1 /* Target-dependent code for Motorola 68HC11 & 68HC12 2 3 Copyright (C) 1999-2023 Free Software Foundation, Inc. 4 5 Contributed by Stephane Carrez, stcarrez@nerim.fr 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 23 #include "defs.h" 24 #include "frame.h" 25 #include "frame-unwind.h" 26 #include "frame-base.h" 27 #include "dwarf2/frame.h" 28 #include "trad-frame.h" 29 #include "symtab.h" 30 #include "gdbtypes.h" 31 #include "gdbcmd.h" 32 #include "gdbcore.h" 33 #include "value.h" 34 #include "inferior.h" 35 #include "dis-asm.h" 36 #include "symfile.h" 37 #include "objfiles.h" 38 #include "arch-utils.h" 39 #include "regcache.h" 40 #include "reggroups.h" 41 #include "gdbarch.h" 42 43 #include "target.h" 44 #include "opcode/m68hc11.h" 45 #include "elf/m68hc11.h" 46 #include "elf-bfd.h" 47 48 /* Macros for setting and testing a bit in a minimal symbol. 49 For 68HC11/68HC12 we have two flags that tell which return 50 type the function is using. This is used for prologue and frame 51 analysis to compute correct stack frame layout. 52 53 The MSB of the minimal symbol's "info" field is used for this purpose. 54 55 MSYMBOL_SET_RTC Actually sets the "RTC" bit. 56 MSYMBOL_SET_RTI Actually sets the "RTI" bit. 57 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol. 58 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */ 59 60 #define MSYMBOL_SET_RTC(msym) \ 61 (msym)->set_target_flag_1 (true) 62 63 #define MSYMBOL_SET_RTI(msym) \ 64 (msym)->set_target_flag_2 (true) 65 66 #define MSYMBOL_IS_RTC(msym) \ 67 (msym)->target_flag_1 () 68 69 #define MSYMBOL_IS_RTI(msym) \ 70 (msym)->target_flag_2 () 71 72 enum insn_return_kind { 73 RETURN_RTS, 74 RETURN_RTC, 75 RETURN_RTI 76 }; 77 78 79 /* Register numbers of various important registers. */ 80 81 #define HARD_X_REGNUM 0 82 #define HARD_D_REGNUM 1 83 #define HARD_Y_REGNUM 2 84 #define HARD_SP_REGNUM 3 85 #define HARD_PC_REGNUM 4 86 87 #define HARD_A_REGNUM 5 88 #define HARD_B_REGNUM 6 89 #define HARD_CCR_REGNUM 7 90 91 /* 68HC12 page number register. 92 Note: to keep a compatibility with gcc register naming, we must 93 not have to rename FP and other soft registers. The page register 94 is a real hard register and must therefore be counted by gdbarch_num_regs. 95 For this it has the same number as Z register (which is not used). */ 96 #define HARD_PAGE_REGNUM 8 97 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM) 98 99 /* Z is replaced by X or Y by gcc during machine reorg. 100 ??? There is no way to get it and even know whether 101 it's in X or Y or in ZS. */ 102 #define SOFT_Z_REGNUM 8 103 104 /* Soft registers. These registers are special. There are treated 105 like normal hard registers by gcc and gdb (ie, within dwarf2 info). 106 They are physically located in memory. */ 107 #define SOFT_FP_REGNUM 9 108 #define SOFT_TMP_REGNUM 10 109 #define SOFT_ZS_REGNUM 11 110 #define SOFT_XY_REGNUM 12 111 #define SOFT_UNUSED_REGNUM 13 112 #define SOFT_D1_REGNUM 14 113 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31) 114 #define M68HC11_MAX_SOFT_REGS 32 115 116 #define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1) 117 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5) 118 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS) 119 120 #define M68HC11_REG_SIZE (2) 121 122 #define M68HC12_NUM_REGS (9) 123 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1) 124 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1) 125 126 struct insn_sequence; 127 struct m68gc11_gdbarch_tdep : gdbarch_tdep_base 128 { 129 /* Stack pointer correction value. For 68hc11, the stack pointer points 130 to the next push location. An offset of 1 must be applied to obtain 131 the address where the last value is saved. For 68hc12, the stack 132 pointer points to the last value pushed. No offset is necessary. */ 133 int stack_correction = 0; 134 135 /* Description of instructions in the prologue. */ 136 struct insn_sequence *prologue = nullptr; 137 138 /* True if the page memory bank register is available 139 and must be used. */ 140 int use_page_register = 0; 141 142 /* ELF flags for ABI. */ 143 int elf_flags = 0; 144 }; 145 146 static int 147 stack_correction (gdbarch *arch) 148 { 149 m68gc11_gdbarch_tdep *tdep = gdbarch_tdep<m68gc11_gdbarch_tdep> (arch); 150 return tdep->stack_correction; 151 } 152 153 static int 154 use_page_register (gdbarch *arch) 155 { 156 m68gc11_gdbarch_tdep *tdep = gdbarch_tdep<m68gc11_gdbarch_tdep> (arch); 157 return tdep->stack_correction; 158 } 159 160 struct m68hc11_unwind_cache 161 { 162 /* The previous frame's inner most stack address. Used as this 163 frame ID's stack_addr. */ 164 CORE_ADDR prev_sp; 165 /* The frame's base, optionally used by the high-level debug info. */ 166 CORE_ADDR base; 167 CORE_ADDR pc; 168 int size; 169 int prologue_type; 170 CORE_ADDR return_pc; 171 CORE_ADDR sp_offset; 172 int frameless; 173 enum insn_return_kind return_kind; 174 175 /* Table indicating the location of each and every register. */ 176 trad_frame_saved_reg *saved_regs; 177 }; 178 179 /* Table of registers for 68HC11. This includes the hard registers 180 and the soft registers used by GCC. */ 181 static const char * 182 m68hc11_register_names[] = 183 { 184 "x", "d", "y", "sp", "pc", "a", "b", 185 "ccr", "page", "frame","tmp", "zs", "xy", 0, 186 "d1", "d2", "d3", "d4", "d5", "d6", "d7", 187 "d8", "d9", "d10", "d11", "d12", "d13", "d14", 188 "d15", "d16", "d17", "d18", "d19", "d20", "d21", 189 "d22", "d23", "d24", "d25", "d26", "d27", "d28", 190 "d29", "d30", "d31", "d32" 191 }; 192 193 struct m68hc11_soft_reg 194 { 195 const char *name; 196 CORE_ADDR addr; 197 }; 198 199 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS]; 200 201 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr 202 203 static int soft_min_addr; 204 static int soft_max_addr; 205 static int soft_reg_initialized = 0; 206 207 /* Look in the symbol table for the address of a pseudo register 208 in memory. If we don't find it, pretend the register is not used 209 and not available. */ 210 static void 211 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name) 212 { 213 struct bound_minimal_symbol msymbol; 214 215 msymbol = lookup_minimal_symbol (name, NULL, NULL); 216 if (msymbol.minsym) 217 { 218 reg->addr = msymbol.value_address (); 219 reg->name = xstrdup (name); 220 221 /* Keep track of the address range for soft registers. */ 222 if (reg->addr < (CORE_ADDR) soft_min_addr) 223 soft_min_addr = reg->addr; 224 if (reg->addr > (CORE_ADDR) soft_max_addr) 225 soft_max_addr = reg->addr; 226 } 227 else 228 { 229 reg->name = 0; 230 reg->addr = 0; 231 } 232 } 233 234 /* Initialize the table of soft register addresses according 235 to the symbol table. */ 236 static void 237 m68hc11_initialize_register_info (void) 238 { 239 int i; 240 241 if (soft_reg_initialized) 242 return; 243 244 soft_min_addr = INT_MAX; 245 soft_max_addr = 0; 246 for (i = 0; i < M68HC11_ALL_REGS; i++) 247 { 248 soft_regs[i].name = 0; 249 } 250 251 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame"); 252 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp"); 253 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z"); 254 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM]; 255 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy"); 256 257 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++) 258 { 259 char buf[10]; 260 261 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1); 262 m68hc11_get_register_info (&soft_regs[i], buf); 263 } 264 265 if (soft_regs[SOFT_FP_REGNUM].name == 0) 266 warning (_("No frame soft register found in the symbol table.\n" 267 "Stack backtrace will not work.")); 268 soft_reg_initialized = 1; 269 } 270 271 /* Given an address in memory, return the soft register number if 272 that address corresponds to a soft register. Returns -1 if not. */ 273 static int 274 m68hc11_which_soft_register (CORE_ADDR addr) 275 { 276 int i; 277 278 if (addr < soft_min_addr || addr > soft_max_addr) 279 return -1; 280 281 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++) 282 { 283 if (soft_regs[i].name && soft_regs[i].addr == addr) 284 return i; 285 } 286 return -1; 287 } 288 289 /* Fetch a pseudo register. The 68hc11 soft registers are treated like 290 pseudo registers. They are located in memory. Translate the register 291 fetch into a memory read. */ 292 static enum register_status 293 m68hc11_pseudo_register_read (struct gdbarch *gdbarch, 294 readable_regcache *regcache, 295 int regno, gdb_byte *buf) 296 { 297 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 298 299 /* The PC is a pseudo reg only for 68HC12 with the memory bank 300 addressing mode. */ 301 if (regno == M68HC12_HARD_PC_REGNUM) 302 { 303 ULONGEST pc; 304 const int regsize = 4; 305 enum register_status status; 306 307 status = regcache->cooked_read (HARD_PC_REGNUM, &pc); 308 if (status != REG_VALID) 309 return status; 310 if (pc >= 0x8000 && pc < 0xc000) 311 { 312 ULONGEST page; 313 314 regcache->cooked_read (HARD_PAGE_REGNUM, &page); 315 pc -= 0x8000; 316 pc += (page << 14); 317 pc += 0x1000000; 318 } 319 store_unsigned_integer (buf, regsize, byte_order, pc); 320 return REG_VALID; 321 } 322 323 m68hc11_initialize_register_info (); 324 325 /* Fetch a soft register: translate into a memory read. */ 326 if (soft_regs[regno].name) 327 { 328 target_read_memory (soft_regs[regno].addr, buf, 2); 329 } 330 else 331 { 332 memset (buf, 0, 2); 333 } 334 335 return REG_VALID; 336 } 337 338 /* Store a pseudo register. Translate the register store 339 into a memory write. */ 340 static void 341 m68hc11_pseudo_register_write (struct gdbarch *gdbarch, 342 struct regcache *regcache, 343 int regno, const gdb_byte *buf) 344 { 345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 346 347 /* The PC is a pseudo reg only for 68HC12 with the memory bank 348 addressing mode. */ 349 if (regno == M68HC12_HARD_PC_REGNUM) 350 { 351 const int regsize = 4; 352 gdb_byte *tmp = (gdb_byte *) alloca (regsize); 353 CORE_ADDR pc; 354 355 memcpy (tmp, buf, regsize); 356 pc = extract_unsigned_integer (tmp, regsize, byte_order); 357 if (pc >= 0x1000000) 358 { 359 pc -= 0x1000000; 360 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM, 361 (pc >> 14) & 0x0ff); 362 pc &= 0x03fff; 363 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, 364 pc + 0x8000); 365 } 366 else 367 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc); 368 return; 369 } 370 371 m68hc11_initialize_register_info (); 372 373 /* Store a soft register: translate into a memory write. */ 374 if (soft_regs[regno].name) 375 { 376 const int regsize = 2; 377 gdb_byte *tmp = (gdb_byte *) alloca (regsize); 378 memcpy (tmp, buf, regsize); 379 target_write_memory (soft_regs[regno].addr, tmp, regsize); 380 } 381 } 382 383 static const char * 384 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr) 385 { 386 if (reg_nr == M68HC12_HARD_PC_REGNUM && use_page_register (gdbarch)) 387 return "pc"; 388 389 if (reg_nr == HARD_PC_REGNUM && use_page_register (gdbarch)) 390 return "ppc"; 391 392 if (reg_nr >= M68HC11_ALL_REGS) 393 return ""; 394 395 m68hc11_initialize_register_info (); 396 397 /* If we don't know the address of a soft register, pretend it 398 does not exist. */ 399 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0) 400 return ""; 401 402 return m68hc11_register_names[reg_nr]; 403 } 404 405 constexpr gdb_byte m68hc11_break_insn[] = {0x0}; 406 407 typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint; 408 409 /* 68HC11 & 68HC12 prologue analysis. */ 410 411 #define MAX_CODES 12 412 413 /* 68HC11 opcodes. */ 414 #undef M6811_OP_PAGE2 415 #define M6811_OP_PAGE2 (0x18) 416 #define M6811_OP_LDX (0xde) 417 #define M6811_OP_LDX_EXT (0xfe) 418 #define M6811_OP_PSHX (0x3c) 419 #define M6811_OP_STS (0x9f) 420 #define M6811_OP_STS_EXT (0xbf) 421 #define M6811_OP_TSX (0x30) 422 #define M6811_OP_XGDX (0x8f) 423 #define M6811_OP_ADDD (0xc3) 424 #define M6811_OP_TXS (0x35) 425 #define M6811_OP_DES (0x34) 426 427 /* 68HC12 opcodes. */ 428 #define M6812_OP_PAGE2 (0x18) 429 #define M6812_OP_MOVW (0x01) 430 #define M6812_PB_PSHW (0xae) 431 #define M6812_OP_STS (0x5f) 432 #define M6812_OP_STS_EXT (0x7f) 433 #define M6812_OP_LEAS (0x1b) 434 #define M6812_OP_PSHX (0x34) 435 #define M6812_OP_PSHY (0x35) 436 437 /* Operand extraction. */ 438 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */ 439 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */ 440 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */ 441 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */ 442 443 /* Identification of the sequence. */ 444 enum m6811_seq_type 445 { 446 P_LAST = 0, 447 P_SAVE_REG, /* Save a register on the stack. */ 448 P_SET_FRAME, /* Setup the frame pointer. */ 449 P_LOCAL_1, /* Allocate 1 byte for locals. */ 450 P_LOCAL_2, /* Allocate 2 bytes for locals. */ 451 P_LOCAL_N /* Allocate N bytes for locals. */ 452 }; 453 454 struct insn_sequence { 455 enum m6811_seq_type type; 456 unsigned length; 457 unsigned short code[MAX_CODES]; 458 }; 459 460 /* Sequence of instructions in the 68HC11 function prologue. */ 461 static struct insn_sequence m6811_prologue[] = { 462 /* Sequences to save a soft-register. */ 463 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT, 464 M6811_OP_PSHX } }, 465 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT, 466 M6811_OP_PAGE2, M6811_OP_PSHX } }, 467 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW, 468 M6811_OP_PSHX } }, 469 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW, 470 M6811_OP_PAGE2, M6811_OP_PSHX } }, 471 472 /* Sequences to allocate local variables. */ 473 { P_LOCAL_N, 7, { M6811_OP_TSX, 474 M6811_OP_XGDX, 475 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW, 476 M6811_OP_XGDX, 477 M6811_OP_TXS } }, 478 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX, 479 M6811_OP_PAGE2, M6811_OP_XGDX, 480 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW, 481 M6811_OP_PAGE2, M6811_OP_XGDX, 482 M6811_OP_PAGE2, M6811_OP_TXS } }, 483 { P_LOCAL_1, 1, { M6811_OP_DES } }, 484 { P_LOCAL_2, 1, { M6811_OP_PSHX } }, 485 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } }, 486 487 /* Initialize the frame pointer. */ 488 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } }, 489 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } }, 490 { P_LAST, 0, { 0 } } 491 }; 492 493 494 /* Sequence of instructions in the 68HC12 function prologue. */ 495 static struct insn_sequence m6812_prologue[] = { 496 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW, 497 OP_IMM_HIGH, OP_IMM_LOW } }, 498 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } }, 499 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } }, 500 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } }, 501 { P_LOCAL_2, 1, { M6812_OP_PSHX } }, 502 { P_LOCAL_2, 1, { M6812_OP_PSHY } }, 503 { P_LAST, 0 } 504 }; 505 506 507 /* Analyze the sequence of instructions starting at the given address. 508 Returns a pointer to the sequence when it is recognized and 509 the optional value (constant/address) associated with it. */ 510 static struct insn_sequence * 511 m68hc11_analyze_instruction (struct gdbarch *gdbarch, 512 struct insn_sequence *seq, CORE_ADDR pc, 513 CORE_ADDR *val) 514 { 515 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 516 unsigned char buffer[MAX_CODES]; 517 unsigned bufsize; 518 unsigned j; 519 CORE_ADDR cur_val; 520 short v = 0; 521 522 bufsize = 0; 523 for (; seq->type != P_LAST; seq++) 524 { 525 cur_val = 0; 526 for (j = 0; j < seq->length; j++) 527 { 528 if (bufsize < j + 1) 529 { 530 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize, 531 1, byte_order); 532 bufsize++; 533 } 534 /* Continue while we match the opcode. */ 535 if (seq->code[j] == buffer[j]) 536 continue; 537 538 if ((seq->code[j] & 0xf00) == 0) 539 break; 540 541 /* Extract a sequence parameter (address or constant). */ 542 switch (seq->code[j]) 543 { 544 case OP_DIRECT: 545 cur_val = (CORE_ADDR) buffer[j]; 546 break; 547 548 case OP_IMM_HIGH: 549 cur_val = cur_val & 0x0ff; 550 cur_val |= (buffer[j] << 8); 551 break; 552 553 case OP_IMM_LOW: 554 cur_val &= 0x0ff00; 555 cur_val |= buffer[j]; 556 break; 557 558 case OP_PBYTE: 559 if ((buffer[j] & 0xE0) == 0x80) 560 { 561 v = buffer[j] & 0x1f; 562 if (v & 0x10) 563 v |= 0xfff0; 564 } 565 else if ((buffer[j] & 0xfe) == 0xf0) 566 { 567 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order); 568 if (buffer[j] & 1) 569 v |= 0xff00; 570 } 571 else if (buffer[j] == 0xf2) 572 { 573 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order); 574 } 575 cur_val = v; 576 break; 577 } 578 } 579 580 /* We have a full match. */ 581 if (j == seq->length) 582 { 583 *val = cur_val; 584 return seq; 585 } 586 } 587 return 0; 588 } 589 590 /* Return the instruction that the function at the PC is using. */ 591 static enum insn_return_kind 592 m68hc11_get_return_insn (CORE_ADDR pc) 593 { 594 struct bound_minimal_symbol sym; 595 596 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT 597 function is stored by elfread.c in the high bit of the info field. 598 Use this to decide which instruction the function uses to return. */ 599 sym = lookup_minimal_symbol_by_pc (pc); 600 if (sym.minsym == 0) 601 return RETURN_RTS; 602 603 if (MSYMBOL_IS_RTC (sym.minsym)) 604 return RETURN_RTC; 605 else if (MSYMBOL_IS_RTI (sym.minsym)) 606 return RETURN_RTI; 607 else 608 return RETURN_RTS; 609 } 610 611 /* Analyze the function prologue to find some information 612 about the function: 613 - the PC of the first line (for m68hc11_skip_prologue) 614 - the offset of the previous frame saved address (from current frame) 615 - the soft registers which are pushed. */ 616 static CORE_ADDR 617 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, 618 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info) 619 { 620 LONGEST save_addr; 621 CORE_ADDR func_end; 622 int size; 623 int found_frame_point; 624 int saved_reg; 625 int done = 0; 626 struct insn_sequence *seq_table; 627 628 info->size = 0; 629 info->sp_offset = 0; 630 if (pc >= current_pc) 631 return current_pc; 632 633 size = 0; 634 635 m68hc11_initialize_register_info (); 636 if (pc == 0) 637 { 638 info->size = 0; 639 return pc; 640 } 641 642 m68gc11_gdbarch_tdep *tdep = gdbarch_tdep<m68gc11_gdbarch_tdep> (gdbarch); 643 seq_table = tdep->prologue; 644 645 /* The 68hc11 stack is as follows: 646 647 648 | | 649 +-----------+ 650 | | 651 | args | 652 | | 653 +-----------+ 654 | PC-return | 655 +-----------+ 656 | Old frame | 657 +-----------+ 658 | | 659 | Locals | 660 | | 661 +-----------+ <--- current frame 662 | | 663 664 With most processors (like 68K) the previous frame can be computed 665 easily because it is always at a fixed offset (see link/unlink). 666 That is, locals are accessed with negative offsets, arguments are 667 accessed with positive ones. Since 68hc11 only supports offsets 668 in the range [0..255], the frame is defined at the bottom of 669 locals (see picture). 670 671 The purpose of the analysis made here is to find out the size 672 of locals in this function. An alternative to this is to use 673 DWARF2 info. This would be better but I don't know how to 674 access dwarf2 debug from this function. 675 676 Walk from the function entry point to the point where we save 677 the frame. While walking instructions, compute the size of bytes 678 which are pushed. This gives us the index to access the previous 679 frame. 680 681 We limit the search to 128 bytes so that the algorithm is bounded 682 in case of random and wrong code. We also stop and abort if 683 we find an instruction which is not supposed to appear in the 684 prologue (as generated by gcc 2.95, 2.96). */ 685 686 func_end = pc + 128; 687 found_frame_point = 0; 688 info->size = 0; 689 save_addr = 0; 690 while (!done && pc + 2 < func_end) 691 { 692 struct insn_sequence *seq; 693 CORE_ADDR val; 694 695 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val); 696 if (seq == 0) 697 break; 698 699 /* If we are within the instruction group, we can't advance the 700 pc nor the stack offset. Otherwise the caller's stack computed 701 from the current stack can be wrong. */ 702 if (pc + seq->length > current_pc) 703 break; 704 705 pc = pc + seq->length; 706 if (seq->type == P_SAVE_REG) 707 { 708 if (found_frame_point) 709 { 710 saved_reg = m68hc11_which_soft_register (val); 711 if (saved_reg < 0) 712 break; 713 714 save_addr -= 2; 715 if (info->saved_regs) 716 info->saved_regs[saved_reg].set_addr (save_addr); 717 } 718 else 719 { 720 size += 2; 721 } 722 } 723 else if (seq->type == P_SET_FRAME) 724 { 725 found_frame_point = 1; 726 info->size = size; 727 } 728 else if (seq->type == P_LOCAL_1) 729 { 730 size += 1; 731 } 732 else if (seq->type == P_LOCAL_2) 733 { 734 size += 2; 735 } 736 else if (seq->type == P_LOCAL_N) 737 { 738 /* Stack pointer is decremented for the allocation. */ 739 if (val & 0x8000) 740 size -= (int) (val) | 0xffff0000; 741 else 742 size -= val; 743 } 744 } 745 if (found_frame_point == 0) 746 info->sp_offset = size; 747 else 748 info->sp_offset = -1; 749 return pc; 750 } 751 752 static CORE_ADDR 753 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 754 { 755 CORE_ADDR func_addr, func_end; 756 struct symtab_and_line sal; 757 struct m68hc11_unwind_cache tmp_cache = { 0 }; 758 759 /* If we have line debugging information, then the end of the 760 prologue should be the first assembly instruction of the 761 first source line. */ 762 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 763 { 764 sal = find_pc_line (func_addr, 0); 765 if (sal.end && sal.end < func_end) 766 return sal.end; 767 } 768 769 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache); 770 return pc; 771 } 772 773 /* Put here the code to store, into fi->saved_regs, the addresses of 774 the saved registers of frame described by FRAME_INFO. This 775 includes special registers such as pc and fp saved in special ways 776 in the stack frame. sp is even more special: the address we return 777 for it IS the sp for the next frame. */ 778 779 static struct m68hc11_unwind_cache * 780 m68hc11_frame_unwind_cache (frame_info_ptr this_frame, 781 void **this_prologue_cache) 782 { 783 struct gdbarch *gdbarch = get_frame_arch (this_frame); 784 ULONGEST prev_sp; 785 ULONGEST this_base; 786 struct m68hc11_unwind_cache *info; 787 CORE_ADDR current_pc; 788 int i; 789 790 if ((*this_prologue_cache)) 791 return (struct m68hc11_unwind_cache *) (*this_prologue_cache); 792 793 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache); 794 (*this_prologue_cache) = info; 795 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 796 797 info->pc = get_frame_func (this_frame); 798 799 info->size = 0; 800 info->return_kind = m68hc11_get_return_insn (info->pc); 801 802 /* The SP was moved to the FP. This indicates that a new frame 803 was created. Get THIS frame's FP value by unwinding it from 804 the next frame. */ 805 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM); 806 if (this_base == 0) 807 { 808 info->base = 0; 809 return info; 810 } 811 812 current_pc = get_frame_pc (this_frame); 813 if (info->pc != 0) 814 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info); 815 816 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size); 817 818 if (info->sp_offset != (CORE_ADDR) -1) 819 { 820 info->saved_regs[HARD_PC_REGNUM].set_addr (info->sp_offset); 821 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM); 822 prev_sp = this_base + info->sp_offset + 2; 823 this_base += stack_correction (gdbarch); 824 } 825 else 826 { 827 /* The FP points at the last saved register. Adjust the FP back 828 to before the first saved register giving the SP. */ 829 prev_sp = this_base + info->size + 2; 830 831 this_base += stack_correction (gdbarch); 832 if (soft_regs[SOFT_FP_REGNUM].name) 833 info->saved_regs[SOFT_FP_REGNUM].set_addr (info->size - 2); 834 } 835 836 if (info->return_kind == RETURN_RTC) 837 { 838 prev_sp += 1; 839 info->saved_regs[HARD_PAGE_REGNUM].set_addr (info->size); 840 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size + 1); 841 } 842 else if (info->return_kind == RETURN_RTI) 843 { 844 prev_sp += 7; 845 info->saved_regs[HARD_CCR_REGNUM].set_addr (info->size); 846 info->saved_regs[HARD_D_REGNUM].set_addr (info->size + 1); 847 info->saved_regs[HARD_X_REGNUM].set_addr (info->size + 3); 848 info->saved_regs[HARD_Y_REGNUM].set_addr (info->size + 5); 849 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size + 7); 850 } 851 852 /* Add 1 here to adjust for the post-decrement nature of the push 853 instruction. */ 854 info->prev_sp = prev_sp; 855 856 info->base = this_base; 857 858 /* Adjust all the saved registers so that they contain addresses and not 859 offsets. */ 860 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++) 861 if (info->saved_regs[i].is_addr ()) 862 { 863 info->saved_regs[i].set_addr (info->saved_regs[i].addr () + this_base); 864 } 865 866 /* The previous frame's SP needed to be computed. Save the computed 867 value. */ 868 info->saved_regs[HARD_SP_REGNUM].set_value (info->prev_sp); 869 870 return info; 871 } 872 873 /* Given a GDB frame, determine the address of the calling function's 874 frame. This will be used to create a new GDB frame struct. */ 875 876 static void 877 m68hc11_frame_this_id (frame_info_ptr this_frame, 878 void **this_prologue_cache, 879 struct frame_id *this_id) 880 { 881 struct m68hc11_unwind_cache *info 882 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache); 883 CORE_ADDR base; 884 CORE_ADDR func; 885 struct frame_id id; 886 887 /* The FUNC is easy. */ 888 func = get_frame_func (this_frame); 889 890 /* Hopefully the prologue analysis either correctly determined the 891 frame's base (which is the SP from the previous frame), or set 892 that base to "NULL". */ 893 base = info->prev_sp; 894 if (base == 0) 895 return; 896 897 id = frame_id_build (base, func); 898 (*this_id) = id; 899 } 900 901 static struct value * 902 m68hc11_frame_prev_register (frame_info_ptr this_frame, 903 void **this_prologue_cache, int regnum) 904 { 905 struct value *value; 906 struct m68hc11_unwind_cache *info 907 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache); 908 909 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 910 911 /* Take into account the 68HC12 specific call (PC + page). */ 912 if (regnum == HARD_PC_REGNUM 913 && info->return_kind == RETURN_RTC 914 && use_page_register (get_frame_arch (this_frame))) 915 { 916 CORE_ADDR pc = value_as_long (value); 917 if (pc >= 0x08000 && pc < 0x0c000) 918 { 919 CORE_ADDR page; 920 921 release_value (value); 922 923 value = trad_frame_get_prev_register (this_frame, info->saved_regs, 924 HARD_PAGE_REGNUM); 925 page = value_as_long (value); 926 release_value (value); 927 928 pc -= 0x08000; 929 pc += ((page & 0x0ff) << 14); 930 pc += 0x1000000; 931 932 return frame_unwind_got_constant (this_frame, regnum, pc); 933 } 934 } 935 936 return value; 937 } 938 939 static const struct frame_unwind m68hc11_frame_unwind = { 940 "m68hc11 prologue", 941 NORMAL_FRAME, 942 default_frame_unwind_stop_reason, 943 m68hc11_frame_this_id, 944 m68hc11_frame_prev_register, 945 NULL, 946 default_frame_sniffer 947 }; 948 949 static CORE_ADDR 950 m68hc11_frame_base_address (frame_info_ptr this_frame, void **this_cache) 951 { 952 struct m68hc11_unwind_cache *info 953 = m68hc11_frame_unwind_cache (this_frame, this_cache); 954 955 return info->base; 956 } 957 958 static CORE_ADDR 959 m68hc11_frame_args_address (frame_info_ptr this_frame, void **this_cache) 960 { 961 CORE_ADDR addr; 962 struct m68hc11_unwind_cache *info 963 = m68hc11_frame_unwind_cache (this_frame, this_cache); 964 965 addr = info->base + info->size; 966 if (info->return_kind == RETURN_RTC) 967 addr += 1; 968 else if (info->return_kind == RETURN_RTI) 969 addr += 7; 970 971 return addr; 972 } 973 974 static const struct frame_base m68hc11_frame_base = { 975 &m68hc11_frame_unwind, 976 m68hc11_frame_base_address, 977 m68hc11_frame_base_address, 978 m68hc11_frame_args_address 979 }; 980 981 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy 982 frame. The frame ID's base needs to match the TOS value saved by 983 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ 984 985 static struct frame_id 986 m68hc11_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame) 987 { 988 ULONGEST tos; 989 CORE_ADDR pc = get_frame_pc (this_frame); 990 991 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM); 992 tos += 2; 993 return frame_id_build (tos, pc); 994 } 995 996 997 /* Get and print the register from the given frame. */ 998 static void 999 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file, 1000 frame_info_ptr frame, int regno) 1001 { 1002 LONGEST rval; 1003 1004 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM 1005 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM) 1006 rval = get_frame_register_unsigned (frame, regno); 1007 else 1008 rval = get_frame_register_signed (frame, regno); 1009 1010 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM 1011 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM) 1012 { 1013 gdb_printf (file, "0x%02x ", (unsigned char) rval); 1014 if (regno != HARD_CCR_REGNUM) 1015 print_longest (file, 'd', 1, rval); 1016 } 1017 else 1018 { 1019 m68gc11_gdbarch_tdep *tdep 1020 = gdbarch_tdep<m68gc11_gdbarch_tdep> (gdbarch); 1021 1022 if (regno == HARD_PC_REGNUM && tdep->use_page_register) 1023 { 1024 ULONGEST page; 1025 1026 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM); 1027 gdb_printf (file, "0x%02x:%04x ", (unsigned) page, 1028 (unsigned) rval); 1029 } 1030 else 1031 { 1032 gdb_printf (file, "0x%04x ", (unsigned) rval); 1033 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM 1034 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM) 1035 print_longest (file, 'd', 1, rval); 1036 } 1037 } 1038 1039 if (regno == HARD_CCR_REGNUM) 1040 { 1041 /* CCR register */ 1042 int C, Z, N, V; 1043 unsigned char l = rval & 0xff; 1044 1045 gdb_printf (file, "%c%c%c%c%c%c%c%c ", 1046 l & M6811_S_BIT ? 'S' : '-', 1047 l & M6811_X_BIT ? 'X' : '-', 1048 l & M6811_H_BIT ? 'H' : '-', 1049 l & M6811_I_BIT ? 'I' : '-', 1050 l & M6811_N_BIT ? 'N' : '-', 1051 l & M6811_Z_BIT ? 'Z' : '-', 1052 l & M6811_V_BIT ? 'V' : '-', 1053 l & M6811_C_BIT ? 'C' : '-'); 1054 N = (l & M6811_N_BIT) != 0; 1055 Z = (l & M6811_Z_BIT) != 0; 1056 V = (l & M6811_V_BIT) != 0; 1057 C = (l & M6811_C_BIT) != 0; 1058 1059 /* Print flags following the h8300. */ 1060 if ((C | Z) == 0) 1061 gdb_printf (file, "u> "); 1062 else if ((C | Z) == 1) 1063 gdb_printf (file, "u<= "); 1064 else if (C == 0) 1065 gdb_printf (file, "u< "); 1066 1067 if (Z == 0) 1068 gdb_printf (file, "!= "); 1069 else 1070 gdb_printf (file, "== "); 1071 1072 if ((N ^ V) == 0) 1073 gdb_printf (file, ">= "); 1074 else 1075 gdb_printf (file, "< "); 1076 1077 if ((Z | (N ^ V)) == 0) 1078 gdb_printf (file, "> "); 1079 else 1080 gdb_printf (file, "<= "); 1081 } 1082 } 1083 1084 /* Same as 'info reg' but prints the registers in a different way. */ 1085 static void 1086 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, 1087 frame_info_ptr frame, int regno, int cpregs) 1088 { 1089 if (regno >= 0) 1090 { 1091 const char *name = gdbarch_register_name (gdbarch, regno); 1092 1093 if (*name == '\0') 1094 return; 1095 1096 gdb_printf (file, "%-10s ", name); 1097 m68hc11_print_register (gdbarch, file, frame, regno); 1098 gdb_printf (file, "\n"); 1099 } 1100 else 1101 { 1102 int i, nr; 1103 1104 gdb_printf (file, "PC="); 1105 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM); 1106 1107 gdb_printf (file, " SP="); 1108 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM); 1109 1110 gdb_printf (file, " FP="); 1111 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM); 1112 1113 gdb_printf (file, "\nCCR="); 1114 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM); 1115 1116 gdb_printf (file, "\nD="); 1117 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM); 1118 1119 gdb_printf (file, " X="); 1120 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM); 1121 1122 gdb_printf (file, " Y="); 1123 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM); 1124 1125 m68gc11_gdbarch_tdep *tdep = gdbarch_tdep<m68gc11_gdbarch_tdep> (gdbarch); 1126 1127 if (tdep->use_page_register) 1128 { 1129 gdb_printf (file, "\nPage="); 1130 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM); 1131 } 1132 gdb_printf (file, "\n"); 1133 1134 nr = 0; 1135 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++) 1136 { 1137 /* Skip registers which are not defined in the symbol table. */ 1138 if (soft_regs[i].name == 0) 1139 continue; 1140 1141 gdb_printf (file, "D%d=", i - SOFT_D1_REGNUM + 1); 1142 m68hc11_print_register (gdbarch, file, frame, i); 1143 nr++; 1144 if ((nr % 8) == 7) 1145 gdb_printf (file, "\n"); 1146 else 1147 gdb_printf (file, " "); 1148 } 1149 if (nr && (nr % 8) != 7) 1150 gdb_printf (file, "\n"); 1151 } 1152 } 1153 1154 static CORE_ADDR 1155 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 1156 struct regcache *regcache, CORE_ADDR bp_addr, 1157 int nargs, struct value **args, CORE_ADDR sp, 1158 function_call_return_method return_method, 1159 CORE_ADDR struct_addr) 1160 { 1161 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1162 int argnum; 1163 int first_stack_argnum; 1164 struct type *type; 1165 const gdb_byte *val; 1166 gdb_byte buf[2]; 1167 1168 first_stack_argnum = 0; 1169 if (return_method == return_method_struct) 1170 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr); 1171 else if (nargs > 0) 1172 { 1173 type = value_type (args[0]); 1174 1175 /* First argument is passed in D and X registers. */ 1176 if (type->length () <= 4) 1177 { 1178 ULONGEST v; 1179 1180 v = extract_unsigned_integer (value_contents (args[0]).data (), 1181 type->length (), byte_order); 1182 first_stack_argnum = 1; 1183 1184 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v); 1185 if (type->length () > 2) 1186 { 1187 v >>= 16; 1188 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v); 1189 } 1190 } 1191 } 1192 1193 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--) 1194 { 1195 type = value_type (args[argnum]); 1196 1197 if (type->length () & 1) 1198 { 1199 static gdb_byte zero = 0; 1200 1201 sp--; 1202 write_memory (sp, &zero, 1); 1203 } 1204 val = value_contents (args[argnum]).data (); 1205 sp -= type->length (); 1206 write_memory (sp, val, type->length ()); 1207 } 1208 1209 /* Store return address. */ 1210 sp -= 2; 1211 store_unsigned_integer (buf, 2, byte_order, bp_addr); 1212 write_memory (sp, buf, 2); 1213 1214 /* Finally, update the stack pointer... */ 1215 sp -= stack_correction (gdbarch); 1216 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp); 1217 1218 /* ...and fake a frame pointer. */ 1219 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp); 1220 1221 /* DWARF2/GCC uses the stack address *before* the function call as a 1222 frame's CFA. */ 1223 return sp + 2; 1224 } 1225 1226 1227 /* Return the GDB type object for the "standard" data type 1228 of data in register N. */ 1229 1230 static struct type * 1231 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr) 1232 { 1233 switch (reg_nr) 1234 { 1235 case HARD_PAGE_REGNUM: 1236 case HARD_A_REGNUM: 1237 case HARD_B_REGNUM: 1238 case HARD_CCR_REGNUM: 1239 return builtin_type (gdbarch)->builtin_uint8; 1240 1241 case M68HC12_HARD_PC_REGNUM: 1242 return builtin_type (gdbarch)->builtin_uint32; 1243 1244 default: 1245 return builtin_type (gdbarch)->builtin_uint16; 1246 } 1247 } 1248 1249 static void 1250 m68hc11_store_return_value (struct type *type, struct regcache *regcache, 1251 const gdb_byte *valbuf) 1252 { 1253 int len; 1254 1255 len = type->length (); 1256 1257 /* First argument is passed in D and X registers. */ 1258 if (len <= 2) 1259 regcache->raw_write_part (HARD_D_REGNUM, 2 - len, len, valbuf); 1260 else if (len <= 4) 1261 { 1262 regcache->raw_write_part (HARD_X_REGNUM, 4 - len, len - 2, valbuf); 1263 regcache->raw_write (HARD_D_REGNUM, valbuf + (len - 2)); 1264 } 1265 else 1266 error (_("return of value > 4 is not supported.")); 1267 } 1268 1269 1270 /* Given a return value in `regcache' with a type `type', 1271 extract and copy its value into `valbuf'. */ 1272 1273 static void 1274 m68hc11_extract_return_value (struct type *type, struct regcache *regcache, 1275 void *valbuf) 1276 { 1277 gdb_byte buf[M68HC11_REG_SIZE]; 1278 1279 regcache->raw_read (HARD_D_REGNUM, buf); 1280 switch (type->length ()) 1281 { 1282 case 1: 1283 memcpy (valbuf, buf + 1, 1); 1284 break; 1285 1286 case 2: 1287 memcpy (valbuf, buf, 2); 1288 break; 1289 1290 case 3: 1291 memcpy ((char*) valbuf + 1, buf, 2); 1292 regcache->raw_read (HARD_X_REGNUM, buf); 1293 memcpy (valbuf, buf + 1, 1); 1294 break; 1295 1296 case 4: 1297 memcpy ((char*) valbuf + 2, buf, 2); 1298 regcache->raw_read (HARD_X_REGNUM, buf); 1299 memcpy (valbuf, buf, 2); 1300 break; 1301 1302 default: 1303 error (_("bad size for return value")); 1304 } 1305 } 1306 1307 static enum return_value_convention 1308 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function, 1309 struct type *valtype, struct regcache *regcache, 1310 gdb_byte *readbuf, const gdb_byte *writebuf) 1311 { 1312 if (valtype->code () == TYPE_CODE_STRUCT 1313 || valtype->code () == TYPE_CODE_UNION 1314 || valtype->code () == TYPE_CODE_ARRAY 1315 || valtype->length () > 4) 1316 return RETURN_VALUE_STRUCT_CONVENTION; 1317 else 1318 { 1319 if (readbuf != NULL) 1320 m68hc11_extract_return_value (valtype, regcache, readbuf); 1321 if (writebuf != NULL) 1322 m68hc11_store_return_value (valtype, regcache, writebuf); 1323 return RETURN_VALUE_REGISTER_CONVENTION; 1324 } 1325 } 1326 1327 /* Test whether the ELF symbol corresponds to a function using rtc or 1328 rti to return. */ 1329 1330 static void 1331 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym) 1332 { 1333 unsigned char flags; 1334 1335 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other; 1336 if (flags & STO_M68HC12_FAR) 1337 MSYMBOL_SET_RTC (msym); 1338 if (flags & STO_M68HC12_INTERRUPT) 1339 MSYMBOL_SET_RTI (msym); 1340 } 1341 1342 1343 /* 68HC11/68HC12 register groups. 1344 Identify real hard registers and soft registers used by gcc. */ 1345 1346 static const reggroup *m68hc11_soft_reggroup; 1347 static const reggroup *m68hc11_hard_reggroup; 1348 1349 static void 1350 m68hc11_init_reggroups (void) 1351 { 1352 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP); 1353 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP); 1354 } 1355 1356 static void 1357 m68hc11_add_reggroups (struct gdbarch *gdbarch) 1358 { 1359 reggroup_add (gdbarch, m68hc11_hard_reggroup); 1360 reggroup_add (gdbarch, m68hc11_soft_reggroup); 1361 } 1362 1363 static int 1364 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum, 1365 const struct reggroup *group) 1366 { 1367 /* We must save the real hard register as well as gcc 1368 soft registers including the frame pointer. */ 1369 if (group == save_reggroup || group == restore_reggroup) 1370 { 1371 return (regnum <= gdbarch_num_regs (gdbarch) 1372 || ((regnum == SOFT_FP_REGNUM 1373 || regnum == SOFT_TMP_REGNUM 1374 || regnum == SOFT_ZS_REGNUM 1375 || regnum == SOFT_XY_REGNUM) 1376 && m68hc11_register_name (gdbarch, regnum))); 1377 } 1378 1379 /* Group to identify gcc soft registers (d1..dN). */ 1380 if (group == m68hc11_soft_reggroup) 1381 { 1382 return regnum >= SOFT_D1_REGNUM 1383 && m68hc11_register_name (gdbarch, regnum); 1384 } 1385 1386 if (group == m68hc11_hard_reggroup) 1387 { 1388 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM 1389 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM 1390 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM; 1391 } 1392 return default_register_reggroup_p (gdbarch, regnum, group); 1393 } 1394 1395 static struct gdbarch * 1396 m68hc11_gdbarch_init (struct gdbarch_info info, 1397 struct gdbarch_list *arches) 1398 { 1399 struct gdbarch *gdbarch; 1400 int elf_flags; 1401 1402 soft_reg_initialized = 0; 1403 1404 /* Extract the elf_flags if available. */ 1405 if (info.abfd != NULL 1406 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) 1407 elf_flags = elf_elfheader (info.abfd)->e_flags; 1408 else 1409 elf_flags = 0; 1410 1411 /* Try to find a pre-existing architecture. */ 1412 for (arches = gdbarch_list_lookup_by_info (arches, &info); 1413 arches != NULL; 1414 arches = gdbarch_list_lookup_by_info (arches->next, &info)) 1415 { 1416 m68gc11_gdbarch_tdep *tdep 1417 = gdbarch_tdep<m68gc11_gdbarch_tdep> (arches->gdbarch); 1418 1419 if (tdep->elf_flags != elf_flags) 1420 continue; 1421 1422 return arches->gdbarch; 1423 } 1424 1425 /* Need a new architecture. Fill in a target specific vector. */ 1426 m68gc11_gdbarch_tdep *tdep = new m68gc11_gdbarch_tdep; 1427 gdbarch = gdbarch_alloc (&info, tdep); 1428 tdep->elf_flags = elf_flags; 1429 1430 switch (info.bfd_arch_info->arch) 1431 { 1432 case bfd_arch_m68hc11: 1433 tdep->stack_correction = 1; 1434 tdep->use_page_register = 0; 1435 tdep->prologue = m6811_prologue; 1436 set_gdbarch_addr_bit (gdbarch, 16); 1437 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS); 1438 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM); 1439 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS); 1440 break; 1441 1442 case bfd_arch_m68hc12: 1443 tdep->stack_correction = 0; 1444 tdep->use_page_register = elf_flags & E_M68HC12_BANKS; 1445 tdep->prologue = m6812_prologue; 1446 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16); 1447 set_gdbarch_num_pseudo_regs (gdbarch, 1448 elf_flags & E_M68HC12_BANKS 1449 ? M68HC12_NUM_PSEUDO_REGS 1450 : M68HC11_NUM_PSEUDO_REGS); 1451 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS 1452 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM); 1453 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS 1454 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS); 1455 break; 1456 1457 default: 1458 break; 1459 } 1460 1461 /* Initially set everything according to the ABI. 1462 Use 16-bit integers since it will be the case for most 1463 programs. The size of these types should normally be set 1464 according to the dwarf2 debug information. */ 1465 set_gdbarch_short_bit (gdbarch, 16); 1466 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16); 1467 set_gdbarch_float_bit (gdbarch, 32); 1468 if (elf_flags & E_M68HC11_F64) 1469 { 1470 set_gdbarch_double_bit (gdbarch, 64); 1471 set_gdbarch_double_format (gdbarch, floatformats_ieee_double); 1472 } 1473 else 1474 { 1475 set_gdbarch_double_bit (gdbarch, 32); 1476 set_gdbarch_double_format (gdbarch, floatformats_ieee_single); 1477 } 1478 set_gdbarch_long_double_bit (gdbarch, 64); 1479 set_gdbarch_long_bit (gdbarch, 32); 1480 set_gdbarch_ptr_bit (gdbarch, 16); 1481 set_gdbarch_long_long_bit (gdbarch, 64); 1482 1483 /* Characters are unsigned. */ 1484 set_gdbarch_char_signed (gdbarch, 0); 1485 1486 /* Set register info. */ 1487 set_gdbarch_fp0_regnum (gdbarch, -1); 1488 1489 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM); 1490 set_gdbarch_register_name (gdbarch, m68hc11_register_name); 1491 set_gdbarch_register_type (gdbarch, m68hc11_register_type); 1492 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read); 1493 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write); 1494 1495 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call); 1496 1497 set_gdbarch_return_value (gdbarch, m68hc11_return_value); 1498 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue); 1499 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 1500 set_gdbarch_breakpoint_kind_from_pc (gdbarch, 1501 m68hc11_breakpoint::kind_from_pc); 1502 set_gdbarch_sw_breakpoint_from_kind (gdbarch, 1503 m68hc11_breakpoint::bp_from_kind); 1504 1505 m68hc11_add_reggroups (gdbarch); 1506 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p); 1507 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info); 1508 1509 /* Hook in the DWARF CFI frame unwinder. */ 1510 dwarf2_append_unwinders (gdbarch); 1511 1512 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind); 1513 frame_base_set_default (gdbarch, &m68hc11_frame_base); 1514 1515 /* Methods for saving / extracting a dummy frame's ID. The ID's 1516 stack address must match the SP value returned by 1517 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ 1518 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id); 1519 1520 /* Minsymbol frobbing. */ 1521 set_gdbarch_elf_make_msymbol_special (gdbarch, 1522 m68hc11_elf_make_msymbol_special); 1523 1524 set_gdbarch_believe_pcc_promotion (gdbarch, 1); 1525 1526 return gdbarch; 1527 } 1528 1529 void _initialize_m68hc11_tdep (); 1530 void 1531 _initialize_m68hc11_tdep () 1532 { 1533 gdbarch_register (bfd_arch_m68hc11, m68hc11_gdbarch_init); 1534 gdbarch_register (bfd_arch_m68hc12, m68hc11_gdbarch_init); 1535 m68hc11_init_reggroups (); 1536 } 1537 1538