1 /* YACC parser for Ada expressions, for GDB. 2 Copyright (C) 1986-2023 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 /* Parse an Ada expression from text in a string, 20 and return the result as a struct expression pointer. 21 That structure contains arithmetic operations in reverse polish, 22 with constants represented by operations that are followed by special data. 23 See expression.h for the details of the format. 24 What is important here is that it can be built up sequentially 25 during the process of parsing; the lower levels of the tree always 26 come first in the result. 27 28 malloc's and realloc's in this file are transformed to 29 xmalloc and xrealloc respectively by the same sed command in the 30 makefile that remaps any other malloc/realloc inserted by the parser 31 generator. Doing this with #defines and trying to control the interaction 32 with include files (<malloc.h> and <stdlib.h> for example) just became 33 too messy, particularly when such includes can be inserted at random 34 times by the parser generator. */ 35 36 %{ 37 38 #include "defs.h" 39 #include <ctype.h> 40 #include "expression.h" 41 #include "value.h" 42 #include "parser-defs.h" 43 #include "language.h" 44 #include "ada-lang.h" 45 #include "bfd.h" /* Required by objfiles.h. */ 46 #include "symfile.h" /* Required by objfiles.h. */ 47 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */ 48 #include "frame.h" 49 #include "block.h" 50 #include "ada-exp.h" 51 52 #define parse_type(ps) builtin_type (ps->gdbarch ()) 53 54 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, 55 etc). */ 56 #define GDB_YY_REMAP_PREFIX ada_ 57 #include "yy-remap.h" 58 59 struct name_info { 60 struct symbol *sym; 61 struct minimal_symbol *msym; 62 const struct block *block; 63 struct stoken stoken; 64 }; 65 66 /* The state of the parser, used internally when we are parsing the 67 expression. */ 68 69 static struct parser_state *pstate = NULL; 70 71 /* The original expression string. */ 72 static const char *original_expr; 73 74 int yyparse (void); 75 76 static int yylex (void); 77 78 static void yyerror (const char *); 79 80 static void write_int (struct parser_state *, LONGEST, struct type *); 81 82 static void write_object_renaming (struct parser_state *, 83 const struct block *, const char *, int, 84 const char *, int); 85 86 static struct type* write_var_or_type (struct parser_state *, 87 const struct block *, struct stoken); 88 static struct type *write_var_or_type_completion (struct parser_state *, 89 const struct block *, 90 struct stoken); 91 92 static void write_name_assoc (struct parser_state *, struct stoken); 93 94 static const struct block *block_lookup (const struct block *, const char *); 95 96 static void write_ambiguous_var (struct parser_state *, 97 const struct block *, const char *, int); 98 99 static struct type *type_int (struct parser_state *); 100 101 static struct type *type_long (struct parser_state *); 102 103 static struct type *type_long_long (struct parser_state *); 104 105 static struct type *type_long_double (struct parser_state *); 106 107 static struct type *type_for_char (struct parser_state *, ULONGEST); 108 109 static struct type *type_boolean (struct parser_state *); 110 111 static struct type *type_system_address (struct parser_state *); 112 113 static std::string find_completion_bounds (struct parser_state *); 114 115 using namespace expr; 116 117 /* Handle Ada type resolution for OP. DEPROCEDURE_P and CONTEXT_TYPE 118 are passed to the resolve method, if called. */ 119 static operation_up 120 resolve (operation_up &&op, bool deprocedure_p, struct type *context_type) 121 { 122 operation_up result = std::move (op); 123 ada_resolvable *res = dynamic_cast<ada_resolvable *> (result.get ()); 124 if (res != nullptr) 125 return res->replace (std::move (result), 126 pstate->expout.get (), 127 deprocedure_p, 128 pstate->parse_completion, 129 pstate->block_tracker, 130 context_type); 131 return result; 132 } 133 134 /* Like parser_state::pop, but handles Ada type resolution. 135 DEPROCEDURE_P and CONTEXT_TYPE are passed to the resolve method, if 136 called. */ 137 static operation_up 138 ada_pop (bool deprocedure_p = true, struct type *context_type = nullptr) 139 { 140 /* Of course it's ok to call parser_state::pop here... */ 141 return resolve (pstate->pop (), deprocedure_p, context_type); 142 } 143 144 /* Like parser_state::wrap, but use ada_pop to pop the value. */ 145 template<typename T> 146 void 147 ada_wrap () 148 { 149 operation_up arg = ada_pop (); 150 pstate->push_new<T> (std::move (arg)); 151 } 152 153 /* Create and push an address-of operation, as appropriate for Ada. 154 If TYPE is not NULL, the resulting operation will be wrapped in a 155 cast to TYPE. */ 156 static void 157 ada_addrof (struct type *type = nullptr) 158 { 159 operation_up arg = ada_pop (false); 160 operation_up addr = make_operation<unop_addr_operation> (std::move (arg)); 161 operation_up wrapped 162 = make_operation<ada_wrapped_operation> (std::move (addr)); 163 if (type != nullptr) 164 wrapped = make_operation<unop_cast_operation> (std::move (wrapped), type); 165 pstate->push (std::move (wrapped)); 166 } 167 168 /* Handle operator overloading. Either returns a function all 169 operation wrapping the arguments, or it returns null, leaving the 170 caller to construct the appropriate operation. If RHS is null, a 171 unary operator is assumed. */ 172 static operation_up 173 maybe_overload (enum exp_opcode op, operation_up &lhs, operation_up &rhs) 174 { 175 struct value *args[2]; 176 177 int nargs = 1; 178 args[0] = lhs->evaluate (nullptr, pstate->expout.get (), 179 EVAL_AVOID_SIDE_EFFECTS); 180 if (rhs == nullptr) 181 args[1] = nullptr; 182 else 183 { 184 args[1] = rhs->evaluate (nullptr, pstate->expout.get (), 185 EVAL_AVOID_SIDE_EFFECTS); 186 ++nargs; 187 } 188 189 block_symbol fn = ada_find_operator_symbol (op, pstate->parse_completion, 190 nargs, args); 191 if (fn.symbol == nullptr) 192 return {}; 193 194 if (symbol_read_needs_frame (fn.symbol)) 195 pstate->block_tracker->update (fn.block, INNERMOST_BLOCK_FOR_SYMBOLS); 196 operation_up callee = make_operation<ada_var_value_operation> (fn); 197 198 std::vector<operation_up> argvec; 199 argvec.push_back (std::move (lhs)); 200 if (rhs != nullptr) 201 argvec.push_back (std::move (rhs)); 202 return make_operation<ada_funcall_operation> (std::move (callee), 203 std::move (argvec)); 204 } 205 206 /* Like parser_state::wrap, but use ada_pop to pop the value, and 207 handle unary overloading. */ 208 template<typename T> 209 void 210 ada_wrap_overload (enum exp_opcode op) 211 { 212 operation_up arg = ada_pop (); 213 operation_up empty; 214 215 operation_up call = maybe_overload (op, arg, empty); 216 if (call == nullptr) 217 call = make_operation<T> (std::move (arg)); 218 pstate->push (std::move (call)); 219 } 220 221 /* A variant of parser_state::wrap2 that uses ada_pop to pop both 222 operands, and then pushes a new Ada-wrapped operation of the 223 template type T. */ 224 template<typename T> 225 void 226 ada_un_wrap2 (enum exp_opcode op) 227 { 228 operation_up rhs = ada_pop (); 229 operation_up lhs = ada_pop (); 230 231 operation_up wrapped = maybe_overload (op, lhs, rhs); 232 if (wrapped == nullptr) 233 { 234 wrapped = make_operation<T> (std::move (lhs), std::move (rhs)); 235 wrapped = make_operation<ada_wrapped_operation> (std::move (wrapped)); 236 } 237 pstate->push (std::move (wrapped)); 238 } 239 240 /* A variant of parser_state::wrap2 that uses ada_pop to pop both 241 operands. Unlike ada_un_wrap2, ada_wrapped_operation is not 242 used. */ 243 template<typename T> 244 void 245 ada_wrap2 (enum exp_opcode op) 246 { 247 operation_up rhs = ada_pop (); 248 operation_up lhs = ada_pop (); 249 operation_up call = maybe_overload (op, lhs, rhs); 250 if (call == nullptr) 251 call = make_operation<T> (std::move (lhs), std::move (rhs)); 252 pstate->push (std::move (call)); 253 } 254 255 /* A variant of parser_state::wrap2 that uses ada_pop to pop both 256 operands. OP is also passed to the constructor of the new binary 257 operation. */ 258 template<typename T> 259 void 260 ada_wrap_op (enum exp_opcode op) 261 { 262 operation_up rhs = ada_pop (); 263 operation_up lhs = ada_pop (); 264 operation_up call = maybe_overload (op, lhs, rhs); 265 if (call == nullptr) 266 call = make_operation<T> (op, std::move (lhs), std::move (rhs)); 267 pstate->push (std::move (call)); 268 } 269 270 /* Pop three operands using ada_pop, then construct a new ternary 271 operation of type T and push it. */ 272 template<typename T> 273 void 274 ada_wrap3 () 275 { 276 operation_up rhs = ada_pop (); 277 operation_up mid = ada_pop (); 278 operation_up lhs = ada_pop (); 279 pstate->push_new<T> (std::move (lhs), std::move (mid), std::move (rhs)); 280 } 281 282 /* Pop NARGS operands, then a callee operand, and use these to 283 construct and push a new Ada function call operation. */ 284 static void 285 ada_funcall (int nargs) 286 { 287 /* We use the ordinary pop here, because we're going to do 288 resolution in a separate step, in order to handle array 289 indices. */ 290 std::vector<operation_up> args = pstate->pop_vector (nargs); 291 /* Call parser_state::pop here, because we don't want to 292 function-convert the callee slot of a call we're already 293 constructing. */ 294 operation_up callee = pstate->pop (); 295 296 ada_var_value_operation *vvo 297 = dynamic_cast<ada_var_value_operation *> (callee.get ()); 298 int array_arity = 0; 299 struct type *callee_t = nullptr; 300 if (vvo == nullptr 301 || vvo->get_symbol ()->domain () != UNDEF_DOMAIN) 302 { 303 struct value *callee_v = callee->evaluate (nullptr, 304 pstate->expout.get (), 305 EVAL_AVOID_SIDE_EFFECTS); 306 callee_t = ada_check_typedef (value_type (callee_v)); 307 array_arity = ada_array_arity (callee_t); 308 } 309 310 for (int i = 0; i < nargs; ++i) 311 { 312 struct type *subtype = nullptr; 313 if (i < array_arity) 314 subtype = ada_index_type (callee_t, i + 1, "array type"); 315 args[i] = resolve (std::move (args[i]), true, subtype); 316 } 317 318 std::unique_ptr<ada_funcall_operation> funcall 319 (new ada_funcall_operation (std::move (callee), std::move (args))); 320 funcall->resolve (pstate->expout.get (), true, pstate->parse_completion, 321 pstate->block_tracker, nullptr); 322 pstate->push (std::move (funcall)); 323 } 324 325 /* The components being constructed during this parse. */ 326 static std::vector<ada_component_up> components; 327 328 /* Create a new ada_component_up of the indicated type and arguments, 329 and push it on the global 'components' vector. */ 330 template<typename T, typename... Arg> 331 void 332 push_component (Arg... args) 333 { 334 components.emplace_back (new T (std::forward<Arg> (args)...)); 335 } 336 337 /* Examine the final element of the 'components' vector, and return it 338 as a pointer to an ada_choices_component. The caller is 339 responsible for ensuring that the final element is in fact an 340 ada_choices_component. */ 341 static ada_choices_component * 342 choice_component () 343 { 344 ada_component *last = components.back ().get (); 345 return gdb::checked_static_cast<ada_choices_component *> (last); 346 } 347 348 /* Pop the most recent component from the global stack, and return 349 it. */ 350 static ada_component_up 351 pop_component () 352 { 353 ada_component_up result = std::move (components.back ()); 354 components.pop_back (); 355 return result; 356 } 357 358 /* Pop the N most recent components from the global stack, and return 359 them in a vector. */ 360 static std::vector<ada_component_up> 361 pop_components (int n) 362 { 363 std::vector<ada_component_up> result (n); 364 for (int i = 1; i <= n; ++i) 365 result[n - i] = pop_component (); 366 return result; 367 } 368 369 /* The associations being constructed during this parse. */ 370 static std::vector<ada_association_up> associations; 371 372 /* Create a new ada_association_up of the indicated type and 373 arguments, and push it on the global 'associations' vector. */ 374 template<typename T, typename... Arg> 375 void 376 push_association (Arg... args) 377 { 378 associations.emplace_back (new T (std::forward<Arg> (args)...)); 379 } 380 381 /* Pop the most recent association from the global stack, and return 382 it. */ 383 static ada_association_up 384 pop_association () 385 { 386 ada_association_up result = std::move (associations.back ()); 387 associations.pop_back (); 388 return result; 389 } 390 391 /* Pop the N most recent associations from the global stack, and 392 return them in a vector. */ 393 static std::vector<ada_association_up> 394 pop_associations (int n) 395 { 396 std::vector<ada_association_up> result (n); 397 for (int i = 1; i <= n; ++i) 398 result[n - i] = pop_association (); 399 return result; 400 } 401 402 /* Expression completer for attributes. */ 403 struct ada_tick_completer : public expr_completion_base 404 { 405 explicit ada_tick_completer (std::string &&name) 406 : m_name (std::move (name)) 407 { 408 } 409 410 bool complete (struct expression *exp, 411 completion_tracker &tracker) override; 412 413 private: 414 415 std::string m_name; 416 }; 417 418 /* Make a new ada_tick_completer and wrap it in a unique pointer. */ 419 static std::unique_ptr<expr_completion_base> 420 make_tick_completer (struct stoken tok) 421 { 422 return (std::unique_ptr<expr_completion_base> 423 (new ada_tick_completer (std::string (tok.ptr, tok.length)))); 424 } 425 426 %} 427 428 %union 429 { 430 LONGEST lval; 431 struct { 432 LONGEST val; 433 struct type *type; 434 } typed_val; 435 struct { 436 gdb_byte val[16]; 437 struct type *type; 438 } typed_val_float; 439 struct type *tval; 440 struct stoken sval; 441 const struct block *bval; 442 struct internalvar *ivar; 443 } 444 445 %type <lval> positional_list component_groups component_associations 446 %type <lval> aggregate_component_list 447 %type <tval> var_or_type type_prefix opt_type_prefix 448 449 %token <typed_val> INT NULL_PTR CHARLIT 450 %token <typed_val_float> FLOAT 451 %token TRUEKEYWORD FALSEKEYWORD 452 %token COLONCOLON 453 %token <sval> STRING NAME DOT_ID TICK_COMPLETE DOT_COMPLETE NAME_COMPLETE 454 %type <bval> block 455 %type <lval> arglist tick_arglist 456 457 /* Special type cases, put in to allow the parser to distinguish different 458 legal basetypes. */ 459 %token <sval> DOLLAR_VARIABLE 460 461 %nonassoc ASSIGN 462 %left _AND_ OR XOR THEN ELSE 463 %left '=' NOTEQUAL '<' '>' LEQ GEQ IN DOTDOT 464 %left '@' 465 %left '+' '-' '&' 466 %left UNARY 467 %left '*' '/' MOD REM 468 %right STARSTAR ABS NOT 469 470 /* Artificial token to give NAME => ... and NAME | priority over reducing 471 NAME to <primary> and to give <primary>' priority over reducing <primary> 472 to <simple_exp>. */ 473 %nonassoc VAR 474 475 %nonassoc ARROW '|' 476 477 %right TICK_ACCESS TICK_ADDRESS TICK_FIRST TICK_LAST TICK_LENGTH 478 %right TICK_MAX TICK_MIN TICK_MODULUS 479 %right TICK_POS TICK_RANGE TICK_SIZE TICK_TAG TICK_VAL 480 %right TICK_COMPLETE 481 /* The following are right-associative only so that reductions at this 482 precedence have lower precedence than '.' and '('. The syntax still 483 forces a.b.c, e.g., to be LEFT-associated. */ 484 %right '.' '(' '[' DOT_ID DOT_COMPLETE 485 486 %token NEW OTHERS 487 488 489 %% 490 491 start : exp1 492 ; 493 494 /* Expressions, including the sequencing operator. */ 495 exp1 : exp 496 | exp1 ';' exp 497 { ada_wrap2<comma_operation> (BINOP_COMMA); } 498 | primary ASSIGN exp /* Extension for convenience */ 499 { 500 operation_up rhs = pstate->pop (); 501 operation_up lhs = ada_pop (); 502 value *lhs_val 503 = lhs->evaluate (nullptr, pstate->expout.get (), 504 EVAL_AVOID_SIDE_EFFECTS); 505 rhs = resolve (std::move (rhs), true, 506 value_type (lhs_val)); 507 pstate->push_new<ada_assign_operation> 508 (std::move (lhs), std::move (rhs)); 509 } 510 ; 511 512 /* Expressions, not including the sequencing operator. */ 513 514 primary : primary DOT_ID 515 { 516 if (strcmp ($2.ptr, "all") == 0) 517 ada_wrap<ada_unop_ind_operation> (); 518 else 519 { 520 operation_up arg = ada_pop (); 521 pstate->push_new<ada_structop_operation> 522 (std::move (arg), copy_name ($2)); 523 } 524 } 525 ; 526 527 primary : primary DOT_COMPLETE 528 { 529 /* This is done even for ".all", because 530 that might be a prefix. */ 531 operation_up arg = ada_pop (); 532 ada_structop_operation *str_op 533 = (new ada_structop_operation 534 (std::move (arg), copy_name ($2))); 535 str_op->set_prefix (find_completion_bounds (pstate)); 536 pstate->push (operation_up (str_op)); 537 pstate->mark_struct_expression (str_op); 538 } 539 ; 540 541 primary : primary '(' arglist ')' 542 { ada_funcall ($3); } 543 | var_or_type '(' arglist ')' 544 { 545 if ($1 != NULL) 546 { 547 if ($3 != 1) 548 error (_("Invalid conversion")); 549 operation_up arg = ada_pop (); 550 pstate->push_new<unop_cast_operation> 551 (std::move (arg), $1); 552 } 553 else 554 ada_funcall ($3); 555 } 556 ; 557 558 primary : var_or_type '\'' '(' exp ')' 559 { 560 if ($1 == NULL) 561 error (_("Type required for qualification")); 562 operation_up arg = ada_pop (true, 563 check_typedef ($1)); 564 pstate->push_new<ada_qual_operation> 565 (std::move (arg), $1); 566 } 567 ; 568 569 primary : 570 primary '(' simple_exp DOTDOT simple_exp ')' 571 { ada_wrap3<ada_ternop_slice_operation> (); } 572 | var_or_type '(' simple_exp DOTDOT simple_exp ')' 573 { if ($1 == NULL) 574 ada_wrap3<ada_ternop_slice_operation> (); 575 else 576 error (_("Cannot slice a type")); 577 } 578 ; 579 580 primary : '(' exp1 ')' { } 581 ; 582 583 /* The following rule causes a conflict with the type conversion 584 var_or_type (exp) 585 To get around it, we give '(' higher priority and add bridge rules for 586 var_or_type (exp, exp, ...) 587 var_or_type (exp .. exp) 588 We also have the action for var_or_type(exp) generate a function call 589 when the first symbol does not denote a type. */ 590 591 primary : var_or_type %prec VAR 592 { if ($1 != NULL) 593 pstate->push_new<type_operation> ($1); 594 } 595 ; 596 597 primary : DOLLAR_VARIABLE /* Various GDB extensions */ 598 { pstate->push_dollar ($1); } 599 ; 600 601 primary : aggregate 602 { 603 pstate->push_new<ada_aggregate_operation> 604 (pop_component ()); 605 } 606 ; 607 608 simple_exp : primary 609 ; 610 611 simple_exp : '-' simple_exp %prec UNARY 612 { ada_wrap_overload<ada_neg_operation> (UNOP_NEG); } 613 ; 614 615 simple_exp : '+' simple_exp %prec UNARY 616 { 617 operation_up arg = ada_pop (); 618 operation_up empty; 619 620 /* If an overloaded operator was found, use 621 it. Otherwise, unary + has no effect and 622 the argument can be pushed instead. */ 623 operation_up call = maybe_overload (UNOP_PLUS, arg, 624 empty); 625 if (call != nullptr) 626 arg = std::move (call); 627 pstate->push (std::move (arg)); 628 } 629 ; 630 631 simple_exp : NOT simple_exp %prec UNARY 632 { 633 ada_wrap_overload<unary_logical_not_operation> 634 (UNOP_LOGICAL_NOT); 635 } 636 ; 637 638 simple_exp : ABS simple_exp %prec UNARY 639 { ada_wrap_overload<ada_abs_operation> (UNOP_ABS); } 640 ; 641 642 arglist : { $$ = 0; } 643 ; 644 645 arglist : exp 646 { $$ = 1; } 647 | NAME ARROW exp 648 { $$ = 1; } 649 | arglist ',' exp 650 { $$ = $1 + 1; } 651 | arglist ',' NAME ARROW exp 652 { $$ = $1 + 1; } 653 ; 654 655 primary : '{' var_or_type '}' primary %prec '.' 656 /* GDB extension */ 657 { 658 if ($2 == NULL) 659 error (_("Type required within braces in coercion")); 660 operation_up arg = ada_pop (); 661 pstate->push_new<unop_memval_operation> 662 (std::move (arg), $2); 663 } 664 ; 665 666 /* Binary operators in order of decreasing precedence. */ 667 668 simple_exp : simple_exp STARSTAR simple_exp 669 { ada_wrap2<ada_binop_exp_operation> (BINOP_EXP); } 670 ; 671 672 simple_exp : simple_exp '*' simple_exp 673 { ada_wrap2<ada_binop_mul_operation> (BINOP_MUL); } 674 ; 675 676 simple_exp : simple_exp '/' simple_exp 677 { ada_wrap2<ada_binop_div_operation> (BINOP_DIV); } 678 ; 679 680 simple_exp : simple_exp REM simple_exp /* May need to be fixed to give correct Ada REM */ 681 { ada_wrap2<ada_binop_rem_operation> (BINOP_REM); } 682 ; 683 684 simple_exp : simple_exp MOD simple_exp 685 { ada_wrap2<ada_binop_mod_operation> (BINOP_MOD); } 686 ; 687 688 simple_exp : simple_exp '@' simple_exp /* GDB extension */ 689 { ada_wrap2<repeat_operation> (BINOP_REPEAT); } 690 ; 691 692 simple_exp : simple_exp '+' simple_exp 693 { ada_wrap_op<ada_binop_addsub_operation> (BINOP_ADD); } 694 ; 695 696 simple_exp : simple_exp '&' simple_exp 697 { ada_wrap2<ada_concat_operation> (BINOP_CONCAT); } 698 ; 699 700 simple_exp : simple_exp '-' simple_exp 701 { ada_wrap_op<ada_binop_addsub_operation> (BINOP_SUB); } 702 ; 703 704 relation : simple_exp 705 ; 706 707 relation : simple_exp '=' simple_exp 708 { ada_wrap_op<ada_binop_equal_operation> (BINOP_EQUAL); } 709 ; 710 711 relation : simple_exp NOTEQUAL simple_exp 712 { ada_wrap_op<ada_binop_equal_operation> (BINOP_NOTEQUAL); } 713 ; 714 715 relation : simple_exp LEQ simple_exp 716 { ada_un_wrap2<leq_operation> (BINOP_LEQ); } 717 ; 718 719 relation : simple_exp IN simple_exp DOTDOT simple_exp 720 { ada_wrap3<ada_ternop_range_operation> (); } 721 | simple_exp IN primary TICK_RANGE tick_arglist 722 { 723 operation_up rhs = ada_pop (); 724 operation_up lhs = ada_pop (); 725 pstate->push_new<ada_binop_in_bounds_operation> 726 (std::move (lhs), std::move (rhs), $5); 727 } 728 | simple_exp IN var_or_type %prec TICK_ACCESS 729 { 730 if ($3 == NULL) 731 error (_("Right operand of 'in' must be type")); 732 operation_up arg = ada_pop (); 733 pstate->push_new<ada_unop_range_operation> 734 (std::move (arg), $3); 735 } 736 | simple_exp NOT IN simple_exp DOTDOT simple_exp 737 { ada_wrap3<ada_ternop_range_operation> (); 738 ada_wrap<unary_logical_not_operation> (); } 739 | simple_exp NOT IN primary TICK_RANGE tick_arglist 740 { 741 operation_up rhs = ada_pop (); 742 operation_up lhs = ada_pop (); 743 pstate->push_new<ada_binop_in_bounds_operation> 744 (std::move (lhs), std::move (rhs), $6); 745 ada_wrap<unary_logical_not_operation> (); 746 } 747 | simple_exp NOT IN var_or_type %prec TICK_ACCESS 748 { 749 if ($4 == NULL) 750 error (_("Right operand of 'in' must be type")); 751 operation_up arg = ada_pop (); 752 pstate->push_new<ada_unop_range_operation> 753 (std::move (arg), $4); 754 ada_wrap<unary_logical_not_operation> (); 755 } 756 ; 757 758 relation : simple_exp GEQ simple_exp 759 { ada_un_wrap2<geq_operation> (BINOP_GEQ); } 760 ; 761 762 relation : simple_exp '<' simple_exp 763 { ada_un_wrap2<less_operation> (BINOP_LESS); } 764 ; 765 766 relation : simple_exp '>' simple_exp 767 { ada_un_wrap2<gtr_operation> (BINOP_GTR); } 768 ; 769 770 exp : relation 771 | and_exp 772 | and_then_exp 773 | or_exp 774 | or_else_exp 775 | xor_exp 776 ; 777 778 and_exp : 779 relation _AND_ relation 780 { ada_wrap2<ada_bitwise_and_operation> 781 (BINOP_BITWISE_AND); } 782 | and_exp _AND_ relation 783 { ada_wrap2<ada_bitwise_and_operation> 784 (BINOP_BITWISE_AND); } 785 ; 786 787 and_then_exp : 788 relation _AND_ THEN relation 789 { ada_wrap2<logical_and_operation> 790 (BINOP_LOGICAL_AND); } 791 | and_then_exp _AND_ THEN relation 792 { ada_wrap2<logical_and_operation> 793 (BINOP_LOGICAL_AND); } 794 ; 795 796 or_exp : 797 relation OR relation 798 { ada_wrap2<ada_bitwise_ior_operation> 799 (BINOP_BITWISE_IOR); } 800 | or_exp OR relation 801 { ada_wrap2<ada_bitwise_ior_operation> 802 (BINOP_BITWISE_IOR); } 803 ; 804 805 or_else_exp : 806 relation OR ELSE relation 807 { ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); } 808 | or_else_exp OR ELSE relation 809 { ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); } 810 ; 811 812 xor_exp : relation XOR relation 813 { ada_wrap2<ada_bitwise_xor_operation> 814 (BINOP_BITWISE_XOR); } 815 | xor_exp XOR relation 816 { ada_wrap2<ada_bitwise_xor_operation> 817 (BINOP_BITWISE_XOR); } 818 ; 819 820 /* Primaries can denote types (OP_TYPE). In cases such as 821 primary TICK_ADDRESS, where a type would be invalid, it will be 822 caught when evaluate_subexp in ada-lang.c tries to evaluate the 823 primary, expecting a value. Precedence rules resolve the ambiguity 824 in NAME TICK_ACCESS in favor of shifting to form a var_or_type. A 825 construct such as aType'access'access will again cause an error when 826 aType'access evaluates to a type that evaluate_subexp attempts to 827 evaluate. */ 828 primary : primary TICK_ACCESS 829 { ada_addrof (); } 830 | primary TICK_ADDRESS 831 { ada_addrof (type_system_address (pstate)); } 832 | primary TICK_COMPLETE 833 { 834 pstate->mark_completion (make_tick_completer ($2)); 835 } 836 | primary TICK_FIRST tick_arglist 837 { 838 operation_up arg = ada_pop (); 839 pstate->push_new<ada_unop_atr_operation> 840 (std::move (arg), OP_ATR_FIRST, $3); 841 } 842 | primary TICK_LAST tick_arglist 843 { 844 operation_up arg = ada_pop (); 845 pstate->push_new<ada_unop_atr_operation> 846 (std::move (arg), OP_ATR_LAST, $3); 847 } 848 | primary TICK_LENGTH tick_arglist 849 { 850 operation_up arg = ada_pop (); 851 pstate->push_new<ada_unop_atr_operation> 852 (std::move (arg), OP_ATR_LENGTH, $3); 853 } 854 | primary TICK_SIZE 855 { ada_wrap<ada_atr_size_operation> (); } 856 | primary TICK_TAG 857 { ada_wrap<ada_atr_tag_operation> (); } 858 | opt_type_prefix TICK_MIN '(' exp ',' exp ')' 859 { ada_wrap2<ada_binop_min_operation> (BINOP_MIN); } 860 | opt_type_prefix TICK_MAX '(' exp ',' exp ')' 861 { ada_wrap2<ada_binop_max_operation> (BINOP_MAX); } 862 | opt_type_prefix TICK_POS '(' exp ')' 863 { ada_wrap<ada_pos_operation> (); } 864 | type_prefix TICK_VAL '(' exp ')' 865 { 866 operation_up arg = ada_pop (); 867 pstate->push_new<ada_atr_val_operation> 868 ($1, std::move (arg)); 869 } 870 | type_prefix TICK_MODULUS 871 { 872 struct type *type_arg = check_typedef ($1); 873 if (!ada_is_modular_type (type_arg)) 874 error (_("'modulus must be applied to modular type")); 875 write_int (pstate, ada_modulus (type_arg), 876 type_arg->target_type ()); 877 } 878 ; 879 880 tick_arglist : %prec '(' 881 { $$ = 1; } 882 | '(' INT ')' 883 { $$ = $2.val; } 884 ; 885 886 type_prefix : 887 var_or_type 888 { 889 if ($1 == NULL) 890 error (_("Prefix must be type")); 891 $$ = $1; 892 } 893 ; 894 895 opt_type_prefix : 896 type_prefix 897 { $$ = $1; } 898 | /* EMPTY */ 899 { $$ = parse_type (pstate)->builtin_void; } 900 ; 901 902 903 primary : INT 904 { write_int (pstate, (LONGEST) $1.val, $1.type); } 905 ; 906 907 primary : CHARLIT 908 { 909 pstate->push_new<ada_char_operation> ($1.type, $1.val); 910 } 911 ; 912 913 primary : FLOAT 914 { 915 float_data data; 916 std::copy (std::begin ($1.val), std::end ($1.val), 917 std::begin (data)); 918 pstate->push_new<float_const_operation> 919 ($1.type, data); 920 ada_wrap<ada_wrapped_operation> (); 921 } 922 ; 923 924 primary : NULL_PTR 925 { 926 struct type *null_ptr_type 927 = lookup_pointer_type (parse_type (pstate)->builtin_int0); 928 write_int (pstate, 0, null_ptr_type); 929 } 930 ; 931 932 primary : STRING 933 { 934 pstate->push_new<ada_string_operation> 935 (copy_name ($1)); 936 } 937 ; 938 939 primary : TRUEKEYWORD 940 { write_int (pstate, 1, type_boolean (pstate)); } 941 | FALSEKEYWORD 942 { write_int (pstate, 0, type_boolean (pstate)); } 943 ; 944 945 primary : NEW NAME 946 { error (_("NEW not implemented.")); } 947 ; 948 949 var_or_type: NAME %prec VAR 950 { $$ = write_var_or_type (pstate, NULL, $1); } 951 | NAME_COMPLETE %prec VAR 952 { 953 $$ = write_var_or_type_completion (pstate, 954 NULL, 955 $1); 956 } 957 | block NAME %prec VAR 958 { $$ = write_var_or_type (pstate, $1, $2); } 959 | block NAME_COMPLETE %prec VAR 960 { 961 $$ = write_var_or_type_completion (pstate, 962 $1, 963 $2); 964 } 965 | NAME TICK_ACCESS 966 { 967 $$ = write_var_or_type (pstate, NULL, $1); 968 if ($$ == NULL) 969 ada_addrof (); 970 else 971 $$ = lookup_pointer_type ($$); 972 } 973 | block NAME TICK_ACCESS 974 { 975 $$ = write_var_or_type (pstate, $1, $2); 976 if ($$ == NULL) 977 ada_addrof (); 978 else 979 $$ = lookup_pointer_type ($$); 980 } 981 ; 982 983 /* GDB extension */ 984 block : NAME COLONCOLON 985 { $$ = block_lookup (NULL, $1.ptr); } 986 | block NAME COLONCOLON 987 { $$ = block_lookup ($1, $2.ptr); } 988 ; 989 990 aggregate : 991 '(' aggregate_component_list ')' 992 { 993 std::vector<ada_component_up> components 994 = pop_components ($2); 995 996 push_component<ada_aggregate_component> 997 (std::move (components)); 998 } 999 ; 1000 1001 aggregate_component_list : 1002 component_groups { $$ = $1; } 1003 | positional_list exp 1004 { 1005 push_component<ada_positional_component> 1006 ($1, ada_pop ()); 1007 $$ = $1 + 1; 1008 } 1009 | positional_list component_groups 1010 { $$ = $1 + $2; } 1011 ; 1012 1013 positional_list : 1014 exp ',' 1015 { 1016 push_component<ada_positional_component> 1017 (0, ada_pop ()); 1018 $$ = 1; 1019 } 1020 | positional_list exp ',' 1021 { 1022 push_component<ada_positional_component> 1023 ($1, ada_pop ()); 1024 $$ = $1 + 1; 1025 } 1026 ; 1027 1028 component_groups: 1029 others { $$ = 1; } 1030 | component_group { $$ = 1; } 1031 | component_group ',' component_groups 1032 { $$ = $3 + 1; } 1033 ; 1034 1035 others : OTHERS ARROW exp 1036 { 1037 push_component<ada_others_component> (ada_pop ()); 1038 } 1039 ; 1040 1041 component_group : 1042 component_associations 1043 { 1044 ada_choices_component *choices = choice_component (); 1045 choices->set_associations (pop_associations ($1)); 1046 } 1047 ; 1048 1049 /* We use this somewhat obscure definition in order to handle NAME => and 1050 NAME | differently from exp => and exp |. ARROW and '|' have a precedence 1051 above that of the reduction of NAME to var_or_type. By delaying 1052 decisions until after the => or '|', we convert the ambiguity to a 1053 resolved shift/reduce conflict. */ 1054 component_associations : 1055 NAME ARROW exp 1056 { 1057 push_component<ada_choices_component> (ada_pop ()); 1058 write_name_assoc (pstate, $1); 1059 $$ = 1; 1060 } 1061 | simple_exp ARROW exp 1062 { 1063 push_component<ada_choices_component> (ada_pop ()); 1064 push_association<ada_name_association> (ada_pop ()); 1065 $$ = 1; 1066 } 1067 | simple_exp DOTDOT simple_exp ARROW exp 1068 { 1069 push_component<ada_choices_component> (ada_pop ()); 1070 operation_up rhs = ada_pop (); 1071 operation_up lhs = ada_pop (); 1072 push_association<ada_discrete_range_association> 1073 (std::move (lhs), std::move (rhs)); 1074 $$ = 1; 1075 } 1076 | NAME '|' component_associations 1077 { 1078 write_name_assoc (pstate, $1); 1079 $$ = $3 + 1; 1080 } 1081 | simple_exp '|' component_associations 1082 { 1083 push_association<ada_name_association> (ada_pop ()); 1084 $$ = $3 + 1; 1085 } 1086 | simple_exp DOTDOT simple_exp '|' component_associations 1087 1088 { 1089 operation_up rhs = ada_pop (); 1090 operation_up lhs = ada_pop (); 1091 push_association<ada_discrete_range_association> 1092 (std::move (lhs), std::move (rhs)); 1093 $$ = $5 + 1; 1094 } 1095 ; 1096 1097 /* Some extensions borrowed from C, for the benefit of those who find they 1098 can't get used to Ada notation in GDB. */ 1099 1100 primary : '*' primary %prec '.' 1101 { ada_wrap<ada_unop_ind_operation> (); } 1102 | '&' primary %prec '.' 1103 { ada_addrof (); } 1104 | primary '[' exp ']' 1105 { 1106 ada_wrap2<subscript_operation> (BINOP_SUBSCRIPT); 1107 ada_wrap<ada_wrapped_operation> (); 1108 } 1109 ; 1110 1111 %% 1112 1113 /* yylex defined in ada-lex.c: Reads one token, getting characters */ 1114 /* through lexptr. */ 1115 1116 /* Remap normal flex interface names (yylex) as well as gratuitiously */ 1117 /* global symbol names, so we can have multiple flex-generated parsers */ 1118 /* in gdb. */ 1119 1120 /* (See note above on previous definitions for YACC.) */ 1121 1122 #define yy_create_buffer ada_yy_create_buffer 1123 #define yy_delete_buffer ada_yy_delete_buffer 1124 #define yy_init_buffer ada_yy_init_buffer 1125 #define yy_load_buffer_state ada_yy_load_buffer_state 1126 #define yy_switch_to_buffer ada_yy_switch_to_buffer 1127 #define yyrestart ada_yyrestart 1128 #define yytext ada_yytext 1129 1130 static struct obstack temp_parse_space; 1131 1132 /* The following kludge was found necessary to prevent conflicts between */ 1133 /* defs.h and non-standard stdlib.h files. */ 1134 #define qsort __qsort__dummy 1135 #include "ada-lex.c" 1136 1137 int 1138 ada_parse (struct parser_state *par_state) 1139 { 1140 /* Setting up the parser state. */ 1141 scoped_restore pstate_restore = make_scoped_restore (&pstate); 1142 gdb_assert (par_state != NULL); 1143 pstate = par_state; 1144 original_expr = par_state->lexptr; 1145 1146 scoped_restore restore_yydebug = make_scoped_restore (&yydebug, 1147 parser_debug); 1148 1149 lexer_init (yyin); /* (Re-)initialize lexer. */ 1150 obstack_free (&temp_parse_space, NULL); 1151 obstack_init (&temp_parse_space); 1152 components.clear (); 1153 associations.clear (); 1154 1155 int result = yyparse (); 1156 if (!result) 1157 { 1158 struct type *context_type = nullptr; 1159 if (par_state->void_context_p) 1160 context_type = parse_type (par_state)->builtin_void; 1161 pstate->set_operation (ada_pop (true, context_type)); 1162 } 1163 return result; 1164 } 1165 1166 static void 1167 yyerror (const char *msg) 1168 { 1169 error (_("Error in expression, near `%s'."), pstate->lexptr); 1170 } 1171 1172 /* Emit expression to access an instance of SYM, in block BLOCK (if 1173 non-NULL). */ 1174 1175 static void 1176 write_var_from_sym (struct parser_state *par_state, block_symbol sym) 1177 { 1178 if (symbol_read_needs_frame (sym.symbol)) 1179 par_state->block_tracker->update (sym.block, INNERMOST_BLOCK_FOR_SYMBOLS); 1180 1181 par_state->push_new<ada_var_value_operation> (sym); 1182 } 1183 1184 /* Write integer or boolean constant ARG of type TYPE. */ 1185 1186 static void 1187 write_int (struct parser_state *par_state, LONGEST arg, struct type *type) 1188 { 1189 pstate->push_new<long_const_operation> (type, arg); 1190 ada_wrap<ada_wrapped_operation> (); 1191 } 1192 1193 /* Emit expression corresponding to the renamed object named 1194 designated by RENAMED_ENTITY[0 .. RENAMED_ENTITY_LEN-1] in the 1195 context of ORIG_LEFT_CONTEXT, to which is applied the operations 1196 encoded by RENAMING_EXPR. MAX_DEPTH is the maximum number of 1197 cascaded renamings to allow. If ORIG_LEFT_CONTEXT is null, it 1198 defaults to the currently selected block. ORIG_SYMBOL is the 1199 symbol that originally encoded the renaming. It is needed only 1200 because its prefix also qualifies any index variables used to index 1201 or slice an array. It should not be necessary once we go to the 1202 new encoding entirely (FIXME pnh 7/20/2007). */ 1203 1204 static void 1205 write_object_renaming (struct parser_state *par_state, 1206 const struct block *orig_left_context, 1207 const char *renamed_entity, int renamed_entity_len, 1208 const char *renaming_expr, int max_depth) 1209 { 1210 char *name; 1211 enum { SIMPLE_INDEX, LOWER_BOUND, UPPER_BOUND } slice_state; 1212 struct block_symbol sym_info; 1213 1214 if (max_depth <= 0) 1215 error (_("Could not find renamed symbol")); 1216 1217 if (orig_left_context == NULL) 1218 orig_left_context = get_selected_block (NULL); 1219 1220 name = obstack_strndup (&temp_parse_space, renamed_entity, 1221 renamed_entity_len); 1222 ada_lookup_encoded_symbol (name, orig_left_context, VAR_DOMAIN, &sym_info); 1223 if (sym_info.symbol == NULL) 1224 error (_("Could not find renamed variable: %s"), ada_decode (name).c_str ()); 1225 else if (sym_info.symbol->aclass () == LOC_TYPEDEF) 1226 /* We have a renaming of an old-style renaming symbol. Don't 1227 trust the block information. */ 1228 sym_info.block = orig_left_context; 1229 1230 { 1231 const char *inner_renamed_entity; 1232 int inner_renamed_entity_len; 1233 const char *inner_renaming_expr; 1234 1235 switch (ada_parse_renaming (sym_info.symbol, &inner_renamed_entity, 1236 &inner_renamed_entity_len, 1237 &inner_renaming_expr)) 1238 { 1239 case ADA_NOT_RENAMING: 1240 write_var_from_sym (par_state, sym_info); 1241 break; 1242 case ADA_OBJECT_RENAMING: 1243 write_object_renaming (par_state, sym_info.block, 1244 inner_renamed_entity, inner_renamed_entity_len, 1245 inner_renaming_expr, max_depth - 1); 1246 break; 1247 default: 1248 goto BadEncoding; 1249 } 1250 } 1251 1252 slice_state = SIMPLE_INDEX; 1253 while (*renaming_expr == 'X') 1254 { 1255 renaming_expr += 1; 1256 1257 switch (*renaming_expr) { 1258 case 'A': 1259 renaming_expr += 1; 1260 ada_wrap<ada_unop_ind_operation> (); 1261 break; 1262 case 'L': 1263 slice_state = LOWER_BOUND; 1264 /* FALLTHROUGH */ 1265 case 'S': 1266 renaming_expr += 1; 1267 if (isdigit (*renaming_expr)) 1268 { 1269 char *next; 1270 long val = strtol (renaming_expr, &next, 10); 1271 if (next == renaming_expr) 1272 goto BadEncoding; 1273 renaming_expr = next; 1274 write_int (par_state, val, type_int (par_state)); 1275 } 1276 else 1277 { 1278 const char *end; 1279 char *index_name; 1280 struct block_symbol index_sym_info; 1281 1282 end = strchr (renaming_expr, 'X'); 1283 if (end == NULL) 1284 end = renaming_expr + strlen (renaming_expr); 1285 1286 index_name = obstack_strndup (&temp_parse_space, renaming_expr, 1287 end - renaming_expr); 1288 renaming_expr = end; 1289 1290 ada_lookup_encoded_symbol (index_name, orig_left_context, 1291 VAR_DOMAIN, &index_sym_info); 1292 if (index_sym_info.symbol == NULL) 1293 error (_("Could not find %s"), index_name); 1294 else if (index_sym_info.symbol->aclass () == LOC_TYPEDEF) 1295 /* Index is an old-style renaming symbol. */ 1296 index_sym_info.block = orig_left_context; 1297 write_var_from_sym (par_state, index_sym_info); 1298 } 1299 if (slice_state == SIMPLE_INDEX) 1300 ada_funcall (1); 1301 else if (slice_state == LOWER_BOUND) 1302 slice_state = UPPER_BOUND; 1303 else if (slice_state == UPPER_BOUND) 1304 { 1305 ada_wrap3<ada_ternop_slice_operation> (); 1306 slice_state = SIMPLE_INDEX; 1307 } 1308 break; 1309 1310 case 'R': 1311 { 1312 const char *end; 1313 1314 renaming_expr += 1; 1315 1316 if (slice_state != SIMPLE_INDEX) 1317 goto BadEncoding; 1318 end = strchr (renaming_expr, 'X'); 1319 if (end == NULL) 1320 end = renaming_expr + strlen (renaming_expr); 1321 1322 operation_up arg = ada_pop (); 1323 pstate->push_new<ada_structop_operation> 1324 (std::move (arg), std::string (renaming_expr, 1325 end - renaming_expr)); 1326 renaming_expr = end; 1327 break; 1328 } 1329 1330 default: 1331 goto BadEncoding; 1332 } 1333 } 1334 if (slice_state == SIMPLE_INDEX) 1335 return; 1336 1337 BadEncoding: 1338 error (_("Internal error in encoding of renaming declaration")); 1339 } 1340 1341 static const struct block* 1342 block_lookup (const struct block *context, const char *raw_name) 1343 { 1344 const char *name; 1345 struct symtab *symtab; 1346 const struct block *result = NULL; 1347 1348 std::string name_storage; 1349 if (raw_name[0] == '\'') 1350 { 1351 raw_name += 1; 1352 name = raw_name; 1353 } 1354 else 1355 { 1356 name_storage = ada_encode (raw_name); 1357 name = name_storage.c_str (); 1358 } 1359 1360 std::vector<struct block_symbol> syms 1361 = ada_lookup_symbol_list (name, context, VAR_DOMAIN); 1362 1363 if (context == NULL 1364 && (syms.empty () || syms[0].symbol->aclass () != LOC_BLOCK)) 1365 symtab = lookup_symtab (name); 1366 else 1367 symtab = NULL; 1368 1369 if (symtab != NULL) 1370 result = symtab->compunit ()->blockvector ()->static_block (); 1371 else if (syms.empty () || syms[0].symbol->aclass () != LOC_BLOCK) 1372 { 1373 if (context == NULL) 1374 error (_("No file or function \"%s\"."), raw_name); 1375 else 1376 error (_("No function \"%s\" in specified context."), raw_name); 1377 } 1378 else 1379 { 1380 if (syms.size () > 1) 1381 warning (_("Function name \"%s\" ambiguous here"), raw_name); 1382 result = syms[0].symbol->value_block (); 1383 } 1384 1385 return result; 1386 } 1387 1388 static struct symbol* 1389 select_possible_type_sym (const std::vector<struct block_symbol> &syms) 1390 { 1391 int i; 1392 int preferred_index; 1393 struct type *preferred_type; 1394 1395 preferred_index = -1; preferred_type = NULL; 1396 for (i = 0; i < syms.size (); i += 1) 1397 switch (syms[i].symbol->aclass ()) 1398 { 1399 case LOC_TYPEDEF: 1400 if (ada_prefer_type (syms[i].symbol->type (), preferred_type)) 1401 { 1402 preferred_index = i; 1403 preferred_type = syms[i].symbol->type (); 1404 } 1405 break; 1406 case LOC_REGISTER: 1407 case LOC_ARG: 1408 case LOC_REF_ARG: 1409 case LOC_REGPARM_ADDR: 1410 case LOC_LOCAL: 1411 case LOC_COMPUTED: 1412 return NULL; 1413 default: 1414 break; 1415 } 1416 if (preferred_type == NULL) 1417 return NULL; 1418 return syms[preferred_index].symbol; 1419 } 1420 1421 static struct type* 1422 find_primitive_type (struct parser_state *par_state, const char *name) 1423 { 1424 struct type *type; 1425 type = language_lookup_primitive_type (par_state->language (), 1426 par_state->gdbarch (), 1427 name); 1428 if (type == NULL && strcmp ("system__address", name) == 0) 1429 type = type_system_address (par_state); 1430 1431 if (type != NULL) 1432 { 1433 /* Check to see if we have a regular definition of this 1434 type that just didn't happen to have been read yet. */ 1435 struct symbol *sym; 1436 char *expanded_name = 1437 (char *) alloca (strlen (name) + sizeof ("standard__")); 1438 strcpy (expanded_name, "standard__"); 1439 strcat (expanded_name, name); 1440 sym = ada_lookup_symbol (expanded_name, NULL, VAR_DOMAIN).symbol; 1441 if (sym != NULL && sym->aclass () == LOC_TYPEDEF) 1442 type = sym->type (); 1443 } 1444 1445 return type; 1446 } 1447 1448 static int 1449 chop_selector (const char *name, int end) 1450 { 1451 int i; 1452 for (i = end - 1; i > 0; i -= 1) 1453 if (name[i] == '.' || (name[i] == '_' && name[i+1] == '_')) 1454 return i; 1455 return -1; 1456 } 1457 1458 /* If NAME is a string beginning with a separator (either '__', or 1459 '.'), chop this separator and return the result; else, return 1460 NAME. */ 1461 1462 static const char * 1463 chop_separator (const char *name) 1464 { 1465 if (*name == '.') 1466 return name + 1; 1467 1468 if (name[0] == '_' && name[1] == '_') 1469 return name + 2; 1470 1471 return name; 1472 } 1473 1474 /* Given that SELS is a string of the form (<sep><identifier>)*, where 1475 <sep> is '__' or '.', write the indicated sequence of 1476 STRUCTOP_STRUCT expression operators. Returns a pointer to the 1477 last operation that was pushed. */ 1478 static ada_structop_operation * 1479 write_selectors (struct parser_state *par_state, const char *sels) 1480 { 1481 ada_structop_operation *result = nullptr; 1482 while (*sels != '\0') 1483 { 1484 const char *p = chop_separator (sels); 1485 sels = p; 1486 while (*sels != '\0' && *sels != '.' 1487 && (sels[0] != '_' || sels[1] != '_')) 1488 sels += 1; 1489 operation_up arg = ada_pop (); 1490 result = new ada_structop_operation (std::move (arg), 1491 std::string (p, sels - p)); 1492 pstate->push (operation_up (result)); 1493 } 1494 return result; 1495 } 1496 1497 /* Write a variable access (OP_VAR_VALUE) to ambiguous encoded name 1498 NAME[0..LEN-1], in block context BLOCK, to be resolved later. Writes 1499 a temporary symbol that is valid until the next call to ada_parse. 1500 */ 1501 static void 1502 write_ambiguous_var (struct parser_state *par_state, 1503 const struct block *block, const char *name, int len) 1504 { 1505 struct symbol *sym = new (&temp_parse_space) symbol (); 1506 1507 sym->set_domain (UNDEF_DOMAIN); 1508 sym->set_linkage_name (obstack_strndup (&temp_parse_space, name, len)); 1509 sym->set_language (language_ada, nullptr); 1510 1511 block_symbol bsym { sym, block }; 1512 par_state->push_new<ada_var_value_operation> (bsym); 1513 } 1514 1515 /* A convenient wrapper around ada_get_field_index that takes 1516 a non NUL-terminated FIELD_NAME0 and a FIELD_NAME_LEN instead 1517 of a NUL-terminated field name. */ 1518 1519 static int 1520 ada_nget_field_index (const struct type *type, const char *field_name0, 1521 int field_name_len, int maybe_missing) 1522 { 1523 char *field_name = (char *) alloca ((field_name_len + 1) * sizeof (char)); 1524 1525 strncpy (field_name, field_name0, field_name_len); 1526 field_name[field_name_len] = '\0'; 1527 return ada_get_field_index (type, field_name, maybe_missing); 1528 } 1529 1530 /* If encoded_field_name is the name of a field inside symbol SYM, 1531 then return the type of that field. Otherwise, return NULL. 1532 1533 This function is actually recursive, so if ENCODED_FIELD_NAME 1534 doesn't match one of the fields of our symbol, then try to see 1535 if ENCODED_FIELD_NAME could not be a succession of field names 1536 (in other words, the user entered an expression of the form 1537 TYPE_NAME.FIELD1.FIELD2.FIELD3), in which case we evaluate 1538 each field name sequentially to obtain the desired field type. 1539 In case of failure, we return NULL. */ 1540 1541 static struct type * 1542 get_symbol_field_type (struct symbol *sym, const char *encoded_field_name) 1543 { 1544 const char *field_name = encoded_field_name; 1545 const char *subfield_name; 1546 struct type *type = sym->type (); 1547 int fieldno; 1548 1549 if (type == NULL || field_name == NULL) 1550 return NULL; 1551 type = check_typedef (type); 1552 1553 while (field_name[0] != '\0') 1554 { 1555 field_name = chop_separator (field_name); 1556 1557 fieldno = ada_get_field_index (type, field_name, 1); 1558 if (fieldno >= 0) 1559 return type->field (fieldno).type (); 1560 1561 subfield_name = field_name; 1562 while (*subfield_name != '\0' && *subfield_name != '.' 1563 && (subfield_name[0] != '_' || subfield_name[1] != '_')) 1564 subfield_name += 1; 1565 1566 if (subfield_name[0] == '\0') 1567 return NULL; 1568 1569 fieldno = ada_nget_field_index (type, field_name, 1570 subfield_name - field_name, 1); 1571 if (fieldno < 0) 1572 return NULL; 1573 1574 type = type->field (fieldno).type (); 1575 field_name = subfield_name; 1576 } 1577 1578 return NULL; 1579 } 1580 1581 /* Look up NAME0 (an unencoded identifier or dotted name) in BLOCK (or 1582 expression_block_context if NULL). If it denotes a type, return 1583 that type. Otherwise, write expression code to evaluate it as an 1584 object and return NULL. In this second case, NAME0 will, in general, 1585 have the form <name>(.<selector_name>)*, where <name> is an object 1586 or renaming encoded in the debugging data. Calls error if no 1587 prefix <name> matches a name in the debugging data (i.e., matches 1588 either a complete name or, as a wild-card match, the final 1589 identifier). */ 1590 1591 static struct type* 1592 write_var_or_type (struct parser_state *par_state, 1593 const struct block *block, struct stoken name0) 1594 { 1595 int depth; 1596 char *encoded_name; 1597 int name_len; 1598 1599 if (block == NULL) 1600 block = par_state->expression_context_block; 1601 1602 std::string name_storage = ada_encode (name0.ptr); 1603 name_len = name_storage.size (); 1604 encoded_name = obstack_strndup (&temp_parse_space, name_storage.c_str (), 1605 name_len); 1606 for (depth = 0; depth < MAX_RENAMING_CHAIN_LENGTH; depth += 1) 1607 { 1608 int tail_index; 1609 1610 tail_index = name_len; 1611 while (tail_index > 0) 1612 { 1613 struct symbol *type_sym; 1614 struct symbol *renaming_sym; 1615 const char* renaming; 1616 int renaming_len; 1617 const char* renaming_expr; 1618 int terminator = encoded_name[tail_index]; 1619 1620 encoded_name[tail_index] = '\0'; 1621 /* In order to avoid double-encoding, we want to only pass 1622 the decoded form to lookup functions. */ 1623 std::string decoded_name = ada_decode (encoded_name); 1624 encoded_name[tail_index] = terminator; 1625 1626 std::vector<struct block_symbol> syms 1627 = ada_lookup_symbol_list (decoded_name.c_str (), block, VAR_DOMAIN); 1628 1629 type_sym = select_possible_type_sym (syms); 1630 1631 if (type_sym != NULL) 1632 renaming_sym = type_sym; 1633 else if (syms.size () == 1) 1634 renaming_sym = syms[0].symbol; 1635 else 1636 renaming_sym = NULL; 1637 1638 switch (ada_parse_renaming (renaming_sym, &renaming, 1639 &renaming_len, &renaming_expr)) 1640 { 1641 case ADA_NOT_RENAMING: 1642 break; 1643 case ADA_PACKAGE_RENAMING: 1644 case ADA_EXCEPTION_RENAMING: 1645 case ADA_SUBPROGRAM_RENAMING: 1646 { 1647 int alloc_len = renaming_len + name_len - tail_index + 1; 1648 char *new_name 1649 = (char *) obstack_alloc (&temp_parse_space, alloc_len); 1650 strncpy (new_name, renaming, renaming_len); 1651 strcpy (new_name + renaming_len, encoded_name + tail_index); 1652 encoded_name = new_name; 1653 name_len = renaming_len + name_len - tail_index; 1654 goto TryAfterRenaming; 1655 } 1656 case ADA_OBJECT_RENAMING: 1657 write_object_renaming (par_state, block, renaming, renaming_len, 1658 renaming_expr, MAX_RENAMING_CHAIN_LENGTH); 1659 write_selectors (par_state, encoded_name + tail_index); 1660 return NULL; 1661 default: 1662 internal_error (_("impossible value from ada_parse_renaming")); 1663 } 1664 1665 if (type_sym != NULL) 1666 { 1667 struct type *field_type; 1668 1669 if (tail_index == name_len) 1670 return type_sym->type (); 1671 1672 /* We have some extraneous characters after the type name. 1673 If this is an expression "TYPE_NAME.FIELD0.[...].FIELDN", 1674 then try to get the type of FIELDN. */ 1675 field_type 1676 = get_symbol_field_type (type_sym, encoded_name + tail_index); 1677 if (field_type != NULL) 1678 return field_type; 1679 else 1680 error (_("Invalid attempt to select from type: \"%s\"."), 1681 name0.ptr); 1682 } 1683 else if (tail_index == name_len && syms.empty ()) 1684 { 1685 struct type *type = find_primitive_type (par_state, 1686 encoded_name); 1687 1688 if (type != NULL) 1689 return type; 1690 } 1691 1692 if (syms.size () == 1) 1693 { 1694 write_var_from_sym (par_state, syms[0]); 1695 write_selectors (par_state, encoded_name + tail_index); 1696 return NULL; 1697 } 1698 else if (syms.empty ()) 1699 { 1700 struct objfile *objfile = nullptr; 1701 if (block != nullptr) 1702 objfile = block_objfile (block); 1703 1704 struct bound_minimal_symbol msym 1705 = ada_lookup_simple_minsym (decoded_name.c_str (), objfile); 1706 if (msym.minsym != NULL) 1707 { 1708 par_state->push_new<ada_var_msym_value_operation> (msym); 1709 /* Maybe cause error here rather than later? FIXME? */ 1710 write_selectors (par_state, encoded_name + tail_index); 1711 return NULL; 1712 } 1713 1714 if (tail_index == name_len 1715 && strncmp (encoded_name, "standard__", 1716 sizeof ("standard__") - 1) == 0) 1717 error (_("No definition of \"%s\" found."), name0.ptr); 1718 1719 tail_index = chop_selector (encoded_name, tail_index); 1720 } 1721 else 1722 { 1723 write_ambiguous_var (par_state, block, encoded_name, 1724 tail_index); 1725 write_selectors (par_state, encoded_name + tail_index); 1726 return NULL; 1727 } 1728 } 1729 1730 if (!have_full_symbols () && !have_partial_symbols () && block == NULL) 1731 error (_("No symbol table is loaded. Use the \"file\" command.")); 1732 if (block == par_state->expression_context_block) 1733 error (_("No definition of \"%s\" in current context."), name0.ptr); 1734 else 1735 error (_("No definition of \"%s\" in specified context."), name0.ptr); 1736 1737 TryAfterRenaming: ; 1738 } 1739 1740 error (_("Could not find renamed symbol \"%s\""), name0.ptr); 1741 1742 } 1743 1744 /* Because ada_completer_word_break_characters does not contain '.' -- 1745 and it cannot easily be added, this breaks other completions -- we 1746 have to recreate the completion word-splitting here, so that we can 1747 provide a prefix that is then used when completing field names. 1748 Without this, an attempt like "complete print abc.d" will give a 1749 result like "print def" rather than "print abc.def". */ 1750 1751 static std::string 1752 find_completion_bounds (struct parser_state *par_state) 1753 { 1754 const char *end = pstate->lexptr; 1755 /* First the end of the prefix. Here we stop at the token start or 1756 at '.' or space. */ 1757 for (; end > original_expr && end[-1] != '.' && !isspace (end[-1]); --end) 1758 { 1759 /* Nothing. */ 1760 } 1761 /* Now find the start of the prefix. */ 1762 const char *ptr = end; 1763 /* Here we allow '.'. */ 1764 for (; 1765 ptr > original_expr && (ptr[-1] == '.' 1766 || ptr[-1] == '_' 1767 || (ptr[-1] >= 'a' && ptr[-1] <= 'z') 1768 || (ptr[-1] >= 'A' && ptr[-1] <= 'Z') 1769 || (ptr[-1] & 0xff) >= 0x80); 1770 --ptr) 1771 { 1772 /* Nothing. */ 1773 } 1774 /* ... except, skip leading spaces. */ 1775 ptr = skip_spaces (ptr); 1776 1777 return std::string (ptr, end); 1778 } 1779 1780 /* A wrapper for write_var_or_type that is used specifically when 1781 completion is requested for the last of a sequence of 1782 identifiers. */ 1783 1784 static struct type * 1785 write_var_or_type_completion (struct parser_state *par_state, 1786 const struct block *block, struct stoken name0) 1787 { 1788 int tail_index = chop_selector (name0.ptr, name0.length); 1789 /* If there's no separator, just defer to ordinary symbol 1790 completion. */ 1791 if (tail_index == -1) 1792 return write_var_or_type (par_state, block, name0); 1793 1794 std::string copy (name0.ptr, tail_index); 1795 struct type *type = write_var_or_type (par_state, block, 1796 { copy.c_str (), 1797 (int) copy.length () }); 1798 /* For completion purposes, it's enough that we return a type 1799 here. */ 1800 if (type != nullptr) 1801 return type; 1802 1803 ada_structop_operation *op = write_selectors (par_state, 1804 name0.ptr + tail_index); 1805 op->set_prefix (find_completion_bounds (par_state)); 1806 par_state->mark_struct_expression (op); 1807 return nullptr; 1808 } 1809 1810 /* Write a left side of a component association (e.g., NAME in NAME => 1811 exp). If NAME has the form of a selected component, write it as an 1812 ordinary expression. If it is a simple variable that unambiguously 1813 corresponds to exactly one symbol that does not denote a type or an 1814 object renaming, also write it normally as an OP_VAR_VALUE. 1815 Otherwise, write it as an OP_NAME. 1816 1817 Unfortunately, we don't know at this point whether NAME is supposed 1818 to denote a record component name or the value of an array index. 1819 Therefore, it is not appropriate to disambiguate an ambiguous name 1820 as we normally would, nor to replace a renaming with its referent. 1821 As a result, in the (one hopes) rare case that one writes an 1822 aggregate such as (R => 42) where R renames an object or is an 1823 ambiguous name, one must write instead ((R) => 42). */ 1824 1825 static void 1826 write_name_assoc (struct parser_state *par_state, struct stoken name) 1827 { 1828 if (strchr (name.ptr, '.') == NULL) 1829 { 1830 std::vector<struct block_symbol> syms 1831 = ada_lookup_symbol_list (name.ptr, 1832 par_state->expression_context_block, 1833 VAR_DOMAIN); 1834 1835 if (syms.size () != 1 || syms[0].symbol->aclass () == LOC_TYPEDEF) 1836 pstate->push_new<ada_string_operation> (copy_name (name)); 1837 else 1838 write_var_from_sym (par_state, syms[0]); 1839 } 1840 else 1841 if (write_var_or_type (par_state, NULL, name) != NULL) 1842 error (_("Invalid use of type.")); 1843 1844 push_association<ada_name_association> (ada_pop ()); 1845 } 1846 1847 static struct type * 1848 type_int (struct parser_state *par_state) 1849 { 1850 return parse_type (par_state)->builtin_int; 1851 } 1852 1853 static struct type * 1854 type_long (struct parser_state *par_state) 1855 { 1856 return parse_type (par_state)->builtin_long; 1857 } 1858 1859 static struct type * 1860 type_long_long (struct parser_state *par_state) 1861 { 1862 return parse_type (par_state)->builtin_long_long; 1863 } 1864 1865 static struct type * 1866 type_long_double (struct parser_state *par_state) 1867 { 1868 return parse_type (par_state)->builtin_long_double; 1869 } 1870 1871 static struct type * 1872 type_for_char (struct parser_state *par_state, ULONGEST value) 1873 { 1874 if (value <= 0xff) 1875 return language_string_char_type (par_state->language (), 1876 par_state->gdbarch ()); 1877 else if (value <= 0xffff) 1878 return language_lookup_primitive_type (par_state->language (), 1879 par_state->gdbarch (), 1880 "wide_character"); 1881 return language_lookup_primitive_type (par_state->language (), 1882 par_state->gdbarch (), 1883 "wide_wide_character"); 1884 } 1885 1886 static struct type * 1887 type_boolean (struct parser_state *par_state) 1888 { 1889 return parse_type (par_state)->builtin_bool; 1890 } 1891 1892 static struct type * 1893 type_system_address (struct parser_state *par_state) 1894 { 1895 struct type *type 1896 = language_lookup_primitive_type (par_state->language (), 1897 par_state->gdbarch (), 1898 "system__address"); 1899 return type != NULL ? type : parse_type (par_state)->builtin_data_ptr; 1900 } 1901 1902 void _initialize_ada_exp (); 1903 void 1904 _initialize_ada_exp () 1905 { 1906 obstack_init (&temp_parse_space); 1907 } 1908