xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/block.h (revision 8b657b0747480f8989760d71343d6dd33f8d4cf9)
1 /* Code dealing with blocks for GDB.
2 
3    Copyright (C) 2003-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef BLOCK_H
21 #define BLOCK_H
22 
23 #include "dictionary.h"
24 #include "gdbsupport/array-view.h"
25 
26 /* Opaque declarations.  */
27 
28 struct symbol;
29 struct compunit_symtab;
30 struct block_namespace_info;
31 struct using_direct;
32 struct obstack;
33 struct addrmap;
34 
35 /* Blocks can occupy non-contiguous address ranges.  When this occurs,
36    startaddr and endaddr within struct block (still) specify the lowest
37    and highest addresses of all ranges, but each individual range is
38    specified by the addresses in struct blockrange.  */
39 
40 struct blockrange
41 {
42   blockrange (CORE_ADDR start, CORE_ADDR end)
43     : m_start (start),
44       m_end (end)
45   {
46   }
47 
48   /* Return this blockrange's start address.  */
49   CORE_ADDR start () const
50   { return m_start; }
51 
52   /* Set this blockrange's start address.  */
53   void set_start (CORE_ADDR start)
54   { m_start = start; }
55 
56   /* Return this blockrange's end address.  */
57   CORE_ADDR end () const
58   { return m_end; }
59 
60   /* Set this blockrange's end address.  */
61   void set_end (CORE_ADDR end)
62   { m_end = end; }
63 
64   /* Lowest address in this range.  */
65 
66   CORE_ADDR m_start;
67 
68   /* One past the highest address in the range.  */
69 
70   CORE_ADDR m_end;
71 };
72 
73 /* Two or more non-contiguous ranges in the same order as that provided
74    via the debug info.  */
75 
76 struct blockranges
77 {
78   int nranges;
79   struct blockrange range[1];
80 };
81 
82 /* All of the name-scope contours of the program
83    are represented by `struct block' objects.
84    All of these objects are pointed to by the blockvector.
85 
86    Each block represents one name scope.
87    Each lexical context has its own block.
88 
89    The blockvector begins with some special blocks.
90    The GLOBAL_BLOCK contains all the symbols defined in this compilation
91    whose scope is the entire program linked together.
92    The STATIC_BLOCK contains all the symbols whose scope is the
93    entire compilation excluding other separate compilations.
94    Blocks starting with the FIRST_LOCAL_BLOCK are not special.
95 
96    Each block records a range of core addresses for the code that
97    is in the scope of the block.  The STATIC_BLOCK and GLOBAL_BLOCK
98    give, for the range of code, the entire range of code produced
99    by the compilation that the symbol segment belongs to.
100 
101    The blocks appear in the blockvector
102    in order of increasing starting-address,
103    and, within that, in order of decreasing ending-address.
104 
105    This implies that within the body of one function
106    the blocks appear in the order of a depth-first tree walk.  */
107 
108 struct block
109 {
110   /* Return this block's start address.  */
111   CORE_ADDR start () const
112   { return m_start; }
113 
114   /* Set this block's start address.  */
115   void set_start (CORE_ADDR start)
116   { m_start = start; }
117 
118   /* Return this block's end address.  */
119   CORE_ADDR end () const
120   { return m_end; }
121 
122   /* Set this block's end address.  */
123   void set_end (CORE_ADDR end)
124   { m_end = end; }
125 
126   /* Return this block's function symbol.  */
127   symbol *function () const
128   { return m_function; }
129 
130   /* Set this block's function symbol.  */
131   void set_function (symbol *function)
132   { m_function = function; }
133 
134   /* Return this block's superblock.  */
135   const block *superblock () const
136   { return m_superblock; }
137 
138   /* Set this block's superblock.  */
139   void set_superblock (const block *superblock)
140   { m_superblock = superblock; }
141 
142   /* Return this block's multidict.  */
143   multidictionary *multidict () const
144   { return m_multidict; }
145 
146   /* Set this block's multidict.  */
147   void set_multidict (multidictionary *multidict)
148   { m_multidict = multidict; }
149 
150   /* Return this block's namespace info.  */
151   block_namespace_info *namespace_info () const
152   { return m_namespace_info; }
153 
154   /* Set this block's namespace info.  */
155   void set_namespace_info (block_namespace_info *namespace_info)
156   { m_namespace_info = namespace_info; }
157 
158   /* Return a view on this block's ranges.  */
159   gdb::array_view<blockrange> ranges ()
160   {
161     if (m_ranges == nullptr)
162       return {};
163     else
164       return gdb::make_array_view (m_ranges->range, m_ranges->nranges);
165   }
166 
167   /* Const version of the above.  */
168   gdb::array_view<const blockrange> ranges () const
169   {
170     if (m_ranges == nullptr)
171       return {};
172     else
173       return gdb::make_array_view (m_ranges->range, m_ranges->nranges);
174   }
175 
176   /* Set this block's ranges array.  */
177   void set_ranges (blockranges *ranges)
178   { m_ranges = ranges; }
179 
180   /* Return true if all addresses within this block are contiguous.  */
181   bool is_contiguous () const
182   { return this->ranges ().size () <= 1; }
183 
184   /* Return the "entry PC" of this block.
185 
186      The entry PC is the lowest (start) address for the block when all addresses
187      within the block are contiguous.  If non-contiguous, then use the start
188      address for the first range in the block.
189 
190      At the moment, this almost matches what DWARF specifies as the entry
191      pc.  (The missing bit is support for DW_AT_entry_pc which should be
192      preferred over range data and the low_pc.)
193 
194      Once support for DW_AT_entry_pc is added, I expect that an entry_pc
195      field will be added to one of these data structures.  Once that's done,
196      the entry_pc field can be set from the dwarf reader (and other readers
197      too).  ENTRY_PC can then be redefined to be less DWARF-centric.  */
198 
199   CORE_ADDR entry_pc () const
200   {
201     if (this->is_contiguous ())
202       return this->start ();
203     else
204       return this->ranges ()[0].start ();
205   }
206 
207   /* Addresses in the executable code that are in this block.  */
208 
209   CORE_ADDR m_start;
210   CORE_ADDR m_end;
211 
212   /* The symbol that names this block, if the block is the body of a
213      function (real or inlined); otherwise, zero.  */
214 
215   struct symbol *m_function;
216 
217   /* The `struct block' for the containing block, or 0 if none.
218 
219      The superblock of a top-level local block (i.e. a function in the
220      case of C) is the STATIC_BLOCK.  The superblock of the
221      STATIC_BLOCK is the GLOBAL_BLOCK.  */
222 
223   const struct block *m_superblock;
224 
225   /* This is used to store the symbols in the block.  */
226 
227   struct multidictionary *m_multidict;
228 
229   /* Contains information about namespace-related info relevant to this block:
230      using directives and the current namespace scope.  */
231 
232   struct block_namespace_info *m_namespace_info;
233 
234   /* Address ranges for blocks with non-contiguous ranges.  If this
235      is NULL, then there is only one range which is specified by
236      startaddr and endaddr above.  */
237 
238   struct blockranges *m_ranges;
239 };
240 
241 /* The global block is singled out so that we can provide a back-link
242    to the compunit symtab.  */
243 
244 struct global_block
245 {
246   /* The block.  */
247 
248   struct block block;
249 
250   /* This holds a pointer to the compunit symtab holding this block.  */
251 
252   struct compunit_symtab *compunit_symtab;
253 };
254 
255 struct blockvector
256 {
257   /* Return a view on the blocks of this blockvector.  */
258   gdb::array_view<struct block *> blocks ()
259   {
260     return gdb::array_view<struct block *> (m_blocks, m_num_blocks);
261   }
262 
263   /* Const version of the above.  */
264   gdb::array_view<const struct block *const> blocks () const
265   {
266     const struct block **blocks = (const struct block **) m_blocks;
267     return gdb::array_view<const struct block *const> (blocks, m_num_blocks);
268   }
269 
270   /* Return the block at index I.  */
271   struct block *block (size_t i)
272   { return this->blocks ()[i]; }
273 
274   /* Const version of the above.  */
275   const struct block *block (size_t i) const
276   { return this->blocks ()[i]; }
277 
278   /* Set the block at index I.  */
279   void set_block (int i, struct block *block)
280   { m_blocks[i] = block; }
281 
282   /* Set the number of blocks of this blockvector.
283 
284      The storage of blocks is done using a flexible array member, so the number
285      of blocks set here must agree with what was effectively allocated.  */
286   void set_num_blocks (int num_blocks)
287   { m_num_blocks = num_blocks; }
288 
289   /* Return the number of blocks in this blockvector.  */
290   int num_blocks () const
291   { return m_num_blocks; }
292 
293   /* Return the global block of this blockvector.  */
294   struct block *global_block ()
295   { return this->block (GLOBAL_BLOCK); }
296 
297   /* Const version of the above.  */
298   const struct block *global_block () const
299   { return this->block (GLOBAL_BLOCK); }
300 
301   /* Return the static block of this blockvector.  */
302   struct block *static_block ()
303   { return this->block (STATIC_BLOCK); }
304 
305   /* Const version of the above.  */
306   const struct block *static_block () const
307   { return this->block (STATIC_BLOCK); }
308 
309   /* Return the address -> block map of this blockvector.  */
310   addrmap *map ()
311   { return m_map; }
312 
313   /* Const version of the above.  */
314   const addrmap *map () const
315   { return m_map; }
316 
317   /* Set this blockvector's address -> block map.  */
318   void set_map (addrmap *map)
319   { m_map = map; }
320 
321 private:
322   /* An address map mapping addresses to blocks in this blockvector.
323      This pointer is zero if the blocks' start and end addresses are
324      enough.  */
325   struct addrmap *m_map;
326 
327   /* Number of blocks in the list.  */
328   int m_num_blocks;
329 
330   /* The blocks themselves.  */
331   struct block *m_blocks[1];
332 };
333 
334 /* Return the objfile of BLOCK, which must be non-NULL.  */
335 
336 extern struct objfile *block_objfile (const struct block *block);
337 
338 /* Return the architecture of BLOCK, which must be non-NULL.  */
339 
340 extern struct gdbarch *block_gdbarch (const struct block *block);
341 
342 extern struct symbol *block_linkage_function (const struct block *);
343 
344 extern struct symbol *block_containing_function (const struct block *);
345 
346 extern int block_inlined_p (const struct block *block);
347 
348 /* Return true if block A is lexically nested within block B, or if a
349    and b have the same pc range.  Return false otherwise.  If
350    ALLOW_NESTED is true, then block A is considered to be in block B
351    if A is in a nested function in B's function.  If ALLOW_NESTED is
352    false (the default), then blocks in nested functions are not
353    considered to be contained.  */
354 
355 extern bool contained_in (const struct block *a, const struct block *b,
356 			  bool allow_nested = false);
357 
358 extern const struct blockvector *blockvector_for_pc (CORE_ADDR,
359 					       const struct block **);
360 
361 extern const struct blockvector *
362   blockvector_for_pc_sect (CORE_ADDR, struct obj_section *,
363 			   const struct block **, struct compunit_symtab *);
364 
365 extern int blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc);
366 
367 extern struct call_site *call_site_for_pc (struct gdbarch *gdbarch,
368 					   CORE_ADDR pc);
369 
370 extern const struct block *block_for_pc (CORE_ADDR);
371 
372 extern const struct block *block_for_pc_sect (CORE_ADDR, struct obj_section *);
373 
374 extern const char *block_scope (const struct block *block);
375 
376 extern void block_set_scope (struct block *block, const char *scope,
377 			     struct obstack *obstack);
378 
379 extern struct using_direct *block_using (const struct block *block);
380 
381 extern void block_set_using (struct block *block,
382 			     struct using_direct *using_decl,
383 			     struct obstack *obstack);
384 
385 extern const struct block *block_static_block (const struct block *block);
386 
387 extern const struct block *block_global_block (const struct block *block);
388 
389 extern struct block *allocate_block (struct obstack *obstack);
390 
391 extern struct block *allocate_global_block (struct obstack *obstack);
392 
393 extern void set_block_compunit_symtab (struct block *,
394 				       struct compunit_symtab *);
395 
396 /* Return a property to evaluate the static link associated to BLOCK.
397 
398    In the context of nested functions (available in Pascal, Ada and GNU C, for
399    instance), a static link (as in DWARF's DW_AT_static_link attribute) for a
400    function is a way to get the frame corresponding to the enclosing function.
401 
402    Note that only objfile-owned and function-level blocks can have a static
403    link.  Return NULL if there is no such property.  */
404 
405 extern struct dynamic_prop *block_static_link (const struct block *block);
406 
407 /* A block iterator.  This structure should be treated as though it
408    were opaque; it is only defined here because we want to support
409    stack allocation of iterators.  */
410 
411 struct block_iterator
412 {
413   /* If we're iterating over a single block, this holds the block.
414      Otherwise, it holds the canonical compunit.  */
415 
416   union
417   {
418     struct compunit_symtab *compunit_symtab;
419     const struct block *block;
420   } d;
421 
422   /* If we're iterating over a single block, this is always -1.
423      Otherwise, it holds the index of the current "included" symtab in
424      the canonical symtab (that is, d.symtab->includes[idx]), with -1
425      meaning the canonical symtab itself.  */
426 
427   int idx;
428 
429   /* Which block, either static or global, to iterate over.  If this
430      is FIRST_LOCAL_BLOCK, then we are iterating over a single block.
431      This is used to select which field of 'd' is in use.  */
432 
433   enum block_enum which;
434 
435   /* The underlying multidictionary iterator.  */
436 
437   struct mdict_iterator mdict_iter;
438 };
439 
440 /* Initialize ITERATOR to point at the first symbol in BLOCK, and
441    return that first symbol, or NULL if BLOCK is empty.  */
442 
443 extern struct symbol *block_iterator_first (const struct block *block,
444 					    struct block_iterator *iterator);
445 
446 /* Advance ITERATOR, and return the next symbol, or NULL if there are
447    no more symbols.  Don't call this if you've previously received
448    NULL from block_iterator_first or block_iterator_next on this
449    iteration.  */
450 
451 extern struct symbol *block_iterator_next (struct block_iterator *iterator);
452 
453 /* Initialize ITERATOR to point at the first symbol in BLOCK whose
454    search_name () matches NAME, and return that first symbol, or
455    NULL if there are no such symbols.  */
456 
457 extern struct symbol *block_iter_match_first (const struct block *block,
458 					      const lookup_name_info &name,
459 					      struct block_iterator *iterator);
460 
461 /* Advance ITERATOR to point at the next symbol in BLOCK whose
462    search_name () matches NAME, or NULL if there are no more such
463    symbols.  Don't call this if you've previously received NULL from
464    block_iterator_match_first or block_iterator_match_next on this
465    iteration.  And don't call it unless ITERATOR was created by a
466    previous call to block_iter_match_first with the same NAME.  */
467 
468 extern struct symbol *block_iter_match_next
469   (const lookup_name_info &name, struct block_iterator *iterator);
470 
471 /* Return true if symbol A is the best match possible for DOMAIN.  */
472 
473 extern bool best_symbol (struct symbol *a, const domain_enum domain);
474 
475 /* Return symbol B if it is a better match than symbol A for DOMAIN.
476    Otherwise return A.  */
477 
478 extern struct symbol *better_symbol (struct symbol *a, struct symbol *b,
479 				     const domain_enum domain);
480 
481 /* Search BLOCK for symbol NAME in DOMAIN.  */
482 
483 extern struct symbol *block_lookup_symbol (const struct block *block,
484 					   const char *name,
485 					   symbol_name_match_type match_type,
486 					   const domain_enum domain);
487 
488 /* Search BLOCK for symbol NAME in DOMAIN but only in primary symbol table of
489    BLOCK.  BLOCK must be STATIC_BLOCK or GLOBAL_BLOCK.  Function is useful if
490    one iterates all global/static blocks of an objfile.  */
491 
492 extern struct symbol *block_lookup_symbol_primary (const struct block *block,
493 						   const char *name,
494 						   const domain_enum domain);
495 
496 /* The type of the MATCHER argument to block_find_symbol.  */
497 
498 typedef int (block_symbol_matcher_ftype) (struct symbol *, void *);
499 
500 /* Find symbol NAME in BLOCK and in DOMAIN that satisfies MATCHER.
501    DATA is passed unchanged to MATCHER.
502    BLOCK must be STATIC_BLOCK or GLOBAL_BLOCK.  */
503 
504 extern struct symbol *block_find_symbol (const struct block *block,
505 					 const char *name,
506 					 const domain_enum domain,
507 					 block_symbol_matcher_ftype *matcher,
508 					 void *data);
509 
510 /* A matcher function for block_find_symbol to find only symbols with
511    non-opaque types.  */
512 
513 extern int block_find_non_opaque_type (struct symbol *sym, void *data);
514 
515 /* A matcher function for block_find_symbol to prefer symbols with
516    non-opaque types.  The way to use this function is as follows:
517 
518    struct symbol *with_opaque = NULL;
519    struct symbol *sym
520      = block_find_symbol (block, name, domain,
521 			  block_find_non_opaque_type_preferred, &with_opaque);
522 
523    At this point if SYM is non-NULL then a non-opaque type has been found.
524    Otherwise, if WITH_OPAQUE is non-NULL then an opaque type has been found.
525    Otherwise, the symbol was not found.  */
526 
527 extern int block_find_non_opaque_type_preferred (struct symbol *sym,
528 						 void *data);
529 
530 /* Macro to loop through all symbols in BLOCK, in no particular
531    order.  ITER helps keep track of the iteration, and must be a
532    struct block_iterator.  SYM points to the current symbol.  */
533 
534 #define ALL_BLOCK_SYMBOLS(block, iter, sym)		\
535   for ((sym) = block_iterator_first ((block), &(iter));	\
536        (sym);						\
537        (sym) = block_iterator_next (&(iter)))
538 
539 /* Macro to loop through all symbols in BLOCK with a name that matches
540    NAME, in no particular order.  ITER helps keep track of the
541    iteration, and must be a struct block_iterator.  SYM points to the
542    current symbol.  */
543 
544 #define ALL_BLOCK_SYMBOLS_WITH_NAME(block, name, iter, sym)		\
545   for ((sym) = block_iter_match_first ((block), (name), &(iter));	\
546        (sym) != NULL;							\
547        (sym) = block_iter_match_next ((name), &(iter)))
548 
549 /* Given a vector of pairs, allocate and build an obstack allocated
550    blockranges struct for a block.  */
551 struct blockranges *make_blockranges (struct objfile *objfile,
552 				      const std::vector<blockrange> &rangevec);
553 
554 #endif /* BLOCK_H */
555