xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/stabsread.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* Support routines for decoding "stabs" debugging information format.
2 
3    Copyright (C) 1986-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 /* Support routines for reading and decoding debugging information in
21    the "stabs" format.  This format is used by some systems that use
22    COFF or ELF where the stabs data is placed in a special section (as
23    well as with many old systems that used the a.out object file
24    format).  Avoid placing any object file format specific code in
25    this file.  */
26 
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdbsupport/gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h"	/* We always use GNU stabs, not native.  */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49 
50 #include "stabsread.h"
51 
52 /* See stabsread.h for these globals.  */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63 
64 struct stabs_nextfield
65 {
66   struct stabs_nextfield *next;
67 
68   /* This is the raw visibility from the stab.  It is not checked
69      for being one of the visibilities we recognize, so code which
70      examines this field better be able to deal.  */
71   int visibility;
72 
73   struct field field;
74 };
75 
76 struct next_fnfieldlist
77 {
78   struct next_fnfieldlist *next;
79   struct fn_fieldlist fn_fieldlist;
80 };
81 
82 /* The routines that read and process a complete stabs for a C struct or
83    C++ class pass lists of data member fields and lists of member function
84    fields in an instance of a field_info structure, as defined below.
85    This is part of some reorganization of low level C++ support and is
86    expected to eventually go away...  (FIXME) */
87 
88 struct stab_field_info
89   {
90     struct stabs_nextfield *list = nullptr;
91     struct next_fnfieldlist *fnlist = nullptr;
92 
93     auto_obstack obstack;
94   };
95 
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 		       struct type *, struct objfile *);
99 
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101 
102 static long read_huge_number (const char **, int, int *, int);
103 
104 static struct type *error_type (const char **, struct objfile *);
105 
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 		   struct objfile *);
109 
110 static void fix_common_block (struct symbol *, CORE_ADDR);
111 
112 static int read_type_number (const char **, int *);
113 
114 static struct type *read_type (const char **, struct objfile *);
115 
116 static struct type *read_range_type (const char **, int[2],
117 				     int, struct objfile *);
118 
119 static struct type *read_sun_builtin_type (const char **,
120 					   int[2], struct objfile *);
121 
122 static struct type *read_sun_floating_type (const char **, int[2],
123 					    struct objfile *);
124 
125 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126 
127 static struct type *rs6000_builtin_type (int, struct objfile *);
128 
129 static int
130 read_member_functions (struct stab_field_info *, const char **, struct type *,
131 		       struct objfile *);
132 
133 static int
134 read_struct_fields (struct stab_field_info *, const char **, struct type *,
135 		    struct objfile *);
136 
137 static int
138 read_baseclasses (struct stab_field_info *, const char **, struct type *,
139 		  struct objfile *);
140 
141 static int
142 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
143 		   struct objfile *);
144 
145 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146 
147 static int attach_fields_to_type (struct stab_field_info *, struct type *,
148 				  struct objfile *);
149 
150 static struct type *read_struct_type (const char **, struct type *,
151 				      enum type_code,
152 				      struct objfile *);
153 
154 static struct type *read_array_type (const char **, struct type *,
155 				     struct objfile *);
156 
157 static struct field *read_args (const char **, int, struct objfile *,
158 				int *, int *);
159 
160 static void add_undefined_type (struct type *, int[2]);
161 
162 static int
163 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
164 		 struct objfile *);
165 
166 static const char *find_name_end (const char *name);
167 
168 static int process_reference (const char **string);
169 
170 void stabsread_clear_cache (void);
171 
172 static const char vptr_name[] = "_vptr$";
173 static const char vb_name[] = "_vb$";
174 
175 static void
176 invalid_cpp_abbrev_complaint (const char *arg1)
177 {
178   complaint (_("invalid C++ abbreviation `%s'"), arg1);
179 }
180 
181 static void
182 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 {
184   complaint (_("bad register number %d (max %d) in symbol %s"),
185 	     regnum, num_regs - 1, sym);
186 }
187 
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191   complaint ("%s", arg1);
192 }
193 
194 /* Make a list of forward references which haven't been defined.  */
195 
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200 
201 /* Make a list of nameless types that are undefined.
202    This happens when another type is referenced by its number
203    before this type is actually defined.  For instance "t(0,1)=k(0,2)"
204    and type (0,2) is defined only later.  */
205 
206 struct nat
207 {
208   int typenums[2];
209   struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214 
215 /* Check for and handle cretinous stabs symbol name continuation!  */
216 #define STABS_CONTINUE(pp,objfile)				\
217   do {							\
218     if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219       *(pp) = next_symbol_text (objfile);	\
220   } while (0)
221 
222 /* Vector of types defined so far, indexed by their type numbers.
223    (In newer sun systems, dbx uses a pair of numbers in parens,
224    as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225    Then these numbers must be translated through the type_translations
226    hash table to get the index into the type vector.)  */
227 
228 static struct type **type_vector;
229 
230 /* Number of elements allocated for type_vector currently.  */
231 
232 static int type_vector_length;
233 
234 /* Initial size of type vector.  Is realloc'd larger if needed, and
235    realloc'd down to the size actually used, when completed.  */
236 
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 
239 
240 /* Look up a dbx type-number pair.  Return the address of the slot
241    where the type for that number-pair is stored.
242    The number-pair is in TYPENUMS.
243 
244    This can be used for finding the type associated with that pair
245    or for associating a new type with the pair.  */
246 
247 static struct type **
248 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 {
250   int filenum = typenums[0];
251   int index = typenums[1];
252   unsigned old_len;
253   int real_filenum;
254   struct header_file *f;
255   int f_orig_length;
256 
257   if (filenum == -1)		/* -1,-1 is for temporary types.  */
258     return 0;
259 
260   if (filenum < 0 || filenum >= n_this_object_header_files)
261     {
262       complaint (_("Invalid symbol data: type number "
263 		   "(%d,%d) out of range at symtab pos %d."),
264 		 filenum, index, symnum);
265       goto error_return;
266     }
267 
268   if (filenum == 0)
269     {
270       if (index < 0)
271 	{
272 	  /* Caller wants address of address of type.  We think
273 	     that negative (rs6k builtin) types will never appear as
274 	     "lvalues", (nor should they), so we stuff the real type
275 	     pointer into a temp, and return its address.  If referenced,
276 	     this will do the right thing.  */
277 	  static struct type *temp_type;
278 
279 	  temp_type = rs6000_builtin_type (index, objfile);
280 	  return &temp_type;
281 	}
282 
283       /* Type is defined outside of header files.
284 	 Find it in this object file's type vector.  */
285       if (index >= type_vector_length)
286 	{
287 	  old_len = type_vector_length;
288 	  if (old_len == 0)
289 	    {
290 	      type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
291 	      type_vector = XNEWVEC (struct type *, type_vector_length);
292 	    }
293 	  while (index >= type_vector_length)
294 	    {
295 	      type_vector_length *= 2;
296 	    }
297 	  type_vector = (struct type **)
298 	    xrealloc ((char *) type_vector,
299 		      (type_vector_length * sizeof (struct type *)));
300 	  memset (&type_vector[old_len], 0,
301 		  (type_vector_length - old_len) * sizeof (struct type *));
302 	}
303       return (&type_vector[index]);
304     }
305   else
306     {
307       real_filenum = this_object_header_files[filenum];
308 
309       if (real_filenum >= N_HEADER_FILES (objfile))
310 	{
311 	  static struct type *temp_type;
312 
313 	  warning (_("GDB internal error: bad real_filenum"));
314 
315 	error_return:
316 	  temp_type = objfile_type (objfile)->builtin_error;
317 	  return &temp_type;
318 	}
319 
320       f = HEADER_FILES (objfile) + real_filenum;
321 
322       f_orig_length = f->length;
323       if (index >= f_orig_length)
324 	{
325 	  while (index >= f->length)
326 	    {
327 	      f->length *= 2;
328 	    }
329 	  f->vector = (struct type **)
330 	    xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 	  memset (&f->vector[f_orig_length], 0,
332 		  (f->length - f_orig_length) * sizeof (struct type *));
333 	}
334       return (&f->vector[index]);
335     }
336 }
337 
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339    and return the type object.
340    This can create an empty (zeroed) type object.
341    TYPENUMS may be (-1, -1) to return a new type object that is not
342    put into the type vector, and so may not be referred to by number.  */
343 
344 static struct type *
345 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 {
347   struct type **type_addr;
348 
349   if (typenums[0] == -1)
350     {
351       return (alloc_type (objfile));
352     }
353 
354   type_addr = dbx_lookup_type (typenums, objfile);
355 
356   /* If we are referring to a type not known at all yet,
357      allocate an empty type for it.
358      We will fill it in later if we find out how.  */
359   if (*type_addr == 0)
360     {
361       *type_addr = alloc_type (objfile);
362     }
363 
364   return (*type_addr);
365 }
366 
367 /* Allocate a floating-point type of size BITS.  */
368 
369 static struct type *
370 dbx_init_float_type (struct objfile *objfile, int bits)
371 {
372   struct gdbarch *gdbarch = objfile->arch ();
373   const struct floatformat **format;
374   struct type *type;
375 
376   format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377   if (format)
378     type = init_float_type (objfile, bits, NULL, format);
379   else
380     type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
381 
382   return type;
383 }
384 
385 /* for all the stabs in a given stab vector, build appropriate types
386    and fix their symbols in given symbol vector.  */
387 
388 static void
389 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 		   struct objfile *objfile)
391 {
392   int ii;
393   char *name;
394   const char *pp;
395   struct symbol *sym;
396 
397   if (stabs)
398     {
399       /* for all the stab entries, find their corresponding symbols and
400 	 patch their types!  */
401 
402       for (ii = 0; ii < stabs->count; ++ii)
403 	{
404 	  name = stabs->stab[ii];
405 	  pp = (char *) strchr (name, ':');
406 	  gdb_assert (pp);	/* Must find a ':' or game's over.  */
407 	  while (pp[1] == ':')
408 	    {
409 	      pp += 2;
410 	      pp = (char *) strchr (pp, ':');
411 	    }
412 	  sym = find_symbol_in_list (symbols, name, pp - name);
413 	  if (!sym)
414 	    {
415 	      /* FIXME-maybe: it would be nice if we noticed whether
416 		 the variable was defined *anywhere*, not just whether
417 		 it is defined in this compilation unit.  But neither
418 		 xlc or GCC seem to need such a definition, and until
419 		 we do psymtabs (so that the minimal symbols from all
420 		 compilation units are available now), I'm not sure
421 		 how to get the information.  */
422 
423 	      /* On xcoff, if a global is defined and never referenced,
424 		 ld will remove it from the executable.  There is then
425 		 a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
426 	      sym = new (&objfile->objfile_obstack) symbol;
427 	      sym->set_domain (VAR_DOMAIN);
428 	      sym->set_aclass_index (LOC_OPTIMIZED_OUT);
429 	      sym->set_linkage_name
430 		(obstack_strndup (&objfile->objfile_obstack, name, pp - name));
431 	      pp += 2;
432 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 		{
434 		  /* I don't think the linker does this with functions,
435 		     so as far as I know this is never executed.
436 		     But it doesn't hurt to check.  */
437 		  sym->set_type
438 		    (lookup_function_type (read_type (&pp, objfile)));
439 		}
440 	      else
441 		{
442 		  sym->set_type (read_type (&pp, objfile));
443 		}
444 	      add_symbol_to_list (sym, get_global_symbols ());
445 	    }
446 	  else
447 	    {
448 	      pp += 2;
449 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
450 		{
451 		  sym->set_type
452 		    (lookup_function_type (read_type (&pp, objfile)));
453 		}
454 	      else
455 		{
456 		  sym->set_type (read_type (&pp, objfile));
457 		}
458 	    }
459 	}
460     }
461 }
462 
463 
464 /* Read a number by which a type is referred to in dbx data,
465    or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466    Just a single number N is equivalent to (0,N).
467    Return the two numbers by storing them in the vector TYPENUMS.
468    TYPENUMS will then be used as an argument to dbx_lookup_type.
469 
470    Returns 0 for success, -1 for error.  */
471 
472 static int
473 read_type_number (const char **pp, int *typenums)
474 {
475   int nbits;
476 
477   if (**pp == '(')
478     {
479       (*pp)++;
480       typenums[0] = read_huge_number (pp, ',', &nbits, 0);
481       if (nbits != 0)
482 	return -1;
483       typenums[1] = read_huge_number (pp, ')', &nbits, 0);
484       if (nbits != 0)
485 	return -1;
486     }
487   else
488     {
489       typenums[0] = 0;
490       typenums[1] = read_huge_number (pp, 0, &nbits, 0);
491       if (nbits != 0)
492 	return -1;
493     }
494   return 0;
495 }
496 
497 
498 #define VISIBILITY_PRIVATE	'0'	/* Stabs character for private field */
499 #define VISIBILITY_PROTECTED	'1'	/* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC	'2'	/* Stabs character for public field */
501 #define VISIBILITY_IGNORE	'9'	/* Optimized out or zero length */
502 
503 /* Structure for storing pointers to reference definitions for fast lookup
504    during "process_later".  */
505 
506 struct ref_map
507 {
508   const char *stabs;
509   CORE_ADDR value;
510   struct symbol *sym;
511 };
512 
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516 
517 static struct ref_map *ref_map;
518 
519 /* Ptr to free cell in chunk's linked list.  */
520 static int ref_count = 0;
521 
522 /* Number of chunks malloced.  */
523 static int ref_chunk = 0;
524 
525 /* This file maintains a cache of stabs aliases found in the symbol
526    table.  If the symbol table changes, this cache must be cleared
527    or we are left holding onto data in invalid obstacks.  */
528 void
529 stabsread_clear_cache (void)
530 {
531   ref_count = 0;
532   ref_chunk = 0;
533 }
534 
535 /* Create array of pointers mapping refids to symbols and stab strings.
536    Add pointers to reference definition symbols and/or their values as we
537    find them, using their reference numbers as our index.
538    These will be used later when we resolve references.  */
539 void
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
541 {
542   if (ref_count == 0)
543     ref_chunk = 0;
544   if (refnum >= ref_count)
545     ref_count = refnum + 1;
546   if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547     {
548       int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549       int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550 
551       ref_map = (struct ref_map *)
552 	xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553       memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 	      new_chunks * REF_CHUNK_SIZE);
555       ref_chunk += new_chunks;
556     }
557   ref_map[refnum].stabs = stabs;
558   ref_map[refnum].sym = sym;
559   ref_map[refnum].value = value;
560 }
561 
562 /* Return defined sym for the reference REFNUM.  */
563 struct symbol *
564 ref_search (int refnum)
565 {
566   if (refnum < 0 || refnum > ref_count)
567     return 0;
568   return ref_map[refnum].sym;
569 }
570 
571 /* Parse a reference id in STRING and return the resulting
572    reference number.  Move STRING beyond the reference id.  */
573 
574 static int
575 process_reference (const char **string)
576 {
577   const char *p;
578   int refnum = 0;
579 
580   if (**string != '#')
581     return 0;
582 
583   /* Advance beyond the initial '#'.  */
584   p = *string + 1;
585 
586   /* Read number as reference id.  */
587   while (*p && isdigit (*p))
588     {
589       refnum = refnum * 10 + *p - '0';
590       p++;
591     }
592   *string = p;
593   return refnum;
594 }
595 
596 /* If STRING defines a reference, store away a pointer to the reference
597    definition for later use.  Return the reference number.  */
598 
599 int
600 symbol_reference_defined (const char **string)
601 {
602   const char *p = *string;
603   int refnum = 0;
604 
605   refnum = process_reference (&p);
606 
607   /* Defining symbols end in '='.  */
608   if (*p == '=')
609     {
610       /* Symbol is being defined here.  */
611       *string = p + 1;
612       return refnum;
613     }
614   else
615     {
616       /* Must be a reference.  Either the symbol has already been defined,
617 	 or this is a forward reference to it.  */
618       *string = p;
619       return -1;
620     }
621 }
622 
623 static int
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 {
626   int regno = gdbarch_stab_reg_to_regnum (gdbarch, sym->value_longest ());
627 
628   if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629     {
630       reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 			   sym->print_name ());
632 
633       regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless.  */
634     }
635 
636   return regno;
637 }
638 
639 static const struct symbol_register_ops stab_register_funcs = {
640   stab_reg_to_regnum
641 };
642 
643 /* The "aclass" indices for computed symbols.  */
644 
645 static int stab_register_index;
646 static int stab_regparm_index;
647 
648 struct symbol *
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 	       struct objfile *objfile)
651 {
652   struct gdbarch *gdbarch = objfile->arch ();
653   struct symbol *sym;
654   const char *p = find_name_end (string);
655   int deftype;
656   int synonym = 0;
657   int i;
658 
659   /* We would like to eliminate nameless symbols, but keep their types.
660      E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661      to type 2, but, should not create a symbol to address that type.  Since
662      the symbol will be nameless, there is no way any user can refer to it.  */
663 
664   int nameless;
665 
666   /* Ignore syms with empty names.  */
667   if (string[0] == 0)
668     return 0;
669 
670   /* Ignore old-style symbols from cc -go.  */
671   if (p == 0)
672     return 0;
673 
674   while (p[1] == ':')
675     {
676       p += 2;
677       p = strchr (p, ':');
678       if (p == NULL)
679 	{
680 	  complaint (
681 		     _("Bad stabs string '%s'"), string);
682 	  return NULL;
683 	}
684     }
685 
686   /* If a nameless stab entry, all we need is the type, not the symbol.
687      e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688   nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689 
690   current_symbol = sym = new (&objfile->objfile_obstack) symbol;
691 
692   if (processing_gcc_compilation)
693     {
694       /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
695 	 number of bytes occupied by a type or object, which we ignore.  */
696       sym->set_line (desc);
697     }
698   else
699     {
700       sym->set_line (0);	/* unknown */
701     }
702 
703   sym->set_language (get_current_subfile ()->language,
704 		     &objfile->objfile_obstack);
705 
706   if (is_cplus_marker (string[0]))
707     {
708       /* Special GNU C++ names.  */
709       switch (string[1])
710 	{
711 	case 't':
712 	  sym->set_linkage_name ("this");
713 	  break;
714 
715 	case 'v':		/* $vtbl_ptr_type */
716 	  goto normal;
717 
718 	case 'e':
719 	  sym->set_linkage_name ("eh_throw");
720 	  break;
721 
722 	case '_':
723 	  /* This was an anonymous type that was never fixed up.  */
724 	  goto normal;
725 
726 	default:
727 	  complaint (_("Unknown C++ symbol name `%s'"),
728 		     string);
729 	  goto normal;		/* Do *something* with it.  */
730 	}
731     }
732   else
733     {
734     normal:
735       gdb::unique_xmalloc_ptr<char> new_name;
736 
737       if (sym->language () == language_cplus)
738 	{
739 	  std::string name (string, p - string);
740 	  new_name = cp_canonicalize_string (name.c_str ());
741 	}
742       else if (sym->language () == language_c)
743 	{
744 	  std::string name (string, p - string);
745 	  new_name = c_canonicalize_name (name.c_str ());
746 	}
747       if (new_name != nullptr)
748 	sym->compute_and_set_names (new_name.get (), true, objfile->per_bfd);
749       else
750 	sym->compute_and_set_names (gdb::string_view (string, p - string), true,
751 				    objfile->per_bfd);
752 
753       if (sym->language () == language_cplus)
754 	cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
755 					  objfile);
756 
757     }
758   p++;
759 
760   /* Determine the type of name being defined.  */
761 #if 0
762   /* Getting GDB to correctly skip the symbol on an undefined symbol
763      descriptor and not ever dump core is a very dodgy proposition if
764      we do things this way.  I say the acorn RISC machine can just
765      fix their compiler.  */
766   /* The Acorn RISC machine's compiler can put out locals that don't
767      start with "234=" or "(3,4)=", so assume anything other than the
768      deftypes we know how to handle is a local.  */
769   if (!strchr ("cfFGpPrStTvVXCR", *p))
770 #else
771   if (isdigit (*p) || *p == '(' || *p == '-')
772 #endif
773     deftype = 'l';
774   else
775     deftype = *p++;
776 
777   switch (deftype)
778     {
779     case 'c':
780       /* c is a special case, not followed by a type-number.
781 	 SYMBOL:c=iVALUE for an integer constant symbol.
782 	 SYMBOL:c=rVALUE for a floating constant symbol.
783 	 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
784 	 e.g. "b:c=e6,0" for "const b = blob1"
785 	 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
786       if (*p != '=')
787 	{
788 	  sym->set_aclass_index (LOC_CONST);
789 	  sym->set_type (error_type (&p, objfile));
790 	  sym->set_domain (VAR_DOMAIN);
791 	  add_symbol_to_list (sym, get_file_symbols ());
792 	  return sym;
793 	}
794       ++p;
795       switch (*p++)
796 	{
797 	case 'r':
798 	  {
799 	    gdb_byte *dbl_valu;
800 	    struct type *dbl_type;
801 
802 	    dbl_type = objfile_type (objfile)->builtin_double;
803 	    dbl_valu
804 	      = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
805 					    dbl_type->length ());
806 
807 	    target_float_from_string (dbl_valu, dbl_type, std::string (p));
808 
809 	    sym->set_type (dbl_type);
810 	    sym->set_value_bytes (dbl_valu);
811 	    sym->set_aclass_index (LOC_CONST_BYTES);
812 	  }
813 	  break;
814 	case 'i':
815 	  {
816 	    /* Defining integer constants this way is kind of silly,
817 	       since 'e' constants allows the compiler to give not
818 	       only the value, but the type as well.  C has at least
819 	       int, long, unsigned int, and long long as constant
820 	       types; other languages probably should have at least
821 	       unsigned as well as signed constants.  */
822 
823 	    sym->set_type (objfile_type (objfile)->builtin_long);
824 	    sym->set_value_longest (atoi (p));
825 	    sym->set_aclass_index (LOC_CONST);
826 	  }
827 	  break;
828 
829 	case 'c':
830 	  {
831 	    sym->set_type (objfile_type (objfile)->builtin_char);
832 	    sym->set_value_longest (atoi (p));
833 	    sym->set_aclass_index (LOC_CONST);
834 	  }
835 	  break;
836 
837 	case 's':
838 	  {
839 	    struct type *range_type;
840 	    int ind = 0;
841 	    char quote = *p++;
842 	    gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
843 	    gdb_byte *string_value;
844 
845 	    if (quote != '\'' && quote != '"')
846 	      {
847 		sym->set_aclass_index (LOC_CONST);
848 		sym->set_type (error_type (&p, objfile));
849 		sym->set_domain (VAR_DOMAIN);
850 		add_symbol_to_list (sym, get_file_symbols ());
851 		return sym;
852 	      }
853 
854 	    /* Find matching quote, rejecting escaped quotes.  */
855 	    while (*p && *p != quote)
856 	      {
857 		if (*p == '\\' && p[1] == quote)
858 		  {
859 		    string_local[ind] = (gdb_byte) quote;
860 		    ind++;
861 		    p += 2;
862 		  }
863 		else if (*p)
864 		  {
865 		    string_local[ind] = (gdb_byte) (*p);
866 		    ind++;
867 		    p++;
868 		  }
869 	      }
870 	    if (*p != quote)
871 	      {
872 		sym->set_aclass_index (LOC_CONST);
873 		sym->set_type (error_type (&p, objfile));
874 		sym->set_domain (VAR_DOMAIN);
875 		add_symbol_to_list (sym, get_file_symbols ());
876 		return sym;
877 	      }
878 
879 	    /* NULL terminate the string.  */
880 	    string_local[ind] = 0;
881 	    range_type
882 	      = create_static_range_type (NULL,
883 					  objfile_type (objfile)->builtin_int,
884 					  0, ind);
885 	    sym->set_type
886 	      (create_array_type (NULL, objfile_type (objfile)->builtin_char,
887 				  range_type));
888 	    string_value
889 	      = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
890 	    memcpy (string_value, string_local, ind + 1);
891 	    p++;
892 
893 	    sym->set_value_bytes (string_value);
894 	    sym->set_aclass_index (LOC_CONST_BYTES);
895 	  }
896 	  break;
897 
898 	case 'e':
899 	  /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
900 	     can be represented as integral.
901 	     e.g. "b:c=e6,0" for "const b = blob1"
902 	     (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
903 	  {
904 	    sym->set_aclass_index (LOC_CONST);
905 	    sym->set_type (read_type (&p, objfile));
906 
907 	    if (*p != ',')
908 	      {
909 		sym->set_type (error_type (&p, objfile));
910 		break;
911 	      }
912 	    ++p;
913 
914 	    /* If the value is too big to fit in an int (perhaps because
915 	       it is unsigned), or something like that, we silently get
916 	       a bogus value.  The type and everything else about it is
917 	       correct.  Ideally, we should be using whatever we have
918 	       available for parsing unsigned and long long values,
919 	       however.  */
920 	    sym->set_value_longest (atoi (p));
921 	  }
922 	  break;
923 	default:
924 	  {
925 	    sym->set_aclass_index (LOC_CONST);
926 	    sym->set_type (error_type (&p, objfile));
927 	  }
928 	}
929       sym->set_domain (VAR_DOMAIN);
930       add_symbol_to_list (sym, get_file_symbols ());
931       return sym;
932 
933     case 'C':
934       /* The name of a caught exception.  */
935       sym->set_type (read_type (&p, objfile));
936       sym->set_aclass_index (LOC_LABEL);
937       sym->set_domain (VAR_DOMAIN);
938       sym->set_value_address (valu);
939       add_symbol_to_list (sym, get_local_symbols ());
940       break;
941 
942     case 'f':
943       /* A static function definition.  */
944       sym->set_type (read_type (&p, objfile));
945       sym->set_aclass_index (LOC_BLOCK);
946       sym->set_domain (VAR_DOMAIN);
947       add_symbol_to_list (sym, get_file_symbols ());
948       /* fall into process_function_types.  */
949 
950     process_function_types:
951       /* Function result types are described as the result type in stabs.
952 	 We need to convert this to the function-returning-type-X type
953 	 in GDB.  E.g. "int" is converted to "function returning int".  */
954       if (sym->type ()->code () != TYPE_CODE_FUNC)
955 	sym->set_type (lookup_function_type (sym->type ()));
956 
957       /* All functions in C++ have prototypes.  Stabs does not offer an
958 	 explicit way to identify prototyped or unprototyped functions,
959 	 but both GCC and Sun CC emit stabs for the "call-as" type rather
960 	 than the "declared-as" type for unprototyped functions, so
961 	 we treat all functions as if they were prototyped.  This is used
962 	 primarily for promotion when calling the function from GDB.  */
963       sym->type ()->set_is_prototyped (true);
964 
965       /* fall into process_prototype_types.  */
966 
967     process_prototype_types:
968       /* Sun acc puts declared types of arguments here.  */
969       if (*p == ';')
970 	{
971 	  struct type *ftype = sym->type ();
972 	  int nsemi = 0;
973 	  int nparams = 0;
974 	  const char *p1 = p;
975 
976 	  /* Obtain a worst case guess for the number of arguments
977 	     by counting the semicolons.  */
978 	  while (*p1)
979 	    {
980 	      if (*p1++ == ';')
981 		nsemi++;
982 	    }
983 
984 	  /* Allocate parameter information fields and fill them in.  */
985 	  ftype->set_fields
986 	    ((struct field *)
987 	     TYPE_ALLOC (ftype, nsemi * sizeof (struct field)));
988 	  while (*p++ == ';')
989 	    {
990 	      struct type *ptype;
991 
992 	      /* A type number of zero indicates the start of varargs.
993 		 FIXME: GDB currently ignores vararg functions.  */
994 	      if (p[0] == '0' && p[1] == '\0')
995 		break;
996 	      ptype = read_type (&p, objfile);
997 
998 	      /* The Sun compilers mark integer arguments, which should
999 		 be promoted to the width of the calling conventions, with
1000 		 a type which references itself.  This type is turned into
1001 		 a TYPE_CODE_VOID type by read_type, and we have to turn
1002 		 it back into builtin_int here.
1003 		 FIXME: Do we need a new builtin_promoted_int_arg ?  */
1004 	      if (ptype->code () == TYPE_CODE_VOID)
1005 		ptype = objfile_type (objfile)->builtin_int;
1006 	      ftype->field (nparams).set_type (ptype);
1007 	      TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1008 	    }
1009 	  ftype->set_num_fields (nparams);
1010 	  ftype->set_is_prototyped (true);
1011 	}
1012       break;
1013 
1014     case 'F':
1015       /* A global function definition.  */
1016       sym->set_type (read_type (&p, objfile));
1017       sym->set_aclass_index (LOC_BLOCK);
1018       sym->set_domain (VAR_DOMAIN);
1019       add_symbol_to_list (sym, get_global_symbols ());
1020       goto process_function_types;
1021 
1022     case 'G':
1023       /* For a class G (global) symbol, it appears that the
1024 	 value is not correct.  It is necessary to search for the
1025 	 corresponding linker definition to find the value.
1026 	 These definitions appear at the end of the namelist.  */
1027       sym->set_type (read_type (&p, objfile));
1028       sym->set_aclass_index (LOC_STATIC);
1029       sym->set_domain (VAR_DOMAIN);
1030       /* Don't add symbol references to global_sym_chain.
1031 	 Symbol references don't have valid names and wont't match up with
1032 	 minimal symbols when the global_sym_chain is relocated.
1033 	 We'll fixup symbol references when we fixup the defining symbol.  */
1034       if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1035 	{
1036 	  i = hashname (sym->linkage_name ());
1037 	  sym->set_value_chain (global_sym_chain[i]);
1038 	  global_sym_chain[i] = sym;
1039 	}
1040       add_symbol_to_list (sym, get_global_symbols ());
1041       break;
1042 
1043       /* This case is faked by a conditional above,
1044 	 when there is no code letter in the dbx data.
1045 	 Dbx data never actually contains 'l'.  */
1046     case 's':
1047     case 'l':
1048       sym->set_type (read_type (&p, objfile));
1049       sym->set_aclass_index (LOC_LOCAL);
1050       sym->set_value_longest (valu);
1051       sym->set_domain (VAR_DOMAIN);
1052       add_symbol_to_list (sym, get_local_symbols ());
1053       break;
1054 
1055     case 'p':
1056       if (*p == 'F')
1057 	/* pF is a two-letter code that means a function parameter in Fortran.
1058 	   The type-number specifies the type of the return value.
1059 	   Translate it into a pointer-to-function type.  */
1060 	{
1061 	  p++;
1062 	  sym->set_type
1063 	    (lookup_pointer_type
1064 	       (lookup_function_type (read_type (&p, objfile))));
1065 	}
1066       else
1067 	sym->set_type (read_type (&p, objfile));
1068 
1069       sym->set_aclass_index (LOC_ARG);
1070       sym->set_value_longest (valu);
1071       sym->set_domain (VAR_DOMAIN);
1072       sym->set_is_argument (1);
1073       add_symbol_to_list (sym, get_local_symbols ());
1074 
1075       if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1076 	{
1077 	  /* On little-endian machines, this crud is never necessary,
1078 	     and, if the extra bytes contain garbage, is harmful.  */
1079 	  break;
1080 	}
1081 
1082       /* If it's gcc-compiled, if it says `short', believe it.  */
1083       if (processing_gcc_compilation
1084 	  || gdbarch_believe_pcc_promotion (gdbarch))
1085 	break;
1086 
1087       if (!gdbarch_believe_pcc_promotion (gdbarch))
1088 	{
1089 	  /* If PCC says a parameter is a short or a char, it is
1090 	     really an int.  */
1091 	  if (sym->type ()->length ()
1092 	      < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1093 	      && sym->type ()->code () == TYPE_CODE_INT)
1094 	    {
1095 	      sym->set_type
1096 		(sym->type ()->is_unsigned ()
1097 		 ? objfile_type (objfile)->builtin_unsigned_int
1098 		 : objfile_type (objfile)->builtin_int);
1099 	    }
1100 	  break;
1101 	}
1102       /* Fall through.  */
1103 
1104     case 'P':
1105       /* acc seems to use P to declare the prototypes of functions that
1106 	 are referenced by this file.  gdb is not prepared to deal
1107 	 with this extra information.  FIXME, it ought to.  */
1108       if (type == N_FUN)
1109 	{
1110 	  sym->set_type (read_type (&p, objfile));
1111 	  goto process_prototype_types;
1112 	}
1113       /*FALLTHROUGH */
1114 
1115     case 'R':
1116       /* Parameter which is in a register.  */
1117       sym->set_type (read_type (&p, objfile));
1118       sym->set_aclass_index (stab_register_index);
1119       sym->set_is_argument (1);
1120       sym->set_value_longest (valu);
1121       sym->set_domain (VAR_DOMAIN);
1122       add_symbol_to_list (sym, get_local_symbols ());
1123       break;
1124 
1125     case 'r':
1126       /* Register variable (either global or local).  */
1127       sym->set_type (read_type (&p, objfile));
1128       sym->set_aclass_index (stab_register_index);
1129       sym->set_value_longest (valu);
1130       sym->set_domain (VAR_DOMAIN);
1131       if (within_function)
1132 	{
1133 	  /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1134 	     the same name to represent an argument passed in a
1135 	     register.  GCC uses 'P' for the same case.  So if we find
1136 	     such a symbol pair we combine it into one 'P' symbol.
1137 	     For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1138 	     the 'p' symbol even if it never saves the argument onto
1139 	     the stack.
1140 
1141 	     On most machines, we want to preserve both symbols, so
1142 	     that we can still get information about what is going on
1143 	     with the stack (VAX for computing args_printed, using
1144 	     stack slots instead of saved registers in backtraces,
1145 	     etc.).
1146 
1147 	     Note that this code illegally combines
1148 	     main(argc) struct foo argc; { register struct foo argc; }
1149 	     but this case is considered pathological and causes a warning
1150 	     from a decent compiler.  */
1151 
1152 	  struct pending *local_symbols = *get_local_symbols ();
1153 	  if (local_symbols
1154 	      && local_symbols->nsyms > 0
1155 	      && gdbarch_stabs_argument_has_addr (gdbarch, sym->type ()))
1156 	    {
1157 	      struct symbol *prev_sym;
1158 
1159 	      prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1160 	      if ((prev_sym->aclass () == LOC_REF_ARG
1161 		   || prev_sym->aclass () == LOC_ARG)
1162 		  && strcmp (prev_sym->linkage_name (),
1163 			     sym->linkage_name ()) == 0)
1164 		{
1165 		  prev_sym->set_aclass_index (stab_register_index);
1166 		  /* Use the type from the LOC_REGISTER; that is the type
1167 		     that is actually in that register.  */
1168 		  prev_sym->set_type (sym->type ());
1169 		  prev_sym->set_value_longest (sym->value_longest ());
1170 		  sym = prev_sym;
1171 		  break;
1172 		}
1173 	    }
1174 	  add_symbol_to_list (sym, get_local_symbols ());
1175 	}
1176       else
1177 	add_symbol_to_list (sym, get_file_symbols ());
1178       break;
1179 
1180     case 'S':
1181       /* Static symbol at top level of file.  */
1182       sym->set_type (read_type (&p, objfile));
1183       sym->set_aclass_index (LOC_STATIC);
1184       sym->set_value_address (valu);
1185       sym->set_domain (VAR_DOMAIN);
1186       add_symbol_to_list (sym, get_file_symbols ());
1187       break;
1188 
1189     case 't':
1190       /* In Ada, there is no distinction between typedef and non-typedef;
1191 	 any type declaration implicitly has the equivalent of a typedef,
1192 	 and thus 't' is in fact equivalent to 'Tt'.
1193 
1194 	 Therefore, for Ada units, we check the character immediately
1195 	 before the 't', and if we do not find a 'T', then make sure to
1196 	 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1197 	 will be stored in the VAR_DOMAIN).  If the symbol was indeed
1198 	 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1199 	 elsewhere, so we don't need to take care of that.
1200 
1201 	 This is important to do, because of forward references:
1202 	 The cleanup of undefined types stored in undef_types only uses
1203 	 STRUCT_DOMAIN symbols to perform the replacement.  */
1204       synonym = (sym->language () == language_ada && p[-2] != 'T');
1205 
1206       /* Typedef */
1207       sym->set_type (read_type (&p, objfile));
1208 
1209       /* For a nameless type, we don't want a create a symbol, thus we
1210 	 did not use `sym'.  Return without further processing.  */
1211       if (nameless)
1212 	return NULL;
1213 
1214       sym->set_aclass_index (LOC_TYPEDEF);
1215       sym->set_value_longest (valu);
1216       sym->set_domain (VAR_DOMAIN);
1217       /* C++ vagaries: we may have a type which is derived from
1218 	 a base type which did not have its name defined when the
1219 	 derived class was output.  We fill in the derived class's
1220 	 base part member's name here in that case.  */
1221       if (sym->type ()->name () != NULL)
1222 	if ((sym->type ()->code () == TYPE_CODE_STRUCT
1223 	     || sym->type ()->code () == TYPE_CODE_UNION)
1224 	    && TYPE_N_BASECLASSES (sym->type ()))
1225 	  {
1226 	    int j;
1227 
1228 	    for (j = TYPE_N_BASECLASSES (sym->type ()) - 1; j >= 0; j--)
1229 	      if (TYPE_BASECLASS_NAME (sym->type (), j) == 0)
1230 		sym->type ()->field (j).set_name
1231 		  (TYPE_BASECLASS (sym->type (), j)->name ());
1232 	  }
1233 
1234       if (sym->type ()->name () == NULL)
1235 	{
1236 	  if ((sym->type ()->code () == TYPE_CODE_PTR
1237 	       && strcmp (sym->linkage_name (), vtbl_ptr_name))
1238 	      || sym->type ()->code () == TYPE_CODE_FUNC)
1239 	    {
1240 	      /* If we are giving a name to a type such as "pointer to
1241 		 foo" or "function returning foo", we better not set
1242 		 the TYPE_NAME.  If the program contains "typedef char
1243 		 *caddr_t;", we don't want all variables of type char
1244 		 * to print as caddr_t.  This is not just a
1245 		 consequence of GDB's type management; PCC and GCC (at
1246 		 least through version 2.4) both output variables of
1247 		 either type char * or caddr_t with the type number
1248 		 defined in the 't' symbol for caddr_t.  If a future
1249 		 compiler cleans this up it GDB is not ready for it
1250 		 yet, but if it becomes ready we somehow need to
1251 		 disable this check (without breaking the PCC/GCC2.4
1252 		 case).
1253 
1254 		 Sigh.
1255 
1256 		 Fortunately, this check seems not to be necessary
1257 		 for anything except pointers or functions.  */
1258 	      /* ezannoni: 2000-10-26.  This seems to apply for
1259 		 versions of gcc older than 2.8.  This was the original
1260 		 problem: with the following code gdb would tell that
1261 		 the type for name1 is caddr_t, and func is char().
1262 
1263 		 typedef char *caddr_t;
1264 		 char *name2;
1265 		 struct x
1266 		 {
1267 		   char *name1;
1268 		 } xx;
1269 		 char *func()
1270 		 {
1271 		 }
1272 		 main () {}
1273 		 */
1274 
1275 	      /* Pascal accepts names for pointer types.  */
1276 	      if (get_current_subfile ()->language == language_pascal)
1277 		sym->type ()->set_name (sym->linkage_name ());
1278 	    }
1279 	  else
1280 	    sym->type ()->set_name (sym->linkage_name ());
1281 	}
1282 
1283       add_symbol_to_list (sym, get_file_symbols ());
1284 
1285       if (synonym)
1286 	{
1287 	  /* Create the STRUCT_DOMAIN clone.  */
1288 	  struct symbol *struct_sym = new (&objfile->objfile_obstack) symbol;
1289 
1290 	  *struct_sym = *sym;
1291 	  struct_sym->set_aclass_index (LOC_TYPEDEF);
1292 	  struct_sym->set_value_longest (valu);
1293 	  struct_sym->set_domain (STRUCT_DOMAIN);
1294 	  if (sym->type ()->name () == 0)
1295 	    sym->type ()->set_name
1296 	      (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1297 			 (char *) NULL));
1298 	  add_symbol_to_list (struct_sym, get_file_symbols ());
1299 	}
1300 
1301       break;
1302 
1303     case 'T':
1304       /* Struct, union, or enum tag.  For GNU C++, this can be be followed
1305 	 by 't' which means we are typedef'ing it as well.  */
1306       synonym = *p == 't';
1307 
1308       if (synonym)
1309 	p++;
1310 
1311       sym->set_type (read_type (&p, objfile));
1312 
1313       /* For a nameless type, we don't want a create a symbol, thus we
1314 	 did not use `sym'.  Return without further processing.  */
1315       if (nameless)
1316 	return NULL;
1317 
1318       sym->set_aclass_index (LOC_TYPEDEF);
1319       sym->set_value_longest (valu);
1320       sym->set_domain (STRUCT_DOMAIN);
1321       if (sym->type ()->name () == 0)
1322 	sym->type ()->set_name
1323 	  (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1324 		     (char *) NULL));
1325       add_symbol_to_list (sym, get_file_symbols ());
1326 
1327       if (synonym)
1328 	{
1329 	  /* Clone the sym and then modify it.  */
1330 	  struct symbol *typedef_sym = new (&objfile->objfile_obstack) symbol;
1331 
1332 	  *typedef_sym = *sym;
1333 	  typedef_sym->set_aclass_index (LOC_TYPEDEF);
1334 	  typedef_sym->set_value_longest (valu);
1335 	  typedef_sym->set_domain (VAR_DOMAIN);
1336 	  if (sym->type ()->name () == 0)
1337 	    sym->type ()->set_name
1338 	      (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1339 			 (char *) NULL));
1340 	  add_symbol_to_list (typedef_sym, get_file_symbols ());
1341 	}
1342       break;
1343 
1344     case 'V':
1345       /* Static symbol of local scope.  */
1346       sym->set_type (read_type (&p, objfile));
1347       sym->set_aclass_index (LOC_STATIC);
1348       sym->set_value_address (valu);
1349       sym->set_domain (VAR_DOMAIN);
1350       add_symbol_to_list (sym, get_local_symbols ());
1351       break;
1352 
1353     case 'v':
1354       /* Reference parameter */
1355       sym->set_type (read_type (&p, objfile));
1356       sym->set_aclass_index (LOC_REF_ARG);
1357       sym->set_is_argument (1);
1358       sym->set_value_longest (valu);
1359       sym->set_domain (VAR_DOMAIN);
1360       add_symbol_to_list (sym, get_local_symbols ());
1361       break;
1362 
1363     case 'a':
1364       /* Reference parameter which is in a register.  */
1365       sym->set_type (read_type (&p, objfile));
1366       sym->set_aclass_index (stab_regparm_index);
1367       sym->set_is_argument (1);
1368       sym->set_value_longest (valu);
1369       sym->set_domain (VAR_DOMAIN);
1370       add_symbol_to_list (sym, get_local_symbols ());
1371       break;
1372 
1373     case 'X':
1374       /* This is used by Sun FORTRAN for "function result value".
1375 	 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1376 	 that Pascal uses it too, but when I tried it Pascal used
1377 	 "x:3" (local symbol) instead.  */
1378       sym->set_type (read_type (&p, objfile));
1379       sym->set_aclass_index (LOC_LOCAL);
1380       sym->set_value_longest (valu);
1381       sym->set_domain (VAR_DOMAIN);
1382       add_symbol_to_list (sym, get_local_symbols ());
1383       break;
1384 
1385     default:
1386       sym->set_type (error_type (&p, objfile));
1387       sym->set_aclass_index (LOC_CONST);
1388       sym->set_value_longest (0);
1389       sym->set_domain (VAR_DOMAIN);
1390       add_symbol_to_list (sym, get_file_symbols ());
1391       break;
1392     }
1393 
1394   /* Some systems pass variables of certain types by reference instead
1395      of by value, i.e. they will pass the address of a structure (in a
1396      register or on the stack) instead of the structure itself.  */
1397 
1398   if (gdbarch_stabs_argument_has_addr (gdbarch, sym->type ())
1399       && sym->is_argument ())
1400     {
1401       /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1402 	 variables passed in a register).  */
1403       if (sym->aclass () == LOC_REGISTER)
1404 	sym->set_aclass_index (LOC_REGPARM_ADDR);
1405       /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1406 	 and subsequent arguments on SPARC, for example).  */
1407       else if (sym->aclass () == LOC_ARG)
1408 	sym->set_aclass_index (LOC_REF_ARG);
1409     }
1410 
1411   return sym;
1412 }
1413 
1414 /* Skip rest of this symbol and return an error type.
1415 
1416    General notes on error recovery:  error_type always skips to the
1417    end of the symbol (modulo cretinous dbx symbol name continuation).
1418    Thus code like this:
1419 
1420    if (*(*pp)++ != ';')
1421    return error_type (pp, objfile);
1422 
1423    is wrong because if *pp starts out pointing at '\0' (typically as the
1424    result of an earlier error), it will be incremented to point to the
1425    start of the next symbol, which might produce strange results, at least
1426    if you run off the end of the string table.  Instead use
1427 
1428    if (**pp != ';')
1429    return error_type (pp, objfile);
1430    ++*pp;
1431 
1432    or
1433 
1434    if (**pp != ';')
1435    foo = error_type (pp, objfile);
1436    else
1437    ++*pp;
1438 
1439    And in case it isn't obvious, the point of all this hair is so the compiler
1440    can define new types and new syntaxes, and old versions of the
1441    debugger will be able to read the new symbol tables.  */
1442 
1443 static struct type *
1444 error_type (const char **pp, struct objfile *objfile)
1445 {
1446   complaint (_("couldn't parse type; debugger out of date?"));
1447   while (1)
1448     {
1449       /* Skip to end of symbol.  */
1450       while (**pp != '\0')
1451 	{
1452 	  (*pp)++;
1453 	}
1454 
1455       /* Check for and handle cretinous dbx symbol name continuation!  */
1456       if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1457 	{
1458 	  *pp = next_symbol_text (objfile);
1459 	}
1460       else
1461 	{
1462 	  break;
1463 	}
1464     }
1465   return objfile_type (objfile)->builtin_error;
1466 }
1467 
1468 
1469 /* Read type information or a type definition; return the type.  Even
1470    though this routine accepts either type information or a type
1471    definition, the distinction is relevant--some parts of stabsread.c
1472    assume that type information starts with a digit, '-', or '(' in
1473    deciding whether to call read_type.  */
1474 
1475 static struct type *
1476 read_type (const char **pp, struct objfile *objfile)
1477 {
1478   struct type *type = 0;
1479   struct type *type1;
1480   int typenums[2];
1481   char type_descriptor;
1482 
1483   /* Size in bits of type if specified by a type attribute, or -1 if
1484      there is no size attribute.  */
1485   int type_size = -1;
1486 
1487   /* Used to distinguish string and bitstring from char-array and set.  */
1488   int is_string = 0;
1489 
1490   /* Used to distinguish vector from array.  */
1491   int is_vector = 0;
1492 
1493   /* Read type number if present.  The type number may be omitted.
1494      for instance in a two-dimensional array declared with type
1495      "ar1;1;10;ar1;1;10;4".  */
1496   if ((**pp >= '0' && **pp <= '9')
1497       || **pp == '('
1498       || **pp == '-')
1499     {
1500       if (read_type_number (pp, typenums) != 0)
1501 	return error_type (pp, objfile);
1502 
1503       if (**pp != '=')
1504 	{
1505 	  /* Type is not being defined here.  Either it already
1506 	     exists, or this is a forward reference to it.
1507 	     dbx_alloc_type handles both cases.  */
1508 	  type = dbx_alloc_type (typenums, objfile);
1509 
1510 	  /* If this is a forward reference, arrange to complain if it
1511 	     doesn't get patched up by the time we're done
1512 	     reading.  */
1513 	  if (type->code () == TYPE_CODE_UNDEF)
1514 	    add_undefined_type (type, typenums);
1515 
1516 	  return type;
1517 	}
1518 
1519       /* Type is being defined here.  */
1520       /* Skip the '='.
1521 	 Also skip the type descriptor - we get it below with (*pp)[-1].  */
1522       (*pp) += 2;
1523     }
1524   else
1525     {
1526       /* 'typenums=' not present, type is anonymous.  Read and return
1527 	 the definition, but don't put it in the type vector.  */
1528       typenums[0] = typenums[1] = -1;
1529       (*pp)++;
1530     }
1531 
1532 again:
1533   type_descriptor = (*pp)[-1];
1534   switch (type_descriptor)
1535     {
1536     case 'x':
1537       {
1538 	enum type_code code;
1539 
1540 	/* Used to index through file_symbols.  */
1541 	struct pending *ppt;
1542 	int i;
1543 
1544 	/* Name including "struct", etc.  */
1545 	char *type_name;
1546 
1547 	{
1548 	  const char *from, *p, *q1, *q2;
1549 
1550 	  /* Set the type code according to the following letter.  */
1551 	  switch ((*pp)[0])
1552 	    {
1553 	    case 's':
1554 	      code = TYPE_CODE_STRUCT;
1555 	      break;
1556 	    case 'u':
1557 	      code = TYPE_CODE_UNION;
1558 	      break;
1559 	    case 'e':
1560 	      code = TYPE_CODE_ENUM;
1561 	      break;
1562 	    default:
1563 	      {
1564 		/* Complain and keep going, so compilers can invent new
1565 		   cross-reference types.  */
1566 		complaint (_("Unrecognized cross-reference type `%c'"),
1567 			   (*pp)[0]);
1568 		code = TYPE_CODE_STRUCT;
1569 		break;
1570 	      }
1571 	    }
1572 
1573 	  q1 = strchr (*pp, '<');
1574 	  p = strchr (*pp, ':');
1575 	  if (p == NULL)
1576 	    return error_type (pp, objfile);
1577 	  if (q1 && p > q1 && p[1] == ':')
1578 	    {
1579 	      int nesting_level = 0;
1580 
1581 	      for (q2 = q1; *q2; q2++)
1582 		{
1583 		  if (*q2 == '<')
1584 		    nesting_level++;
1585 		  else if (*q2 == '>')
1586 		    nesting_level--;
1587 		  else if (*q2 == ':' && nesting_level == 0)
1588 		    break;
1589 		}
1590 	      p = q2;
1591 	      if (*p != ':')
1592 		return error_type (pp, objfile);
1593 	    }
1594 	  type_name = NULL;
1595 	  if (get_current_subfile ()->language == language_cplus)
1596 	    {
1597 	      std::string name (*pp, p - *pp);
1598 	      gdb::unique_xmalloc_ptr<char> new_name
1599 		= cp_canonicalize_string (name.c_str ());
1600 	      if (new_name != nullptr)
1601 		type_name = obstack_strdup (&objfile->objfile_obstack,
1602 					    new_name.get ());
1603 	    }
1604 	  else if (get_current_subfile ()->language == language_c)
1605 	    {
1606 	      std::string name (*pp, p - *pp);
1607 	      gdb::unique_xmalloc_ptr<char> new_name
1608 		= c_canonicalize_name (name.c_str ());
1609 	      if (new_name != nullptr)
1610 		type_name = obstack_strdup (&objfile->objfile_obstack,
1611 					    new_name.get ());
1612 	    }
1613 	  if (type_name == NULL)
1614 	    {
1615 	      char *to = type_name = (char *)
1616 		obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1617 
1618 	      /* Copy the name.  */
1619 	      from = *pp + 1;
1620 	      while (from < p)
1621 		*to++ = *from++;
1622 	      *to = '\0';
1623 	    }
1624 
1625 	  /* Set the pointer ahead of the name which we just read, and
1626 	     the colon.  */
1627 	  *pp = p + 1;
1628 	}
1629 
1630 	/* If this type has already been declared, then reuse the same
1631 	   type, rather than allocating a new one.  This saves some
1632 	   memory.  */
1633 
1634 	for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1635 	  for (i = 0; i < ppt->nsyms; i++)
1636 	    {
1637 	      struct symbol *sym = ppt->symbol[i];
1638 
1639 	      if (sym->aclass () == LOC_TYPEDEF
1640 		  && sym->domain () == STRUCT_DOMAIN
1641 		  && (sym->type ()->code () == code)
1642 		  && strcmp (sym->linkage_name (), type_name) == 0)
1643 		{
1644 		  obstack_free (&objfile->objfile_obstack, type_name);
1645 		  type = sym->type ();
1646 		  if (typenums[0] != -1)
1647 		    *dbx_lookup_type (typenums, objfile) = type;
1648 		  return type;
1649 		}
1650 	    }
1651 
1652 	/* Didn't find the type to which this refers, so we must
1653 	   be dealing with a forward reference.  Allocate a type
1654 	   structure for it, and keep track of it so we can
1655 	   fill in the rest of the fields when we get the full
1656 	   type.  */
1657 	type = dbx_alloc_type (typenums, objfile);
1658 	type->set_code (code);
1659 	type->set_name (type_name);
1660 	INIT_CPLUS_SPECIFIC (type);
1661 	type->set_is_stub (true);
1662 
1663 	add_undefined_type (type, typenums);
1664 	return type;
1665       }
1666 
1667     case '-':			/* RS/6000 built-in type */
1668     case '0':
1669     case '1':
1670     case '2':
1671     case '3':
1672     case '4':
1673     case '5':
1674     case '6':
1675     case '7':
1676     case '8':
1677     case '9':
1678     case '(':
1679       (*pp)--;
1680 
1681       /* We deal with something like t(1,2)=(3,4)=... which
1682 	 the Lucid compiler and recent gcc versions (post 2.7.3) use.  */
1683 
1684       /* Allocate and enter the typedef type first.
1685 	 This handles recursive types.  */
1686       type = dbx_alloc_type (typenums, objfile);
1687       type->set_code (TYPE_CODE_TYPEDEF);
1688       {
1689 	struct type *xtype = read_type (pp, objfile);
1690 
1691 	if (type == xtype)
1692 	  {
1693 	    /* It's being defined as itself.  That means it is "void".  */
1694 	    type->set_code (TYPE_CODE_VOID);
1695 	    type->set_length (1);
1696 	  }
1697 	else if (type_size >= 0 || is_string)
1698 	  {
1699 	    /* This is the absolute wrong way to construct types.  Every
1700 	       other debug format has found a way around this problem and
1701 	       the related problems with unnecessarily stubbed types;
1702 	       someone motivated should attempt to clean up the issue
1703 	       here as well.  Once a type pointed to has been created it
1704 	       should not be modified.
1705 
1706 	       Well, it's not *absolutely* wrong.  Constructing recursive
1707 	       types (trees, linked lists) necessarily entails modifying
1708 	       types after creating them.  Constructing any loop structure
1709 	       entails side effects.  The Dwarf 2 reader does handle this
1710 	       more gracefully (it never constructs more than once
1711 	       instance of a type object, so it doesn't have to copy type
1712 	       objects wholesale), but it still mutates type objects after
1713 	       other folks have references to them.
1714 
1715 	       Keep in mind that this circularity/mutation issue shows up
1716 	       at the source language level, too: C's "incomplete types",
1717 	       for example.  So the proper cleanup, I think, would be to
1718 	       limit GDB's type smashing to match exactly those required
1719 	       by the source language.  So GDB could have a
1720 	       "complete_this_type" function, but never create unnecessary
1721 	       copies of a type otherwise.  */
1722 	    replace_type (type, xtype);
1723 	    type->set_name (NULL);
1724 	  }
1725 	else
1726 	  {
1727 	    type->set_target_is_stub (true);
1728 	    type->set_target_type (xtype);
1729 	  }
1730       }
1731       break;
1732 
1733       /* In the following types, we must be sure to overwrite any existing
1734 	 type that the typenums refer to, rather than allocating a new one
1735 	 and making the typenums point to the new one.  This is because there
1736 	 may already be pointers to the existing type (if it had been
1737 	 forward-referenced), and we must change it to a pointer, function,
1738 	 reference, or whatever, *in-place*.  */
1739 
1740     case '*':			/* Pointer to another type */
1741       type1 = read_type (pp, objfile);
1742       type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1743       break;
1744 
1745     case '&':			/* Reference to another type */
1746       type1 = read_type (pp, objfile);
1747       type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1748 				  TYPE_CODE_REF);
1749       break;
1750 
1751     case 'f':			/* Function returning another type */
1752       type1 = read_type (pp, objfile);
1753       type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1754       break;
1755 
1756     case 'g':                   /* Prototyped function.  (Sun)  */
1757       {
1758 	/* Unresolved questions:
1759 
1760 	   - According to Sun's ``STABS Interface Manual'', for 'f'
1761 	   and 'F' symbol descriptors, a `0' in the argument type list
1762 	   indicates a varargs function.  But it doesn't say how 'g'
1763 	   type descriptors represent that info.  Someone with access
1764 	   to Sun's toolchain should try it out.
1765 
1766 	   - According to the comment in define_symbol (search for
1767 	   `process_prototype_types:'), Sun emits integer arguments as
1768 	   types which ref themselves --- like `void' types.  Do we
1769 	   have to deal with that here, too?  Again, someone with
1770 	   access to Sun's toolchain should try it out and let us
1771 	   know.  */
1772 
1773 	const char *type_start = (*pp) - 1;
1774 	struct type *return_type = read_type (pp, objfile);
1775 	struct type *func_type
1776 	  = make_function_type (return_type,
1777 				dbx_lookup_type (typenums, objfile));
1778 	struct type_list {
1779 	  struct type *type;
1780 	  struct type_list *next;
1781 	} *arg_types = 0;
1782 	int num_args = 0;
1783 
1784 	while (**pp && **pp != '#')
1785 	  {
1786 	    struct type *arg_type = read_type (pp, objfile);
1787 	    struct type_list *newobj = XALLOCA (struct type_list);
1788 	    newobj->type = arg_type;
1789 	    newobj->next = arg_types;
1790 	    arg_types = newobj;
1791 	    num_args++;
1792 	  }
1793 	if (**pp == '#')
1794 	  ++*pp;
1795 	else
1796 	  {
1797 	    complaint (_("Prototyped function type didn't "
1798 			 "end arguments with `#':\n%s"),
1799 		       type_start);
1800 	  }
1801 
1802 	/* If there is just one argument whose type is `void', then
1803 	   that's just an empty argument list.  */
1804 	if (arg_types
1805 	    && ! arg_types->next
1806 	    && arg_types->type->code () == TYPE_CODE_VOID)
1807 	  num_args = 0;
1808 
1809 	func_type->set_fields
1810 	  ((struct field *) TYPE_ALLOC (func_type,
1811 					num_args * sizeof (struct field)));
1812 	memset (func_type->fields (), 0, num_args * sizeof (struct field));
1813 	{
1814 	  int i;
1815 	  struct type_list *t;
1816 
1817 	  /* We stuck each argument type onto the front of the list
1818 	     when we read it, so the list is reversed.  Build the
1819 	     fields array right-to-left.  */
1820 	  for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1821 	    func_type->field (i).set_type (t->type);
1822 	}
1823 	func_type->set_num_fields (num_args);
1824 	func_type->set_is_prototyped (true);
1825 
1826 	type = func_type;
1827 	break;
1828       }
1829 
1830     case 'k':			/* Const qualifier on some type (Sun) */
1831       type = read_type (pp, objfile);
1832       type = make_cv_type (1, TYPE_VOLATILE (type), type,
1833 			   dbx_lookup_type (typenums, objfile));
1834       break;
1835 
1836     case 'B':			/* Volatile qual on some type (Sun) */
1837       type = read_type (pp, objfile);
1838       type = make_cv_type (TYPE_CONST (type), 1, type,
1839 			   dbx_lookup_type (typenums, objfile));
1840       break;
1841 
1842     case '@':
1843       if (isdigit (**pp) || **pp == '(' || **pp == '-')
1844 	{			/* Member (class & variable) type */
1845 	  /* FIXME -- we should be doing smash_to_XXX types here.  */
1846 
1847 	  struct type *domain = read_type (pp, objfile);
1848 	  struct type *memtype;
1849 
1850 	  if (**pp != ',')
1851 	    /* Invalid member type data format.  */
1852 	    return error_type (pp, objfile);
1853 	  ++*pp;
1854 
1855 	  memtype = read_type (pp, objfile);
1856 	  type = dbx_alloc_type (typenums, objfile);
1857 	  smash_to_memberptr_type (type, domain, memtype);
1858 	}
1859       else
1860 	/* type attribute */
1861 	{
1862 	  const char *attr = *pp;
1863 
1864 	  /* Skip to the semicolon.  */
1865 	  while (**pp != ';' && **pp != '\0')
1866 	    ++(*pp);
1867 	  if (**pp == '\0')
1868 	    return error_type (pp, objfile);
1869 	  else
1870 	    ++ * pp;		/* Skip the semicolon.  */
1871 
1872 	  switch (*attr)
1873 	    {
1874 	    case 's':		/* Size attribute */
1875 	      type_size = atoi (attr + 1);
1876 	      if (type_size <= 0)
1877 		type_size = -1;
1878 	      break;
1879 
1880 	    case 'S':		/* String attribute */
1881 	      /* FIXME: check to see if following type is array?  */
1882 	      is_string = 1;
1883 	      break;
1884 
1885 	    case 'V':		/* Vector attribute */
1886 	      /* FIXME: check to see if following type is array?  */
1887 	      is_vector = 1;
1888 	      break;
1889 
1890 	    default:
1891 	      /* Ignore unrecognized type attributes, so future compilers
1892 		 can invent new ones.  */
1893 	      break;
1894 	    }
1895 	  ++*pp;
1896 	  goto again;
1897 	}
1898       break;
1899 
1900     case '#':			/* Method (class & fn) type */
1901       if ((*pp)[0] == '#')
1902 	{
1903 	  /* We'll get the parameter types from the name.  */
1904 	  struct type *return_type;
1905 
1906 	  (*pp)++;
1907 	  return_type = read_type (pp, objfile);
1908 	  if (*(*pp)++ != ';')
1909 	    complaint (_("invalid (minimal) member type "
1910 			 "data format at symtab pos %d."),
1911 		       symnum);
1912 	  type = allocate_stub_method (return_type);
1913 	  if (typenums[0] != -1)
1914 	    *dbx_lookup_type (typenums, objfile) = type;
1915 	}
1916       else
1917 	{
1918 	  struct type *domain = read_type (pp, objfile);
1919 	  struct type *return_type;
1920 	  struct field *args;
1921 	  int nargs, varargs;
1922 
1923 	  if (**pp != ',')
1924 	    /* Invalid member type data format.  */
1925 	    return error_type (pp, objfile);
1926 	  else
1927 	    ++(*pp);
1928 
1929 	  return_type = read_type (pp, objfile);
1930 	  args = read_args (pp, ';', objfile, &nargs, &varargs);
1931 	  if (args == NULL)
1932 	    return error_type (pp, objfile);
1933 	  type = dbx_alloc_type (typenums, objfile);
1934 	  smash_to_method_type (type, domain, return_type, args,
1935 				nargs, varargs);
1936 	}
1937       break;
1938 
1939     case 'r':			/* Range type */
1940       type = read_range_type (pp, typenums, type_size, objfile);
1941       if (typenums[0] != -1)
1942 	*dbx_lookup_type (typenums, objfile) = type;
1943       break;
1944 
1945     case 'b':
1946 	{
1947 	  /* Sun ACC builtin int type */
1948 	  type = read_sun_builtin_type (pp, typenums, objfile);
1949 	  if (typenums[0] != -1)
1950 	    *dbx_lookup_type (typenums, objfile) = type;
1951 	}
1952       break;
1953 
1954     case 'R':			/* Sun ACC builtin float type */
1955       type = read_sun_floating_type (pp, typenums, objfile);
1956       if (typenums[0] != -1)
1957 	*dbx_lookup_type (typenums, objfile) = type;
1958       break;
1959 
1960     case 'e':			/* Enumeration type */
1961       type = dbx_alloc_type (typenums, objfile);
1962       type = read_enum_type (pp, type, objfile);
1963       if (typenums[0] != -1)
1964 	*dbx_lookup_type (typenums, objfile) = type;
1965       break;
1966 
1967     case 's':			/* Struct type */
1968     case 'u':			/* Union type */
1969       {
1970 	enum type_code type_code = TYPE_CODE_UNDEF;
1971 	type = dbx_alloc_type (typenums, objfile);
1972 	switch (type_descriptor)
1973 	  {
1974 	  case 's':
1975 	    type_code = TYPE_CODE_STRUCT;
1976 	    break;
1977 	  case 'u':
1978 	    type_code = TYPE_CODE_UNION;
1979 	    break;
1980 	  }
1981 	type = read_struct_type (pp, type, type_code, objfile);
1982 	break;
1983       }
1984 
1985     case 'a':			/* Array type */
1986       if (**pp != 'r')
1987 	return error_type (pp, objfile);
1988       ++*pp;
1989 
1990       type = dbx_alloc_type (typenums, objfile);
1991       type = read_array_type (pp, type, objfile);
1992       if (is_string)
1993 	type->set_code (TYPE_CODE_STRING);
1994       if (is_vector)
1995 	make_vector_type (type);
1996       break;
1997 
1998     case 'S':			/* Set type */
1999       type1 = read_type (pp, objfile);
2000       type = create_set_type (NULL, type1);
2001       if (typenums[0] != -1)
2002 	*dbx_lookup_type (typenums, objfile) = type;
2003       break;
2004 
2005     default:
2006       --*pp;			/* Go back to the symbol in error.  */
2007       /* Particularly important if it was \0!  */
2008       return error_type (pp, objfile);
2009     }
2010 
2011   if (type == 0)
2012     {
2013       warning (_("GDB internal error, type is NULL in stabsread.c."));
2014       return error_type (pp, objfile);
2015     }
2016 
2017   /* Size specified in a type attribute overrides any other size.  */
2018   if (type_size != -1)
2019     type->set_length ((type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT);
2020 
2021   return type;
2022 }
2023 
2024 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2025    Return the proper type node for a given builtin type number.  */
2026 
2027 static const registry<objfile>::key<struct type *,
2028 				    gdb::noop_deleter<struct type *>>
2029   rs6000_builtin_type_data;
2030 
2031 static struct type *
2032 rs6000_builtin_type (int typenum, struct objfile *objfile)
2033 {
2034   struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2035 
2036   /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
2037 #define NUMBER_RECOGNIZED 34
2038   struct type *rettype = NULL;
2039 
2040   if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2041     {
2042       complaint (_("Unknown builtin type %d"), typenum);
2043       return objfile_type (objfile)->builtin_error;
2044     }
2045 
2046   if (!negative_types)
2047     {
2048       /* This includes an empty slot for type number -0.  */
2049       negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2050 				       NUMBER_RECOGNIZED + 1, struct type *);
2051       rs6000_builtin_type_data.set (objfile, negative_types);
2052     }
2053 
2054   if (negative_types[-typenum] != NULL)
2055     return negative_types[-typenum];
2056 
2057 #if TARGET_CHAR_BIT != 8
2058 #error This code wrong for TARGET_CHAR_BIT not 8
2059   /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
2060      that if that ever becomes not true, the correct fix will be to
2061      make the size in the struct type to be in bits, not in units of
2062      TARGET_CHAR_BIT.  */
2063 #endif
2064 
2065   switch (-typenum)
2066     {
2067     case 1:
2068       /* The size of this and all the other types are fixed, defined
2069 	 by the debugging format.  If there is a type called "int" which
2070 	 is other than 32 bits, then it should use a new negative type
2071 	 number (or avoid negative type numbers for that case).
2072 	 See stabs.texinfo.  */
2073       rettype = init_integer_type (objfile, 32, 0, "int");
2074       break;
2075     case 2:
2076       rettype = init_integer_type (objfile, 8, 0, "char");
2077       rettype->set_has_no_signedness (true);
2078       break;
2079     case 3:
2080       rettype = init_integer_type (objfile, 16, 0, "short");
2081       break;
2082     case 4:
2083       rettype = init_integer_type (objfile, 32, 0, "long");
2084       break;
2085     case 5:
2086       rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2087       break;
2088     case 6:
2089       rettype = init_integer_type (objfile, 8, 0, "signed char");
2090       break;
2091     case 7:
2092       rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2093       break;
2094     case 8:
2095       rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2096       break;
2097     case 9:
2098       rettype = init_integer_type (objfile, 32, 1, "unsigned");
2099       break;
2100     case 10:
2101       rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2102       break;
2103     case 11:
2104       rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2105       break;
2106     case 12:
2107       /* IEEE single precision (32 bit).  */
2108       rettype = init_float_type (objfile, 32, "float",
2109 				 floatformats_ieee_single);
2110       break;
2111     case 13:
2112       /* IEEE double precision (64 bit).  */
2113       rettype = init_float_type (objfile, 64, "double",
2114 				 floatformats_ieee_double);
2115       break;
2116     case 14:
2117       /* This is an IEEE double on the RS/6000, and different machines with
2118 	 different sizes for "long double" should use different negative
2119 	 type numbers.  See stabs.texinfo.  */
2120       rettype = init_float_type (objfile, 64, "long double",
2121 				 floatformats_ieee_double);
2122       break;
2123     case 15:
2124       rettype = init_integer_type (objfile, 32, 0, "integer");
2125       break;
2126     case 16:
2127       rettype = init_boolean_type (objfile, 32, 1, "boolean");
2128       break;
2129     case 17:
2130       rettype = init_float_type (objfile, 32, "short real",
2131 				 floatformats_ieee_single);
2132       break;
2133     case 18:
2134       rettype = init_float_type (objfile, 64, "real",
2135 				 floatformats_ieee_double);
2136       break;
2137     case 19:
2138       rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2139       break;
2140     case 20:
2141       rettype = init_character_type (objfile, 8, 1, "character");
2142       break;
2143     case 21:
2144       rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2145       break;
2146     case 22:
2147       rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2148       break;
2149     case 23:
2150       rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2151       break;
2152     case 24:
2153       rettype = init_boolean_type (objfile, 32, 1, "logical");
2154       break;
2155     case 25:
2156       /* Complex type consisting of two IEEE single precision values.  */
2157       rettype = init_complex_type ("complex",
2158 				   rs6000_builtin_type (12, objfile));
2159       break;
2160     case 26:
2161       /* Complex type consisting of two IEEE double precision values.  */
2162       rettype = init_complex_type ("double complex",
2163 				   rs6000_builtin_type (13, objfile));
2164       break;
2165     case 27:
2166       rettype = init_integer_type (objfile, 8, 0, "integer*1");
2167       break;
2168     case 28:
2169       rettype = init_integer_type (objfile, 16, 0, "integer*2");
2170       break;
2171     case 29:
2172       rettype = init_integer_type (objfile, 32, 0, "integer*4");
2173       break;
2174     case 30:
2175       rettype = init_character_type (objfile, 16, 0, "wchar");
2176       break;
2177     case 31:
2178       rettype = init_integer_type (objfile, 64, 0, "long long");
2179       break;
2180     case 32:
2181       rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2182       break;
2183     case 33:
2184       rettype = init_integer_type (objfile, 64, 1, "logical*8");
2185       break;
2186     case 34:
2187       rettype = init_integer_type (objfile, 64, 0, "integer*8");
2188       break;
2189     }
2190   negative_types[-typenum] = rettype;
2191   return rettype;
2192 }
2193 
2194 /* This page contains subroutines of read_type.  */
2195 
2196 /* Wrapper around method_name_from_physname to flag a complaint
2197    if there is an error.  */
2198 
2199 static char *
2200 stabs_method_name_from_physname (const char *physname)
2201 {
2202   char *method_name;
2203 
2204   method_name = method_name_from_physname (physname);
2205 
2206   if (method_name == NULL)
2207     {
2208       complaint (_("Method has bad physname %s\n"), physname);
2209       return NULL;
2210     }
2211 
2212   return method_name;
2213 }
2214 
2215 /* Read member function stabs info for C++ classes.  The form of each member
2216    function data is:
2217 
2218    NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2219 
2220    An example with two member functions is:
2221 
2222    afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2223 
2224    For the case of overloaded operators, the format is op$::*.funcs, where
2225    $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2226    name (such as `+=') and `.' marks the end of the operator name.
2227 
2228    Returns 1 for success, 0 for failure.  */
2229 
2230 static int
2231 read_member_functions (struct stab_field_info *fip, const char **pp,
2232 		       struct type *type, struct objfile *objfile)
2233 {
2234   int nfn_fields = 0;
2235   int length = 0;
2236   int i;
2237   struct next_fnfield
2238     {
2239       struct next_fnfield *next;
2240       struct fn_field fn_field;
2241     }
2242    *sublist;
2243   struct type *look_ahead_type;
2244   struct next_fnfieldlist *new_fnlist;
2245   struct next_fnfield *new_sublist;
2246   char *main_fn_name;
2247   const char *p;
2248 
2249   /* Process each list until we find something that is not a member function
2250      or find the end of the functions.  */
2251 
2252   while (**pp != ';')
2253     {
2254       /* We should be positioned at the start of the function name.
2255 	 Scan forward to find the first ':' and if it is not the
2256 	 first of a "::" delimiter, then this is not a member function.  */
2257       p = *pp;
2258       while (*p != ':')
2259 	{
2260 	  p++;
2261 	}
2262       if (p[1] != ':')
2263 	{
2264 	  break;
2265 	}
2266 
2267       sublist = NULL;
2268       look_ahead_type = NULL;
2269       length = 0;
2270 
2271       new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2272 
2273       if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2274 	{
2275 	  /* This is a completely wierd case.  In order to stuff in the
2276 	     names that might contain colons (the usual name delimiter),
2277 	     Mike Tiemann defined a different name format which is
2278 	     signalled if the identifier is "op$".  In that case, the
2279 	     format is "op$::XXXX." where XXXX is the name.  This is
2280 	     used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
2281 	  /* This lets the user type "break operator+".
2282 	     We could just put in "+" as the name, but that wouldn't
2283 	     work for "*".  */
2284 	  static char opname[32] = "op$";
2285 	  char *o = opname + 3;
2286 
2287 	  /* Skip past '::'.  */
2288 	  *pp = p + 2;
2289 
2290 	  STABS_CONTINUE (pp, objfile);
2291 	  p = *pp;
2292 	  while (*p != '.')
2293 	    {
2294 	      *o++ = *p++;
2295 	    }
2296 	  main_fn_name = savestring (opname, o - opname);
2297 	  /* Skip past '.'  */
2298 	  *pp = p + 1;
2299 	}
2300       else
2301 	{
2302 	  main_fn_name = savestring (*pp, p - *pp);
2303 	  /* Skip past '::'.  */
2304 	  *pp = p + 2;
2305 	}
2306       new_fnlist->fn_fieldlist.name = main_fn_name;
2307 
2308       do
2309 	{
2310 	  new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2311 
2312 	  /* Check for and handle cretinous dbx symbol name continuation!  */
2313 	  if (look_ahead_type == NULL)
2314 	    {
2315 	      /* Normal case.  */
2316 	      STABS_CONTINUE (pp, objfile);
2317 
2318 	      new_sublist->fn_field.type = read_type (pp, objfile);
2319 	      if (**pp != ':')
2320 		{
2321 		  /* Invalid symtab info for member function.  */
2322 		  return 0;
2323 		}
2324 	    }
2325 	  else
2326 	    {
2327 	      /* g++ version 1 kludge */
2328 	      new_sublist->fn_field.type = look_ahead_type;
2329 	      look_ahead_type = NULL;
2330 	    }
2331 
2332 	  (*pp)++;
2333 	  p = *pp;
2334 	  while (*p != ';')
2335 	    {
2336 	      p++;
2337 	    }
2338 
2339 	  /* These are methods, not functions.  */
2340 	  if (new_sublist->fn_field.type->code () == TYPE_CODE_FUNC)
2341 	    new_sublist->fn_field.type->set_code (TYPE_CODE_METHOD);
2342 
2343 	  /* If this is just a stub, then we don't have the real name here.  */
2344 	  if (new_sublist->fn_field.type->is_stub ())
2345 	    {
2346 	      if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2347 		set_type_self_type (new_sublist->fn_field.type, type);
2348 	      new_sublist->fn_field.is_stub = 1;
2349 	    }
2350 
2351 	  new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2352 	  *pp = p + 1;
2353 
2354 	  /* Set this member function's visibility fields.  */
2355 	  switch (*(*pp)++)
2356 	    {
2357 	    case VISIBILITY_PRIVATE:
2358 	      new_sublist->fn_field.is_private = 1;
2359 	      break;
2360 	    case VISIBILITY_PROTECTED:
2361 	      new_sublist->fn_field.is_protected = 1;
2362 	      break;
2363 	    }
2364 
2365 	  STABS_CONTINUE (pp, objfile);
2366 	  switch (**pp)
2367 	    {
2368 	    case 'A':		/* Normal functions.  */
2369 	      new_sublist->fn_field.is_const = 0;
2370 	      new_sublist->fn_field.is_volatile = 0;
2371 	      (*pp)++;
2372 	      break;
2373 	    case 'B':		/* `const' member functions.  */
2374 	      new_sublist->fn_field.is_const = 1;
2375 	      new_sublist->fn_field.is_volatile = 0;
2376 	      (*pp)++;
2377 	      break;
2378 	    case 'C':		/* `volatile' member function.  */
2379 	      new_sublist->fn_field.is_const = 0;
2380 	      new_sublist->fn_field.is_volatile = 1;
2381 	      (*pp)++;
2382 	      break;
2383 	    case 'D':		/* `const volatile' member function.  */
2384 	      new_sublist->fn_field.is_const = 1;
2385 	      new_sublist->fn_field.is_volatile = 1;
2386 	      (*pp)++;
2387 	      break;
2388 	    case '*':		/* File compiled with g++ version 1 --
2389 				   no info.  */
2390 	    case '?':
2391 	    case '.':
2392 	      break;
2393 	    default:
2394 	      complaint (_("const/volatile indicator missing, got '%c'"),
2395 			 **pp);
2396 	      break;
2397 	    }
2398 
2399 	  switch (*(*pp)++)
2400 	    {
2401 	    case '*':
2402 	      {
2403 		int nbits;
2404 		/* virtual member function, followed by index.
2405 		   The sign bit is set to distinguish pointers-to-methods
2406 		   from virtual function indicies.  Since the array is
2407 		   in words, the quantity must be shifted left by 1
2408 		   on 16 bit machine, and by 2 on 32 bit machine, forcing
2409 		   the sign bit out, and usable as a valid index into
2410 		   the array.  Remove the sign bit here.  */
2411 		new_sublist->fn_field.voffset =
2412 		  (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2413 		if (nbits != 0)
2414 		  return 0;
2415 
2416 		STABS_CONTINUE (pp, objfile);
2417 		if (**pp == ';' || **pp == '\0')
2418 		  {
2419 		    /* Must be g++ version 1.  */
2420 		    new_sublist->fn_field.fcontext = 0;
2421 		  }
2422 		else
2423 		  {
2424 		    /* Figure out from whence this virtual function came.
2425 		       It may belong to virtual function table of
2426 		       one of its baseclasses.  */
2427 		    look_ahead_type = read_type (pp, objfile);
2428 		    if (**pp == ':')
2429 		      {
2430 			/* g++ version 1 overloaded methods.  */
2431 		      }
2432 		    else
2433 		      {
2434 			new_sublist->fn_field.fcontext = look_ahead_type;
2435 			if (**pp != ';')
2436 			  {
2437 			    return 0;
2438 			  }
2439 			else
2440 			  {
2441 			    ++*pp;
2442 			  }
2443 			look_ahead_type = NULL;
2444 		      }
2445 		  }
2446 		break;
2447 	      }
2448 	    case '?':
2449 	      /* static member function.  */
2450 	      {
2451 		int slen = strlen (main_fn_name);
2452 
2453 		new_sublist->fn_field.voffset = VOFFSET_STATIC;
2454 
2455 		/* For static member functions, we can't tell if they
2456 		   are stubbed, as they are put out as functions, and not as
2457 		   methods.
2458 		   GCC v2 emits the fully mangled name if
2459 		   dbxout.c:flag_minimal_debug is not set, so we have to
2460 		   detect a fully mangled physname here and set is_stub
2461 		   accordingly.  Fully mangled physnames in v2 start with
2462 		   the member function name, followed by two underscores.
2463 		   GCC v3 currently always emits stubbed member functions,
2464 		   but with fully mangled physnames, which start with _Z.  */
2465 		if (!(strncmp (new_sublist->fn_field.physname,
2466 			       main_fn_name, slen) == 0
2467 		      && new_sublist->fn_field.physname[slen] == '_'
2468 		      && new_sublist->fn_field.physname[slen + 1] == '_'))
2469 		  {
2470 		    new_sublist->fn_field.is_stub = 1;
2471 		  }
2472 		break;
2473 	      }
2474 
2475 	    default:
2476 	      /* error */
2477 	      complaint (_("member function type missing, got '%c'"),
2478 			 (*pp)[-1]);
2479 	      /* Normal member function.  */
2480 	      /* Fall through.  */
2481 
2482 	    case '.':
2483 	      /* normal member function.  */
2484 	      new_sublist->fn_field.voffset = 0;
2485 	      new_sublist->fn_field.fcontext = 0;
2486 	      break;
2487 	    }
2488 
2489 	  new_sublist->next = sublist;
2490 	  sublist = new_sublist;
2491 	  length++;
2492 	  STABS_CONTINUE (pp, objfile);
2493 	}
2494       while (**pp != ';' && **pp != '\0');
2495 
2496       (*pp)++;
2497       STABS_CONTINUE (pp, objfile);
2498 
2499       /* Skip GCC 3.X member functions which are duplicates of the callable
2500 	 constructor/destructor.  */
2501       if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2502 	  || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2503 	  || strcmp (main_fn_name, "__deleting_dtor") == 0)
2504 	{
2505 	  xfree (main_fn_name);
2506 	}
2507       else
2508 	{
2509 	  int has_destructor = 0, has_other = 0;
2510 	  int is_v3 = 0;
2511 	  struct next_fnfield *tmp_sublist;
2512 
2513 	  /* Various versions of GCC emit various mostly-useless
2514 	     strings in the name field for special member functions.
2515 
2516 	     For stub methods, we need to defer correcting the name
2517 	     until we are ready to unstub the method, because the current
2518 	     name string is used by gdb_mangle_name.  The only stub methods
2519 	     of concern here are GNU v2 operators; other methods have their
2520 	     names correct (see caveat below).
2521 
2522 	     For non-stub methods, in GNU v3, we have a complete physname.
2523 	     Therefore we can safely correct the name now.  This primarily
2524 	     affects constructors and destructors, whose name will be
2525 	     __comp_ctor or __comp_dtor instead of Foo or ~Foo.  Cast
2526 	     operators will also have incorrect names; for instance,
2527 	     "operator int" will be named "operator i" (i.e. the type is
2528 	     mangled).
2529 
2530 	     For non-stub methods in GNU v2, we have no easy way to
2531 	     know if we have a complete physname or not.  For most
2532 	     methods the result depends on the platform (if CPLUS_MARKER
2533 	     can be `$' or `.', it will use minimal debug information, or
2534 	     otherwise the full physname will be included).
2535 
2536 	     Rather than dealing with this, we take a different approach.
2537 	     For v3 mangled names, we can use the full physname; for v2,
2538 	     we use cplus_demangle_opname (which is actually v2 specific),
2539 	     because the only interesting names are all operators - once again
2540 	     barring the caveat below.  Skip this process if any method in the
2541 	     group is a stub, to prevent our fouling up the workings of
2542 	     gdb_mangle_name.
2543 
2544 	     The caveat: GCC 2.95.x (and earlier?) put constructors and
2545 	     destructors in the same method group.  We need to split this
2546 	     into two groups, because they should have different names.
2547 	     So for each method group we check whether it contains both
2548 	     routines whose physname appears to be a destructor (the physnames
2549 	     for and destructors are always provided, due to quirks in v2
2550 	     mangling) and routines whose physname does not appear to be a
2551 	     destructor.  If so then we break up the list into two halves.
2552 	     Even if the constructors and destructors aren't in the same group
2553 	     the destructor will still lack the leading tilde, so that also
2554 	     needs to be fixed.
2555 
2556 	     So, to summarize what we expect and handle here:
2557 
2558 		Given         Given          Real         Real       Action
2559 	     method name     physname      physname   method name
2560 
2561 	     __opi            [none]     __opi__3Foo  operator int    opname
2562 								 [now or later]
2563 	     Foo              _._3Foo       _._3Foo      ~Foo      separate and
2564 								       rename
2565 	     operator i     _ZN3FoocviEv _ZN3FoocviEv operator int    demangle
2566 	     __comp_ctor  _ZN3FooC1ERKS_ _ZN3FooC1ERKS_   Foo         demangle
2567 	  */
2568 
2569 	  tmp_sublist = sublist;
2570 	  while (tmp_sublist != NULL)
2571 	    {
2572 	      if (tmp_sublist->fn_field.physname[0] == '_'
2573 		  && tmp_sublist->fn_field.physname[1] == 'Z')
2574 		is_v3 = 1;
2575 
2576 	      if (is_destructor_name (tmp_sublist->fn_field.physname))
2577 		has_destructor++;
2578 	      else
2579 		has_other++;
2580 
2581 	      tmp_sublist = tmp_sublist->next;
2582 	    }
2583 
2584 	  if (has_destructor && has_other)
2585 	    {
2586 	      struct next_fnfieldlist *destr_fnlist;
2587 	      struct next_fnfield *last_sublist;
2588 
2589 	      /* Create a new fn_fieldlist for the destructors.  */
2590 
2591 	      destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2592 					     struct next_fnfieldlist);
2593 
2594 	      destr_fnlist->fn_fieldlist.name
2595 		= obconcat (&objfile->objfile_obstack, "~",
2596 			    new_fnlist->fn_fieldlist.name, (char *) NULL);
2597 
2598 	      destr_fnlist->fn_fieldlist.fn_fields =
2599 		XOBNEWVEC (&objfile->objfile_obstack,
2600 			   struct fn_field, has_destructor);
2601 	      memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2602 		  sizeof (struct fn_field) * has_destructor);
2603 	      tmp_sublist = sublist;
2604 	      last_sublist = NULL;
2605 	      i = 0;
2606 	      while (tmp_sublist != NULL)
2607 		{
2608 		  if (!is_destructor_name (tmp_sublist->fn_field.physname))
2609 		    {
2610 		      tmp_sublist = tmp_sublist->next;
2611 		      continue;
2612 		    }
2613 
2614 		  destr_fnlist->fn_fieldlist.fn_fields[i++]
2615 		    = tmp_sublist->fn_field;
2616 		  if (last_sublist)
2617 		    last_sublist->next = tmp_sublist->next;
2618 		  else
2619 		    sublist = tmp_sublist->next;
2620 		  last_sublist = tmp_sublist;
2621 		  tmp_sublist = tmp_sublist->next;
2622 		}
2623 
2624 	      destr_fnlist->fn_fieldlist.length = has_destructor;
2625 	      destr_fnlist->next = fip->fnlist;
2626 	      fip->fnlist = destr_fnlist;
2627 	      nfn_fields++;
2628 	      length -= has_destructor;
2629 	    }
2630 	  else if (is_v3)
2631 	    {
2632 	      /* v3 mangling prevents the use of abbreviated physnames,
2633 		 so we can do this here.  There are stubbed methods in v3
2634 		 only:
2635 		 - in -gstabs instead of -gstabs+
2636 		 - or for static methods, which are output as a function type
2637 		   instead of a method type.  */
2638 	      char *new_method_name =
2639 		stabs_method_name_from_physname (sublist->fn_field.physname);
2640 
2641 	      if (new_method_name != NULL
2642 		  && strcmp (new_method_name,
2643 			     new_fnlist->fn_fieldlist.name) != 0)
2644 		{
2645 		  new_fnlist->fn_fieldlist.name = new_method_name;
2646 		  xfree (main_fn_name);
2647 		}
2648 	      else
2649 		xfree (new_method_name);
2650 	    }
2651 	  else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2652 	    {
2653 	      new_fnlist->fn_fieldlist.name =
2654 		obconcat (&objfile->objfile_obstack,
2655 			  "~", main_fn_name, (char *)NULL);
2656 	      xfree (main_fn_name);
2657 	    }
2658 
2659 	  new_fnlist->fn_fieldlist.fn_fields
2660 	    = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2661 	  for (i = length; (i--, sublist); sublist = sublist->next)
2662 	    {
2663 	      new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2664 	    }
2665 
2666 	  new_fnlist->fn_fieldlist.length = length;
2667 	  new_fnlist->next = fip->fnlist;
2668 	  fip->fnlist = new_fnlist;
2669 	  nfn_fields++;
2670 	}
2671     }
2672 
2673   if (nfn_fields)
2674     {
2675       ALLOCATE_CPLUS_STRUCT_TYPE (type);
2676       TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2677 	TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2678       memset (TYPE_FN_FIELDLISTS (type), 0,
2679 	      sizeof (struct fn_fieldlist) * nfn_fields);
2680       TYPE_NFN_FIELDS (type) = nfn_fields;
2681     }
2682 
2683   return 1;
2684 }
2685 
2686 /* Special GNU C++ name.
2687 
2688    Returns 1 for success, 0 for failure.  "failure" means that we can't
2689    keep parsing and it's time for error_type().  */
2690 
2691 static int
2692 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2693 		 struct type *type, struct objfile *objfile)
2694 {
2695   const char *p;
2696   const char *name;
2697   char cpp_abbrev;
2698   struct type *context;
2699 
2700   p = *pp;
2701   if (*++p == 'v')
2702     {
2703       name = NULL;
2704       cpp_abbrev = *++p;
2705 
2706       *pp = p + 1;
2707 
2708       /* At this point, *pp points to something like "22:23=*22...",
2709 	 where the type number before the ':' is the "context" and
2710 	 everything after is a regular type definition.  Lookup the
2711 	 type, find it's name, and construct the field name.  */
2712 
2713       context = read_type (pp, objfile);
2714 
2715       switch (cpp_abbrev)
2716 	{
2717 	case 'f':		/* $vf -- a virtual function table pointer */
2718 	  name = context->name ();
2719 	  if (name == NULL)
2720 	    {
2721 	      name = "";
2722 	    }
2723 	  fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2724 					       vptr_name, name, (char *) NULL));
2725 	  break;
2726 
2727 	case 'b':		/* $vb -- a virtual bsomethingorother */
2728 	  name = context->name ();
2729 	  if (name == NULL)
2730 	    {
2731 	      complaint (_("C++ abbreviated type name "
2732 			   "unknown at symtab pos %d"),
2733 			 symnum);
2734 	      name = "FOO";
2735 	    }
2736 	  fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2737 					       vb_name, name, (char *) NULL));
2738 	  break;
2739 
2740 	default:
2741 	  invalid_cpp_abbrev_complaint (*pp);
2742 	  fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2743 					       "INVALID_CPLUSPLUS_ABBREV",
2744 					       (char *) NULL));
2745 	  break;
2746 	}
2747 
2748       /* At this point, *pp points to the ':'.  Skip it and read the
2749 	 field type.  */
2750 
2751       p = ++(*pp);
2752       if (p[-1] != ':')
2753 	{
2754 	  invalid_cpp_abbrev_complaint (*pp);
2755 	  return 0;
2756 	}
2757       fip->list->field.set_type (read_type (pp, objfile));
2758       if (**pp == ',')
2759 	(*pp)++;		/* Skip the comma.  */
2760       else
2761 	return 0;
2762 
2763       {
2764 	int nbits;
2765 
2766 	fip->list->field.set_loc_bitpos (read_huge_number (pp, ';', &nbits, 0));
2767 	if (nbits != 0)
2768 	  return 0;
2769       }
2770       /* This field is unpacked.  */
2771       FIELD_BITSIZE (fip->list->field) = 0;
2772       fip->list->visibility = VISIBILITY_PRIVATE;
2773     }
2774   else
2775     {
2776       invalid_cpp_abbrev_complaint (*pp);
2777       /* We have no idea what syntax an unrecognized abbrev would have, so
2778 	 better return 0.  If we returned 1, we would need to at least advance
2779 	 *pp to avoid an infinite loop.  */
2780       return 0;
2781     }
2782   return 1;
2783 }
2784 
2785 static void
2786 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2787 		       const char *p, struct type *type,
2788 		       struct objfile *objfile)
2789 {
2790   struct gdbarch *gdbarch = objfile->arch ();
2791 
2792   fip->list->field.set_name
2793     (obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp));
2794   *pp = p + 1;
2795 
2796   /* This means we have a visibility for a field coming.  */
2797   if (**pp == '/')
2798     {
2799       (*pp)++;
2800       fip->list->visibility = *(*pp)++;
2801     }
2802   else
2803     {
2804       /* normal dbx-style format, no explicit visibility */
2805       fip->list->visibility = VISIBILITY_PUBLIC;
2806     }
2807 
2808   fip->list->field.set_type (read_type (pp, objfile));
2809   if (**pp == ':')
2810     {
2811       p = ++(*pp);
2812 #if 0
2813       /* Possible future hook for nested types.  */
2814       if (**pp == '!')
2815 	{
2816 	  fip->list->field.bitpos = (long) -2;	/* nested type */
2817 	  p = ++(*pp);
2818 	}
2819       else
2820 	...;
2821 #endif
2822       while (*p != ';')
2823 	{
2824 	  p++;
2825 	}
2826       /* Static class member.  */
2827       fip->list->field.set_loc_physname (savestring (*pp, p - *pp));
2828       *pp = p + 1;
2829       return;
2830     }
2831   else if (**pp != ',')
2832     {
2833       /* Bad structure-type format.  */
2834       stabs_general_complaint ("bad structure-type format");
2835       return;
2836     }
2837 
2838   (*pp)++;			/* Skip the comma.  */
2839 
2840   {
2841     int nbits;
2842 
2843     fip->list->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
2844     if (nbits != 0)
2845       {
2846 	stabs_general_complaint ("bad structure-type format");
2847 	return;
2848       }
2849     FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2850     if (nbits != 0)
2851       {
2852 	stabs_general_complaint ("bad structure-type format");
2853 	return;
2854       }
2855   }
2856 
2857   if (fip->list->field.loc_bitpos () == 0
2858       && FIELD_BITSIZE (fip->list->field) == 0)
2859     {
2860       /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2861 	 it is a field which has been optimized out.  The correct stab for
2862 	 this case is to use VISIBILITY_IGNORE, but that is a recent
2863 	 invention.  (2) It is a 0-size array.  For example
2864 	 union { int num; char str[0]; } foo.  Printing _("<no value>" for
2865 	 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2866 	 will continue to work, and a 0-size array as a whole doesn't
2867 	 have any contents to print.
2868 
2869 	 I suspect this probably could also happen with gcc -gstabs (not
2870 	 -gstabs+) for static fields, and perhaps other C++ extensions.
2871 	 Hopefully few people use -gstabs with gdb, since it is intended
2872 	 for dbx compatibility.  */
2873 
2874       /* Ignore this field.  */
2875       fip->list->visibility = VISIBILITY_IGNORE;
2876     }
2877   else
2878     {
2879       /* Detect an unpacked field and mark it as such.
2880 	 dbx gives a bit size for all fields.
2881 	 Note that forward refs cannot be packed,
2882 	 and treat enums as if they had the width of ints.  */
2883 
2884       struct type *field_type = check_typedef (fip->list->field.type ());
2885 
2886       if (field_type->code () != TYPE_CODE_INT
2887 	  && field_type->code () != TYPE_CODE_RANGE
2888 	  && field_type->code () != TYPE_CODE_BOOL
2889 	  && field_type->code () != TYPE_CODE_ENUM)
2890 	{
2891 	  FIELD_BITSIZE (fip->list->field) = 0;
2892 	}
2893       if ((FIELD_BITSIZE (fip->list->field)
2894 	   == TARGET_CHAR_BIT * field_type->length ()
2895 	   || (field_type->code () == TYPE_CODE_ENUM
2896 	       && FIELD_BITSIZE (fip->list->field)
2897 		  == gdbarch_int_bit (gdbarch))
2898 	  )
2899 	  &&
2900 	  fip->list->field.loc_bitpos () % 8 == 0)
2901 	{
2902 	  FIELD_BITSIZE (fip->list->field) = 0;
2903 	}
2904     }
2905 }
2906 
2907 
2908 /* Read struct or class data fields.  They have the form:
2909 
2910    NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2911 
2912    At the end, we see a semicolon instead of a field.
2913 
2914    In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2915    a static field.
2916 
2917    The optional VISIBILITY is one of:
2918 
2919    '/0' (VISIBILITY_PRIVATE)
2920    '/1' (VISIBILITY_PROTECTED)
2921    '/2' (VISIBILITY_PUBLIC)
2922    '/9' (VISIBILITY_IGNORE)
2923 
2924    or nothing, for C style fields with public visibility.
2925 
2926    Returns 1 for success, 0 for failure.  */
2927 
2928 static int
2929 read_struct_fields (struct stab_field_info *fip, const char **pp,
2930 		    struct type *type, struct objfile *objfile)
2931 {
2932   const char *p;
2933   struct stabs_nextfield *newobj;
2934 
2935   /* We better set p right now, in case there are no fields at all...    */
2936 
2937   p = *pp;
2938 
2939   /* Read each data member type until we find the terminating ';' at the end of
2940      the data member list, or break for some other reason such as finding the
2941      start of the member function list.  */
2942   /* Stab string for structure/union does not end with two ';' in
2943      SUN C compiler 5.3 i.e. F6U2, hence check for end of string.  */
2944 
2945   while (**pp != ';' && **pp != '\0')
2946     {
2947       STABS_CONTINUE (pp, objfile);
2948       /* Get space to record the next field's data.  */
2949       newobj = OBSTACK_ZALLOC (&fip->obstack, struct stabs_nextfield);
2950 
2951       newobj->next = fip->list;
2952       fip->list = newobj;
2953 
2954       /* Get the field name.  */
2955       p = *pp;
2956 
2957       /* If is starts with CPLUS_MARKER it is a special abbreviation,
2958 	 unless the CPLUS_MARKER is followed by an underscore, in
2959 	 which case it is just the name of an anonymous type, which we
2960 	 should handle like any other type name.  */
2961 
2962       if (is_cplus_marker (p[0]) && p[1] != '_')
2963 	{
2964 	  if (!read_cpp_abbrev (fip, pp, type, objfile))
2965 	    return 0;
2966 	  continue;
2967 	}
2968 
2969       /* Look for the ':' that separates the field name from the field
2970 	 values.  Data members are delimited by a single ':', while member
2971 	 functions are delimited by a pair of ':'s.  When we hit the member
2972 	 functions (if any), terminate scan loop and return.  */
2973 
2974       while (*p != ':' && *p != '\0')
2975 	{
2976 	  p++;
2977 	}
2978       if (*p == '\0')
2979 	return 0;
2980 
2981       /* Check to see if we have hit the member functions yet.  */
2982       if (p[1] == ':')
2983 	{
2984 	  break;
2985 	}
2986       read_one_struct_field (fip, pp, p, type, objfile);
2987     }
2988   if (p[0] == ':' && p[1] == ':')
2989     {
2990       /* (the deleted) chill the list of fields: the last entry (at
2991 	 the head) is a partially constructed entry which we now
2992 	 scrub.  */
2993       fip->list = fip->list->next;
2994     }
2995   return 1;
2996 }
2997 /* *INDENT-OFF* */
2998 /* The stabs for C++ derived classes contain baseclass information which
2999    is marked by a '!' character after the total size.  This function is
3000    called when we encounter the baseclass marker, and slurps up all the
3001    baseclass information.
3002 
3003    Immediately following the '!' marker is the number of base classes that
3004    the class is derived from, followed by information for each base class.
3005    For each base class, there are two visibility specifiers, a bit offset
3006    to the base class information within the derived class, a reference to
3007    the type for the base class, and a terminating semicolon.
3008 
3009    A typical example, with two base classes, would be "!2,020,19;0264,21;".
3010 						       ^^ ^ ^ ^  ^ ^  ^
3011 	Baseclass information marker __________________|| | | |  | |  |
3012 	Number of baseclasses __________________________| | | |  | |  |
3013 	Visibility specifiers (2) ________________________| | |  | |  |
3014 	Offset in bits from start of class _________________| |  | |  |
3015 	Type number for base class ___________________________|  | |  |
3016 	Visibility specifiers (2) _______________________________| |  |
3017 	Offset in bits from start of class ________________________|  |
3018 	Type number of base class ____________________________________|
3019 
3020   Return 1 for success, 0 for (error-type-inducing) failure.  */
3021 /* *INDENT-ON* */
3022 
3023 
3024 
3025 static int
3026 read_baseclasses (struct stab_field_info *fip, const char **pp,
3027 		  struct type *type, struct objfile *objfile)
3028 {
3029   int i;
3030   struct stabs_nextfield *newobj;
3031 
3032   if (**pp != '!')
3033     {
3034       return 1;
3035     }
3036   else
3037     {
3038       /* Skip the '!' baseclass information marker.  */
3039       (*pp)++;
3040     }
3041 
3042   ALLOCATE_CPLUS_STRUCT_TYPE (type);
3043   {
3044     int nbits;
3045 
3046     TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3047     if (nbits != 0)
3048       return 0;
3049   }
3050 
3051 #if 0
3052   /* Some stupid compilers have trouble with the following, so break
3053      it up into simpler expressions.  */
3054   TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3055     TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3056 #else
3057   {
3058     int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3059     char *pointer;
3060 
3061     pointer = (char *) TYPE_ALLOC (type, num_bytes);
3062     TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3063   }
3064 #endif /* 0 */
3065 
3066   B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3067 
3068   for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3069     {
3070       newobj = OBSTACK_ZALLOC (&fip->obstack, struct stabs_nextfield);
3071 
3072       newobj->next = fip->list;
3073       fip->list = newobj;
3074       FIELD_BITSIZE (newobj->field) = 0;	/* This should be an unpacked
3075 					   field!  */
3076 
3077       STABS_CONTINUE (pp, objfile);
3078       switch (**pp)
3079 	{
3080 	case '0':
3081 	  /* Nothing to do.  */
3082 	  break;
3083 	case '1':
3084 	  SET_TYPE_FIELD_VIRTUAL (type, i);
3085 	  break;
3086 	default:
3087 	  /* Unknown character.  Complain and treat it as non-virtual.  */
3088 	  {
3089 	    complaint (_("Unknown virtual character `%c' for baseclass"),
3090 		       **pp);
3091 	  }
3092 	}
3093       ++(*pp);
3094 
3095       newobj->visibility = *(*pp)++;
3096       switch (newobj->visibility)
3097 	{
3098 	case VISIBILITY_PRIVATE:
3099 	case VISIBILITY_PROTECTED:
3100 	case VISIBILITY_PUBLIC:
3101 	  break;
3102 	default:
3103 	  /* Bad visibility format.  Complain and treat it as
3104 	     public.  */
3105 	  {
3106 	    complaint (_("Unknown visibility `%c' for baseclass"),
3107 		       newobj->visibility);
3108 	    newobj->visibility = VISIBILITY_PUBLIC;
3109 	  }
3110 	}
3111 
3112       {
3113 	int nbits;
3114 
3115 	/* The remaining value is the bit offset of the portion of the object
3116 	   corresponding to this baseclass.  Always zero in the absence of
3117 	   multiple inheritance.  */
3118 
3119 	newobj->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
3120 	if (nbits != 0)
3121 	  return 0;
3122       }
3123 
3124       /* The last piece of baseclass information is the type of the
3125 	 base class.  Read it, and remember it's type name as this
3126 	 field's name.  */
3127 
3128       newobj->field.set_type (read_type (pp, objfile));
3129       newobj->field.set_name (newobj->field.type ()->name ());
3130 
3131       /* Skip trailing ';' and bump count of number of fields seen.  */
3132       if (**pp == ';')
3133 	(*pp)++;
3134       else
3135 	return 0;
3136     }
3137   return 1;
3138 }
3139 
3140 /* The tail end of stabs for C++ classes that contain a virtual function
3141    pointer contains a tilde, a %, and a type number.
3142    The type number refers to the base class (possibly this class itself) which
3143    contains the vtable pointer for the current class.
3144 
3145    This function is called when we have parsed all the method declarations,
3146    so we can look for the vptr base class info.  */
3147 
3148 static int
3149 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3150 		   struct type *type, struct objfile *objfile)
3151 {
3152   const char *p;
3153 
3154   STABS_CONTINUE (pp, objfile);
3155 
3156   /* If we are positioned at a ';', then skip it.  */
3157   if (**pp == ';')
3158     {
3159       (*pp)++;
3160     }
3161 
3162   if (**pp == '~')
3163     {
3164       (*pp)++;
3165 
3166       if (**pp == '=' || **pp == '+' || **pp == '-')
3167 	{
3168 	  /* Obsolete flags that used to indicate the presence
3169 	     of constructors and/or destructors.  */
3170 	  (*pp)++;
3171 	}
3172 
3173       /* Read either a '%' or the final ';'.  */
3174       if (*(*pp)++ == '%')
3175 	{
3176 	  /* The next number is the type number of the base class
3177 	     (possibly our own class) which supplies the vtable for
3178 	     this class.  Parse it out, and search that class to find
3179 	     its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3180 	     and TYPE_VPTR_FIELDNO.  */
3181 
3182 	  struct type *t;
3183 	  int i;
3184 
3185 	  t = read_type (pp, objfile);
3186 	  p = (*pp)++;
3187 	  while (*p != '\0' && *p != ';')
3188 	    {
3189 	      p++;
3190 	    }
3191 	  if (*p == '\0')
3192 	    {
3193 	      /* Premature end of symbol.  */
3194 	      return 0;
3195 	    }
3196 
3197 	  set_type_vptr_basetype (type, t);
3198 	  if (type == t)	/* Our own class provides vtbl ptr.  */
3199 	    {
3200 	      for (i = t->num_fields () - 1;
3201 		   i >= TYPE_N_BASECLASSES (t);
3202 		   --i)
3203 		{
3204 		  const char *name = t->field (i).name ();
3205 
3206 		  if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3207 		      && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3208 		    {
3209 		      set_type_vptr_fieldno (type, i);
3210 		      goto gotit;
3211 		    }
3212 		}
3213 	      /* Virtual function table field not found.  */
3214 	      complaint (_("virtual function table pointer "
3215 			   "not found when defining class `%s'"),
3216 			 type->name ());
3217 	      return 0;
3218 	    }
3219 	  else
3220 	    {
3221 	      set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3222 	    }
3223 
3224 	gotit:
3225 	  *pp = p + 1;
3226 	}
3227     }
3228   return 1;
3229 }
3230 
3231 static int
3232 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3233 {
3234   int n;
3235 
3236   for (n = TYPE_NFN_FIELDS (type);
3237        fip->fnlist != NULL;
3238        fip->fnlist = fip->fnlist->next)
3239     {
3240       --n;			/* Circumvent Sun3 compiler bug.  */
3241       TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3242     }
3243   return 1;
3244 }
3245 
3246 /* Create the vector of fields, and record how big it is.
3247    We need this info to record proper virtual function table information
3248    for this class's virtual functions.  */
3249 
3250 static int
3251 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3252 		       struct objfile *objfile)
3253 {
3254   int nfields = 0;
3255   int non_public_fields = 0;
3256   struct stabs_nextfield *scan;
3257 
3258   /* Count up the number of fields that we have, as well as taking note of
3259      whether or not there are any non-public fields, which requires us to
3260      allocate and build the private_field_bits and protected_field_bits
3261      bitfields.  */
3262 
3263   for (scan = fip->list; scan != NULL; scan = scan->next)
3264     {
3265       nfields++;
3266       if (scan->visibility != VISIBILITY_PUBLIC)
3267 	{
3268 	  non_public_fields++;
3269 	}
3270     }
3271 
3272   /* Now we know how many fields there are, and whether or not there are any
3273      non-public fields.  Record the field count, allocate space for the
3274      array of fields, and create blank visibility bitfields if necessary.  */
3275 
3276   type->set_num_fields (nfields);
3277   type->set_fields
3278     ((struct field *)
3279      TYPE_ALLOC (type, sizeof (struct field) * nfields));
3280   memset (type->fields (), 0, sizeof (struct field) * nfields);
3281 
3282   if (non_public_fields)
3283     {
3284       ALLOCATE_CPLUS_STRUCT_TYPE (type);
3285 
3286       TYPE_FIELD_PRIVATE_BITS (type) =
3287 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3288       B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3289 
3290       TYPE_FIELD_PROTECTED_BITS (type) =
3291 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3292       B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3293 
3294       TYPE_FIELD_IGNORE_BITS (type) =
3295 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3296       B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3297     }
3298 
3299   /* Copy the saved-up fields into the field vector.  Start from the
3300      head of the list, adding to the tail of the field array, so that
3301      they end up in the same order in the array in which they were
3302      added to the list.  */
3303 
3304   while (nfields-- > 0)
3305     {
3306       type->field (nfields) = fip->list->field;
3307       switch (fip->list->visibility)
3308 	{
3309 	case VISIBILITY_PRIVATE:
3310 	  SET_TYPE_FIELD_PRIVATE (type, nfields);
3311 	  break;
3312 
3313 	case VISIBILITY_PROTECTED:
3314 	  SET_TYPE_FIELD_PROTECTED (type, nfields);
3315 	  break;
3316 
3317 	case VISIBILITY_IGNORE:
3318 	  SET_TYPE_FIELD_IGNORE (type, nfields);
3319 	  break;
3320 
3321 	case VISIBILITY_PUBLIC:
3322 	  break;
3323 
3324 	default:
3325 	  /* Unknown visibility.  Complain and treat it as public.  */
3326 	  {
3327 	    complaint (_("Unknown visibility `%c' for field"),
3328 		       fip->list->visibility);
3329 	  }
3330 	  break;
3331 	}
3332       fip->list = fip->list->next;
3333     }
3334   return 1;
3335 }
3336 
3337 
3338 /* Complain that the compiler has emitted more than one definition for the
3339    structure type TYPE.  */
3340 static void
3341 complain_about_struct_wipeout (struct type *type)
3342 {
3343   const char *name = "";
3344   const char *kind = "";
3345 
3346   if (type->name ())
3347     {
3348       name = type->name ();
3349       switch (type->code ())
3350 	{
3351 	case TYPE_CODE_STRUCT: kind = "struct "; break;
3352 	case TYPE_CODE_UNION:  kind = "union ";  break;
3353 	case TYPE_CODE_ENUM:   kind = "enum ";   break;
3354 	default: kind = "";
3355 	}
3356     }
3357   else
3358     {
3359       name = "<unknown>";
3360       kind = "";
3361     }
3362 
3363   complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3364 }
3365 
3366 /* Set the length for all variants of a same main_type, which are
3367    connected in the closed chain.
3368 
3369    This is something that needs to be done when a type is defined *after*
3370    some cross references to this type have already been read.  Consider
3371    for instance the following scenario where we have the following two
3372    stabs entries:
3373 
3374 	.stabs  "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3375 	.stabs  "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3376 
3377    A stubbed version of type dummy is created while processing the first
3378    stabs entry.  The length of that type is initially set to zero, since
3379    it is unknown at this point.  Also, a "constant" variation of type
3380    "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3381    the stabs line).
3382 
3383    The second stabs entry allows us to replace the stubbed definition
3384    with the real definition.  However, we still need to adjust the length
3385    of the "constant" variation of that type, as its length was left
3386    untouched during the main type replacement...  */
3387 
3388 static void
3389 set_length_in_type_chain (struct type *type)
3390 {
3391   struct type *ntype = TYPE_CHAIN (type);
3392 
3393   while (ntype != type)
3394     {
3395       if (ntype->length () == 0)
3396 	ntype->set_length (type->length ());
3397       else
3398 	complain_about_struct_wipeout (ntype);
3399       ntype = TYPE_CHAIN (ntype);
3400     }
3401 }
3402 
3403 /* Read the description of a structure (or union type) and return an object
3404    describing the type.
3405 
3406    PP points to a character pointer that points to the next unconsumed token
3407    in the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
3408    *PP will point to "4a:1,0,32;;".
3409 
3410    TYPE points to an incomplete type that needs to be filled in.
3411 
3412    OBJFILE points to the current objfile from which the stabs information is
3413    being read.  (Note that it is redundant in that TYPE also contains a pointer
3414    to this same objfile, so it might be a good idea to eliminate it.  FIXME).
3415  */
3416 
3417 static struct type *
3418 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3419 		  struct objfile *objfile)
3420 {
3421   struct stab_field_info fi;
3422 
3423   /* When describing struct/union/class types in stabs, G++ always drops
3424      all qualifications from the name.  So if you've got:
3425        struct A { ... struct B { ... }; ... };
3426      then G++ will emit stabs for `struct A::B' that call it simply
3427      `struct B'.  Obviously, if you've got a real top-level definition for
3428      `struct B', or other nested definitions, this is going to cause
3429      problems.
3430 
3431      Obviously, GDB can't fix this by itself, but it can at least avoid
3432      scribbling on existing structure type objects when new definitions
3433      appear.  */
3434   if (! (type->code () == TYPE_CODE_UNDEF
3435 	 || type->is_stub ()))
3436     {
3437       complain_about_struct_wipeout (type);
3438 
3439       /* It's probably best to return the type unchanged.  */
3440       return type;
3441     }
3442 
3443   INIT_CPLUS_SPECIFIC (type);
3444   type->set_code (type_code);
3445   type->set_is_stub (false);
3446 
3447   /* First comes the total size in bytes.  */
3448 
3449   {
3450     int nbits;
3451 
3452     type->set_length (read_huge_number (pp, 0, &nbits, 0));
3453     if (nbits != 0)
3454       return error_type (pp, objfile);
3455     set_length_in_type_chain (type);
3456   }
3457 
3458   /* Now read the baseclasses, if any, read the regular C struct or C++
3459      class member fields, attach the fields to the type, read the C++
3460      member functions, attach them to the type, and then read any tilde
3461      field (baseclass specifier for the class holding the main vtable).  */
3462 
3463   if (!read_baseclasses (&fi, pp, type, objfile)
3464       || !read_struct_fields (&fi, pp, type, objfile)
3465       || !attach_fields_to_type (&fi, type, objfile)
3466       || !read_member_functions (&fi, pp, type, objfile)
3467       || !attach_fn_fields_to_type (&fi, type)
3468       || !read_tilde_fields (&fi, pp, type, objfile))
3469     {
3470       type = error_type (pp, objfile);
3471     }
3472 
3473   return (type);
3474 }
3475 
3476 /* Read a definition of an array type,
3477    and create and return a suitable type object.
3478    Also creates a range type which represents the bounds of that
3479    array.  */
3480 
3481 static struct type *
3482 read_array_type (const char **pp, struct type *type,
3483 		 struct objfile *objfile)
3484 {
3485   struct type *index_type, *element_type, *range_type;
3486   int lower, upper;
3487   int adjustable = 0;
3488   int nbits;
3489 
3490   /* Format of an array type:
3491      "ar<index type>;lower;upper;<array_contents_type>".
3492      OS9000: "arlower,upper;<array_contents_type>".
3493 
3494      Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3495      for these, produce a type like float[][].  */
3496 
3497     {
3498       index_type = read_type (pp, objfile);
3499       if (**pp != ';')
3500 	/* Improper format of array type decl.  */
3501 	return error_type (pp, objfile);
3502       ++*pp;
3503     }
3504 
3505   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3506     {
3507       (*pp)++;
3508       adjustable = 1;
3509     }
3510   lower = read_huge_number (pp, ';', &nbits, 0);
3511 
3512   if (nbits != 0)
3513     return error_type (pp, objfile);
3514 
3515   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3516     {
3517       (*pp)++;
3518       adjustable = 1;
3519     }
3520   upper = read_huge_number (pp, ';', &nbits, 0);
3521   if (nbits != 0)
3522     return error_type (pp, objfile);
3523 
3524   element_type = read_type (pp, objfile);
3525 
3526   if (adjustable)
3527     {
3528       lower = 0;
3529       upper = -1;
3530     }
3531 
3532   range_type =
3533     create_static_range_type (NULL, index_type, lower, upper);
3534   type = create_array_type (type, element_type, range_type);
3535 
3536   return type;
3537 }
3538 
3539 
3540 /* Read a definition of an enumeration type,
3541    and create and return a suitable type object.
3542    Also defines the symbols that represent the values of the type.  */
3543 
3544 static struct type *
3545 read_enum_type (const char **pp, struct type *type,
3546 		struct objfile *objfile)
3547 {
3548   struct gdbarch *gdbarch = objfile->arch ();
3549   const char *p;
3550   char *name;
3551   long n;
3552   struct symbol *sym;
3553   int nsyms = 0;
3554   struct pending **symlist;
3555   struct pending *osyms, *syms;
3556   int o_nsyms;
3557   int nbits;
3558   int unsigned_enum = 1;
3559 
3560 #if 0
3561   /* FIXME!  The stabs produced by Sun CC merrily define things that ought
3562      to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
3563      to do?  For now, force all enum values to file scope.  */
3564   if (within_function)
3565     symlist = get_local_symbols ();
3566   else
3567 #endif
3568     symlist = get_file_symbols ();
3569   osyms = *symlist;
3570   o_nsyms = osyms ? osyms->nsyms : 0;
3571 
3572   /* The aix4 compiler emits an extra field before the enum members;
3573      my guess is it's a type of some sort.  Just ignore it.  */
3574   if (**pp == '-')
3575     {
3576       /* Skip over the type.  */
3577       while (**pp != ':')
3578 	(*pp)++;
3579 
3580       /* Skip over the colon.  */
3581       (*pp)++;
3582     }
3583 
3584   /* Read the value-names and their values.
3585      The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3586      A semicolon or comma instead of a NAME means the end.  */
3587   while (**pp && **pp != ';' && **pp != ',')
3588     {
3589       STABS_CONTINUE (pp, objfile);
3590       p = *pp;
3591       while (*p != ':')
3592 	p++;
3593       name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3594       *pp = p + 1;
3595       n = read_huge_number (pp, ',', &nbits, 0);
3596       if (nbits != 0)
3597 	return error_type (pp, objfile);
3598 
3599       sym = new (&objfile->objfile_obstack) symbol;
3600       sym->set_linkage_name (name);
3601       sym->set_language (get_current_subfile ()->language,
3602 			 &objfile->objfile_obstack);
3603       sym->set_aclass_index (LOC_CONST);
3604       sym->set_domain (VAR_DOMAIN);
3605       sym->set_value_longest (n);
3606       if (n < 0)
3607 	unsigned_enum = 0;
3608       add_symbol_to_list (sym, symlist);
3609       nsyms++;
3610     }
3611 
3612   if (**pp == ';')
3613     (*pp)++;			/* Skip the semicolon.  */
3614 
3615   /* Now fill in the fields of the type-structure.  */
3616 
3617   type->set_length (gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT);
3618   set_length_in_type_chain (type);
3619   type->set_code (TYPE_CODE_ENUM);
3620   type->set_is_stub (false);
3621   if (unsigned_enum)
3622     type->set_is_unsigned (true);
3623   type->set_num_fields (nsyms);
3624   type->set_fields
3625     ((struct field *)
3626      TYPE_ALLOC (type, sizeof (struct field) * nsyms));
3627   memset (type->fields (), 0, sizeof (struct field) * nsyms);
3628 
3629   /* Find the symbols for the values and put them into the type.
3630      The symbols can be found in the symlist that we put them on
3631      to cause them to be defined.  osyms contains the old value
3632      of that symlist; everything up to there was defined by us.  */
3633   /* Note that we preserve the order of the enum constants, so
3634      that in something like "enum {FOO, LAST_THING=FOO}" we print
3635      FOO, not LAST_THING.  */
3636 
3637   for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3638     {
3639       int last = syms == osyms ? o_nsyms : 0;
3640       int j = syms->nsyms;
3641 
3642       for (; --j >= last; --n)
3643 	{
3644 	  struct symbol *xsym = syms->symbol[j];
3645 
3646 	  xsym->set_type (type);
3647 	  type->field (n).set_name (xsym->linkage_name ());
3648 	  type->field (n).set_loc_enumval (xsym->value_longest ());
3649 	  TYPE_FIELD_BITSIZE (type, n) = 0;
3650 	}
3651       if (syms == osyms)
3652 	break;
3653     }
3654 
3655   return type;
3656 }
3657 
3658 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3659    typedefs in every file (for int, long, etc):
3660 
3661    type = b <signed> <width> <format type>; <offset>; <nbits>
3662    signed = u or s.
3663    optional format type = c or b for char or boolean.
3664    offset = offset from high order bit to start bit of type.
3665    width is # bytes in object of this type, nbits is # bits in type.
3666 
3667    The width/offset stuff appears to be for small objects stored in
3668    larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
3669    FIXME.  */
3670 
3671 static struct type *
3672 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3673 {
3674   int type_bits;
3675   int nbits;
3676   int unsigned_type;
3677   int boolean_type = 0;
3678 
3679   switch (**pp)
3680     {
3681     case 's':
3682       unsigned_type = 0;
3683       break;
3684     case 'u':
3685       unsigned_type = 1;
3686       break;
3687     default:
3688       return error_type (pp, objfile);
3689     }
3690   (*pp)++;
3691 
3692   /* For some odd reason, all forms of char put a c here.  This is strange
3693      because no other type has this honor.  We can safely ignore this because
3694      we actually determine 'char'acterness by the number of bits specified in
3695      the descriptor.
3696      Boolean forms, e.g Fortran logical*X, put a b here.  */
3697 
3698   if (**pp == 'c')
3699     (*pp)++;
3700   else if (**pp == 'b')
3701     {
3702       boolean_type = 1;
3703       (*pp)++;
3704     }
3705 
3706   /* The first number appears to be the number of bytes occupied
3707      by this type, except that unsigned short is 4 instead of 2.
3708      Since this information is redundant with the third number,
3709      we will ignore it.  */
3710   read_huge_number (pp, ';', &nbits, 0);
3711   if (nbits != 0)
3712     return error_type (pp, objfile);
3713 
3714   /* The second number is always 0, so ignore it too.  */
3715   read_huge_number (pp, ';', &nbits, 0);
3716   if (nbits != 0)
3717     return error_type (pp, objfile);
3718 
3719   /* The third number is the number of bits for this type.  */
3720   type_bits = read_huge_number (pp, 0, &nbits, 0);
3721   if (nbits != 0)
3722     return error_type (pp, objfile);
3723   /* The type *should* end with a semicolon.  If it are embedded
3724      in a larger type the semicolon may be the only way to know where
3725      the type ends.  If this type is at the end of the stabstring we
3726      can deal with the omitted semicolon (but we don't have to like
3727      it).  Don't bother to complain(), Sun's compiler omits the semicolon
3728      for "void".  */
3729   if (**pp == ';')
3730     ++(*pp);
3731 
3732   if (type_bits == 0)
3733     {
3734       struct type *type = init_type (objfile, TYPE_CODE_VOID,
3735 				     TARGET_CHAR_BIT, NULL);
3736       if (unsigned_type)
3737 	type->set_is_unsigned (true);
3738 
3739       return type;
3740     }
3741 
3742   if (boolean_type)
3743     return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3744   else
3745     return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3746 }
3747 
3748 static struct type *
3749 read_sun_floating_type (const char **pp, int typenums[2],
3750 			struct objfile *objfile)
3751 {
3752   int nbits;
3753   int details;
3754   int nbytes;
3755   struct type *rettype;
3756 
3757   /* The first number has more details about the type, for example
3758      FN_COMPLEX.  */
3759   details = read_huge_number (pp, ';', &nbits, 0);
3760   if (nbits != 0)
3761     return error_type (pp, objfile);
3762 
3763   /* The second number is the number of bytes occupied by this type.  */
3764   nbytes = read_huge_number (pp, ';', &nbits, 0);
3765   if (nbits != 0)
3766     return error_type (pp, objfile);
3767 
3768   nbits = nbytes * TARGET_CHAR_BIT;
3769 
3770   if (details == NF_COMPLEX || details == NF_COMPLEX16
3771       || details == NF_COMPLEX32)
3772     {
3773       rettype = dbx_init_float_type (objfile, nbits / 2);
3774       return init_complex_type (NULL, rettype);
3775     }
3776 
3777   return dbx_init_float_type (objfile, nbits);
3778 }
3779 
3780 /* Read a number from the string pointed to by *PP.
3781    The value of *PP is advanced over the number.
3782    If END is nonzero, the character that ends the
3783    number must match END, or an error happens;
3784    and that character is skipped if it does match.
3785    If END is zero, *PP is left pointing to that character.
3786 
3787    If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3788    the number is represented in an octal representation, assume that
3789    it is represented in a 2's complement representation with a size of
3790    TWOS_COMPLEMENT_BITS.
3791 
3792    If the number fits in a long, set *BITS to 0 and return the value.
3793    If not, set *BITS to be the number of bits in the number and return 0.
3794 
3795    If encounter garbage, set *BITS to -1 and return 0.  */
3796 
3797 static long
3798 read_huge_number (const char **pp, int end, int *bits,
3799 		  int twos_complement_bits)
3800 {
3801   const char *p = *pp;
3802   int sign = 1;
3803   int sign_bit = 0;
3804   long n = 0;
3805   int radix = 10;
3806   char overflow = 0;
3807   int nbits = 0;
3808   int c;
3809   long upper_limit;
3810   int twos_complement_representation = 0;
3811 
3812   if (*p == '-')
3813     {
3814       sign = -1;
3815       p++;
3816     }
3817 
3818   /* Leading zero means octal.  GCC uses this to output values larger
3819      than an int (because that would be hard in decimal).  */
3820   if (*p == '0')
3821     {
3822       radix = 8;
3823       p++;
3824     }
3825 
3826   /* Skip extra zeros.  */
3827   while (*p == '0')
3828     p++;
3829 
3830   if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3831     {
3832       /* Octal, possibly signed.  Check if we have enough chars for a
3833 	 negative number.  */
3834 
3835       size_t len;
3836       const char *p1 = p;
3837 
3838       while ((c = *p1) >= '0' && c < '8')
3839 	p1++;
3840 
3841       len = p1 - p;
3842       if (len > twos_complement_bits / 3
3843 	  || (twos_complement_bits % 3 == 0
3844 	      && len == twos_complement_bits / 3))
3845 	{
3846 	  /* Ok, we have enough characters for a signed value, check
3847 	     for signedness by testing if the sign bit is set.  */
3848 	  sign_bit = (twos_complement_bits % 3 + 2) % 3;
3849 	  c = *p - '0';
3850 	  if (c & (1 << sign_bit))
3851 	    {
3852 	      /* Definitely signed.  */
3853 	      twos_complement_representation = 1;
3854 	      sign = -1;
3855 	    }
3856 	}
3857     }
3858 
3859   upper_limit = LONG_MAX / radix;
3860 
3861   while ((c = *p++) >= '0' && c < ('0' + radix))
3862     {
3863       if (n <= upper_limit)
3864 	{
3865 	  if (twos_complement_representation)
3866 	    {
3867 	      /* Octal, signed, twos complement representation.  In
3868 		 this case, n is the corresponding absolute value.  */
3869 	      if (n == 0)
3870 		{
3871 		  long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3872 
3873 		  n = -sn;
3874 		}
3875 	      else
3876 		{
3877 		  n *= radix;
3878 		  n -= c - '0';
3879 		}
3880 	    }
3881 	  else
3882 	    {
3883 	      /* unsigned representation */
3884 	      n *= radix;
3885 	      n += c - '0';		/* FIXME this overflows anyway.  */
3886 	    }
3887 	}
3888       else
3889 	overflow = 1;
3890 
3891       /* This depends on large values being output in octal, which is
3892 	 what GCC does.  */
3893       if (radix == 8)
3894 	{
3895 	  if (nbits == 0)
3896 	    {
3897 	      if (c == '0')
3898 		/* Ignore leading zeroes.  */
3899 		;
3900 	      else if (c == '1')
3901 		nbits = 1;
3902 	      else if (c == '2' || c == '3')
3903 		nbits = 2;
3904 	      else
3905 		nbits = 3;
3906 	    }
3907 	  else
3908 	    nbits += 3;
3909 	}
3910     }
3911   if (end)
3912     {
3913       if (c && c != end)
3914 	{
3915 	  if (bits != NULL)
3916 	    *bits = -1;
3917 	  return 0;
3918 	}
3919     }
3920   else
3921     --p;
3922 
3923   if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3924     {
3925       /* We were supposed to parse a number with maximum
3926 	 TWOS_COMPLEMENT_BITS bits, but something went wrong.  */
3927       if (bits != NULL)
3928 	*bits = -1;
3929       return 0;
3930     }
3931 
3932   *pp = p;
3933   if (overflow)
3934     {
3935       if (nbits == 0)
3936 	{
3937 	  /* Large decimal constants are an error (because it is hard to
3938 	     count how many bits are in them).  */
3939 	  if (bits != NULL)
3940 	    *bits = -1;
3941 	  return 0;
3942 	}
3943 
3944       /* -0x7f is the same as 0x80.  So deal with it by adding one to
3945 	 the number of bits.  Two's complement represention octals
3946 	 can't have a '-' in front.  */
3947       if (sign == -1 && !twos_complement_representation)
3948 	++nbits;
3949       if (bits)
3950 	*bits = nbits;
3951     }
3952   else
3953     {
3954       if (bits)
3955 	*bits = 0;
3956       return n * sign;
3957     }
3958   /* It's *BITS which has the interesting information.  */
3959   return 0;
3960 }
3961 
3962 static struct type *
3963 read_range_type (const char **pp, int typenums[2], int type_size,
3964 		 struct objfile *objfile)
3965 {
3966   struct gdbarch *gdbarch = objfile->arch ();
3967   const char *orig_pp = *pp;
3968   int rangenums[2];
3969   long n2, n3;
3970   int n2bits, n3bits;
3971   int self_subrange;
3972   struct type *result_type;
3973   struct type *index_type = NULL;
3974 
3975   /* First comes a type we are a subrange of.
3976      In C it is usually 0, 1 or the type being defined.  */
3977   if (read_type_number (pp, rangenums) != 0)
3978     return error_type (pp, objfile);
3979   self_subrange = (rangenums[0] == typenums[0] &&
3980 		   rangenums[1] == typenums[1]);
3981 
3982   if (**pp == '=')
3983     {
3984       *pp = orig_pp;
3985       index_type = read_type (pp, objfile);
3986     }
3987 
3988   /* A semicolon should now follow; skip it.  */
3989   if (**pp == ';')
3990     (*pp)++;
3991 
3992   /* The remaining two operands are usually lower and upper bounds
3993      of the range.  But in some special cases they mean something else.  */
3994   n2 = read_huge_number (pp, ';', &n2bits, type_size);
3995   n3 = read_huge_number (pp, ';', &n3bits, type_size);
3996 
3997   if (n2bits == -1 || n3bits == -1)
3998     return error_type (pp, objfile);
3999 
4000   if (index_type)
4001     goto handle_true_range;
4002 
4003   /* If limits are huge, must be large integral type.  */
4004   if (n2bits != 0 || n3bits != 0)
4005     {
4006       char got_signed = 0;
4007       char got_unsigned = 0;
4008       /* Number of bits in the type.  */
4009       int nbits = 0;
4010 
4011       /* If a type size attribute has been specified, the bounds of
4012 	 the range should fit in this size.  If the lower bounds needs
4013 	 more bits than the upper bound, then the type is signed.  */
4014       if (n2bits <= type_size && n3bits <= type_size)
4015 	{
4016 	  if (n2bits == type_size && n2bits > n3bits)
4017 	    got_signed = 1;
4018 	  else
4019 	    got_unsigned = 1;
4020 	  nbits = type_size;
4021 	}
4022       /* Range from 0 to <large number> is an unsigned large integral type.  */
4023       else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4024 	{
4025 	  got_unsigned = 1;
4026 	  nbits = n3bits;
4027 	}
4028       /* Range from <large number> to <large number>-1 is a large signed
4029 	 integral type.  Take care of the case where <large number> doesn't
4030 	 fit in a long but <large number>-1 does.  */
4031       else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4032 	       || (n2bits != 0 && n3bits == 0
4033 		   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4034 		   && n3 == LONG_MAX))
4035 	{
4036 	  got_signed = 1;
4037 	  nbits = n2bits;
4038 	}
4039 
4040       if (got_signed || got_unsigned)
4041 	return init_integer_type (objfile, nbits, got_unsigned, NULL);
4042       else
4043 	return error_type (pp, objfile);
4044     }
4045 
4046   /* A type defined as a subrange of itself, with bounds both 0, is void.  */
4047   if (self_subrange && n2 == 0 && n3 == 0)
4048     return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4049 
4050   /* If n3 is zero and n2 is positive, we want a floating type, and n2
4051      is the width in bytes.
4052 
4053      Fortran programs appear to use this for complex types also.  To
4054      distinguish between floats and complex, g77 (and others?)  seem
4055      to use self-subranges for the complexes, and subranges of int for
4056      the floats.
4057 
4058      Also note that for complexes, g77 sets n2 to the size of one of
4059      the member floats, not the whole complex beast.  My guess is that
4060      this was to work well with pre-COMPLEX versions of gdb.  */
4061 
4062   if (n3 == 0 && n2 > 0)
4063     {
4064       struct type *float_type
4065 	= dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4066 
4067       if (self_subrange)
4068 	return init_complex_type (NULL, float_type);
4069       else
4070 	return float_type;
4071     }
4072 
4073   /* If the upper bound is -1, it must really be an unsigned integral.  */
4074 
4075   else if (n2 == 0 && n3 == -1)
4076     {
4077       int bits = type_size;
4078 
4079       if (bits <= 0)
4080 	{
4081 	  /* We don't know its size.  It is unsigned int or unsigned
4082 	     long.  GCC 2.3.3 uses this for long long too, but that is
4083 	     just a GDB 3.5 compatibility hack.  */
4084 	  bits = gdbarch_int_bit (gdbarch);
4085 	}
4086 
4087       return init_integer_type (objfile, bits, 1, NULL);
4088     }
4089 
4090   /* Special case: char is defined (Who knows why) as a subrange of
4091      itself with range 0-127.  */
4092   else if (self_subrange && n2 == 0 && n3 == 127)
4093     {
4094       struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4095 					     0, NULL);
4096       type->set_has_no_signedness (true);
4097       return type;
4098     }
4099   /* We used to do this only for subrange of self or subrange of int.  */
4100   else if (n2 == 0)
4101     {
4102       /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4103 	 "unsigned long", and we already checked for that,
4104 	 so don't need to test for it here.  */
4105 
4106       if (n3 < 0)
4107 	/* n3 actually gives the size.  */
4108 	return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4109 
4110       /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
4111 	 unsigned n-byte integer.  But do require n to be a power of
4112 	 two; we don't want 3- and 5-byte integers flying around.  */
4113       {
4114 	int bytes;
4115 	unsigned long bits;
4116 
4117 	bits = n3;
4118 	for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4119 	  bits >>= 8;
4120 	if (bits == 0
4121 	    && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4122 	  return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4123       }
4124     }
4125   /* I think this is for Convex "long long".  Since I don't know whether
4126      Convex sets self_subrange, I also accept that particular size regardless
4127      of self_subrange.  */
4128   else if (n3 == 0 && n2 < 0
4129 	   && (self_subrange
4130 	       || n2 == -gdbarch_long_long_bit
4131 			  (gdbarch) / TARGET_CHAR_BIT))
4132     return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4133   else if (n2 == -n3 - 1)
4134     {
4135       if (n3 == 0x7f)
4136 	return init_integer_type (objfile, 8, 0, NULL);
4137       if (n3 == 0x7fff)
4138 	return init_integer_type (objfile, 16, 0, NULL);
4139       if (n3 == 0x7fffffff)
4140 	return init_integer_type (objfile, 32, 0, NULL);
4141     }
4142 
4143   /* We have a real range type on our hands.  Allocate space and
4144      return a real pointer.  */
4145 handle_true_range:
4146 
4147   if (self_subrange)
4148     index_type = objfile_type (objfile)->builtin_int;
4149   else
4150     index_type = *dbx_lookup_type (rangenums, objfile);
4151   if (index_type == NULL)
4152     {
4153       /* Does this actually ever happen?  Is that why we are worrying
4154 	 about dealing with it rather than just calling error_type?  */
4155 
4156       complaint (_("base type %d of range type is not defined"), rangenums[1]);
4157 
4158       index_type = objfile_type (objfile)->builtin_int;
4159     }
4160 
4161   result_type
4162     = create_static_range_type (NULL, index_type, n2, n3);
4163   return (result_type);
4164 }
4165 
4166 /* Read in an argument list.  This is a list of types, separated by commas
4167    and terminated with END.  Return the list of types read in, or NULL
4168    if there is an error.  */
4169 
4170 static struct field *
4171 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4172 	   int *varargsp)
4173 {
4174   /* FIXME!  Remove this arbitrary limit!  */
4175   struct type *types[1024];	/* Allow for fns of 1023 parameters.  */
4176   int n = 0, i;
4177   struct field *rval;
4178 
4179   while (**pp != end)
4180     {
4181       if (**pp != ',')
4182 	/* Invalid argument list: no ','.  */
4183 	return NULL;
4184       (*pp)++;
4185       STABS_CONTINUE (pp, objfile);
4186       types[n++] = read_type (pp, objfile);
4187     }
4188   (*pp)++;			/* get past `end' (the ':' character).  */
4189 
4190   if (n == 0)
4191     {
4192       /* We should read at least the THIS parameter here.  Some broken stabs
4193 	 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4194 	 have been present ";-16,(0,43)" reference instead.  This way the
4195 	 excessive ";" marker prematurely stops the parameters parsing.  */
4196 
4197       complaint (_("Invalid (empty) method arguments"));
4198       *varargsp = 0;
4199     }
4200   else if (types[n - 1]->code () != TYPE_CODE_VOID)
4201     *varargsp = 1;
4202   else
4203     {
4204       n--;
4205       *varargsp = 0;
4206     }
4207 
4208   rval = XCNEWVEC (struct field, n);
4209   for (i = 0; i < n; i++)
4210     rval[i].set_type (types[i]);
4211   *nargsp = n;
4212   return rval;
4213 }
4214 
4215 /* Common block handling.  */
4216 
4217 /* List of symbols declared since the last BCOMM.  This list is a tail
4218    of local_symbols.  When ECOMM is seen, the symbols on the list
4219    are noted so their proper addresses can be filled in later,
4220    using the common block base address gotten from the assembler
4221    stabs.  */
4222 
4223 static struct pending *common_block;
4224 static int common_block_i;
4225 
4226 /* Name of the current common block.  We get it from the BCOMM instead of the
4227    ECOMM to match IBM documentation (even though IBM puts the name both places
4228    like everyone else).  */
4229 static char *common_block_name;
4230 
4231 /* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
4232    to remain after this function returns.  */
4233 
4234 void
4235 common_block_start (const char *name, struct objfile *objfile)
4236 {
4237   if (common_block_name != NULL)
4238     {
4239       complaint (_("Invalid symbol data: common block within common block"));
4240     }
4241   common_block = *get_local_symbols ();
4242   common_block_i = common_block ? common_block->nsyms : 0;
4243   common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4244 }
4245 
4246 /* Process a N_ECOMM symbol.  */
4247 
4248 void
4249 common_block_end (struct objfile *objfile)
4250 {
4251   /* Symbols declared since the BCOMM are to have the common block
4252      start address added in when we know it.  common_block and
4253      common_block_i point to the first symbol after the BCOMM in
4254      the local_symbols list; copy the list and hang it off the
4255      symbol for the common block name for later fixup.  */
4256   int i;
4257   struct symbol *sym;
4258   struct pending *newobj = 0;
4259   struct pending *next;
4260   int j;
4261 
4262   if (common_block_name == NULL)
4263     {
4264       complaint (_("ECOMM symbol unmatched by BCOMM"));
4265       return;
4266     }
4267 
4268   sym = new (&objfile->objfile_obstack) symbol;
4269   /* Note: common_block_name already saved on objfile_obstack.  */
4270   sym->set_linkage_name (common_block_name);
4271   sym->set_aclass_index (LOC_BLOCK);
4272 
4273   /* Now we copy all the symbols which have been defined since the BCOMM.  */
4274 
4275   /* Copy all the struct pendings before common_block.  */
4276   for (next = *get_local_symbols ();
4277        next != NULL && next != common_block;
4278        next = next->next)
4279     {
4280       for (j = 0; j < next->nsyms; j++)
4281 	add_symbol_to_list (next->symbol[j], &newobj);
4282     }
4283 
4284   /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
4285      NULL, it means copy all the local symbols (which we already did
4286      above).  */
4287 
4288   if (common_block != NULL)
4289     for (j = common_block_i; j < common_block->nsyms; j++)
4290       add_symbol_to_list (common_block->symbol[j], &newobj);
4291 
4292   sym->set_type ((struct type *) newobj);
4293 
4294   /* Should we be putting local_symbols back to what it was?
4295      Does it matter?  */
4296 
4297   i = hashname (sym->linkage_name ());
4298   sym->set_value_chain (global_sym_chain[i]);
4299   global_sym_chain[i] = sym;
4300   common_block_name = NULL;
4301 }
4302 
4303 /* Add a common block's start address to the offset of each symbol
4304    declared to be in it (by being between a BCOMM/ECOMM pair that uses
4305    the common block name).  */
4306 
4307 static void
4308 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4309 {
4310   struct pending *next = (struct pending *) sym->type ();
4311 
4312   for (; next; next = next->next)
4313     {
4314       int j;
4315 
4316       for (j = next->nsyms - 1; j >= 0; j--)
4317 	next->symbol[j]->set_value_address
4318 	  (next->symbol[j]->value_address () + valu);
4319     }
4320 }
4321 
4322 
4323 
4324 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4325    See add_undefined_type for more details.  */
4326 
4327 static void
4328 add_undefined_type_noname (struct type *type, int typenums[2])
4329 {
4330   struct nat nat;
4331 
4332   nat.typenums[0] = typenums [0];
4333   nat.typenums[1] = typenums [1];
4334   nat.type = type;
4335 
4336   if (noname_undefs_length == noname_undefs_allocated)
4337     {
4338       noname_undefs_allocated *= 2;
4339       noname_undefs = (struct nat *)
4340 	xrealloc ((char *) noname_undefs,
4341 		  noname_undefs_allocated * sizeof (struct nat));
4342     }
4343   noname_undefs[noname_undefs_length++] = nat;
4344 }
4345 
4346 /* Add TYPE to the UNDEF_TYPES vector.
4347    See add_undefined_type for more details.  */
4348 
4349 static void
4350 add_undefined_type_1 (struct type *type)
4351 {
4352   if (undef_types_length == undef_types_allocated)
4353     {
4354       undef_types_allocated *= 2;
4355       undef_types = (struct type **)
4356 	xrealloc ((char *) undef_types,
4357 		  undef_types_allocated * sizeof (struct type *));
4358     }
4359   undef_types[undef_types_length++] = type;
4360 }
4361 
4362 /* What about types defined as forward references inside of a small lexical
4363    scope?  */
4364 /* Add a type to the list of undefined types to be checked through
4365    once this file has been read in.
4366 
4367    In practice, we actually maintain two such lists: The first list
4368    (UNDEF_TYPES) is used for types whose name has been provided, and
4369    concerns forward references (eg 'xs' or 'xu' forward references);
4370    the second list (NONAME_UNDEFS) is used for types whose name is
4371    unknown at creation time, because they were referenced through
4372    their type number before the actual type was declared.
4373    This function actually adds the given type to the proper list.  */
4374 
4375 static void
4376 add_undefined_type (struct type *type, int typenums[2])
4377 {
4378   if (type->name () == NULL)
4379     add_undefined_type_noname (type, typenums);
4380   else
4381     add_undefined_type_1 (type);
4382 }
4383 
4384 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector.  */
4385 
4386 static void
4387 cleanup_undefined_types_noname (struct objfile *objfile)
4388 {
4389   int i;
4390 
4391   for (i = 0; i < noname_undefs_length; i++)
4392     {
4393       struct nat nat = noname_undefs[i];
4394       struct type **type;
4395 
4396       type = dbx_lookup_type (nat.typenums, objfile);
4397       if (nat.type != *type && (*type)->code () != TYPE_CODE_UNDEF)
4398 	{
4399 	  /* The instance flags of the undefined type are still unset,
4400 	     and needs to be copied over from the reference type.
4401 	     Since replace_type expects them to be identical, we need
4402 	     to set these flags manually before hand.  */
4403 	  nat.type->set_instance_flags ((*type)->instance_flags ());
4404 	  replace_type (nat.type, *type);
4405 	}
4406     }
4407 
4408   noname_undefs_length = 0;
4409 }
4410 
4411 /* Go through each undefined type, see if it's still undefined, and fix it
4412    up if possible.  We have two kinds of undefined types:
4413 
4414    TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
4415    Fix:  update array length using the element bounds
4416    and the target type's length.
4417    TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
4418    yet defined at the time a pointer to it was made.
4419    Fix:  Do a full lookup on the struct/union tag.  */
4420 
4421 static void
4422 cleanup_undefined_types_1 (void)
4423 {
4424   struct type **type;
4425 
4426   /* Iterate over every undefined type, and look for a symbol whose type
4427      matches our undefined type.  The symbol matches if:
4428        1. It is a typedef in the STRUCT domain;
4429        2. It has the same name, and same type code;
4430        3. The instance flags are identical.
4431 
4432      It is important to check the instance flags, because we have seen
4433      examples where the debug info contained definitions such as:
4434 
4435 	 "foo_t:t30=B31=xefoo_t:"
4436 
4437      In this case, we have created an undefined type named "foo_t" whose
4438      instance flags is null (when processing "xefoo_t"), and then created
4439      another type with the same name, but with different instance flags
4440      ('B' means volatile).  I think that the definition above is wrong,
4441      since the same type cannot be volatile and non-volatile at the same
4442      time, but we need to be able to cope with it when it happens.  The
4443      approach taken here is to treat these two types as different.  */
4444 
4445   for (type = undef_types; type < undef_types + undef_types_length; type++)
4446     {
4447       switch ((*type)->code ())
4448 	{
4449 
4450 	case TYPE_CODE_STRUCT:
4451 	case TYPE_CODE_UNION:
4452 	case TYPE_CODE_ENUM:
4453 	  {
4454 	    /* Check if it has been defined since.  Need to do this here
4455 	       as well as in check_typedef to deal with the (legitimate in
4456 	       C though not C++) case of several types with the same name
4457 	       in different source files.  */
4458 	    if ((*type)->is_stub ())
4459 	      {
4460 		struct pending *ppt;
4461 		int i;
4462 		/* Name of the type, without "struct" or "union".  */
4463 		const char *type_name = (*type)->name ();
4464 
4465 		if (type_name == NULL)
4466 		  {
4467 		    complaint (_("need a type name"));
4468 		    break;
4469 		  }
4470 		for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4471 		  {
4472 		    for (i = 0; i < ppt->nsyms; i++)
4473 		      {
4474 			struct symbol *sym = ppt->symbol[i];
4475 
4476 			if (sym->aclass () == LOC_TYPEDEF
4477 			    && sym->domain () == STRUCT_DOMAIN
4478 			    && (sym->type ()->code () == (*type)->code ())
4479 			    && ((*type)->instance_flags ()
4480 				== sym->type ()->instance_flags ())
4481 			    && strcmp (sym->linkage_name (), type_name) == 0)
4482 			  replace_type (*type, sym->type ());
4483 		      }
4484 		  }
4485 	      }
4486 	  }
4487 	  break;
4488 
4489 	default:
4490 	  {
4491 	    complaint (_("forward-referenced types left unresolved, "
4492 		       "type code %d."),
4493 		       (*type)->code ());
4494 	  }
4495 	  break;
4496 	}
4497     }
4498 
4499   undef_types_length = 0;
4500 }
4501 
4502 /* Try to fix all the undefined types we encountered while processing
4503    this unit.  */
4504 
4505 void
4506 cleanup_undefined_stabs_types (struct objfile *objfile)
4507 {
4508   cleanup_undefined_types_1 ();
4509   cleanup_undefined_types_noname (objfile);
4510 }
4511 
4512 /* See stabsread.h.  */
4513 
4514 void
4515 scan_file_globals (struct objfile *objfile)
4516 {
4517   int hash;
4518   struct symbol *sym, *prev;
4519   struct objfile *resolve_objfile;
4520 
4521   /* SVR4 based linkers copy referenced global symbols from shared
4522      libraries to the main executable.
4523      If we are scanning the symbols for a shared library, try to resolve
4524      them from the minimal symbols of the main executable first.  */
4525 
4526   if (current_program_space->symfile_object_file
4527       && objfile != current_program_space->symfile_object_file)
4528     resolve_objfile = current_program_space->symfile_object_file;
4529   else
4530     resolve_objfile = objfile;
4531 
4532   while (1)
4533     {
4534       /* Avoid expensive loop through all minimal symbols if there are
4535 	 no unresolved symbols.  */
4536       for (hash = 0; hash < HASHSIZE; hash++)
4537 	{
4538 	  if (global_sym_chain[hash])
4539 	    break;
4540 	}
4541       if (hash >= HASHSIZE)
4542 	return;
4543 
4544       for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4545 	{
4546 	  QUIT;
4547 
4548 	  /* Skip static symbols.  */
4549 	  switch (msymbol->type ())
4550 	    {
4551 	    case mst_file_text:
4552 	    case mst_file_data:
4553 	    case mst_file_bss:
4554 	      continue;
4555 	    default:
4556 	      break;
4557 	    }
4558 
4559 	  prev = NULL;
4560 
4561 	  /* Get the hash index and check all the symbols
4562 	     under that hash index.  */
4563 
4564 	  hash = hashname (msymbol->linkage_name ());
4565 
4566 	  for (sym = global_sym_chain[hash]; sym;)
4567 	    {
4568 	      if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4569 		{
4570 		  /* Splice this symbol out of the hash chain and
4571 		     assign the value we have to it.  */
4572 		  if (prev)
4573 		    {
4574 		      prev->set_value_chain (sym->value_chain ());
4575 		    }
4576 		  else
4577 		    {
4578 		      global_sym_chain[hash] = sym->value_chain ();
4579 		    }
4580 
4581 		  /* Check to see whether we need to fix up a common block.  */
4582 		  /* Note: this code might be executed several times for
4583 		     the same symbol if there are multiple references.  */
4584 		  if (sym)
4585 		    {
4586 		      if (sym->aclass () == LOC_BLOCK)
4587 			fix_common_block
4588 			  (sym, msymbol->value_address (resolve_objfile));
4589 		      else
4590 			sym->set_value_address
4591 			  (msymbol->value_address (resolve_objfile));
4592 		      sym->set_section_index (msymbol->section_index ());
4593 		    }
4594 
4595 		  if (prev)
4596 		    {
4597 		      sym = prev->value_chain ();
4598 		    }
4599 		  else
4600 		    {
4601 		      sym = global_sym_chain[hash];
4602 		    }
4603 		}
4604 	      else
4605 		{
4606 		  prev = sym;
4607 		  sym = sym->value_chain ();
4608 		}
4609 	    }
4610 	}
4611       if (resolve_objfile == objfile)
4612 	break;
4613       resolve_objfile = objfile;
4614     }
4615 
4616   /* Change the storage class of any remaining unresolved globals to
4617      LOC_UNRESOLVED and remove them from the chain.  */
4618   for (hash = 0; hash < HASHSIZE; hash++)
4619     {
4620       sym = global_sym_chain[hash];
4621       while (sym)
4622 	{
4623 	  prev = sym;
4624 	  sym = sym->value_chain ();
4625 
4626 	  /* Change the symbol address from the misleading chain value
4627 	     to address zero.  */
4628 	  prev->set_value_address (0);
4629 
4630 	  /* Complain about unresolved common block symbols.  */
4631 	  if (prev->aclass () == LOC_STATIC)
4632 	    prev->set_aclass_index (LOC_UNRESOLVED);
4633 	  else
4634 	    complaint (_("%s: common block `%s' from "
4635 			 "global_sym_chain unresolved"),
4636 		       objfile_name (objfile), prev->print_name ());
4637 	}
4638     }
4639   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4640 }
4641 
4642 /* Initialize anything that needs initializing when starting to read
4643    a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4644    to a psymtab.  */
4645 
4646 void
4647 stabsread_init (void)
4648 {
4649 }
4650 
4651 /* Initialize anything that needs initializing when a completely new
4652    symbol file is specified (not just adding some symbols from another
4653    file, e.g. a shared library).  */
4654 
4655 void
4656 stabsread_new_init (void)
4657 {
4658   /* Empty the hash table of global syms looking for values.  */
4659   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4660 }
4661 
4662 /* Initialize anything that needs initializing at the same time as
4663    start_compunit_symtab() is called.  */
4664 
4665 void
4666 start_stabs (void)
4667 {
4668   global_stabs = NULL;		/* AIX COFF */
4669   /* Leave FILENUM of 0 free for builtin types and this file's types.  */
4670   n_this_object_header_files = 1;
4671   type_vector_length = 0;
4672   type_vector = (struct type **) 0;
4673   within_function = 0;
4674 
4675   /* FIXME: If common_block_name is not already NULL, we should complain().  */
4676   common_block_name = NULL;
4677 }
4678 
4679 /* Call after end_compunit_symtab().  */
4680 
4681 void
4682 end_stabs (void)
4683 {
4684   if (type_vector)
4685     {
4686       xfree (type_vector);
4687     }
4688   type_vector = 0;
4689   type_vector_length = 0;
4690   previous_stab_code = 0;
4691 }
4692 
4693 void
4694 finish_global_stabs (struct objfile *objfile)
4695 {
4696   if (global_stabs)
4697     {
4698       patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4699       xfree (global_stabs);
4700       global_stabs = NULL;
4701     }
4702 }
4703 
4704 /* Find the end of the name, delimited by a ':', but don't match
4705    ObjC symbols which look like -[Foo bar::]:bla.  */
4706 static const char *
4707 find_name_end (const char *name)
4708 {
4709   const char *s = name;
4710 
4711   if (s[0] == '-' || *s == '+')
4712     {
4713       /* Must be an ObjC method symbol.  */
4714       if (s[1] != '[')
4715 	{
4716 	  error (_("invalid symbol name \"%s\""), name);
4717 	}
4718       s = strchr (s, ']');
4719       if (s == NULL)
4720 	{
4721 	  error (_("invalid symbol name \"%s\""), name);
4722 	}
4723       return strchr (s, ':');
4724     }
4725   else
4726     {
4727       return strchr (s, ':');
4728     }
4729 }
4730 
4731 /* See stabsread.h.  */
4732 
4733 int
4734 hashname (const char *name)
4735 {
4736   return fast_hash (name, strlen (name)) % HASHSIZE;
4737 }
4738 
4739 /* Initializer for this module.  */
4740 
4741 void _initialize_stabsread ();
4742 void
4743 _initialize_stabsread ()
4744 {
4745   undef_types_allocated = 20;
4746   undef_types_length = 0;
4747   undef_types = XNEWVEC (struct type *, undef_types_allocated);
4748 
4749   noname_undefs_allocated = 20;
4750   noname_undefs_length = 0;
4751   noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4752 
4753   stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4754 						       &stab_register_funcs);
4755   stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4756 						      &stab_register_funcs);
4757 }
4758