xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/event-top.c (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* Top level stuff for GDB, the GNU debugger.
2 
3    Copyright (C) 1999-2023 Free Software Foundation, Inc.
4 
5    Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h"
28 #include "gdbsupport/event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h"     /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observable.h"
36 #include "gdbcmd.h"		/* for dont_repeat() */
37 #include "annotate.h"
38 #include "maint.h"
39 #include "gdbsupport/buffer.h"
40 #include "ser-event.h"
41 #include "gdbsupport/gdb_select.h"
42 #include "gdbsupport/gdb-sigmask.h"
43 #include "async-event.h"
44 #include "bt-utils.h"
45 #include "pager.h"
46 
47 /* readline include files.  */
48 #include "readline/readline.h"
49 #include "readline/history.h"
50 
51 /* readline defines this.  */
52 #undef savestring
53 
54 static std::string top_level_prompt ();
55 
56 /* Signal handlers.  */
57 #ifdef SIGQUIT
58 static void handle_sigquit (int sig);
59 #endif
60 #ifdef SIGHUP
61 static void handle_sighup (int sig);
62 #endif
63 
64 /* Functions to be invoked by the event loop in response to
65    signals.  */
66 #if defined (SIGQUIT) || defined (SIGHUP)
67 static void async_do_nothing (gdb_client_data);
68 #endif
69 #ifdef SIGHUP
70 static void async_disconnect (gdb_client_data);
71 #endif
72 #ifdef SIGTSTP
73 static void async_sigtstp_handler (gdb_client_data);
74 #endif
75 static void async_sigterm_handler (gdb_client_data arg);
76 
77 /* Instead of invoking (and waiting for) readline to read the command
78    line and pass it back for processing, we use readline's alternate
79    interface, via callback functions, so that the event loop can react
80    to other event sources while we wait for input.  */
81 
82 /* Important variables for the event loop.  */
83 
84 /* This is used to determine if GDB is using the readline library or
85    its own simplified form of readline.  It is used by the asynchronous
86    form of the set editing command.
87    ezannoni: as of 1999-04-29 I expect that this
88    variable will not be used after gdb is changed to use the event
89    loop as default engine, and event-top.c is merged into top.c.  */
90 bool set_editing_cmd_var;
91 
92 /* This is used to display the notification of the completion of an
93    asynchronous execution command.  */
94 bool exec_done_display_p = false;
95 
96 /* Used by the stdin event handler to compensate for missed stdin events.
97    Setting this to a non-zero value inside an stdin callback makes the callback
98    run again.  */
99 int call_stdin_event_handler_again_p;
100 
101 /* When true GDB will produce a minimal backtrace when a fatal signal is
102    reached (within GDB code).  */
103 static bool bt_on_fatal_signal = GDB_PRINT_INTERNAL_BACKTRACE_INIT_ON;
104 
105 /* Implement 'maintenance show backtrace-on-fatal-signal'.  */
106 
107 static void
108 show_bt_on_fatal_signal (struct ui_file *file, int from_tty,
109 			 struct cmd_list_element *cmd, const char *value)
110 {
111   gdb_printf (file, _("Backtrace on a fatal signal is %s.\n"), value);
112 }
113 
114 /* Signal handling variables.  */
115 /* Each of these is a pointer to a function that the event loop will
116    invoke if the corresponding signal has received.  The real signal
117    handlers mark these functions as ready to be executed and the event
118    loop, in a later iteration, calls them.  See the function
119    invoke_async_signal_handler.  */
120 static struct async_signal_handler *sigint_token;
121 #ifdef SIGHUP
122 static struct async_signal_handler *sighup_token;
123 #endif
124 #ifdef SIGQUIT
125 static struct async_signal_handler *sigquit_token;
126 #endif
127 #ifdef SIGTSTP
128 static struct async_signal_handler *sigtstp_token;
129 #endif
130 static struct async_signal_handler *async_sigterm_token;
131 
132 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
133    character is processed.  */
134 void (*after_char_processing_hook) (void);
135 
136 
137 /* Wrapper function for calling into the readline library.  This takes
138    care of a couple things:
139 
140    - The event loop expects the callback function to have a parameter,
141      while readline expects none.
142 
143    - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
144      across readline requires special handling.
145 
146    On the exceptions issue:
147 
148    DWARF-based unwinding cannot cross code built without -fexceptions.
149    Any exception that tries to propagate through such code will fail
150    and the result is a call to std::terminate.  While some ABIs, such
151    as x86-64, require all code to be built with exception tables,
152    others don't.
153 
154    This is a problem when GDB calls some non-EH-aware C library code,
155    that calls into GDB again through a callback, and that GDB callback
156    code throws a C++ exception.  Turns out this is exactly what
157    happens with GDB's readline callback.
158 
159    In such cases, we must catch and save any C++ exception that might
160    be thrown from the GDB callback before returning to the
161    non-EH-aware code.  When the non-EH-aware function itself returns
162    back to GDB, we then rethrow the original C++ exception.
163 
164    In the readline case however, the right thing to do is to longjmp
165    out of the callback, rather than do a normal return -- there's no
166    way for the callback to return to readline an indication that an
167    error happened, so a normal return would have rl_callback_read_char
168    potentially continue processing further input, redisplay the
169    prompt, etc.  Instead of raw setjmp/longjmp however, we use our
170    sjlj-based TRY/CATCH mechanism, which knows to handle multiple
171    levels of active setjmp/longjmp frames, needed in order to handle
172    the readline callback recursing, as happens with e.g., secondary
173    prompts / queries, through gdb_readline_wrapper.  This must be
174    noexcept in order to avoid problems with mixing sjlj and
175    (sjlj-based) C++ exceptions.  */
176 
177 static struct gdb_exception
178 gdb_rl_callback_read_char_wrapper_noexcept () noexcept
179 {
180   struct gdb_exception gdb_expt;
181 
182   /* C++ exceptions can't normally be thrown across readline (unless
183      it is built with -fexceptions, but it won't by default on many
184      ABIs).  So we instead wrap the readline call with a sjlj-based
185      TRY/CATCH, and rethrow the GDB exception once back in GDB.  */
186   TRY_SJLJ
187     {
188       rl_callback_read_char ();
189 #if RL_VERSION_MAJOR >= 8
190       /* It can happen that readline (while in rl_callback_read_char)
191 	 received a signal, but didn't handle it yet.  Make sure it's handled
192 	 now.  If we don't do that we run into two related problems:
193 	 - we have to wait for another event triggering
194 	   rl_callback_read_char before the signal is handled
195 	 - there's no guarantee that the signal will be processed before the
196 	   event.  */
197       while (rl_pending_signal () != 0)
198 	/* Do this in a while loop, in case rl_check_signals also leaves a
199 	   pending signal.  I'm not sure if that's possible, but it seems
200 	   better to handle the scenario than to assert.  */
201 	rl_check_signals ();
202 #else
203       /* Unfortunately, rl_check_signals is not available.  */
204 #endif
205       if (after_char_processing_hook)
206 	(*after_char_processing_hook) ();
207     }
208   CATCH_SJLJ (ex, RETURN_MASK_ALL)
209     {
210       gdb_expt = std::move (ex);
211     }
212   END_CATCH_SJLJ
213 
214   return gdb_expt;
215 }
216 
217 static void
218 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
219 {
220   struct gdb_exception gdb_expt
221     = gdb_rl_callback_read_char_wrapper_noexcept ();
222 
223   /* Rethrow using the normal EH mechanism.  */
224   if (gdb_expt.reason < 0)
225     throw_exception (std::move (gdb_expt));
226 }
227 
228 /* GDB's readline callback handler.  Calls the current INPUT_HANDLER,
229    and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
230    across readline.  See gdb_rl_callback_read_char_wrapper.  This must
231    be noexcept in order to avoid problems with mixing sjlj and
232    (sjlj-based) C++ exceptions.  */
233 
234 static void
235 gdb_rl_callback_handler (char *rl) noexcept
236 {
237   /* This is static to avoid undefined behavior when calling longjmp
238      -- gdb_exception has a destructor with side effects.  */
239   static struct gdb_exception gdb_rl_expt;
240   struct ui *ui = current_ui;
241 
242   try
243     {
244       /* Ensure the exception is reset on each call.  */
245       gdb_rl_expt = {};
246       ui->input_handler (gdb::unique_xmalloc_ptr<char> (rl));
247     }
248   catch (gdb_exception &ex)
249     {
250       gdb_rl_expt = std::move (ex);
251     }
252 
253   /* If we caught a GDB exception, longjmp out of the readline
254      callback.  There's no other way for the callback to signal to
255      readline that an error happened.  A normal return would have
256      readline potentially continue processing further input, redisplay
257      the prompt, etc.  (This is what GDB historically did when it was
258      a C program.)  Note that since we're long jumping, local variable
259      dtors are NOT run automatically.  */
260   if (gdb_rl_expt.reason < 0)
261     throw_exception_sjlj (gdb_rl_expt);
262 }
263 
264 /* Change the function to be invoked every time there is a character
265    ready on stdin.  This is used when the user sets the editing off,
266    therefore bypassing readline, and letting gdb handle the input
267    itself, via gdb_readline_no_editing_callback.  Also it is used in
268    the opposite case in which the user sets editing on again, by
269    restoring readline handling of the input.
270 
271    NOTE: this operates on input_fd, not instream.  If we are reading
272    commands from a file, instream will point to the file.  However, we
273    always read commands from a file with editing off.  This means that
274    the 'set editing on/off' will have effect only on the interactive
275    session.  */
276 
277 void
278 change_line_handler (int editing)
279 {
280   struct ui *ui = current_ui;
281 
282   /* We can only have one instance of readline, so we only allow
283      editing on the main UI.  */
284   if (ui != main_ui)
285     return;
286 
287   /* Don't try enabling editing if the interpreter doesn't support it
288      (e.g., MI).  */
289   if (!interp_supports_command_editing (top_level_interpreter ())
290       || !interp_supports_command_editing (command_interp ()))
291     return;
292 
293   if (editing)
294     {
295       gdb_assert (ui == main_ui);
296 
297       /* Turn on editing by using readline.  */
298       ui->call_readline = gdb_rl_callback_read_char_wrapper;
299     }
300   else
301     {
302       /* Turn off editing by using gdb_readline_no_editing_callback.  */
303       if (ui->command_editing)
304 	gdb_rl_callback_handler_remove ();
305       ui->call_readline = gdb_readline_no_editing_callback;
306     }
307   ui->command_editing = editing;
308 }
309 
310 /* The functions below are wrappers for rl_callback_handler_remove and
311    rl_callback_handler_install that keep track of whether the callback
312    handler is installed in readline.  This is necessary because after
313    handling a target event of a background execution command, we may
314    need to reinstall the callback handler if it was removed due to a
315    secondary prompt.  See gdb_readline_wrapper_line.  We don't
316    unconditionally install the handler for every target event because
317    that also clears the line buffer, thus installing it while the user
318    is typing would lose input.  */
319 
320 /* Whether we've registered a callback handler with readline.  */
321 static bool callback_handler_installed;
322 
323 /* See event-top.h, and above.  */
324 
325 void
326 gdb_rl_callback_handler_remove (void)
327 {
328   gdb_assert (current_ui == main_ui);
329 
330   rl_callback_handler_remove ();
331   callback_handler_installed = false;
332 }
333 
334 /* See event-top.h, and above.  Note this wrapper doesn't have an
335    actual callback parameter because we always install
336    INPUT_HANDLER.  */
337 
338 void
339 gdb_rl_callback_handler_install (const char *prompt)
340 {
341   gdb_assert (current_ui == main_ui);
342 
343   /* Calling rl_callback_handler_install resets readline's input
344      buffer.  Calling this when we were already processing input
345      therefore loses input.  */
346   gdb_assert (!callback_handler_installed);
347 
348   rl_callback_handler_install (prompt, gdb_rl_callback_handler);
349   callback_handler_installed = true;
350 }
351 
352 /* See event-top.h, and above.  */
353 
354 void
355 gdb_rl_callback_handler_reinstall (void)
356 {
357   gdb_assert (current_ui == main_ui);
358 
359   if (!callback_handler_installed)
360     {
361       /* Passing NULL as prompt argument tells readline to not display
362 	 a prompt.  */
363       gdb_rl_callback_handler_install (NULL);
364     }
365 }
366 
367 /* Displays the prompt.  If the argument NEW_PROMPT is NULL, the
368    prompt that is displayed is the current top level prompt.
369    Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
370    prompt.
371 
372    This is used after each gdb command has completed, and in the
373    following cases:
374 
375    1. When the user enters a command line which is ended by '\'
376    indicating that the command will continue on the next line.  In
377    that case the prompt that is displayed is the empty string.
378 
379    2. When the user is entering 'commands' for a breakpoint, or
380    actions for a tracepoint.  In this case the prompt will be '>'
381 
382    3. On prompting for pagination.  */
383 
384 void
385 display_gdb_prompt (const char *new_prompt)
386 {
387   std::string actual_gdb_prompt;
388 
389   annotate_display_prompt ();
390 
391   /* Reset the nesting depth used when trace-commands is set.  */
392   reset_command_nest_depth ();
393 
394   /* Do not call the python hook on an explicit prompt change as
395      passed to this function, as this forms a secondary/local prompt,
396      IE, displayed but not set.  */
397   if (! new_prompt)
398     {
399       struct ui *ui = current_ui;
400 
401       if (ui->prompt_state == PROMPTED)
402 	internal_error (_("double prompt"));
403       else if (ui->prompt_state == PROMPT_BLOCKED)
404 	{
405 	  /* This is to trick readline into not trying to display the
406 	     prompt.  Even though we display the prompt using this
407 	     function, readline still tries to do its own display if
408 	     we don't call rl_callback_handler_install and
409 	     rl_callback_handler_remove (which readline detects
410 	     because a global variable is not set).  If readline did
411 	     that, it could mess up gdb signal handlers for SIGINT.
412 	     Readline assumes that between calls to rl_set_signals and
413 	     rl_clear_signals gdb doesn't do anything with the signal
414 	     handlers.  Well, that's not the case, because when the
415 	     target executes we change the SIGINT signal handler.  If
416 	     we allowed readline to display the prompt, the signal
417 	     handler change would happen exactly between the calls to
418 	     the above two functions.  Calling
419 	     rl_callback_handler_remove(), does the job.  */
420 
421 	  if (current_ui->command_editing)
422 	    gdb_rl_callback_handler_remove ();
423 	  return;
424 	}
425       else if (ui->prompt_state == PROMPT_NEEDED)
426 	{
427 	  /* Display the top level prompt.  */
428 	  actual_gdb_prompt = top_level_prompt ();
429 	  ui->prompt_state = PROMPTED;
430 	}
431     }
432   else
433     actual_gdb_prompt = new_prompt;
434 
435   if (current_ui->command_editing)
436     {
437       gdb_rl_callback_handler_remove ();
438       gdb_rl_callback_handler_install (actual_gdb_prompt.c_str ());
439     }
440   /* new_prompt at this point can be the top of the stack or the one
441      passed in.  It can't be NULL.  */
442   else
443     {
444       /* Don't use a _filtered function here.  It causes the assumed
445 	 character position to be off, since the newline we read from
446 	 the user is not accounted for.  */
447       printf_unfiltered ("%s", actual_gdb_prompt.c_str ());
448       gdb_flush (gdb_stdout);
449     }
450 }
451 
452 /* Return the top level prompt, as specified by "set prompt", possibly
453    overridden by the python gdb.prompt_hook hook, and then composed
454    with the prompt prefix and suffix (annotations).  */
455 
456 static std::string
457 top_level_prompt (void)
458 {
459   /* Give observers a chance of changing the prompt.  E.g., the python
460      `gdb.prompt_hook' is installed as an observer.  */
461   gdb::observers::before_prompt.notify (get_prompt ().c_str ());
462 
463   const std::string &prompt = get_prompt ();
464 
465   if (annotation_level >= 2)
466     {
467       /* Prefix needs to have new line at end.  */
468       const char prefix[] = "\n\032\032pre-prompt\n";
469 
470       /* Suffix needs to have a new line at end and \032 \032 at
471 	 beginning.  */
472       const char suffix[] = "\n\032\032prompt\n";
473 
474       return std::string (prefix) + prompt.c_str () + suffix;
475     }
476 
477   return prompt;
478 }
479 
480 /* See top.h.  */
481 
482 struct ui *main_ui;
483 struct ui *current_ui;
484 struct ui *ui_list;
485 
486 /* Get a reference to the current UI's line buffer.  This is used to
487    construct a whole line of input from partial input.  */
488 
489 static std::string &
490 get_command_line_buffer (void)
491 {
492   return current_ui->line_buffer;
493 }
494 
495 /* When there is an event ready on the stdin file descriptor, instead
496    of calling readline directly throught the callback function, or
497    instead of calling gdb_readline_no_editing_callback, give gdb a
498    chance to detect errors and do something.  */
499 
500 static void
501 stdin_event_handler (int error, gdb_client_data client_data)
502 {
503   struct ui *ui = (struct ui *) client_data;
504 
505   if (error)
506     {
507       /* Switch to the main UI, so diagnostics always go there.  */
508       current_ui = main_ui;
509 
510       ui->unregister_file_handler ();
511       if (main_ui == ui)
512 	{
513 	  /* If stdin died, we may as well kill gdb.  */
514 	  gdb_printf (gdb_stderr, _("error detected on stdin\n"));
515 	  quit_command ((char *) 0, 0);
516 	}
517       else
518 	{
519 	  /* Simply delete the UI.  */
520 	  delete ui;
521 	}
522     }
523   else
524     {
525       /* Switch to the UI whose input descriptor woke up the event
526 	 loop.  */
527       current_ui = ui;
528 
529       /* This makes sure a ^C immediately followed by further input is
530 	 always processed in that order.  E.g,. with input like
531 	 "^Cprint 1\n", the SIGINT handler runs, marks the async
532 	 signal handler, and then select/poll may return with stdin
533 	 ready, instead of -1/EINTR.  The
534 	 gdb.base/double-prompt-target-event-error.exp test exercises
535 	 this.  */
536       QUIT;
537 
538       do
539 	{
540 	  call_stdin_event_handler_again_p = 0;
541 	  ui->call_readline (client_data);
542 	}
543       while (call_stdin_event_handler_again_p != 0);
544     }
545 }
546 
547 /* See top.h.  */
548 
549 void
550 ui::register_file_handler ()
551 {
552   if (input_fd != -1)
553     add_file_handler (input_fd, stdin_event_handler, this,
554 		      string_printf ("ui-%d", num), true);
555 }
556 
557 /* See top.h.  */
558 
559 void
560 ui::unregister_file_handler ()
561 {
562   if (input_fd != -1)
563     delete_file_handler (input_fd);
564 }
565 
566 /* Re-enable stdin after the end of an execution command in
567    synchronous mode, or after an error from the target, and we aborted
568    the exec operation.  */
569 
570 void
571 async_enable_stdin (void)
572 {
573   struct ui *ui = current_ui;
574 
575   if (ui->prompt_state == PROMPT_BLOCKED)
576     {
577       target_terminal::ours ();
578       ui->register_file_handler ();
579       ui->prompt_state = PROMPT_NEEDED;
580     }
581 }
582 
583 /* Disable reads from stdin (the console) marking the command as
584    synchronous.  */
585 
586 void
587 async_disable_stdin (void)
588 {
589   struct ui *ui = current_ui;
590 
591   ui->prompt_state = PROMPT_BLOCKED;
592   ui->unregister_file_handler ();
593 }
594 
595 
596 /* Handle a gdb command line.  This function is called when
597    handle_line_of_input has concatenated one or more input lines into
598    a whole command.  */
599 
600 void
601 command_handler (const char *command)
602 {
603   struct ui *ui = current_ui;
604   const char *c;
605 
606   if (ui->instream == ui->stdin_stream)
607     reinitialize_more_filter ();
608 
609   scoped_command_stats stat_reporter (true);
610 
611   /* Do not execute commented lines.  */
612   for (c = command; *c == ' ' || *c == '\t'; c++)
613     ;
614   if (c[0] != '#')
615     {
616       execute_command (command, ui->instream == ui->stdin_stream);
617 
618       /* Do any commands attached to breakpoint we stopped at.  */
619       bpstat_do_actions ();
620     }
621 }
622 
623 /* Append RL, an input line returned by readline or one of its emulations, to
624    CMD_LINE_BUFFER.  Return true if we have a whole command line ready to be
625    processed by the command interpreter or false if the command line isn't
626    complete yet (input line ends in a backslash).  */
627 
628 static bool
629 command_line_append_input_line (std::string &cmd_line_buffer, const char *rl)
630 {
631   size_t len = strlen (rl);
632 
633   if (len > 0 && rl[len - 1] == '\\')
634     {
635       /* Don't copy the backslash and wait for more.  */
636       cmd_line_buffer.append (rl, len - 1);
637       return false;
638     }
639   else
640     {
641       /* Copy whole line including terminating null, and we're
642 	 done.  */
643       cmd_line_buffer.append (rl, len + 1);
644       return true;
645     }
646 }
647 
648 /* Handle a line of input coming from readline.
649 
650    If the read line ends with a continuation character (backslash), return
651    nullptr.  Otherwise, return a pointer to the command line, indicating a whole
652    command line is ready to be executed.
653 
654    The returned pointer may or may not point to CMD_LINE_BUFFER's internal
655    buffer.
656 
657    Return EOF on end of file.
658 
659    If REPEAT, handle command repetitions:
660 
661      - If the input command line is NOT empty, the command returned is
662        saved using save_command_line () so that it can be repeated later.
663 
664      - OTOH, if the input command line IS empty, return the saved
665        command instead of the empty input line.
666 */
667 
668 const char *
669 handle_line_of_input (std::string &cmd_line_buffer,
670 		      const char *rl, int repeat,
671 		      const char *annotation_suffix)
672 {
673   struct ui *ui = current_ui;
674   int from_tty = ui->instream == ui->stdin_stream;
675 
676   if (rl == NULL)
677     return (char *) EOF;
678 
679   bool complete = command_line_append_input_line (cmd_line_buffer, rl);
680   if (!complete)
681     return NULL;
682 
683   if (from_tty && annotation_level > 1)
684     printf_unfiltered (("\n\032\032post-%s\n"), annotation_suffix);
685 
686 #define SERVER_COMMAND_PREFIX "server "
687   server_command = startswith (cmd_line_buffer.c_str (), SERVER_COMMAND_PREFIX);
688   if (server_command)
689     {
690       /* Note that we don't call `save_command_line'.  Between this
691 	 and the check in dont_repeat, this insures that repeating
692 	 will still do the right thing.  */
693       return cmd_line_buffer.c_str () + strlen (SERVER_COMMAND_PREFIX);
694     }
695 
696   /* Do history expansion if that is wished.  */
697   if (history_expansion_p && from_tty && current_ui->input_interactive_p ())
698     {
699       char *cmd_expansion;
700       int expanded;
701 
702       /* Note: here, we pass a pointer to the std::string's internal buffer as
703 	 a `char *`.  At the time of writing, readline's history_expand does
704 	 not modify the passed-in string.  Ideally, readline should be modified
705 	 to make that parameter `const char *`.  */
706       expanded = history_expand (&cmd_line_buffer[0], &cmd_expansion);
707       gdb::unique_xmalloc_ptr<char> history_value (cmd_expansion);
708       if (expanded)
709 	{
710 	  /* Print the changes.  */
711 	  printf_unfiltered ("%s\n", history_value.get ());
712 
713 	  /* If there was an error, call this function again.  */
714 	  if (expanded < 0)
715 	    return cmd_line_buffer.c_str ();
716 
717 	  cmd_line_buffer = history_value.get ();
718 	}
719     }
720 
721   /* If we just got an empty line, and that is supposed to repeat the
722      previous command, return the previously saved command.  */
723   const char *p1;
724   for (p1 = cmd_line_buffer.c_str (); *p1 == ' ' || *p1 == '\t'; p1++)
725     ;
726   if (repeat && *p1 == '\0')
727     return get_saved_command_line ();
728 
729   /* Add command to history if appropriate.  Note: lines consisting
730      solely of comments are also added to the command history.  This
731      is useful when you type a command, and then realize you don't
732      want to execute it quite yet.  You can comment out the command
733      and then later fetch it from the value history and remove the
734      '#'.  The kill ring is probably better, but some people are in
735      the habit of commenting things out.  */
736   if (cmd_line_buffer[0] != '\0' && from_tty && current_ui->input_interactive_p ())
737     gdb_add_history (cmd_line_buffer.c_str ());
738 
739   /* Save into global buffer if appropriate.  */
740   if (repeat)
741     {
742       save_command_line (cmd_line_buffer.c_str ());
743 
744       /* It is important that we return a pointer to the saved command line
745 	 here, for the `cmd_start == saved_command_line` check in
746 	 execute_command to work.  */
747       return get_saved_command_line ();
748     }
749 
750   return cmd_line_buffer.c_str ();
751 }
752 
753 /* See event-top.h.  */
754 
755 void
756 gdb_rl_deprep_term_function (void)
757 {
758 #ifdef RL_STATE_EOF
759   gdb::optional<scoped_restore_tmpl<int>> restore_eof_found;
760 
761   if (RL_ISSTATE (RL_STATE_EOF))
762     {
763       printf_unfiltered ("quit\n");
764       restore_eof_found.emplace (&rl_eof_found, 0);
765     }
766 
767 #endif /* RL_STATE_EOF */
768 
769   rl_deprep_terminal ();
770 }
771 
772 /* Handle a complete line of input.  This is called by the callback
773    mechanism within the readline library.  Deal with incomplete
774    commands as well, by saving the partial input in a global
775    buffer.
776 
777    NOTE: This is the asynchronous version of the command_line_input
778    function.  */
779 
780 void
781 command_line_handler (gdb::unique_xmalloc_ptr<char> &&rl)
782 {
783   std::string &line_buffer = get_command_line_buffer ();
784   struct ui *ui = current_ui;
785 
786   const char *cmd = handle_line_of_input (line_buffer, rl.get (), 1, "prompt");
787   if (cmd == (char *) EOF)
788     {
789       /* stdin closed.  The connection with the terminal is gone.
790 	 This happens at the end of a testsuite run, after Expect has
791 	 hung up but GDB is still alive.  In such a case, we just quit
792 	 gdb killing the inferior program too.  This also happens if the
793 	 user sends EOF, which is usually bound to ctrl+d.  */
794 
795 #ifndef RL_STATE_EOF
796       /* When readline is using bracketed paste mode, then, when eof is
797 	 received, readline will emit the control sequence to leave
798 	 bracketed paste mode.
799 
800 	 This control sequence ends with \r, which means that the "quit" we
801 	 are about to print will overwrite the prompt on this line.
802 
803 	 The solution to this problem is to actually print the "quit"
804 	 message from gdb_rl_deprep_term_function (see above), however, we
805 	 can only do that if we can know, in that function, when eof was
806 	 received.
807 
808 	 Unfortunately, with older versions of readline, it is not possible
809 	 in the gdb_rl_deprep_term_function to know if eof was received or
810 	 not, and, as GDB can be built against the system readline, which
811 	 could be older than the readline in GDB's repository, then we
812 	 can't be sure that we can work around this prompt corruption in
813 	 the gdb_rl_deprep_term_function function.
814 
815 	 If we get here, RL_STATE_EOF is not defined.  This indicates that
816 	 we are using an older readline, and couldn't print the quit
817 	 message in gdb_rl_deprep_term_function.  So, what we do here is
818 	 check to see if bracketed paste mode is on or not.  If it's on
819 	 then we print a \n and then the quit, this means the user will
820 	 see:
821 
822 	 (gdb)
823 	 quit
824 
825 	 Rather than the usual:
826 
827 	 (gdb) quit
828 
829 	 Which we will get with a newer readline, but this really is the
830 	 best we can do with older versions of readline.  */
831       const char *value = rl_variable_value ("enable-bracketed-paste");
832       if (value != nullptr && strcmp (value, "on") == 0
833 	  && ((rl_readline_version >> 8) & 0xff) > 0x07)
834 	printf_unfiltered ("\n");
835       printf_unfiltered ("quit\n");
836 #endif
837 
838       execute_command ("quit", 1);
839     }
840   else if (cmd == NULL)
841     {
842       /* We don't have a full line yet.  Print an empty prompt.  */
843       display_gdb_prompt ("");
844     }
845   else
846     {
847       ui->prompt_state = PROMPT_NEEDED;
848 
849       /* Ensure the UI's line buffer is empty for the next command.  */
850       SCOPE_EXIT { line_buffer.clear (); };
851 
852       command_handler (cmd);
853 
854       if (ui->prompt_state != PROMPTED)
855 	display_gdb_prompt (0);
856     }
857 }
858 
859 /* Does reading of input from terminal w/o the editing features
860    provided by the readline library.  Calls the line input handler
861    once we have a whole input line.  */
862 
863 void
864 gdb_readline_no_editing_callback (gdb_client_data client_data)
865 {
866   int c;
867   char *result;
868   struct buffer line_buffer;
869   struct ui *ui = current_ui;
870 
871   buffer_init (&line_buffer);
872 
873   FILE *stream = ui->instream != nullptr ? ui->instream : ui->stdin_stream;
874   gdb_assert (stream != nullptr);
875 
876   /* We still need the while loop here, even though it would seem
877      obvious to invoke gdb_readline_no_editing_callback at every
878      character entered.  If not using the readline library, the
879      terminal is in cooked mode, which sends the characters all at
880      once.  Poll will notice that the input fd has changed state only
881      after enter is pressed.  At this point we still need to fetch all
882      the chars entered.  */
883 
884   while (1)
885     {
886       /* Read from stdin if we are executing a user defined command.
887 	 This is the right thing for prompt_for_continue, at least.  */
888       c = fgetc (stream);
889 
890       if (c == EOF)
891 	{
892 	  if (line_buffer.used_size > 0)
893 	    {
894 	      /* The last line does not end with a newline.  Return it, and
895 		 if we are called again fgetc will still return EOF and
896 		 we'll return NULL then.  */
897 	      break;
898 	    }
899 	  xfree (buffer_finish (&line_buffer));
900 	  ui->input_handler (NULL);
901 	  return;
902 	}
903 
904       if (c == '\n')
905 	{
906 	  if (line_buffer.used_size > 0
907 	      && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
908 	    line_buffer.used_size--;
909 	  break;
910 	}
911 
912       buffer_grow_char (&line_buffer, c);
913     }
914 
915   buffer_grow_char (&line_buffer, '\0');
916   result = buffer_finish (&line_buffer);
917   ui->input_handler (gdb::unique_xmalloc_ptr<char> (result));
918 }
919 
920 
921 /* Attempt to unblock signal SIG, return true if the signal was unblocked,
922    otherwise, return false.  */
923 
924 static bool
925 unblock_signal (int sig)
926 {
927 #if HAVE_SIGPROCMASK
928   sigset_t sigset;
929   sigemptyset (&sigset);
930   sigaddset (&sigset, sig);
931   gdb_sigmask (SIG_UNBLOCK, &sigset, 0);
932   return true;
933 #endif
934 
935   return false;
936 }
937 
938 /* Called to handle fatal signals.  SIG is the signal number.  */
939 
940 static void ATTRIBUTE_NORETURN
941 handle_fatal_signal (int sig)
942 {
943 #ifdef GDB_PRINT_INTERNAL_BACKTRACE
944   const auto sig_write = [] (const char *msg) -> void
945   {
946     gdb_stderr->write_async_safe (msg, strlen (msg));
947   };
948 
949   if (bt_on_fatal_signal)
950     {
951       sig_write ("\n\n");
952       sig_write (_("Fatal signal: "));
953       sig_write (strsignal (sig));
954       sig_write ("\n");
955 
956       gdb_internal_backtrace ();
957 
958       sig_write (_("A fatal error internal to GDB has been detected, "
959 		   "further\ndebugging is not possible.  GDB will now "
960 		   "terminate.\n\n"));
961       sig_write (_("This is a bug, please report it."));
962       if (REPORT_BUGS_TO[0] != '\0')
963 	{
964 	  sig_write (_("  For instructions, see:\n"));
965 	  sig_write (REPORT_BUGS_TO);
966 	  sig_write (".");
967 	}
968       sig_write ("\n\n");
969 
970       gdb_stderr->flush ();
971     }
972 #endif
973 
974   /* If possible arrange for SIG to have its default behaviour (which
975      should be to terminate the current process), unblock SIG, and reraise
976      the signal.  This ensures GDB terminates with the expected signal.  */
977   if (signal (sig, SIG_DFL) != SIG_ERR
978       && unblock_signal (sig))
979     raise (sig);
980 
981   /* The above failed, so try to use SIGABRT to terminate GDB.  */
982 #ifdef SIGABRT
983   signal (SIGABRT, SIG_DFL);
984 #endif
985   abort ();		/* ARI: abort */
986 }
987 
988 /* The SIGSEGV handler for this thread, or NULL if there is none.  GDB
989    always installs a global SIGSEGV handler, and then lets threads
990    indicate their interest in handling the signal by setting this
991    thread-local variable.
992 
993    This is a static variable instead of extern because on various platforms
994    (notably Cygwin) extern thread_local variables cause link errors.  So
995    instead, we have scoped_segv_handler_restore, which also makes it impossible
996    to accidentally forget to restore it to the original value.  */
997 
998 static thread_local void (*thread_local_segv_handler) (int);
999 
1000 static void handle_sigsegv (int sig);
1001 
1002 /* Install the SIGSEGV handler.  */
1003 static void
1004 install_handle_sigsegv ()
1005 {
1006 #if defined (HAVE_SIGACTION)
1007   struct sigaction sa;
1008   sa.sa_handler = handle_sigsegv;
1009   sigemptyset (&sa.sa_mask);
1010 #ifdef HAVE_SIGALTSTACK
1011   sa.sa_flags = SA_ONSTACK;
1012 #else
1013   sa.sa_flags = 0;
1014 #endif
1015   sigaction (SIGSEGV, &sa, nullptr);
1016 #else
1017   signal (SIGSEGV, handle_sigsegv);
1018 #endif
1019 }
1020 
1021 /* Handler for SIGSEGV.  */
1022 
1023 static void
1024 handle_sigsegv (int sig)
1025 {
1026   install_handle_sigsegv ();
1027 
1028   if (thread_local_segv_handler == nullptr)
1029     handle_fatal_signal (sig);
1030   thread_local_segv_handler (sig);
1031 }
1032 
1033 
1034 
1035 /* The serial event associated with the QUIT flag.  set_quit_flag sets
1036    this, and check_quit_flag clears it.  Used by interruptible_select
1037    to be able to do interruptible I/O with no race with the SIGINT
1038    handler.  */
1039 static struct serial_event *quit_serial_event;
1040 
1041 /* Initialization of signal handlers and tokens.  There are a number of
1042    different strategies for handling different signals here.
1043 
1044    For SIGINT, SIGTERM, SIGQUIT, SIGHUP, SIGTSTP, there is a function
1045    handle_sig* for each of these signals.  These functions are the actual
1046    signal handlers associated to the signals via calls to signal().  The
1047    only job for these functions is to enqueue the appropriate
1048    event/procedure with the event loop.  The event loop will take care of
1049    invoking the queued procedures to perform the usual tasks associated
1050    with the reception of the signal.
1051 
1052    For SIGSEGV the handle_sig* function does all the work for handling this
1053    signal.
1054 
1055    For SIGFPE, SIGBUS, and SIGABRT, these signals will all cause GDB to
1056    terminate immediately.  */
1057 void
1058 gdb_init_signals (void)
1059 {
1060   initialize_async_signal_handlers ();
1061 
1062   quit_serial_event = make_serial_event ();
1063 
1064   sigint_token =
1065     create_async_signal_handler (async_request_quit, NULL, "sigint");
1066   install_sigint_handler (handle_sigint);
1067 
1068   async_sigterm_token
1069     = create_async_signal_handler (async_sigterm_handler, NULL, "sigterm");
1070   signal (SIGTERM, handle_sigterm);
1071 
1072 #ifdef SIGQUIT
1073   sigquit_token =
1074     create_async_signal_handler (async_do_nothing, NULL, "sigquit");
1075   signal (SIGQUIT, handle_sigquit);
1076 #endif
1077 
1078 #ifdef SIGHUP
1079   if (signal (SIGHUP, handle_sighup) != SIG_IGN)
1080     sighup_token =
1081       create_async_signal_handler (async_disconnect, NULL, "sighup");
1082   else
1083     sighup_token =
1084       create_async_signal_handler (async_do_nothing, NULL, "sighup");
1085 #endif
1086 
1087 #ifdef SIGTSTP
1088   sigtstp_token =
1089     create_async_signal_handler (async_sigtstp_handler, NULL, "sigtstp");
1090 #endif
1091 
1092 #ifdef SIGFPE
1093   signal (SIGFPE, handle_fatal_signal);
1094 #endif
1095 
1096 #ifdef SIGBUS
1097   signal (SIGBUS, handle_fatal_signal);
1098 #endif
1099 
1100 #ifdef SIGABRT
1101   signal (SIGABRT, handle_fatal_signal);
1102 #endif
1103 
1104   install_handle_sigsegv ();
1105 }
1106 
1107 /* See defs.h.  */
1108 
1109 void
1110 quit_serial_event_set (void)
1111 {
1112   serial_event_set (quit_serial_event);
1113 }
1114 
1115 /* See defs.h.  */
1116 
1117 void
1118 quit_serial_event_clear (void)
1119 {
1120   serial_event_clear (quit_serial_event);
1121 }
1122 
1123 /* Return the selectable file descriptor of the serial event
1124    associated with the quit flag.  */
1125 
1126 static int
1127 quit_serial_event_fd (void)
1128 {
1129   return serial_event_fd (quit_serial_event);
1130 }
1131 
1132 /* See defs.h.  */
1133 
1134 void
1135 default_quit_handler (void)
1136 {
1137   if (check_quit_flag ())
1138     {
1139       if (target_terminal::is_ours ())
1140 	quit ();
1141       else
1142 	target_pass_ctrlc ();
1143     }
1144 }
1145 
1146 /* See defs.h.  */
1147 quit_handler_ftype *quit_handler = default_quit_handler;
1148 
1149 /* Handle a SIGINT.  */
1150 
1151 void
1152 handle_sigint (int sig)
1153 {
1154   signal (sig, handle_sigint);
1155 
1156   /* We could be running in a loop reading in symfiles or something so
1157      it may be quite a while before we get back to the event loop.  So
1158      set quit_flag to 1 here.  Then if QUIT is called before we get to
1159      the event loop, we will unwind as expected.  */
1160   set_quit_flag ();
1161 
1162   /* In case nothing calls QUIT before the event loop is reached, the
1163      event loop handles it.  */
1164   mark_async_signal_handler (sigint_token);
1165 }
1166 
1167 /* See gdb_select.h.  */
1168 
1169 int
1170 interruptible_select (int n,
1171 		      fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1172 		      struct timeval *timeout)
1173 {
1174   fd_set my_readfds;
1175   int fd;
1176   int res;
1177 
1178   if (readfds == NULL)
1179     {
1180       readfds = &my_readfds;
1181       FD_ZERO (&my_readfds);
1182     }
1183 
1184   fd = quit_serial_event_fd ();
1185   FD_SET (fd, readfds);
1186   if (n <= fd)
1187     n = fd + 1;
1188 
1189   do
1190     {
1191       res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1192     }
1193   while (res == -1 && errno == EINTR);
1194 
1195   if (res == 1 && FD_ISSET (fd, readfds))
1196     {
1197       errno = EINTR;
1198       return -1;
1199     }
1200   return res;
1201 }
1202 
1203 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p ().  */
1204 
1205 static void
1206 async_sigterm_handler (gdb_client_data arg)
1207 {
1208   quit_force (NULL, 0);
1209 }
1210 
1211 /* See defs.h.  */
1212 volatile int sync_quit_force_run;
1213 
1214 /* Quit GDB if SIGTERM is received.
1215    GDB would quit anyway, but this way it will clean up properly.  */
1216 void
1217 handle_sigterm (int sig)
1218 {
1219   signal (sig, handle_sigterm);
1220 
1221   sync_quit_force_run = 1;
1222   set_quit_flag ();
1223 
1224   mark_async_signal_handler (async_sigterm_token);
1225 }
1226 
1227 /* Do the quit.  All the checks have been done by the caller.  */
1228 void
1229 async_request_quit (gdb_client_data arg)
1230 {
1231   /* If the quit_flag has gotten reset back to 0 by the time we get
1232      back here, that means that an exception was thrown to unwind the
1233      current command before we got back to the event loop.  So there
1234      is no reason to call quit again here.  */
1235   QUIT;
1236 }
1237 
1238 #ifdef SIGQUIT
1239 /* Tell the event loop what to do if SIGQUIT is received.
1240    See event-signal.c.  */
1241 static void
1242 handle_sigquit (int sig)
1243 {
1244   mark_async_signal_handler (sigquit_token);
1245   signal (sig, handle_sigquit);
1246 }
1247 #endif
1248 
1249 #if defined (SIGQUIT) || defined (SIGHUP)
1250 /* Called by the event loop in response to a SIGQUIT or an
1251    ignored SIGHUP.  */
1252 static void
1253 async_do_nothing (gdb_client_data arg)
1254 {
1255   /* Empty function body.  */
1256 }
1257 #endif
1258 
1259 #ifdef SIGHUP
1260 /* Tell the event loop what to do if SIGHUP is received.
1261    See event-signal.c.  */
1262 static void
1263 handle_sighup (int sig)
1264 {
1265   mark_async_signal_handler (sighup_token);
1266   signal (sig, handle_sighup);
1267 }
1268 
1269 /* Called by the event loop to process a SIGHUP.  */
1270 static void
1271 async_disconnect (gdb_client_data arg)
1272 {
1273 
1274   try
1275     {
1276       quit_cover ();
1277     }
1278 
1279   catch (const gdb_exception &exception)
1280     {
1281       gdb_puts ("Could not kill the program being debugged",
1282 		gdb_stderr);
1283       exception_print (gdb_stderr, exception);
1284     }
1285 
1286   for (inferior *inf : all_inferiors ())
1287     {
1288       try
1289 	{
1290 	  inf->pop_all_targets ();
1291 	}
1292       catch (const gdb_exception &exception)
1293 	{
1294 	}
1295     }
1296 
1297   signal (SIGHUP, SIG_DFL);	/*FIXME: ???????????  */
1298   raise (SIGHUP);
1299 }
1300 #endif
1301 
1302 #ifdef SIGTSTP
1303 void
1304 handle_sigtstp (int sig)
1305 {
1306   mark_async_signal_handler (sigtstp_token);
1307   signal (sig, handle_sigtstp);
1308 }
1309 
1310 static void
1311 async_sigtstp_handler (gdb_client_data arg)
1312 {
1313   const std::string &prompt = get_prompt ();
1314 
1315   signal (SIGTSTP, SIG_DFL);
1316   unblock_signal (SIGTSTP);
1317   raise (SIGTSTP);
1318   signal (SIGTSTP, handle_sigtstp);
1319   printf_unfiltered ("%s", prompt.c_str ());
1320   gdb_flush (gdb_stdout);
1321 
1322   /* Forget about any previous command -- null line now will do
1323      nothing.  */
1324   dont_repeat ();
1325 }
1326 #endif /* SIGTSTP */
1327 
1328 
1329 
1330 /* Set things up for readline to be invoked via the alternate
1331    interface, i.e. via a callback function
1332    (gdb_rl_callback_read_char), and hook up instream to the event
1333    loop.  */
1334 
1335 void
1336 gdb_setup_readline (int editing)
1337 {
1338   struct ui *ui = current_ui;
1339 
1340   /* If the input stream is connected to a terminal, turn on editing.
1341      However, that is only allowed on the main UI, as we can only have
1342      one instance of readline.  Also, INSTREAM might be nullptr when
1343      executing a user-defined command.  */
1344   if (ui->instream != nullptr && ISATTY (ui->instream)
1345       && editing && ui == main_ui)
1346     {
1347       /* Tell gdb that we will be using the readline library.  This
1348 	 could be overwritten by a command in .gdbinit like 'set
1349 	 editing on' or 'off'.  */
1350       ui->command_editing = 1;
1351 
1352       /* When a character is detected on instream by select or poll,
1353 	 readline will be invoked via this callback function.  */
1354       ui->call_readline = gdb_rl_callback_read_char_wrapper;
1355 
1356       /* Tell readline to use the same input stream that gdb uses.  */
1357       rl_instream = ui->instream;
1358     }
1359   else
1360     {
1361       ui->command_editing = 0;
1362       ui->call_readline = gdb_readline_no_editing_callback;
1363     }
1364 
1365   /* Now create the event source for this UI's input file descriptor.
1366      Another source is going to be the target program (inferior), but
1367      that must be registered only when it actually exists (I.e. after
1368      we say 'run' or after we connect to a remote target.  */
1369   ui->register_file_handler ();
1370 }
1371 
1372 /* Disable command input through the standard CLI channels.  Used in
1373    the suspend proc for interpreters that use the standard gdb readline
1374    interface, like the cli & the mi.  */
1375 
1376 void
1377 gdb_disable_readline (void)
1378 {
1379   struct ui *ui = current_ui;
1380 
1381   if (ui->command_editing)
1382     gdb_rl_callback_handler_remove ();
1383   ui->unregister_file_handler ();
1384 }
1385 
1386 scoped_segv_handler_restore::scoped_segv_handler_restore (segv_handler_t new_handler)
1387 {
1388   m_old_handler = thread_local_segv_handler;
1389   thread_local_segv_handler = new_handler;
1390 }
1391 
1392 scoped_segv_handler_restore::~scoped_segv_handler_restore()
1393 {
1394   thread_local_segv_handler = m_old_handler;
1395 }
1396 
1397 static const char debug_event_loop_off[] = "off";
1398 static const char debug_event_loop_all_except_ui[] = "all-except-ui";
1399 static const char debug_event_loop_all[] = "all";
1400 
1401 static const char *debug_event_loop_enum[] = {
1402   debug_event_loop_off,
1403   debug_event_loop_all_except_ui,
1404   debug_event_loop_all,
1405   nullptr
1406 };
1407 
1408 static const char *debug_event_loop_value = debug_event_loop_off;
1409 
1410 static void
1411 set_debug_event_loop_command (const char *args, int from_tty,
1412 			      cmd_list_element *c)
1413 {
1414   if (debug_event_loop_value == debug_event_loop_off)
1415     debug_event_loop = debug_event_loop_kind::OFF;
1416   else if (debug_event_loop_value == debug_event_loop_all_except_ui)
1417     debug_event_loop = debug_event_loop_kind::ALL_EXCEPT_UI;
1418   else if (debug_event_loop_value == debug_event_loop_all)
1419     debug_event_loop = debug_event_loop_kind::ALL;
1420   else
1421     gdb_assert_not_reached ("Invalid debug event look kind value.");
1422 }
1423 
1424 static void
1425 show_debug_event_loop_command (struct ui_file *file, int from_tty,
1426 			       struct cmd_list_element *cmd, const char *value)
1427 {
1428   gdb_printf (file, _("Event loop debugging is %s.\n"), value);
1429 }
1430 
1431 void _initialize_event_top ();
1432 void
1433 _initialize_event_top ()
1434 {
1435   add_setshow_enum_cmd ("event-loop", class_maintenance,
1436 			debug_event_loop_enum,
1437 			&debug_event_loop_value,
1438 			_("Set event-loop debugging."),
1439 			_("Show event-loop debugging."),
1440 			_("\
1441 Control whether to show event loop-related debug messages."),
1442 			set_debug_event_loop_command,
1443 			show_debug_event_loop_command,
1444 			&setdebuglist, &showdebuglist);
1445 
1446   add_setshow_boolean_cmd ("backtrace-on-fatal-signal", class_maintenance,
1447 			   &bt_on_fatal_signal, _("\
1448 Set whether to produce a backtrace if GDB receives a fatal signal."), _("\
1449 Show whether GDB will produce a backtrace if it receives a fatal signal."), _("\
1450 Use \"on\" to enable, \"off\" to disable.\n\
1451 If enabled, GDB will produce a minimal backtrace if it encounters a fatal\n\
1452 signal from within GDB itself.  This is a mechanism to help diagnose\n\
1453 crashes within GDB, not a mechanism for debugging inferiors."),
1454 			   gdb_internal_backtrace_set_cmd,
1455 			   show_bt_on_fatal_signal,
1456 			   &maintenance_set_cmdlist,
1457 			   &maintenance_show_cmdlist);
1458 }
1459