const symbol &) = default; 1223 symbol &operator= (const symbol &) = default; 1224 1225 void set_aclass_index (unsigned int aclass_index) 1226 { 1227 m_aclass_index = aclass_index; 1228 } 1229 1230 const symbol_impl &impl () const 1231 { 1232 return symbol_impls[this->m_aclass_index]; 1233 } 1234 1235 address_class aclass () const 1236 { 1237 return this->impl ().aclass; 1238 } 1239 1240 domain_enum domain () const 1241 { 1242 return m_domain; 1243 } 1244 1245 void set_domain (domain_enum domain) 1246 { 1247 m_domain = domain; 1248 } 1249 1250 bool is_objfile_owned () const 1251 { 1252 return m_is_objfile_owned; 1253 } 1254 1255 void set_is_objfile_owned (bool is_objfile_owned) 1256 { 1257 m_is_objfile_owned = is_objfile_owned; 1258 } 1259 1260 bool is_argument () const 1261 { 1262 return m_is_argument; 1263 } 1264 1265 void set_is_argument (bool is_argument) 1266 { 1267 m_is_argument = is_argument; 1268 } 1269 1270 bool is_inlined () const 1271 { 1272 return m_is_inlined; 1273 } 1274 1275 void set_is_inlined (bool is_inlined) 1276 { 1277 m_is_inlined = is_inlined; 1278 } 1279 1280 bool is_cplus_template_function () const 1281 { 1282 return this->subclass == SYMBOL_TEMPLATE; 1283 } 1284 1285 struct type *type () const 1286 { 1287 return m_type; 1288 } 1289 1290 void set_type (struct type *type) 1291 { 1292 m_type = type; 1293 } 1294 1295 unsigned short line () const 1296 { 1297 return m_line; 1298 } 1299 1300 void set_line (unsigned short line) 1301 { 1302 m_line = line; 1303 } 1304 1305 LONGEST value_longest () const 1306 { 1307 return m_value.ivalue; 1308 } 1309 1310 void set_value_longest (LONGEST value) 1311 { 1312 m_value.ivalue = value; 1313 } 1314 1315 CORE_ADDR value_address () const 1316 { 1317 if (this->maybe_copied) 1318 return get_symbol_address (this); 1319 else 1320 return m_value.address; 1321 } 1322 1323 void set_value_address (CORE_ADDR address) 1324 { 1325 m_value.address = address; 1326 } 1327 1328 const gdb_byte *value_bytes () const 1329 { 1330 return m_value.bytes; 1331 } 1332 1333 void set_value_bytes (const gdb_byte *bytes) 1334 { 1335 m_value.bytes = bytes; 1336 } 1337 1338 const common_block *value_common_block () const 1339 { 1340 return m_value.common_block; 1341 } 1342 1343 void set_value_common_block (const common_block *common_block) 1344 { 1345 m_value.common_block = common_block; 1346 } 1347 1348 const block *value_block () const 1349 { 1350 return m_value.block; 1351 } 1352 1353 void set_value_block (const block *block) 1354 { 1355 m_value.block = block; 1356 } 1357 1358 symbol *value_chain () const 1359 { 1360 return m_value.chain; 1361 } 1362 1363 void set_value_chain (symbol *sym) 1364 { 1365 m_value.chain = sym; 1366 } 1367 1368 /* Return true if this symbol was marked as artificial. */ 1369 bool is_artificial () const 1370 { 1371 return m_artificial; 1372 } 1373 1374 /* Set the 'artificial' flag on this symbol. */ 1375 void set_is_artificial (bool artificial) 1376 { 1377 m_artificial = artificial; 1378 } 1379 1380 /* Return the OBJFILE of this symbol. It is an error to call this 1381 if is_objfile_owned is false, which only happens for 1382 architecture-provided types. */ 1383 1384 struct objfile *objfile () const; 1385 1386 /* Return the ARCH of this symbol. */ 1387 1388 struct gdbarch *arch () const; 1389 1390 /* Return the symtab of this symbol. It is an error to call this if 1391 is_objfile_owned is false, which only happens for 1392 architecture-provided types. */ 1393 1394 struct symtab *symtab () const; 1395 1396 /* Set the symtab of this symbol to SYMTAB. It is an error to call 1397 this if is_objfile_owned is false, which only happens for 1398 architecture-provided types. */ 1399 1400 void set_symtab (struct symtab *symtab); 1401 1402 /* Data type of value */ 1403 1404 struct type *m_type = nullptr; 1405 1406 /* The owner of this symbol. 1407 Which one to use is defined by symbol.is_objfile_owned. */ 1408 1409 union 1410 { 1411 /* The symbol table containing this symbol. This is the file associated 1412 with LINE. It can be NULL during symbols read-in but it is never NULL 1413 during normal operation. */ 1414 struct symtab *symtab; 1415 1416 /* For types defined by the architecture. */ 1417 struct gdbarch *arch; 1418 } owner; 1419 1420 /* Domain code. */ 1421 1422 ENUM_BITFIELD(domain_enum) m_domain : SYMBOL_DOMAIN_BITS; 1423 1424 /* Address class. This holds an index into the 'symbol_impls' 1425 table. The actual enum address_class value is stored there, 1426 alongside any per-class ops vectors. */ 1427 1428 unsigned int m_aclass_index : SYMBOL_ACLASS_BITS; 1429 1430 /* If non-zero then symbol is objfile-owned, use owner.symtab. 1431 Otherwise symbol is arch-owned, use owner.arch. */ 1432 1433 unsigned int m_is_objfile_owned : 1; 1434 1435 /* Whether this is an argument. */ 1436 1437 unsigned m_is_argument : 1; 1438 1439 /* Whether this is an inlined function (class LOC_BLOCK only). */ 1440 unsigned m_is_inlined : 1; 1441 1442 /* For LOC_STATIC only, if this is set, then the symbol might be 1443 subject to copy relocation. In this case, a minimal symbol 1444 matching the symbol's linkage name is first looked for in the 1445 main objfile. If found, then that address is used; otherwise the 1446 address in this symbol is used. */ 1447 1448 unsigned maybe_copied : 1; 1449 1450 /* The concrete type of this symbol. */ 1451 1452 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2; 1453 1454 /* Whether this symbol is artificial. */ 1455 1456 bool m_artificial : 1; 1457 1458 /* Line number of this symbol's definition, except for inlined 1459 functions. For an inlined function (class LOC_BLOCK and 1460 SYMBOL_INLINED set) this is the line number of the function's call 1461 site. Inlined function symbols are not definitions, and they are 1462 never found by symbol table lookup. 1463 If this symbol is arch-owned, LINE shall be zero. 1464 1465 FIXME: Should we really make the assumption that nobody will try 1466 to debug files longer than 64K lines? What about machine 1467 generated programs? */ 1468 1469 unsigned short m_line = 0; 1470 1471 /* An arbitrary data pointer, allowing symbol readers to record 1472 additional information on a per-symbol basis. Note that this data 1473 must be allocated using the same obstack as the symbol itself. */ 1474 /* So far it is only used by: 1475 LOC_COMPUTED: to find the location information 1476 LOC_BLOCK (DWARF2 function): information used internally by the 1477 DWARF 2 code --- specifically, the location expression for the frame 1478 base for this function. */ 1479 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better 1480 to add a magic symbol to the block containing this information, 1481 or to have a generic debug info annotation slot for symbols. */ 1482 1483 void *aux_value = nullptr; 1484 1485 struct symbol *hash_next = nullptr; 1486 }; 1487 1488 /* Several lookup functions return both a symbol and the block in which the 1489 symbol is found. This structure is used in these cases. */ 1490 1491 struct block_symbol 1492 { 1493 /* The symbol that was found, or NULL if no symbol was found. */ 1494 struct symbol *symbol; 1495 1496 /* If SYMBOL is not NULL, then this is the block in which the symbol is 1497 defined. */ 1498 const struct block *block; 1499 }; 1500 1501 /* Note: There is no accessor macro for symbol.owner because it is 1502 "private". */ 1503 1504 #define SYMBOL_COMPUTED_OPS(symbol) ((symbol)->impl ().ops_computed) 1505 #define SYMBOL_BLOCK_OPS(symbol) ((symbol)->impl ().ops_block) 1506 #define SYMBOL_REGISTER_OPS(symbol) ((symbol)->impl ().ops_register) 1507 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value 1508 1509 extern int register_symbol_computed_impl (enum address_class, 1510 const struct symbol_computed_ops *); 1511 1512 extern int register_symbol_block_impl (enum address_class aclass, 1513 const struct symbol_block_ops *ops); 1514 1515 extern int register_symbol_register_impl (enum address_class, 1516 const struct symbol_register_ops *); 1517 1518 /* An instance of this type is used to represent a C++ template 1519 function. A symbol is really of this type iff 1520 symbol::is_cplus_template_function is true. */ 1521 1522 struct template_symbol : public symbol 1523 { 1524 /* The number of template arguments. */ 1525 int n_template_arguments = 0; 1526 1527 /* The template arguments. This is an array with 1528 N_TEMPLATE_ARGUMENTS elements. */ 1529 struct symbol **template_arguments = nullptr; 1530 }; 1531 1532 /* A symbol that represents a Rust virtual table object. */ 1533 1534 struct rust_vtable_symbol : public symbol 1535 { 1536 /* The concrete type for which this vtable was created; that is, in 1537 "impl Trait for Type", this is "Type". */ 1538 struct type *concrete_type = nullptr; 1539 }; 1540 1541 1542 /* Each item represents a line-->pc (or the reverse) mapping. This is 1543 somewhat more wasteful of space than one might wish, but since only 1544 the files which are actually debugged are read in to core, we don't 1545 waste much space. */ 1546 1547 struct linetable_entry 1548 { 1549 /* The line number for this entry. */ 1550 int line; 1551 1552 /* True if this PC is a good location to place a breakpoint for LINE. */ 1553 unsigned is_stmt : 1; 1554 1555 /* True if this location is a good location to place a breakpoint after a 1556 function prologue. */ 1557 bool prologue_end : 1; 1558 1559 /* The address for this entry. */ 1560 CORE_ADDR pc; 1561 }; 1562 1563 /* The order of entries in the linetable is significant. They should 1564 be sorted by increasing values of the pc field. If there is more than 1565 one entry for a given pc, then I'm not sure what should happen (and 1566 I not sure whether we currently handle it the best way). 1567 1568 Example: a C for statement generally looks like this 1569 1570 10 0x100 - for the init/test part of a for stmt. 1571 20 0x200 1572 30 0x300 1573 10 0x400 - for the increment part of a for stmt. 1574 1575 If an entry has a line number of zero, it marks the start of a PC 1576 range for which no line number information is available. It is 1577 acceptable, though wasteful of table space, for such a range to be 1578 zero length. */ 1579 1580 struct linetable 1581 { 1582 int nitems; 1583 1584 /* Actually NITEMS elements. If you don't like this use of the 1585 `struct hack', you can shove it up your ANSI (seriously, if the 1586 committee tells us how to do it, we can probably go along). */ 1587 struct linetable_entry item[1]; 1588 }; 1589 1590 /* How to relocate the symbols from each section in a symbol file. 1591 The ordering and meaning of the offsets is file-type-dependent; 1592 typically it is indexed by section numbers or symbol types or 1593 something like that. */ 1594 1595 typedef std::vector<CORE_ADDR> section_offsets; 1596 1597 /* Each source file or header is represented by a struct symtab. 1598 The name "symtab" is historical, another name for it is "filetab". 1599 These objects are chained through the `next' field. */ 1600 1601 struct symtab 1602 { 1603 struct compunit_symtab *compunit () const 1604 { 1605 return m_compunit; 1606 } 1607 1608 void set_compunit (struct compunit_symtab *compunit) 1609 { 1610 m_compunit = compunit; 1611 } 1612 1613 struct linetable *linetable () const 1614 { 1615 return m_linetable; 1616 } 1617 1618 void set_linetable (struct linetable *linetable) 1619 { 1620 m_linetable = linetable; 1621 } 1622 1623 enum language language () const 1624 { 1625 return m_language; 1626 } 1627 1628 void set_language (enum language language) 1629 { 1630 m_language = language; 1631 } 1632 1633 /* Unordered chain of all filetabs in the compunit, with the exception 1634 that the "main" source file is the first entry in the list. */ 1635 1636 struct symtab *next; 1637 1638 /* Backlink to containing compunit symtab. */ 1639 1640 struct compunit_symtab *m_compunit; 1641 1642 /* Table mapping core addresses to line numbers for this file. 1643 Can be NULL if none. Never shared between different symtabs. */ 1644 1645 struct linetable *m_linetable; 1646 1647 /* Name of this source file, in a form appropriate to print to the user. 1648 1649 This pointer is never nullptr. */ 1650 1651 const char *filename; 1652 1653 /* Filename for this source file, used as an identifier to link with 1654 related objects such as associated macro_source_file objects. It must 1655 therefore match the name of any macro_source_file object created for this 1656 source file. The value can be the same as FILENAME if it is known to 1657 follow that rule, or another form of the same file name, this is up to 1658 the specific debug info reader. 1659 1660 This pointer is never nullptr.*/ 1661 const char *filename_for_id; 1662 1663 /* Language of this source file. */ 1664 1665 enum language m_language; 1666 1667 /* Full name of file as found by searching the source path. 1668 NULL if not yet known. */ 1669 1670 char *fullname; 1671 }; 1672 1673 /* A range adapter to allowing iterating over all the file tables in a list. */ 1674 1675 using symtab_range = next_range<symtab>; 1676 1677 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well 1678 as the list of all source files (what gdb has historically associated with 1679 the term "symtab"). 1680 Additional information is recorded here that is common to all symtabs in a 1681 compilation unit (DWARF or otherwise). 1682 1683 Example: 1684 For the case of a program built out of these files: 1685 1686 foo.c 1687 foo1.h 1688 foo2.h 1689 bar.c 1690 foo1.h 1691 bar.h 1692 1693 This is recorded as: 1694 1695 objfile -> foo.c(cu) -> bar.c(cu) -> NULL 1696 | | 1697 v v 1698 foo.c bar.c 1699 | | 1700 v v 1701 foo1.h foo1.h 1702 | | 1703 v v 1704 foo2.h bar.h 1705 | | 1706 v v 1707 NULL NULL 1708 1709 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects, 1710 and the files foo.c, etc. are struct symtab objects. */ 1711 1712 struct compunit_symtab 1713 { 1714 struct objfile *objfile () const 1715 { 1716 return m_objfile; 1717 } 1718 1719 void set_objfile (struct objfile *objfile) 1720 { 1721 m_objfile = objfile; 1722 } 1723 1724 symtab_range filetabs () const 1725 { 1726 return symtab_range (m_filetabs); 1727 } 1728 1729 void add_filetab (symtab *filetab) 1730 { 1731 if (m_filetabs == nullptr) 1732 { 1733 m_filetabs = filetab; 1734 m_last_filetab = filetab; 1735 } 1736 else 1737 { 1738 m_last_filetab->next = filetab; 1739 m_last_filetab = filetab; 1740 } 1741 } 1742 1743 const char *debugformat () const 1744 { 1745 return m_debugformat; 1746 } 1747 1748 void set_debugformat (const char *debugformat) 1749 { 1750 m_debugformat = debugformat; 1751 } 1752 1753 const char *producer () const 1754 { 1755 return m_producer; 1756 } 1757 1758 void set_producer (const char *producer) 1759 { 1760 m_producer = producer; 1761 } 1762 1763 const char *dirname () const 1764 { 1765 return m_dirname; 1766 } 1767 1768 void set_dirname (const char *dirname) 1769 { 1770 m_dirname = dirname; 1771 } 1772 1773 struct blockvector *blockvector () 1774 { 1775 return m_blockvector; 1776 } 1777 1778 const struct blockvector *blockvector () const 1779 { 1780 return m_blockvector; 1781 } 1782 1783 void set_blockvector (struct blockvector *blockvector) 1784 { 1785 m_blockvector = blockvector; 1786 } 1787 1788 int block_line_section () const 1789 { 1790 return m_block_line_section; 1791 } 1792 1793 void set_block_line_section (int block_line_section) 1794 { 1795 m_block_line_section = block_line_section; 1796 } 1797 1798 bool locations_valid () const 1799 { 1800 return m_locations_valid; 1801 } 1802 1803 void set_locations_valid (bool locations_valid) 1804 { 1805 m_locations_valid = locations_valid; 1806 } 1807 1808 bool epilogue_unwind_valid () const 1809 { 1810 return m_epilogue_unwind_valid; 1811 } 1812 1813 void set_epilogue_unwind_valid (bool epilogue_unwind_valid) 1814 { 1815 m_epilogue_unwind_valid = epilogue_unwind_valid; 1816 } 1817 1818 struct macro_table *macro_table () const 1819 { 1820 return m_macro_table; 1821 } 1822 1823 void set_macro_table (struct macro_table *macro_table) 1824 { 1825 m_macro_table = macro_table; 1826 } 1827 1828 /* Make PRIMARY_FILETAB the primary filetab of this compunit symtab. 1829 1830 PRIMARY_FILETAB must already be a filetab of this compunit symtab. */ 1831 1832 void set_primary_filetab (symtab *primary_filetab); 1833 1834 /* Return the primary filetab of the compunit. */ 1835 symtab *primary_filetab () const; 1836 1837 /* Set m_call_site_htab. */ 1838 void set_call_site_htab (htab_t call_site_htab); 1839 1840 /* Find call_site info for PC. */ 1841 call_site *find_call_site (CORE_ADDR pc) const; 1842 1843 /* Return the language of this compunit_symtab. */ 1844 enum language language () const; 1845 1846 /* Unordered chain of all compunit symtabs of this objfile. */ 1847 struct compunit_symtab *next; 1848 1849 /* Object file from which this symtab information was read. */ 1850 struct objfile *m_objfile; 1851 1852 /* Name of the symtab. 1853 This is *not* intended to be a usable filename, and is 1854 for debugging purposes only. */ 1855 const char *name; 1856 1857 /* Unordered list of file symtabs, except that by convention the "main" 1858 source file (e.g., .c, .cc) is guaranteed to be first. 1859 Each symtab is a file, either the "main" source file (e.g., .c, .cc) 1860 or header (e.g., .h). */ 1861 symtab *m_filetabs; 1862 1863 /* Last entry in FILETABS list. 1864 Subfiles are added to the end of the list so they accumulate in order, 1865 with the main source subfile living at the front. 1866 The main reason is so that the main source file symtab is at the head 1867 of the list, and the rest appear in order for debugging convenience. */ 1868 symtab *m_last_filetab; 1869 1870 /* Non-NULL string that identifies the format of the debugging information, 1871 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful 1872 for automated testing of gdb but may also be information that is 1873 useful to the user. */ 1874 const char *m_debugformat; 1875 1876 /* String of producer version information, or NULL if we don't know. */ 1877 const char *m_producer; 1878 1879 /* Directory in which it was compiled, or NULL if we don't know. */ 1880 const char *m_dirname; 1881 1882 /* List of all symbol scope blocks for this symtab. It is shared among 1883 all symtabs in a given compilation unit. */ 1884 struct blockvector *m_blockvector; 1885 1886 /* Section in objfile->section_offsets for the blockvector and 1887 the linetable. Probably always SECT_OFF_TEXT. */ 1888 int m_block_line_section; 1889 1890 /* Symtab has been compiled with both optimizations and debug info so that 1891 GDB may stop skipping prologues as variables locations are valid already 1892 at function entry points. */ 1893 unsigned int m_locations_valid : 1; 1894 1895 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return 1896 instruction). This is supported by GCC since 4.5.0. */ 1897 unsigned int m_epilogue_unwind_valid : 1; 1898 1899 /* struct call_site entries for this compilation unit or NULL. */ 1900 htab_t m_call_site_htab; 1901 1902 /* The macro table for this symtab. Like the blockvector, this 1903 is shared between different symtabs in a given compilation unit. 1904 It's debatable whether it *should* be shared among all the symtabs in 1905 the given compilation unit, but it currently is. */ 1906 struct macro_table *m_macro_table; 1907 1908 /* If non-NULL, then this points to a NULL-terminated vector of 1909 included compunits. When searching the static or global 1910 block of this compunit, the corresponding block of all 1911 included compunits will also be searched. Note that this 1912 list must be flattened -- the symbol reader is responsible for 1913 ensuring that this vector contains the transitive closure of all 1914 included compunits. */ 1915 struct compunit_symtab **includes; 1916 1917 /* If this is an included compunit, this points to one includer 1918 of the table. This user is considered the canonical compunit 1919 containing this one. An included compunit may itself be 1920 included by another. */ 1921 struct compunit_symtab *user; 1922 }; 1923 1924 using compunit_symtab_range = next_range<compunit_symtab>; 1925 1926 /* Return true if this symtab is the "main" symtab of its compunit_symtab. */ 1927 1928 static inline bool 1929 is_main_symtab_of_compunit_symtab (struct symtab *symtab) 1930 { 1931 return symtab == symtab->compunit ()->primary_filetab (); 1932 } 1933 1934 1935 /* The virtual function table is now an array of structures which have the 1936 form { int16 offset, delta; void *pfn; }. 1937 1938 In normal virtual function tables, OFFSET is unused. 1939 DELTA is the amount which is added to the apparent object's base 1940 address in order to point to the actual object to which the 1941 virtual function should be applied. 1942 PFN is a pointer to the virtual function. 1943 1944 Note that this macro is g++ specific (FIXME). */ 1945 1946 #define VTBL_FNADDR_OFFSET 2 1947 1948 /* External variables and functions for the objects described above. */ 1949 1950 /* True if we are nested inside psymtab_to_symtab. */ 1951 1952 extern int currently_reading_symtab; 1953 1954 /* symtab.c lookup functions */ 1955 1956 extern const char multiple_symbols_ask[]; 1957 extern const char multiple_symbols_all[]; 1958 extern const char multiple_symbols_cancel[]; 1959 1960 const char *multiple_symbols_select_mode (void); 1961 1962 bool symbol_matches_domain (enum language symbol_language, 1963 domain_enum symbol_domain, 1964 domain_enum domain); 1965 1966 /* lookup a symbol table by source file name. */ 1967 1968 extern struct symtab *lookup_symtab (const char *); 1969 1970 /* An object of this type is passed as the 'is_a_field_of_this' 1971 argument to lookup_symbol and lookup_symbol_in_language. */ 1972 1973 struct field_of_this_result 1974 { 1975 /* The type in which the field was found. If this is NULL then the 1976 symbol was not found in 'this'. If non-NULL, then one of the 1977 other fields will be non-NULL as well. */ 1978 1979 struct type *type; 1980 1981 /* If the symbol was found as an ordinary field of 'this', then this 1982 is non-NULL and points to the particular field. */ 1983 1984 struct field *field; 1985 1986 /* If the symbol was found as a function field of 'this', then this 1987 is non-NULL and points to the particular field. */ 1988 1989 struct fn_fieldlist *fn_field; 1990 }; 1991 1992 /* Find the definition for a specified symbol name NAME 1993 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK 1994 if non-NULL or from global/static blocks if BLOCK is NULL. 1995 Returns the struct symbol pointer, or NULL if no symbol is found. 1996 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if 1997 NAME is a field of the current implied argument `this'. If so fill in the 1998 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL. 1999 The symbol's section is fixed up if necessary. */ 2000 2001 extern struct block_symbol 2002 lookup_symbol_in_language (const char *, 2003 const struct block *, 2004 const domain_enum, 2005 enum language, 2006 struct field_of_this_result *); 2007 2008 /* Same as lookup_symbol_in_language, but using the current language. */ 2009 2010 extern struct block_symbol lookup_symbol (const char *, 2011 const struct block *, 2012 const domain_enum, 2013 struct field_of_this_result *); 2014 2015 /* Find the definition for a specified symbol search name in domain 2016 DOMAIN, visible from lexical block BLOCK if non-NULL or from 2017 global/static blocks if BLOCK is NULL. The passed-in search name 2018 should not come from the user; instead it should already be a 2019 search name as retrieved from a search_name () call. See definition of 2020 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol 2021 pointer, or NULL if no symbol is found. The symbol's section is 2022 fixed up if necessary. */ 2023 2024 extern struct block_symbol lookup_symbol_search_name (const char *search_name, 2025 const struct block *block, 2026 domain_enum domain); 2027 2028 /* Some helper functions for languages that need to write their own 2029 lookup_symbol_nonlocal functions. */ 2030 2031 /* Lookup a symbol in the static block associated to BLOCK, if there 2032 is one; do nothing if BLOCK is NULL or a global block. 2033 Upon success fixes up the symbol's section if necessary. */ 2034 2035 extern struct block_symbol 2036 lookup_symbol_in_static_block (const char *name, 2037 const struct block *block, 2038 const domain_enum domain); 2039 2040 /* Search all static file-level symbols for NAME from DOMAIN. 2041 Upon success fixes up the symbol's section if necessary. */ 2042 2043 extern struct block_symbol lookup_static_symbol (const char *name, 2044 const domain_enum domain); 2045 2046 /* Lookup a symbol in all files' global blocks. 2047 2048 If BLOCK is non-NULL then it is used for two things: 2049 1) If a target-specific lookup routine for libraries exists, then use the 2050 routine for the objfile of BLOCK, and 2051 2) The objfile of BLOCK is used to assist in determining the search order 2052 if the target requires it. 2053 See gdbarch_iterate_over_objfiles_in_search_order. 2054 2055 Upon success fixes up the symbol's section if necessary. */ 2056 2057 extern struct block_symbol 2058 lookup_global_symbol (const char *name, 2059 const struct block *block, 2060 const domain_enum domain); 2061 2062 /* Lookup a symbol in block BLOCK. 2063 Upon success fixes up the symbol's section if necessary. */ 2064 2065 extern struct symbol * 2066 lookup_symbol_in_block (const char *name, 2067 symbol_name_match_type match_type, 2068 const struct block *block, 2069 const domain_enum domain); 2070 2071 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if 2072 found, or NULL if not found. */ 2073 2074 extern struct block_symbol 2075 lookup_language_this (const struct language_defn *lang, 2076 const struct block *block); 2077 2078 /* Lookup a [struct, union, enum] by name, within a specified block. */ 2079 2080 extern struct type *lookup_struct (const char *, const struct block *); 2081 2082 extern struct type *lookup_union (const char *, const struct block *); 2083 2084 extern struct type *lookup_enum (const char *, const struct block *); 2085 2086 /* from blockframe.c: */ 2087 2088 /* lookup the function symbol corresponding to the address. The 2089 return value will not be an inlined function; the containing 2090 function will be returned instead. */ 2091 2092 extern struct symbol *find_pc_function (CORE_ADDR); 2093 2094 /* lookup the function corresponding to the address and section. The 2095 return value will not be an inlined function; the containing 2096 function will be returned instead. */ 2097 2098 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *); 2099 2100 /* lookup the function symbol corresponding to the address and 2101 section. The return value will be the closest enclosing function, 2102 which might be an inline function. */ 2103 2104 extern struct symbol *find_pc_sect_containing_function 2105 (CORE_ADDR pc, struct obj_section *section); 2106 2107 /* Find the symbol at the given address. Returns NULL if no symbol 2108 found. Only exact matches for ADDRESS are considered. */ 2109 2110 extern struct symbol *find_symbol_at_address (CORE_ADDR); 2111 2112 /* Finds the "function" (text symbol) that is smaller than PC but 2113 greatest of all of the potential text symbols in SECTION. Sets 2114 *NAME and/or *ADDRESS conditionally if that pointer is non-null. 2115 If ENDADDR is non-null, then set *ENDADDR to be the end of the 2116 function (exclusive). If the optional parameter BLOCK is non-null, 2117 then set *BLOCK to the address of the block corresponding to the 2118 function symbol, if such a symbol could be found during the lookup; 2119 nullptr is used as a return value for *BLOCK if no block is found. 2120 This function either succeeds or fails (not halfway succeeds). If 2121 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real 2122 information and returns true. If it fails, it sets *NAME, *ADDRESS 2123 and *ENDADDR to zero and returns false. 2124 2125 If the function in question occupies non-contiguous ranges, 2126 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set 2127 to the start and end of the range in which PC is found. Thus 2128 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges 2129 from other functions might be found). 2130 2131 This property allows find_pc_partial_function to be used (as it had 2132 been prior to the introduction of non-contiguous range support) by 2133 various tdep files for finding a start address and limit address 2134 for prologue analysis. This still isn't ideal, however, because we 2135 probably shouldn't be doing prologue analysis (in which 2136 instructions are scanned to determine frame size and stack layout) 2137 for any range that doesn't contain the entry pc. Moreover, a good 2138 argument can be made that prologue analysis ought to be performed 2139 starting from the entry pc even when PC is within some other range. 2140 This might suggest that *ADDRESS and *ENDADDR ought to be set to the 2141 limits of the entry pc range, but that will cause the 2142 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the 2143 callers of find_pc_partial_function expect this condition to hold. 2144 2145 Callers which require the start and/or end addresses for the range 2146 containing the entry pc should instead call 2147 find_function_entry_range_from_pc. */ 2148 2149 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name, 2150 CORE_ADDR *address, CORE_ADDR *endaddr, 2151 const struct block **block = nullptr); 2152 2153 /* Like find_pc_partial_function, above, but returns the underlying 2154 general_symbol_info (rather than the name) as an out parameter. */ 2155 2156 extern bool find_pc_partial_function_sym 2157 (CORE_ADDR pc, const general_symbol_info **sym, 2158 CORE_ADDR *address, CORE_ADDR *endaddr, 2159 const struct block **block = nullptr); 2160 2161 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are 2162 set to start and end addresses of the range containing the entry pc. 2163 2164 Note that it is not necessarily the case that (for non-NULL ADDRESS 2165 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will 2166 hold. 2167 2168 See comment for find_pc_partial_function, above, for further 2169 explanation. */ 2170 2171 extern bool find_function_entry_range_from_pc (CORE_ADDR pc, 2172 const char **name, 2173 CORE_ADDR *address, 2174 CORE_ADDR *endaddr); 2175 2176 /* Return the type of a function with its first instruction exactly at 2177 the PC address. Return NULL otherwise. */ 2178 2179 extern struct type *find_function_type (CORE_ADDR pc); 2180 2181 /* See if we can figure out the function's actual type from the type 2182 that the resolver returns. RESOLVER_FUNADDR is the address of the 2183 ifunc resolver. */ 2184 2185 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr); 2186 2187 /* Find the GNU ifunc minimal symbol that matches SYM. */ 2188 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym); 2189 2190 extern void clear_pc_function_cache (void); 2191 2192 /* Expand symtab containing PC, SECTION if not already expanded. */ 2193 2194 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *); 2195 2196 /* lookup full symbol table by address. */ 2197 2198 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR); 2199 2200 /* lookup full symbol table by address and section. */ 2201 2202 extern struct compunit_symtab * 2203 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *); 2204 2205 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *); 2206 2207 extern void reread_symbols (int from_tty); 2208 2209 /* Look up a type named NAME in STRUCT_DOMAIN in the current language. 2210 The type returned must not be opaque -- i.e., must have at least one field 2211 defined. */ 2212 2213 extern struct type *lookup_transparent_type (const char *); 2214 2215 extern struct type *basic_lookup_transparent_type (const char *); 2216 2217 /* Macro for name of symbol to indicate a file compiled with gcc. */ 2218 #ifndef GCC_COMPILED_FLAG_SYMBOL 2219 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled." 2220 #endif 2221 2222 /* Macro for name of symbol to indicate a file compiled with gcc2. */ 2223 #ifndef GCC2_COMPILED_FLAG_SYMBOL 2224 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled." 2225 #endif 2226 2227 extern bool in_gnu_ifunc_stub (CORE_ADDR pc); 2228 2229 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only 2230 for ELF symbol files. */ 2231 2232 struct gnu_ifunc_fns 2233 { 2234 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */ 2235 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc); 2236 2237 /* See elf_gnu_ifunc_resolve_name for its real implementation. */ 2238 bool (*gnu_ifunc_resolve_name) (const char *function_name, 2239 CORE_ADDR *function_address_p); 2240 2241 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */ 2242 void (*gnu_ifunc_resolver_stop) (code_breakpoint *b); 2243 2244 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */ 2245 void (*gnu_ifunc_resolver_return_stop) (code_breakpoint *b); 2246 }; 2247 2248 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr 2249 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name 2250 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop 2251 #define gnu_ifunc_resolver_return_stop \ 2252 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop 2253 2254 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p; 2255 2256 extern CORE_ADDR find_solib_trampoline_target (frame_info_ptr, CORE_ADDR); 2257 2258 struct symtab_and_line 2259 { 2260 /* The program space of this sal. */ 2261 struct program_space *pspace = NULL; 2262 2263 struct symtab *symtab = NULL; 2264 struct symbol *symbol = NULL; 2265 struct obj_section *section = NULL; 2266 struct minimal_symbol *msymbol = NULL; 2267 /* Line number. Line numbers start at 1 and proceed through symtab->nlines. 2268 0 is never a valid line number; it is used to indicate that line number 2269 information is not available. */ 2270 int line = 0; 2271 2272 CORE_ADDR pc = 0; 2273 CORE_ADDR end = 0; 2274 bool explicit_pc = false; 2275 bool explicit_line = false; 2276 2277 /* If the line number information is valid, then this indicates if this 2278 line table entry had the is-stmt flag set or not. */ 2279 bool is_stmt = false; 2280 2281 /* The probe associated with this symtab_and_line. */ 2282 probe *prob = NULL; 2283 /* If PROBE is not NULL, then this is the objfile in which the probe 2284 originated. */ 2285 struct objfile *objfile = NULL; 2286 }; 2287 2288 2289 2290 /* Given a pc value, return line number it is in. Second arg nonzero means 2291 if pc is on the boundary use the previous statement's line number. */ 2292 2293 extern struct symtab_and_line find_pc_line (CORE_ADDR, int); 2294 2295 /* Same function, but specify a section as well as an address. */ 2296 2297 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR, 2298 struct obj_section *, int); 2299 2300 /* Wrapper around find_pc_line to just return the symtab. */ 2301 2302 extern struct symtab *find_pc_line_symtab (CORE_ADDR); 2303 2304 /* Given a symtab and line number, return the pc there. */ 2305 2306 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *); 2307 2308 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *, 2309 CORE_ADDR *); 2310 2311 extern void resolve_sal_pc (struct symtab_and_line *); 2312 2313 /* solib.c */ 2314 2315 extern void clear_solib (void); 2316 2317 /* The reason we're calling into a completion match list collector 2318 function. */ 2319 enum class complete_symbol_mode 2320 { 2321 /* Completing an expression. */ 2322 EXPRESSION, 2323 2324 /* Completing a linespec. */ 2325 LINESPEC, 2326 }; 2327 2328 extern void default_collect_symbol_completion_matches_break_on 2329 (completion_tracker &tracker, 2330 complete_symbol_mode mode, 2331 symbol_name_match_type name_match_type, 2332 const char *text, const char *word, const char *break_on, 2333 enum type_code code); 2334 extern void collect_symbol_completion_matches 2335 (completion_tracker &tracker, 2336 complete_symbol_mode mode, 2337 symbol_name_match_type name_match_type, 2338 const char *, const char *); 2339 extern void collect_symbol_completion_matches_type (completion_tracker &tracker, 2340 const char *, const char *, 2341 enum type_code); 2342 2343 extern void collect_file_symbol_completion_matches 2344 (completion_tracker &tracker, 2345 complete_symbol_mode, 2346 symbol_name_match_type name_match_type, 2347 const char *, const char *, const char *); 2348 2349 extern completion_list 2350 make_source_files_completion_list (const char *, const char *); 2351 2352 /* Return whether SYM is a function/method, as opposed to a data symbol. */ 2353 2354 extern bool symbol_is_function_or_method (symbol *sym); 2355 2356 /* Return whether MSYMBOL is a function/method, as opposed to a data 2357 symbol */ 2358 2359 extern bool symbol_is_function_or_method (minimal_symbol *msymbol); 2360 2361 /* Return whether SYM should be skipped in completion mode MODE. In 2362 linespec mode, we're only interested in functions/methods. */ 2363 2364 template<typename Symbol> 2365 static bool 2366 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym) 2367 { 2368 return (mode == complete_symbol_mode::LINESPEC 2369 && !symbol_is_function_or_method (sym)); 2370 } 2371 2372 /* symtab.c */ 2373 2374 bool matching_obj_sections (struct obj_section *, struct obj_section *); 2375 2376 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *); 2377 2378 /* Given a function symbol SYM, find the symtab and line for the start 2379 of the function. If FUNFIRSTLINE is true, we want the first line 2380 of real code inside the function. */ 2381 extern symtab_and_line find_function_start_sal (symbol *sym, bool 2382 funfirstline); 2383 2384 /* Same, but start with a function address/section instead of a 2385 symbol. */ 2386 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr, 2387 obj_section *section, 2388 bool funfirstline); 2389 2390 extern void skip_prologue_sal (struct symtab_and_line *); 2391 2392 /* symtab.c */ 2393 2394 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch, 2395 CORE_ADDR func_addr); 2396 2397 extern struct symbol *fixup_symbol_section (struct symbol *, 2398 struct objfile *); 2399 2400 /* If MSYMBOL is an text symbol, look for a function debug symbol with 2401 the same address. Returns NULL if not found. This is necessary in 2402 case a function is an alias to some other function, because debug 2403 information is only emitted for the alias target function's 2404 definition, not for the alias. */ 2405 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol); 2406 2407 /* Symbol searching */ 2408 2409 /* When using the symbol_searcher struct to search for symbols, a vector of 2410 the following structs is returned. */ 2411 struct symbol_search 2412 { 2413 symbol_search (int block_, struct symbol *symbol_) 2414 : block (block_), 2415 symbol (symbol_) 2416 { 2417 msymbol.minsym = nullptr; 2418 msymbol.objfile = nullptr; 2419 } 2420 2421 symbol_search (int block_, struct minimal_symbol *minsym, 2422 struct objfile *objfile) 2423 : block (block_), 2424 symbol (nullptr) 2425 { 2426 msymbol.minsym = minsym; 2427 msymbol.objfile = objfile; 2428 } 2429 2430 bool operator< (const symbol_search &other) const 2431 { 2432 return compare_search_syms (*this, other) < 0; 2433 } 2434 2435 bool operator== (const symbol_search &other) const 2436 { 2437 return compare_search_syms (*this, other) == 0; 2438 } 2439 2440 /* The block in which the match was found. Could be, for example, 2441 STATIC_BLOCK or GLOBAL_BLOCK. */ 2442 int block; 2443 2444 /* Information describing what was found. 2445 2446 If symbol is NOT NULL, then information was found for this match. */ 2447 struct symbol *symbol; 2448 2449 /* If msymbol is non-null, then a match was made on something for 2450 which only minimal_symbols exist. */ 2451 struct bound_minimal_symbol msymbol; 2452 2453 private: 2454 2455 static int compare_search_syms (const symbol_search &sym_a, 2456 const symbol_search &sym_b); 2457 }; 2458 2459 /* In order to search for global symbols of a particular kind matching 2460 particular regular expressions, create an instance of this structure and 2461 call the SEARCH member function. */ 2462 class global_symbol_searcher 2463 { 2464 public: 2465 2466 /* Constructor. */ 2467 global_symbol_searcher (enum search_domain kind, 2468 const char *symbol_name_regexp) 2469 : m_kind (kind), 2470 m_symbol_name_regexp (symbol_name_regexp) 2471 { 2472 /* The symbol searching is designed to only find one kind of thing. */ 2473 gdb_assert (m_kind != ALL_DOMAIN); 2474 } 2475 2476 /* Set the optional regexp that matches against the symbol type. */ 2477 void set_symbol_type_regexp (const char *regexp) 2478 { 2479 m_symbol_type_regexp = regexp; 2480 } 2481 2482 /* Set the flag to exclude minsyms from the search results. */ 2483 void set_exclude_minsyms (bool exclude_minsyms) 2484 { 2485 m_exclude_minsyms = exclude_minsyms; 2486 } 2487 2488 /* Set the maximum number of search results to be returned. */ 2489 void set_max_search_results (size_t max_search_results) 2490 { 2491 m_max_search_results = max_search_results; 2492 } 2493 2494 /* Search the symbols from all objfiles in the current program space 2495 looking for matches as defined by the current state of this object. 2496 2497 Within each file the results are sorted locally; each symtab's global 2498 and static blocks are separately alphabetized. Duplicate entries are 2499 removed. */ 2500 std::vector<symbol_search> search () const; 2501 2502 /* The set of source files to search in for matching symbols. This is 2503 currently public so that it can be populated after this object has 2504 been constructed. */ 2505 std::vector<const char *> filenames; 2506 2507 private: 2508 /* The kind of symbols are we searching for. 2509 VARIABLES_DOMAIN - Search all symbols, excluding functions, type 2510 names, and constants (enums). 2511 FUNCTIONS_DOMAIN - Search all functions.. 2512 TYPES_DOMAIN - Search all type names. 2513 MODULES_DOMAIN - Search all Fortran modules. 2514 ALL_DOMAIN - Not valid for this function. */ 2515 enum search_domain m_kind; 2516 2517 /* Regular expression to match against the symbol name. */ 2518 const char *m_symbol_name_regexp = nullptr; 2519 2520 /* Regular expression to match against the symbol type. */ 2521 const char *m_symbol_type_regexp = nullptr; 2522 2523 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will 2524 be included in the results, otherwise they are excluded. */ 2525 bool m_exclude_minsyms = false; 2526 2527 /* Maximum number of search results. We currently impose a hard limit 2528 of SIZE_MAX, there is no "unlimited". */ 2529 size_t m_max_search_results = SIZE_MAX; 2530 2531 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return 2532 true if any msymbols were seen that we should later consider adding to 2533 the results list. */ 2534 bool expand_symtabs (objfile *objfile, 2535 const gdb::optional<compiled_regex> &preg) const; 2536 2537 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are 2538 of type M_KIND, to the results set RESULTS_SET. Return false if we 2539 stop adding results early due to having already found too many results 2540 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true. 2541 Returning true does not indicate that any results were added, just 2542 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */ 2543 bool add_matching_symbols (objfile *objfile, 2544 const gdb::optional<compiled_regex> &preg, 2545 const gdb::optional<compiled_regex> &treg, 2546 std::set<symbol_search> *result_set) const; 2547 2548 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results 2549 vector RESULTS. Return false if we stop adding results early due to 2550 having already found too many results (based on max search results 2551 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true 2552 does not indicate that any results were added, just that we didn't 2553 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */ 2554 bool add_matching_msymbols (objfile *objfile, 2555 const gdb::optional<compiled_regex> &preg, 2556 std::vector<symbol_search> *results) const; 2557 2558 /* Return true if MSYMBOL is of type KIND. */ 2559 static bool is_suitable_msymbol (const enum search_domain kind, 2560 const minimal_symbol *msymbol); 2561 }; 2562 2563 /* When searching for Fortran symbols within modules (functions/variables) 2564 we return a vector of this type. The first item in the pair is the 2565 module symbol, and the second item is the symbol for the function or 2566 variable we found. */ 2567 typedef std::pair<symbol_search, symbol_search> module_symbol_search; 2568 2569 /* Searches the symbols to find function and variables symbols (depending 2570 on KIND) within Fortran modules. The MODULE_REGEXP matches against the 2571 name of the module, REGEXP matches against the name of the symbol within 2572 the module, and TYPE_REGEXP matches against the type of the symbol 2573 within the module. */ 2574 extern std::vector<module_symbol_search> search_module_symbols 2575 (const char *module_regexp, const char *regexp, 2576 const char *type_regexp, search_domain kind); 2577 2578 /* Convert a global or static symbol SYM (based on BLOCK, which should be 2579 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info' 2580 type commands (e.g. 'info variables', 'info functions', etc). KIND is 2581 the type of symbol that was searched for which gave us SYM. */ 2582 2583 extern std::string symbol_to_info_string (struct symbol *sym, int block, 2584 enum search_domain kind); 2585 2586 extern bool treg_matches_sym_type_name (const compiled_regex &treg, 2587 const struct symbol *sym); 2588 2589 /* The name of the ``main'' function. */ 2590 extern const char *main_name (); 2591 extern enum language main_language (void); 2592 2593 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks, 2594 as specified by BLOCK_INDEX. 2595 This searches MAIN_OBJFILE as well as any associated separate debug info 2596 objfiles of MAIN_OBJFILE. 2597 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK. 2598 Upon success fixes up the symbol's section if necessary. */ 2599 2600 extern struct block_symbol 2601 lookup_global_symbol_from_objfile (struct objfile *main_objfile, 2602 enum block_enum block_index, 2603 const char *name, 2604 const domain_enum domain); 2605 2606 /* Return 1 if the supplied producer string matches the ARM RealView 2607 compiler (armcc). */ 2608 bool producer_is_realview (const char *producer); 2609 2610 void fixup_section (struct general_symbol_info *ginfo, 2611 CORE_ADDR addr, struct objfile *objfile); 2612 2613 extern unsigned int symtab_create_debug; 2614 2615 /* Print a "symtab-create" debug statement. */ 2616 2617 #define symtab_create_debug_printf(fmt, ...) \ 2618 debug_prefixed_printf_cond (symtab_create_debug >= 1, "symtab-create", fmt, ##__VA_ARGS__) 2619 2620 /* Print a verbose "symtab-create" debug statement, only if 2621 "set debug symtab-create" is set to 2 or higher. */ 2622 2623 #define symtab_create_debug_printf_v(fmt, ...) \ 2624 debug_prefixed_printf_cond (symtab_create_debug >= 2, "symtab-create", fmt, ##__VA_ARGS__) 2625 2626 extern unsigned int symbol_lookup_debug; 2627 2628 /* Return true if symbol-lookup debug is turned on at all. */ 2629 2630 static inline bool 2631 symbol_lookup_debug_enabled () 2632 { 2633 return symbol_lookup_debug > 0; 2634 } 2635 2636 /* Return true if symbol-lookup debug is turned to verbose mode. */ 2637 2638 static inline bool 2639 symbol_lookup_debug_enabled_v () 2640 { 2641 return symbol_lookup_debug > 1; 2642 } 2643 2644 /* Print a "symbol-lookup" debug statement if symbol_lookup_debug is >= 1. */ 2645 2646 #define symbol_lookup_debug_printf(fmt, ...) \ 2647 debug_prefixed_printf_cond (symbol_lookup_debug_enabled (), \ 2648 "symbol-lookup", fmt, ##__VA_ARGS__) 2649 2650 /* Print a "symbol-lookup" debug statement if symbol_lookup_debug is >= 2. */ 2651 2652 #define symbol_lookup_debug_printf_v(fmt, ...) \ 2653 debug_prefixed_printf_cond (symbol_lookup_debug_enabled_v (), \ 2654 "symbol-lookup", fmt, ##__VA_ARGS__) 2655 2656 /* Print "symbol-lookup" enter/exit debug statements. */ 2657 2658 #define SYMBOL_LOOKUP_SCOPED_DEBUG_ENTER_EXIT \ 2659 scoped_debug_enter_exit (symbol_lookup_debug_enabled, "symbol-lookup") 2660 2661 extern bool basenames_may_differ; 2662 2663 bool compare_filenames_for_search (const char *filename, 2664 const char *search_name); 2665 2666 bool compare_glob_filenames_for_search (const char *filename, 2667 const char *search_name); 2668 2669 bool iterate_over_some_symtabs (const char *name, 2670 const char *real_path, 2671 struct compunit_symtab *first, 2672 struct compunit_symtab *after_last, 2673 gdb::function_view<bool (symtab *)> callback); 2674 2675 void iterate_over_symtabs (const char *name, 2676 gdb::function_view<bool (symtab *)> callback); 2677 2678 2679 std::vector<CORE_ADDR> find_pcs_for_symtab_line 2680 (struct symtab *symtab, int line, struct linetable_entry **best_entry); 2681 2682 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback 2683 is called once per matching symbol SYM. The callback should return 2684 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue 2685 iterating, or false to indicate that the iteration should end. */ 2686 2687 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym); 2688 2689 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK. 2690 2691 For each symbol that matches, CALLBACK is called. The symbol is 2692 passed to the callback. 2693 2694 If CALLBACK returns false, the iteration ends and this function 2695 returns false. Otherwise, the search continues, and the function 2696 eventually returns true. */ 2697 2698 bool iterate_over_symbols (const struct block *block, 2699 const lookup_name_info &name, 2700 const domain_enum domain, 2701 gdb::function_view<symbol_found_callback_ftype> callback); 2702 2703 /* Like iterate_over_symbols, but if all calls to CALLBACK return 2704 true, then calls CALLBACK one additional time with a block_symbol 2705 that has a valid block but a NULL symbol. */ 2706 2707 bool iterate_over_symbols_terminated 2708 (const struct block *block, 2709 const lookup_name_info &name, 2710 const domain_enum domain, 2711 gdb::function_view<symbol_found_callback_ftype> callback); 2712 2713 /* Storage type used by demangle_for_lookup. demangle_for_lookup 2714 either returns a const char * pointer that points to either of the 2715 fields of this type, or a pointer to the input NAME. This is done 2716 this way to avoid depending on the precise details of the storage 2717 for the string. */ 2718 class demangle_result_storage 2719 { 2720 public: 2721 2722 /* Swap the malloc storage to STR, and return a pointer to the 2723 beginning of the new string. */ 2724 const char *set_malloc_ptr (gdb::unique_xmalloc_ptr<char> &&str) 2725 { 2726 m_malloc = std::move (str); 2727 return m_malloc.get (); 2728 } 2729 2730 /* Set the malloc storage to now point at PTR. Any previous malloc 2731 storage is released. */ 2732 const char *set_malloc_ptr (char *ptr) 2733 { 2734 m_malloc.reset (ptr); 2735 return ptr; 2736 } 2737 2738 private: 2739 2740 /* The storage. */ 2741 gdb::unique_xmalloc_ptr<char> m_malloc; 2742 }; 2743 2744 const char * 2745 demangle_for_lookup (const char *name, enum language lang, 2746 demangle_result_storage &storage); 2747 2748 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by 2749 SYMNAME (which is already demangled for C++ symbols) matches 2750 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to 2751 the current completion list and return true. Otherwise, return 2752 false. */ 2753 bool completion_list_add_name (completion_tracker &tracker, 2754 language symbol_language, 2755 const char *symname, 2756 const lookup_name_info &lookup_name, 2757 const char *text, const char *word); 2758 2759 /* A simple symbol searching class. */ 2760 2761 class symbol_searcher 2762 { 2763 public: 2764 /* Returns the symbols found for the search. */ 2765 const std::vector<block_symbol> & 2766 matching_symbols () const 2767 { 2768 return m_symbols; 2769 } 2770 2771 /* Returns the minimal symbols found for the search. */ 2772 const std::vector<bound_minimal_symbol> & 2773 matching_msymbols () const 2774 { 2775 return m_minimal_symbols; 2776 } 2777 2778 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting 2779 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL 2780 to search all symtabs and program spaces. */ 2781 void find_all_symbols (const std::string &name, 2782 const struct language_defn *language, 2783 enum search_domain search_domain, 2784 std::vector<symtab *> *search_symtabs, 2785 struct program_space *search_pspace); 2786 2787 /* Reset this object to perform another search. */ 2788 void reset () 2789 { 2790 m_symbols.clear (); 2791 m_minimal_symbols.clear (); 2792 } 2793 2794 private: 2795 /* Matching debug symbols. */ 2796 std::vector<block_symbol> m_symbols; 2797 2798 /* Matching non-debug symbols. */ 2799 std::vector<bound_minimal_symbol> m_minimal_symbols; 2800 }; 2801 2802 /* Class used to encapsulate the filename filtering for the "info sources" 2803 command. */ 2804 2805 struct info_sources_filter 2806 { 2807 /* If filename filtering is being used (see M_C_REGEXP) then which part 2808 of the filename is being filtered against? */ 2809 enum class match_on 2810 { 2811 /* Match against the full filename. */ 2812 FULLNAME, 2813 2814 /* Match only against the directory part of the full filename. */ 2815 DIRNAME, 2816 2817 /* Match only against the basename part of the full filename. */ 2818 BASENAME 2819 }; 2820 2821 /* Create a filter of MATCH_TYPE using regular expression REGEXP. If 2822 REGEXP is nullptr then all files will match the filter and MATCH_TYPE 2823 is ignored. 2824 2825 The string pointed too by REGEXP must remain live and unchanged for 2826 this lifetime of this object as the object only retains a copy of the 2827 pointer. */ 2828 info_sources_filter (match_on match_type, const char *regexp); 2829 2830 DISABLE_COPY_AND_ASSIGN (info_sources_filter); 2831 2832 /* Does FULLNAME match the filter defined by this object, return true if 2833 it does, otherwise, return false. If there is no filtering defined 2834 then this function will always return true. */ 2835 bool matches (const char *fullname) const; 2836 2837 private: 2838 2839 /* The type of filtering in place. */ 2840 match_on m_match_type; 2841 2842 /* Points to the original regexp used to create this filter. */ 2843 const char *m_regexp; 2844 2845 /* A compiled version of M_REGEXP. This object is only given a value if 2846 M_REGEXP is not nullptr and is not the empty string. */ 2847 gdb::optional<compiled_regex> m_c_regexp; 2848 }; 2849 2850 /* Perform the core of the 'info sources' command. 2851 2852 FILTER is used to perform regular expression based filtering on the 2853 source files that will be displayed. 2854 2855 Output is written to UIOUT in CLI or MI style as appropriate. */ 2856 2857 extern void info_sources_worker (struct ui_out *uiout, 2858 bool group_by_objfile, 2859 const info_sources_filter &filter); 2860 2861 #endif /* !defined(SYMTAB_H) */ 2862