xref: /netbsd-src/external/gpl3/gcc.old/dist/libgfortran/generated/matmul_l16.c (revision 4c3eb207d36f67d31994830c0a694161fc1ca39b)
1 /* Implementation of the MATMUL intrinsic
2    Copyright (C) 2002-2020 Free Software Foundation, Inc.
3    Contributed by Paul Brook <paul@nowt.org>
4 
5 This file is part of the GNU Fortran runtime library (libgfortran).
6 
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11 
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20 
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24 <http://www.gnu.org/licenses/>.  */
25 
26 #include "libgfortran.h"
27 #include <assert.h>
28 
29 
30 #if defined (HAVE_GFC_LOGICAL_16)
31 
32 /* Dimensions: retarray(x,y) a(x, count) b(count,y).
33    Either a or b can be rank 1.  In this case x or y is 1.  */
34 
35 extern void matmul_l16 (gfc_array_l16 * const restrict,
36 	gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
37 export_proto(matmul_l16);
38 
39 void
matmul_l16(gfc_array_l16 * const restrict retarray,gfc_array_l1 * const restrict a,gfc_array_l1 * const restrict b)40 matmul_l16 (gfc_array_l16 * const restrict retarray,
41 	gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
42 {
43   const GFC_LOGICAL_1 * restrict abase;
44   const GFC_LOGICAL_1 * restrict bbase;
45   GFC_LOGICAL_16 * restrict dest;
46   index_type rxstride;
47   index_type rystride;
48   index_type xcount;
49   index_type ycount;
50   index_type xstride;
51   index_type ystride;
52   index_type x;
53   index_type y;
54   int a_kind;
55   int b_kind;
56 
57   const GFC_LOGICAL_1 * restrict pa;
58   const GFC_LOGICAL_1 * restrict pb;
59   index_type astride;
60   index_type bstride;
61   index_type count;
62   index_type n;
63 
64   assert (GFC_DESCRIPTOR_RANK (a) == 2
65           || GFC_DESCRIPTOR_RANK (b) == 2);
66 
67   if (retarray->base_addr == NULL)
68     {
69       if (GFC_DESCRIPTOR_RANK (a) == 1)
70         {
71 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
72 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
73         }
74       else if (GFC_DESCRIPTOR_RANK (b) == 1)
75         {
76 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
77 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
78         }
79       else
80         {
81 	  GFC_DIMENSION_SET(retarray->dim[0], 0,
82 	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
83 
84           GFC_DIMENSION_SET(retarray->dim[1], 0,
85 	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
86 			    GFC_DESCRIPTOR_EXTENT(retarray,0));
87         }
88 
89       retarray->base_addr
90 	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_LOGICAL_16));
91       retarray->offset = 0;
92     }
93     else if (unlikely (compile_options.bounds_check))
94       {
95 	index_type ret_extent, arg_extent;
96 
97 	if (GFC_DESCRIPTOR_RANK (a) == 1)
98 	  {
99 	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
100 	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
101 	    if (arg_extent != ret_extent)
102 	      runtime_error ("Incorrect extent in return array in"
103 			     " MATMUL intrinsic: is %ld, should be %ld",
104 			     (long int) ret_extent, (long int) arg_extent);
105 	  }
106 	else if (GFC_DESCRIPTOR_RANK (b) == 1)
107 	  {
108 	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
109 	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
110 	    if (arg_extent != ret_extent)
111 	      runtime_error ("Incorrect extent in return array in"
112 			     " MATMUL intrinsic: is %ld, should be %ld",
113 			     (long int) ret_extent, (long int) arg_extent);
114 	  }
115 	else
116 	  {
117 	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
118 	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
119 	    if (arg_extent != ret_extent)
120 	      runtime_error ("Incorrect extent in return array in"
121 			     " MATMUL intrinsic for dimension 1:"
122 			     " is %ld, should be %ld",
123 			     (long int) ret_extent, (long int) arg_extent);
124 
125 	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
126 	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
127 	    if (arg_extent != ret_extent)
128 	      runtime_error ("Incorrect extent in return array in"
129 			     " MATMUL intrinsic for dimension 2:"
130 			     " is %ld, should be %ld",
131 			     (long int) ret_extent, (long int) arg_extent);
132 	  }
133       }
134 
135   abase = a->base_addr;
136   a_kind = GFC_DESCRIPTOR_SIZE (a);
137 
138   if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
139 #ifdef HAVE_GFC_LOGICAL_16
140      || a_kind == 16
141 #endif
142      )
143     abase = GFOR_POINTER_TO_L1 (abase, a_kind);
144   else
145     internal_error (NULL, "Funny sized logical array");
146 
147   bbase = b->base_addr;
148   b_kind = GFC_DESCRIPTOR_SIZE (b);
149 
150   if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
151 #ifdef HAVE_GFC_LOGICAL_16
152      || b_kind == 16
153 #endif
154      )
155     bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
156   else
157     internal_error (NULL, "Funny sized logical array");
158 
159   dest = retarray->base_addr;
160 
161 
162   if (GFC_DESCRIPTOR_RANK (retarray) == 1)
163     {
164       rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
165       rystride = rxstride;
166     }
167   else
168     {
169       rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
170       rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
171     }
172 
173   /* If we have rank 1 parameters, zero the absent stride, and set the size to
174      one.  */
175   if (GFC_DESCRIPTOR_RANK (a) == 1)
176     {
177       astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
178       count = GFC_DESCRIPTOR_EXTENT(a,0);
179       xstride = 0;
180       rxstride = 0;
181       xcount = 1;
182     }
183   else
184     {
185       astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1);
186       count = GFC_DESCRIPTOR_EXTENT(a,1);
187       xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
188       xcount = GFC_DESCRIPTOR_EXTENT(a,0);
189     }
190   if (GFC_DESCRIPTOR_RANK (b) == 1)
191     {
192       bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
193       assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
194       ystride = 0;
195       rystride = 0;
196       ycount = 1;
197     }
198   else
199     {
200       bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
201       assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
202       ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1);
203       ycount = GFC_DESCRIPTOR_EXTENT(b,1);
204     }
205 
206   for (y = 0; y < ycount; y++)
207     {
208       for (x = 0; x < xcount; x++)
209         {
210           /* Do the summation for this element.  For real and integer types
211              this is the same as DOT_PRODUCT.  For complex types we use do
212              a*b, not conjg(a)*b.  */
213           pa = abase;
214           pb = bbase;
215           *dest = 0;
216 
217           for (n = 0; n < count; n++)
218             {
219               if (*pa && *pb)
220                 {
221                   *dest = 1;
222                   break;
223                 }
224               pa += astride;
225               pb += bstride;
226             }
227 
228           dest += rxstride;
229           abase += xstride;
230         }
231       abase -= xstride * xcount;
232       bbase += ystride;
233       dest += rystride - (rxstride * xcount);
234     }
235 }
236 
237 #endif
238 
239