xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/doc/html/manual/strings.html (revision a2dc1f3faca890bc62c61c70cbcb4657d1fe6044)
1<?xml version="1.0" encoding="UTF-8" standalone="no"?>
2<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>Chapter 7.  Strings</title><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><meta name="keywords" content="ISO C++, library" /><meta name="keywords" content="ISO C++, runtime, library" /><link rel="home" href="../index.html" title="The GNU C++ Library" /><link rel="up" href="std_contents.html" title="Part II.  Standard Contents" /><link rel="prev" href="traits.html" title="Traits" /><link rel="next" href="localization.html" title="Chapter 8.  Localization" /></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter 7. 
3  Strings
4
5</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="traits.html">Prev</a> </td><th width="60%" align="center">Part II. 
6    Standard Contents
7  </th><td width="20%" align="right"> <a accesskey="n" href="localization.html">Next</a></td></tr></table><hr /></div><div class="chapter"><div class="titlepage"><div><div><h2 class="title"><a id="std.strings"></a>Chapter 7. 
8  Strings
9  <a id="id-1.3.4.5.1.1.1" class="indexterm"></a>
10</h2></div></div></div><div class="toc"><p><strong>Table of Contents</strong></p><dl class="toc"><dt><span class="section"><a href="strings.html#std.strings.string">String Classes</a></span></dt><dd><dl><dt><span class="section"><a href="strings.html#strings.string.simple">Simple Transformations</a></span></dt><dt><span class="section"><a href="strings.html#strings.string.case">Case Sensitivity</a></span></dt><dt><span class="section"><a href="strings.html#strings.string.character_types">Arbitrary Character Types</a></span></dt><dt><span class="section"><a href="strings.html#strings.string.token">Tokenizing</a></span></dt><dt><span class="section"><a href="strings.html#strings.string.shrink">Shrink to Fit</a></span></dt><dt><span class="section"><a href="strings.html#strings.string.Cstring">CString (MFC)</a></span></dt></dl></dd></dl></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="std.strings.string"></a>String Classes</h2></div></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="strings.string.simple"></a>Simple Transformations</h3></div></div></div><p>
11      Here are Standard, simple, and portable ways to perform common
12      transformations on a <code class="code">string</code> instance, such as
13      "convert to all upper case." The word transformations
14      is especially apt, because the standard template function
15      <code class="code">transform&lt;&gt;</code> is used.
16   </p><p>
17     This code will go through some iterations.  Here's a simple
18     version:
19   </p><pre class="programlisting">
20   #include &lt;string&gt;
21   #include &lt;algorithm&gt;
22   #include &lt;cctype&gt;      // old &lt;ctype.h&gt;
23
24   struct ToLower
25   {
26     char operator() (char c) const  { return std::tolower(c); }
27   };
28
29   struct ToUpper
30   {
31     char operator() (char c) const  { return std::toupper(c); }
32   };
33
34   int main()
35   {
36     std::string  s ("Some Kind Of Initial Input Goes Here");
37
38     // Change everything into upper case
39     std::transform (s.begin(), s.end(), s.begin(), ToUpper());
40
41     // Change everything into lower case
42     std::transform (s.begin(), s.end(), s.begin(), ToLower());
43
44     // Change everything back into upper case, but store the
45     // result in a different string
46     std::string  capital_s;
47     capital_s.resize(s.size());
48     std::transform (s.begin(), s.end(), capital_s.begin(), ToUpper());
49   }
50   </pre><p>
51     <span class="emphasis"><em>Note</em></span> that these calls all
52      involve the global C locale through the use of the C functions
53      <code class="code">toupper/tolower</code>.  This is absolutely guaranteed to work --
54      but <span class="emphasis"><em>only</em></span> if the string contains <span class="emphasis"><em>only</em></span> characters
55      from the basic source character set, and there are <span class="emphasis"><em>only</em></span>
56      96 of those.  Which means that not even all English text can be
57      represented (certain British spellings, proper names, and so forth).
58      So, if all your input forevermore consists of only those 96
59      characters (hahahahahaha), then you're done.
60   </p><p><span class="emphasis"><em>Note</em></span> that the
61      <code class="code">ToUpper</code> and <code class="code">ToLower</code> function objects
62      are needed because <code class="code">toupper</code> and <code class="code">tolower</code>
63      are overloaded names (declared in <code class="code">&lt;cctype&gt;</code> and
64      <code class="code">&lt;locale&gt;</code>) so the template-arguments for
65      <code class="code">transform&lt;&gt;</code> cannot be deduced, as explained in
66      <a class="link" href="http://gcc.gnu.org/ml/libstdc++/2002-11/msg00180.html" target="_top">this
67      message</a>.
68
69      At minimum, you can write short wrappers like
70   </p><pre class="programlisting">
71   char toLower (char c)
72   {
73      // std::tolower(c) is undefined if c &lt; 0 so cast to unsigned char.
74      return std::tolower((unsigned char)c);
75   } </pre><p>(Thanks to James Kanze for assistance and suggestions on all of this.)
76   </p><p>Another common operation is trimming off excess whitespace.  Much
77      like transformations, this task is trivial with the use of string's
78      <code class="code">find</code> family.  These examples are broken into multiple
79      statements for readability:
80   </p><pre class="programlisting">
81   std::string  str (" \t blah blah blah    \n ");
82
83   // trim leading whitespace
84   string::size_type  notwhite = str.find_first_not_of(" \t\n");
85   str.erase(0,notwhite);
86
87   // trim trailing whitespace
88   notwhite = str.find_last_not_of(" \t\n");
89   str.erase(notwhite+1); </pre><p>Obviously, the calls to <code class="code">find</code> could be inserted directly
90      into the calls to <code class="code">erase</code>, in case your compiler does not
91      optimize named temporaries out of existence.
92   </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="strings.string.case"></a>Case Sensitivity</h3></div></div></div><p>
93    </p><p>The well-known-and-if-it-isn't-well-known-it-ought-to-be
94      <a class="link" href="http://www.gotw.ca/gotw/" target="_top">Guru of the Week</a>
95      discussions held on Usenet covered this topic in January of 1998.
96      Briefly, the challenge was, <span class="quote">“<span class="quote">write a 'ci_string' class which
97      is identical to the standard 'string' class, but is
98      case-insensitive in the same way as the (common but nonstandard)
99      C function stricmp()</span>”</span>.
100   </p><pre class="programlisting">
101   ci_string s( "AbCdE" );
102
103   // case insensitive
104   assert( s == "abcde" );
105   assert( s == "ABCDE" );
106
107   // still case-preserving, of course
108   assert( strcmp( s.c_str(), "AbCdE" ) == 0 );
109   assert( strcmp( s.c_str(), "abcde" ) != 0 ); </pre><p>The solution is surprisingly easy.  The original answer was
110   posted on Usenet, and a revised version appears in Herb Sutter's
111   book <span class="emphasis"><em>Exceptional C++</em></span> and on his website as <a class="link" href="http://www.gotw.ca/gotw/029.htm" target="_top">GotW 29</a>.
112   </p><p>See?  Told you it was easy!</p><p>
113     <span class="emphasis"><em>Added June 2000:</em></span> The May 2000 issue of C++
114     Report contains a fascinating <a class="link" href="http://lafstern.org/matt/col2_new.pdf" target="_top"> article</a> by
115     Matt Austern (yes, <span class="emphasis"><em>the</em></span> Matt Austern) on why
116     case-insensitive comparisons are not as easy as they seem, and
117     why creating a class is the <span class="emphasis"><em>wrong</em></span> way to go
118     about it in production code.  (The GotW answer mentions one of
119     the principle difficulties; his article mentions more.)
120   </p><p>Basically, this is "easy" only if you ignore some things,
121      things which may be too important to your program to ignore.  (I chose
122      to ignore them when originally writing this entry, and am surprised
123      that nobody ever called me on it...)  The GotW question and answer
124      remain useful instructional tools, however.
125   </p><p><span class="emphasis"><em>Added September 2000:</em></span>  James Kanze provided a link to a
126      <a class="link" href="http://www.unicode.org/reports/tr21/tr21-5.html" target="_top">Unicode
127      Technical Report discussing case handling</a>, which provides some
128      very good information.
129   </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="strings.string.character_types"></a>Arbitrary Character Types</h3></div></div></div><p>
130    </p><p>The <code class="code">std::basic_string</code> is tantalizingly general, in that
131      it is parameterized on the type of the characters which it holds.
132      In theory, you could whip up a Unicode character class and instantiate
133      <code class="code">std::basic_string&lt;my_unicode_char&gt;</code>, or assuming
134      that integers are wider than characters on your platform, maybe just
135      declare variables of type <code class="code">std::basic_string&lt;int&gt;</code>.
136   </p><p>That's the theory.  Remember however that basic_string has additional
137      type parameters, which take default arguments based on the character
138      type (called <code class="code">CharT</code> here):
139   </p><pre class="programlisting">
140      template &lt;typename CharT,
141		typename Traits = char_traits&lt;CharT&gt;,
142		typename Alloc = allocator&lt;CharT&gt; &gt;
143      class basic_string { .... };</pre><p>Now, <code class="code">allocator&lt;CharT&gt;</code> will probably Do The Right
144      Thing by default, unless you need to implement your own allocator
145      for your characters.
146   </p><p>But <code class="code">char_traits</code> takes more work.  The char_traits
147      template is <span class="emphasis"><em>declared</em></span> but not <span class="emphasis"><em>defined</em></span>.
148      That means there is only
149   </p><pre class="programlisting">
150      template &lt;typename CharT&gt;
151	struct char_traits
152	{
153	    static void foo (type1 x, type2 y);
154	    ...
155	};</pre><p>and functions such as char_traits&lt;CharT&gt;::foo() are not
156      actually defined anywhere for the general case.  The C++ standard
157      permits this, because writing such a definition to fit all possible
158      CharT's cannot be done.
159   </p><p>The C++ standard also requires that char_traits be specialized for
160      instantiations of <code class="code">char</code> and <code class="code">wchar_t</code>, and it
161      is these template specializations that permit entities like
162      <code class="code">basic_string&lt;char,char_traits&lt;char&gt;&gt;</code> to work.
163   </p><p>If you want to use character types other than char and wchar_t,
164      such as <code class="code">unsigned char</code> and <code class="code">int</code>, you will
165      need suitable specializations for them.  For a time, in earlier
166      versions of GCC, there was a mostly-correct implementation that
167      let programmers be lazy but it broke under many situations, so it
168      was removed.  GCC 3.4 introduced a new implementation that mostly
169      works and can be specialized even for <code class="code">int</code> and other
170      built-in types.
171   </p><p>If you want to use your own special character class, then you have
172      <a class="link" href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00163.html" target="_top">a lot
173      of work to do</a>, especially if you with to use i18n features
174      (facets require traits information but don't have a traits argument).
175   </p><p>Another example of how to specialize char_traits was given <a class="link" href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00260.html" target="_top">on the
176      mailing list</a> and at a later date was put into the file <code class="code">
177      include/ext/pod_char_traits.h</code>.  We agree
178      that the way it's used with basic_string (scroll down to main())
179      doesn't look nice, but that's because <a class="link" href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00236.html" target="_top">the
180      nice-looking first attempt</a> turned out to <a class="link" href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00242.html" target="_top">not
181      be conforming C++</a>, due to the rule that CharT must be a POD.
182      (See how tricky this is?)
183   </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="strings.string.token"></a>Tokenizing</h3></div></div></div><p>
184    </p><p>The Standard C (and C++) function <code class="code">strtok()</code> leaves a lot to
185      be desired in terms of user-friendliness.  It's unintuitive, it
186      destroys the character string on which it operates, and it requires
187      you to handle all the memory problems.  But it does let the client
188      code decide what to use to break the string into pieces; it allows
189      you to choose the "whitespace," so to speak.
190   </p><p>A C++ implementation lets us keep the good things and fix those
191      annoyances.  The implementation here is more intuitive (you only
192      call it once, not in a loop with varying argument), it does not
193      affect the original string at all, and all the memory allocation
194      is handled for you.
195   </p><p>It's called stringtok, and it's a template function. Sources are
196   as below, in a less-portable form than it could be, to keep this
197   example simple (for example, see the comments on what kind of
198   string it will accept).
199   </p><pre class="programlisting">
200#include &lt;string&gt;
201template &lt;typename Container&gt;
202void
203stringtok(Container &amp;container, string const &amp;in,
204	  const char * const delimiters = " \t\n")
205{
206    const string::size_type len = in.length();
207	  string::size_type i = 0;
208
209    while (i &lt; len)
210    {
211	// Eat leading whitespace
212	i = in.find_first_not_of(delimiters, i);
213	if (i == string::npos)
214	  return;   // Nothing left but white space
215
216	// Find the end of the token
217	string::size_type j = in.find_first_of(delimiters, i);
218
219	// Push token
220	if (j == string::npos)
221	{
222	  container.push_back(in.substr(i));
223	  return;
224	}
225	else
226	  container.push_back(in.substr(i, j-i));
227
228	// Set up for next loop
229	i = j + 1;
230    }
231}
232</pre><p>
233     The author uses a more general (but less readable) form of it for
234     parsing command strings and the like.  If you compiled and ran this
235     code using it:
236   </p><pre class="programlisting">
237   std::list&lt;string&gt;  ls;
238   stringtok (ls, " this  \t is\t\n  a test  ");
239   for (std::list&lt;string&gt;const_iterator i = ls.begin();
240	i != ls.end(); ++i)
241   {
242       std::cerr &lt;&lt; ':' &lt;&lt; (*i) &lt;&lt; ":\n";
243   } </pre><p>You would see this as output:
244   </p><pre class="programlisting">
245   :this:
246   :is:
247   :a:
248   :test: </pre><p>with all the whitespace removed.  The original <code class="code">s</code> is still
249      available for use, <code class="code">ls</code> will clean up after itself, and
250      <code class="code">ls.size()</code> will return how many tokens there were.
251   </p><p>As always, there is a price paid here, in that stringtok is not
252      as fast as strtok.  The other benefits usually outweigh that, however.
253   </p><p><span class="emphasis"><em>Added February 2001:</em></span>  Mark Wilden pointed out that the
254      standard <code class="code">std::getline()</code> function can be used with standard
255      <code class="code">istringstreams</code> to perform
256      tokenizing as well.  Build an istringstream from the input text,
257      and then use std::getline with varying delimiters (the three-argument
258      signature) to extract tokens into a string.
259   </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="strings.string.shrink"></a>Shrink to Fit</h3></div></div></div><p>
260    </p><p>From GCC 3.4 calling <code class="code">s.reserve(res)</code> on a
261      <code class="code">string s</code> with <code class="code">res &lt; s.capacity()</code> will
262      reduce the string's capacity to <code class="code">std::max(s.size(), res)</code>.
263   </p><p>This behaviour is suggested, but not required by the standard. Prior
264      to GCC 3.4 the following alternative can be used instead
265   </p><pre class="programlisting">
266      std::string(str.data(), str.size()).swap(str);
267   </pre><p>This is similar to the idiom for reducing
268      a <code class="code">vector</code>'s memory usage
269      (see <a class="link" href="../faq.html#faq.size_equals_capacity" title="7.8.">this FAQ
270      entry</a>) but the regular copy constructor cannot be used
271      because libstdc++'s <code class="code">string</code> is Copy-On-Write in GCC 3.
272   </p><p>In <a class="link" href="status.html#status.iso.2011" title="C++ 2011">C++11</a> mode you can call
273      <code class="code">s.shrink_to_fit()</code> to achieve the same effect as
274      <code class="code">s.reserve(s.size())</code>.
275   </p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="strings.string.Cstring"></a>CString (MFC)</h3></div></div></div><p>
276    </p><p>A common lament seen in various newsgroups deals with the Standard
277      string class as opposed to the Microsoft Foundation Class called
278      CString.  Often programmers realize that a standard portable
279      answer is better than a proprietary nonportable one, but in porting
280      their application from a Win32 platform, they discover that they
281      are relying on special functions offered by the CString class.
282   </p><p>Things are not as bad as they seem.  In
283      <a class="link" href="http://gcc.gnu.org/ml/gcc/1999-04n/msg00236.html" target="_top">this
284      message</a>, Joe Buck points out a few very important things:
285   </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>The Standard <code class="code">string</code> supports all the operations
286	     that CString does, with three exceptions.
287	 </p></li><li class="listitem"><p>Two of those exceptions (whitespace trimming and case
288	     conversion) are trivial to implement.  In fact, we do so
289	     on this page.
290	 </p></li><li class="listitem"><p>The third is <code class="code">CString::Format</code>, which allows formatting
291	     in the style of <code class="code">sprintf</code>.  This deserves some mention:
292	 </p></li></ul></div><p>
293      The old libg++ library had a function called form(), which did much
294      the same thing.  But for a Standard solution, you should use the
295      stringstream classes.  These are the bridge between the iostream
296      hierarchy and the string class, and they operate with regular
297      streams seamlessly because they inherit from the iostream
298      hierarchy.  An quick example:
299   </p><pre class="programlisting">
300   #include &lt;iostream&gt;
301   #include &lt;string&gt;
302   #include &lt;sstream&gt;
303
304   string f (string&amp; incoming)     // incoming is "foo  N"
305   {
306       istringstream   incoming_stream(incoming);
307       string          the_word;
308       int             the_number;
309
310       incoming_stream &gt;&gt; the_word        // extract "foo"
311		       &gt;&gt; the_number;     // extract N
312
313       ostringstream   output_stream;
314       output_stream &lt;&lt; "The word was " &lt;&lt; the_word
315		     &lt;&lt; " and 3*N was " &lt;&lt; (3*the_number);
316
317       return output_stream.str();
318   } </pre><p>A serious problem with CString is a design bug in its memory
319      allocation.  Specifically, quoting from that same message:
320   </p><pre class="programlisting">
321   CString suffers from a common programming error that results in
322   poor performance.  Consider the following code:
323
324   CString n_copies_of (const CString&amp; foo, unsigned n)
325   {
326	   CString tmp;
327	   for (unsigned i = 0; i &lt; n; i++)
328		   tmp += foo;
329	   return tmp;
330   }
331
332   This function is O(n^2), not O(n).  The reason is that each +=
333   causes a reallocation and copy of the existing string.  Microsoft
334   applications are full of this kind of thing (quadratic performance
335   on tasks that can be done in linear time) -- on the other hand,
336   we should be thankful, as it's created such a big market for high-end
337   ix86 hardware. :-)
338
339   If you replace CString with string in the above function, the
340   performance is O(n).
341   </pre><p>Joe Buck also pointed out some other things to keep in mind when
342      comparing CString and the Standard string class:
343   </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>CString permits access to its internal representation; coders
344	     who exploited that may have problems moving to <code class="code">string</code>.
345	 </p></li><li class="listitem"><p>Microsoft ships the source to CString (in the files
346	     MFC\SRC\Str{core,ex}.cpp), so you could fix the allocation
347	     bug and rebuild your MFC libraries.
348	     <span class="emphasis"><em><span class="emphasis"><em>Note:</em></span> It looks like the CString shipped
349	     with VC++6.0 has fixed this, although it may in fact have been
350	     one of the VC++ SPs that did it.</em></span>
351	 </p></li><li class="listitem"><p><code class="code">string</code> operations like this have O(n) complexity
352	     <span class="emphasis"><em>if the implementors do it correctly</em></span>.  The libstdc++
353	     implementors did it correctly.  Other vendors might not.
354	 </p></li><li class="listitem"><p>While parts of the SGI STL are used in libstdc++, their
355	     string class is not.  The SGI <code class="code">string</code> is essentially
356	     <code class="code">vector&lt;char&gt;</code> and does not do any reference
357	     counting like libstdc++'s does.  (It is O(n), though.)
358	     So if you're thinking about SGI's string or rope classes,
359	     you're now looking at four possibilities:  CString, the
360	     libstdc++ string, the SGI string, and the SGI rope, and this
361	     is all before any allocator or traits customizations!  (More
362	     choices than you can shake a stick at -- want fries with that?)
363	 </p></li></ul></div></div></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="traits.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="std_contents.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="localization.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Traits </td><td width="20%" align="center"><a accesskey="h" href="../index.html">Home</a></td><td width="40%" align="right" valign="top"> Chapter 8. 
364  Localization
365
366</td></tr></table></div></body></html>