1 /* Array prefetching. 2 Copyright (C) 2005-2016 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "target.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "gimple.h" 28 #include "predict.h" 29 #include "tree-pass.h" 30 #include "gimple-ssa.h" 31 #include "optabs-query.h" 32 #include "tree-pretty-print.h" 33 #include "fold-const.h" 34 #include "stor-layout.h" 35 #include "gimplify.h" 36 #include "gimple-iterator.h" 37 #include "gimplify-me.h" 38 #include "tree-ssa-loop-ivopts.h" 39 #include "tree-ssa-loop-manip.h" 40 #include "tree-ssa-loop-niter.h" 41 #include "tree-ssa-loop.h" 42 #include "tree-into-ssa.h" 43 #include "cfgloop.h" 44 #include "tree-scalar-evolution.h" 45 #include "params.h" 46 #include "langhooks.h" 47 #include "tree-inline.h" 48 #include "tree-data-ref.h" 49 #include "diagnostic-core.h" 50 51 52 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface 53 between the GIMPLE and RTL worlds. */ 54 55 /* This pass inserts prefetch instructions to optimize cache usage during 56 accesses to arrays in loops. It processes loops sequentially and: 57 58 1) Gathers all memory references in the single loop. 59 2) For each of the references it decides when it is profitable to prefetch 60 it. To do it, we evaluate the reuse among the accesses, and determines 61 two values: PREFETCH_BEFORE (meaning that it only makes sense to do 62 prefetching in the first PREFETCH_BEFORE iterations of the loop) and 63 PREFETCH_MOD (meaning that it only makes sense to prefetch in the 64 iterations of the loop that are zero modulo PREFETCH_MOD). For example 65 (assuming cache line size is 64 bytes, char has size 1 byte and there 66 is no hardware sequential prefetch): 67 68 char *a; 69 for (i = 0; i < max; i++) 70 { 71 a[255] = ...; (0) 72 a[i] = ...; (1) 73 a[i + 64] = ...; (2) 74 a[16*i] = ...; (3) 75 a[187*i] = ...; (4) 76 a[187*i + 50] = ...; (5) 77 } 78 79 (0) obviously has PREFETCH_BEFORE 1 80 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory 81 location 64 iterations before it, and PREFETCH_MOD 64 (since 82 it hits the same cache line otherwise). 83 (2) has PREFETCH_MOD 64 84 (3) has PREFETCH_MOD 4 85 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since 86 the cache line accessed by (5) is the same with probability only 87 7/32. 88 (5) has PREFETCH_MOD 1 as well. 89 90 Additionally, we use data dependence analysis to determine for each 91 reference the distance till the first reuse; this information is used 92 to determine the temporality of the issued prefetch instruction. 93 94 3) We determine how much ahead we need to prefetch. The number of 95 iterations needed is time to fetch / time spent in one iteration of 96 the loop. The problem is that we do not know either of these values, 97 so we just make a heuristic guess based on a magic (possibly) 98 target-specific constant and size of the loop. 99 100 4) Determine which of the references we prefetch. We take into account 101 that there is a maximum number of simultaneous prefetches (provided 102 by machine description). We prefetch as many prefetches as possible 103 while still within this bound (starting with those with lowest 104 prefetch_mod, since they are responsible for most of the cache 105 misses). 106 107 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD 108 and PREFETCH_BEFORE requirements (within some bounds), and to avoid 109 prefetching nonaccessed memory. 110 TODO -- actually implement peeling. 111 112 6) We actually emit the prefetch instructions. ??? Perhaps emit the 113 prefetch instructions with guards in cases where 5) was not sufficient 114 to satisfy the constraints? 115 116 A cost model is implemented to determine whether or not prefetching is 117 profitable for a given loop. The cost model has three heuristics: 118 119 1. Function trip_count_to_ahead_ratio_too_small_p implements a 120 heuristic that determines whether or not the loop has too few 121 iterations (compared to ahead). Prefetching is not likely to be 122 beneficial if the trip count to ahead ratio is below a certain 123 minimum. 124 125 2. Function mem_ref_count_reasonable_p implements a heuristic that 126 determines whether the given loop has enough CPU ops that can be 127 overlapped with cache missing memory ops. If not, the loop 128 won't benefit from prefetching. In the implementation, 129 prefetching is not considered beneficial if the ratio between 130 the instruction count and the mem ref count is below a certain 131 minimum. 132 133 3. Function insn_to_prefetch_ratio_too_small_p implements a 134 heuristic that disables prefetching in a loop if the prefetching 135 cost is above a certain limit. The relative prefetching cost is 136 estimated by taking the ratio between the prefetch count and the 137 total intruction count (this models the I-cache cost). 138 139 The limits used in these heuristics are defined as parameters with 140 reasonable default values. Machine-specific default values will be 141 added later. 142 143 Some other TODO: 144 -- write and use more general reuse analysis (that could be also used 145 in other cache aimed loop optimizations) 146 -- make it behave sanely together with the prefetches given by user 147 (now we just ignore them; at the very least we should avoid 148 optimizing loops in that user put his own prefetches) 149 -- we assume cache line size alignment of arrays; this could be 150 improved. */ 151 152 /* Magic constants follow. These should be replaced by machine specific 153 numbers. */ 154 155 /* True if write can be prefetched by a read prefetch. */ 156 157 #ifndef WRITE_CAN_USE_READ_PREFETCH 158 #define WRITE_CAN_USE_READ_PREFETCH 1 159 #endif 160 161 /* True if read can be prefetched by a write prefetch. */ 162 163 #ifndef READ_CAN_USE_WRITE_PREFETCH 164 #define READ_CAN_USE_WRITE_PREFETCH 0 165 #endif 166 167 /* The size of the block loaded by a single prefetch. Usually, this is 168 the same as cache line size (at the moment, we only consider one level 169 of cache hierarchy). */ 170 171 #ifndef PREFETCH_BLOCK 172 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE 173 #endif 174 175 /* Do we have a forward hardware sequential prefetching? */ 176 177 #ifndef HAVE_FORWARD_PREFETCH 178 #define HAVE_FORWARD_PREFETCH 0 179 #endif 180 181 /* Do we have a backward hardware sequential prefetching? */ 182 183 #ifndef HAVE_BACKWARD_PREFETCH 184 #define HAVE_BACKWARD_PREFETCH 0 185 #endif 186 187 /* In some cases we are only able to determine that there is a certain 188 probability that the two accesses hit the same cache line. In this 189 case, we issue the prefetches for both of them if this probability 190 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */ 191 192 #ifndef ACCEPTABLE_MISS_RATE 193 #define ACCEPTABLE_MISS_RATE 50 194 #endif 195 196 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024)) 197 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024)) 198 199 /* We consider a memory access nontemporal if it is not reused sooner than 200 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore 201 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION, 202 so that we use nontemporal prefetches e.g. if single memory location 203 is accessed several times in a single iteration of the loop. */ 204 #define NONTEMPORAL_FRACTION 16 205 206 /* In case we have to emit a memory fence instruction after the loop that 207 uses nontemporal stores, this defines the builtin to use. */ 208 209 #ifndef FENCE_FOLLOWING_MOVNT 210 #define FENCE_FOLLOWING_MOVNT NULL_TREE 211 #endif 212 213 /* It is not profitable to prefetch when the trip count is not at 214 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance. 215 For example, in a loop with a prefetch ahead distance of 10, 216 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is 217 profitable to prefetch when the trip count is greater or equal to 218 40. In that case, 30 out of the 40 iterations will benefit from 219 prefetching. */ 220 221 #ifndef TRIP_COUNT_TO_AHEAD_RATIO 222 #define TRIP_COUNT_TO_AHEAD_RATIO 4 223 #endif 224 225 /* The group of references between that reuse may occur. */ 226 227 struct mem_ref_group 228 { 229 tree base; /* Base of the reference. */ 230 tree step; /* Step of the reference. */ 231 struct mem_ref *refs; /* References in the group. */ 232 struct mem_ref_group *next; /* Next group of references. */ 233 }; 234 235 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */ 236 237 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0) 238 239 /* Do not generate a prefetch if the unroll factor is significantly less 240 than what is required by the prefetch. This is to avoid redundant 241 prefetches. For example, when prefetch_mod is 16 and unroll_factor is 242 2, prefetching requires unrolling the loop 16 times, but 243 the loop is actually unrolled twice. In this case (ratio = 8), 244 prefetching is not likely to be beneficial. */ 245 246 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 247 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4 248 #endif 249 250 /* Some of the prefetch computations have quadratic complexity. We want to 251 avoid huge compile times and, therefore, want to limit the amount of 252 memory references per loop where we consider prefetching. */ 253 254 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP 255 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200 256 #endif 257 258 /* The memory reference. */ 259 260 struct mem_ref 261 { 262 gimple *stmt; /* Statement in that the reference appears. */ 263 tree mem; /* The reference. */ 264 HOST_WIDE_INT delta; /* Constant offset of the reference. */ 265 struct mem_ref_group *group; /* The group of references it belongs to. */ 266 unsigned HOST_WIDE_INT prefetch_mod; 267 /* Prefetch only each PREFETCH_MOD-th 268 iteration. */ 269 unsigned HOST_WIDE_INT prefetch_before; 270 /* Prefetch only first PREFETCH_BEFORE 271 iterations. */ 272 unsigned reuse_distance; /* The amount of data accessed before the first 273 reuse of this value. */ 274 struct mem_ref *next; /* The next reference in the group. */ 275 unsigned write_p : 1; /* Is it a write? */ 276 unsigned independent_p : 1; /* True if the reference is independent on 277 all other references inside the loop. */ 278 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */ 279 unsigned storent_p : 1; /* True if we changed the store to a 280 nontemporal one. */ 281 }; 282 283 /* Dumps information about memory reference */ 284 static void 285 dump_mem_details (FILE *file, tree base, tree step, 286 HOST_WIDE_INT delta, bool write_p) 287 { 288 fprintf (file, "(base "); 289 print_generic_expr (file, base, TDF_SLIM); 290 fprintf (file, ", step "); 291 if (cst_and_fits_in_hwi (step)) 292 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step)); 293 else 294 print_generic_expr (file, step, TDF_TREE); 295 fprintf (file, ")\n"); 296 fprintf (file, " delta "); 297 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta); 298 fprintf (file, "\n"); 299 fprintf (file, " %s\n", write_p ? "write" : "read"); 300 fprintf (file, "\n"); 301 } 302 303 /* Dumps information about reference REF to FILE. */ 304 305 static void 306 dump_mem_ref (FILE *file, struct mem_ref *ref) 307 { 308 fprintf (file, "Reference %p:\n", (void *) ref); 309 310 fprintf (file, " group %p ", (void *) ref->group); 311 312 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta, 313 ref->write_p); 314 } 315 316 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not 317 exist. */ 318 319 static struct mem_ref_group * 320 find_or_create_group (struct mem_ref_group **groups, tree base, tree step) 321 { 322 struct mem_ref_group *group; 323 324 for (; *groups; groups = &(*groups)->next) 325 { 326 if (operand_equal_p ((*groups)->step, step, 0) 327 && operand_equal_p ((*groups)->base, base, 0)) 328 return *groups; 329 330 /* If step is an integer constant, keep the list of groups sorted 331 by decreasing step. */ 332 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step) 333 && int_cst_value ((*groups)->step) < int_cst_value (step)) 334 break; 335 } 336 337 group = XNEW (struct mem_ref_group); 338 group->base = base; 339 group->step = step; 340 group->refs = NULL; 341 group->next = *groups; 342 *groups = group; 343 344 return group; 345 } 346 347 /* Records a memory reference MEM in GROUP with offset DELTA and write status 348 WRITE_P. The reference occurs in statement STMT. */ 349 350 static void 351 record_ref (struct mem_ref_group *group, gimple *stmt, tree mem, 352 HOST_WIDE_INT delta, bool write_p) 353 { 354 struct mem_ref **aref; 355 356 /* Do not record the same address twice. */ 357 for (aref = &group->refs; *aref; aref = &(*aref)->next) 358 { 359 /* It does not have to be possible for write reference to reuse the read 360 prefetch, or vice versa. */ 361 if (!WRITE_CAN_USE_READ_PREFETCH 362 && write_p 363 && !(*aref)->write_p) 364 continue; 365 if (!READ_CAN_USE_WRITE_PREFETCH 366 && !write_p 367 && (*aref)->write_p) 368 continue; 369 370 if ((*aref)->delta == delta) 371 return; 372 } 373 374 (*aref) = XNEW (struct mem_ref); 375 (*aref)->stmt = stmt; 376 (*aref)->mem = mem; 377 (*aref)->delta = delta; 378 (*aref)->write_p = write_p; 379 (*aref)->prefetch_before = PREFETCH_ALL; 380 (*aref)->prefetch_mod = 1; 381 (*aref)->reuse_distance = 0; 382 (*aref)->issue_prefetch_p = false; 383 (*aref)->group = group; 384 (*aref)->next = NULL; 385 (*aref)->independent_p = false; 386 (*aref)->storent_p = false; 387 388 if (dump_file && (dump_flags & TDF_DETAILS)) 389 dump_mem_ref (dump_file, *aref); 390 } 391 392 /* Release memory references in GROUPS. */ 393 394 static void 395 release_mem_refs (struct mem_ref_group *groups) 396 { 397 struct mem_ref_group *next_g; 398 struct mem_ref *ref, *next_r; 399 400 for (; groups; groups = next_g) 401 { 402 next_g = groups->next; 403 for (ref = groups->refs; ref; ref = next_r) 404 { 405 next_r = ref->next; 406 free (ref); 407 } 408 free (groups); 409 } 410 } 411 412 /* A structure used to pass arguments to idx_analyze_ref. */ 413 414 struct ar_data 415 { 416 struct loop *loop; /* Loop of the reference. */ 417 gimple *stmt; /* Statement of the reference. */ 418 tree *step; /* Step of the memory reference. */ 419 HOST_WIDE_INT *delta; /* Offset of the memory reference. */ 420 }; 421 422 /* Analyzes a single INDEX of a memory reference to obtain information 423 described at analyze_ref. Callback for for_each_index. */ 424 425 static bool 426 idx_analyze_ref (tree base, tree *index, void *data) 427 { 428 struct ar_data *ar_data = (struct ar_data *) data; 429 tree ibase, step, stepsize; 430 HOST_WIDE_INT idelta = 0, imult = 1; 431 affine_iv iv; 432 433 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt), 434 *index, &iv, true)) 435 return false; 436 ibase = iv.base; 437 step = iv.step; 438 439 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR 440 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1))) 441 { 442 idelta = int_cst_value (TREE_OPERAND (ibase, 1)); 443 ibase = TREE_OPERAND (ibase, 0); 444 } 445 if (cst_and_fits_in_hwi (ibase)) 446 { 447 idelta += int_cst_value (ibase); 448 ibase = build_int_cst (TREE_TYPE (ibase), 0); 449 } 450 451 if (TREE_CODE (base) == ARRAY_REF) 452 { 453 stepsize = array_ref_element_size (base); 454 if (!cst_and_fits_in_hwi (stepsize)) 455 return false; 456 imult = int_cst_value (stepsize); 457 step = fold_build2 (MULT_EXPR, sizetype, 458 fold_convert (sizetype, step), 459 fold_convert (sizetype, stepsize)); 460 idelta *= imult; 461 } 462 463 if (*ar_data->step == NULL_TREE) 464 *ar_data->step = step; 465 else 466 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype, 467 fold_convert (sizetype, *ar_data->step), 468 fold_convert (sizetype, step)); 469 *ar_data->delta += idelta; 470 *index = ibase; 471 472 return true; 473 } 474 475 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and 476 STEP are integer constants and iter is number of iterations of LOOP. The 477 reference occurs in statement STMT. Strips nonaddressable component 478 references from REF_P. */ 479 480 static bool 481 analyze_ref (struct loop *loop, tree *ref_p, tree *base, 482 tree *step, HOST_WIDE_INT *delta, 483 gimple *stmt) 484 { 485 struct ar_data ar_data; 486 tree off; 487 HOST_WIDE_INT bit_offset; 488 tree ref = *ref_p; 489 490 *step = NULL_TREE; 491 *delta = 0; 492 493 /* First strip off the component references. Ignore bitfields. 494 Also strip off the real and imagine parts of a complex, so that 495 they can have the same base. */ 496 if (TREE_CODE (ref) == REALPART_EXPR 497 || TREE_CODE (ref) == IMAGPART_EXPR 498 || (TREE_CODE (ref) == COMPONENT_REF 499 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))) 500 { 501 if (TREE_CODE (ref) == IMAGPART_EXPR) 502 *delta += int_size_in_bytes (TREE_TYPE (ref)); 503 ref = TREE_OPERAND (ref, 0); 504 } 505 506 *ref_p = ref; 507 508 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0)) 509 { 510 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)); 511 bit_offset = TREE_INT_CST_LOW (off); 512 gcc_assert (bit_offset % BITS_PER_UNIT == 0); 513 514 *delta += bit_offset / BITS_PER_UNIT; 515 } 516 517 *base = unshare_expr (ref); 518 ar_data.loop = loop; 519 ar_data.stmt = stmt; 520 ar_data.step = step; 521 ar_data.delta = delta; 522 return for_each_index (base, idx_analyze_ref, &ar_data); 523 } 524 525 /* Record a memory reference REF to the list REFS. The reference occurs in 526 LOOP in statement STMT and it is write if WRITE_P. Returns true if the 527 reference was recorded, false otherwise. */ 528 529 static bool 530 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs, 531 tree ref, bool write_p, gimple *stmt) 532 { 533 tree base, step; 534 HOST_WIDE_INT delta; 535 struct mem_ref_group *agrp; 536 537 if (get_base_address (ref) == NULL) 538 return false; 539 540 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt)) 541 return false; 542 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */ 543 if (step == NULL_TREE) 544 return false; 545 546 /* Stop if the address of BASE could not be taken. */ 547 if (may_be_nonaddressable_p (base)) 548 return false; 549 550 /* Limit non-constant step prefetching only to the innermost loops and 551 only when the step is loop invariant in the entire loop nest. */ 552 if (!cst_and_fits_in_hwi (step)) 553 { 554 if (loop->inner != NULL) 555 { 556 if (dump_file && (dump_flags & TDF_DETAILS)) 557 { 558 fprintf (dump_file, "Memory expression %p\n",(void *) ref ); 559 print_generic_expr (dump_file, ref, TDF_TREE); 560 fprintf (dump_file,":"); 561 dump_mem_details (dump_file, base, step, delta, write_p); 562 fprintf (dump_file, 563 "Ignoring %p, non-constant step prefetching is " 564 "limited to inner most loops \n", 565 (void *) ref); 566 } 567 return false; 568 } 569 else 570 { 571 if (!expr_invariant_in_loop_p (loop_outermost (loop), step)) 572 { 573 if (dump_file && (dump_flags & TDF_DETAILS)) 574 { 575 fprintf (dump_file, "Memory expression %p\n",(void *) ref ); 576 print_generic_expr (dump_file, ref, TDF_TREE); 577 fprintf (dump_file,":"); 578 dump_mem_details (dump_file, base, step, delta, write_p); 579 fprintf (dump_file, 580 "Not prefetching, ignoring %p due to " 581 "loop variant step\n", 582 (void *) ref); 583 } 584 return false; 585 } 586 } 587 } 588 589 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP 590 are integer constants. */ 591 agrp = find_or_create_group (refs, base, step); 592 record_ref (agrp, stmt, ref, delta, write_p); 593 594 return true; 595 } 596 597 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to 598 true if there are no other memory references inside the loop. */ 599 600 static struct mem_ref_group * 601 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count) 602 { 603 basic_block *body = get_loop_body_in_dom_order (loop); 604 basic_block bb; 605 unsigned i; 606 gimple_stmt_iterator bsi; 607 gimple *stmt; 608 tree lhs, rhs; 609 struct mem_ref_group *refs = NULL; 610 611 *no_other_refs = true; 612 *ref_count = 0; 613 614 /* Scan the loop body in order, so that the former references precede the 615 later ones. */ 616 for (i = 0; i < loop->num_nodes; i++) 617 { 618 bb = body[i]; 619 if (bb->loop_father != loop) 620 continue; 621 622 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 623 { 624 stmt = gsi_stmt (bsi); 625 626 if (gimple_code (stmt) != GIMPLE_ASSIGN) 627 { 628 if (gimple_vuse (stmt) 629 || (is_gimple_call (stmt) 630 && !(gimple_call_flags (stmt) & ECF_CONST))) 631 *no_other_refs = false; 632 continue; 633 } 634 635 lhs = gimple_assign_lhs (stmt); 636 rhs = gimple_assign_rhs1 (stmt); 637 638 if (REFERENCE_CLASS_P (rhs)) 639 { 640 *no_other_refs &= gather_memory_references_ref (loop, &refs, 641 rhs, false, stmt); 642 *ref_count += 1; 643 } 644 if (REFERENCE_CLASS_P (lhs)) 645 { 646 *no_other_refs &= gather_memory_references_ref (loop, &refs, 647 lhs, true, stmt); 648 *ref_count += 1; 649 } 650 } 651 } 652 free (body); 653 654 return refs; 655 } 656 657 /* Prune the prefetch candidate REF using the self-reuse. */ 658 659 static void 660 prune_ref_by_self_reuse (struct mem_ref *ref) 661 { 662 HOST_WIDE_INT step; 663 bool backward; 664 665 /* If the step size is non constant, we cannot calculate prefetch_mod. */ 666 if (!cst_and_fits_in_hwi (ref->group->step)) 667 return; 668 669 step = int_cst_value (ref->group->step); 670 671 backward = step < 0; 672 673 if (step == 0) 674 { 675 /* Prefetch references to invariant address just once. */ 676 ref->prefetch_before = 1; 677 return; 678 } 679 680 if (backward) 681 step = -step; 682 683 if (step > PREFETCH_BLOCK) 684 return; 685 686 if ((backward && HAVE_BACKWARD_PREFETCH) 687 || (!backward && HAVE_FORWARD_PREFETCH)) 688 { 689 ref->prefetch_before = 1; 690 return; 691 } 692 693 ref->prefetch_mod = PREFETCH_BLOCK / step; 694 } 695 696 /* Divides X by BY, rounding down. */ 697 698 static HOST_WIDE_INT 699 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by) 700 { 701 gcc_assert (by > 0); 702 703 if (x >= 0) 704 return x / by; 705 else 706 return (x + by - 1) / by; 707 } 708 709 /* Given a CACHE_LINE_SIZE and two inductive memory references 710 with a common STEP greater than CACHE_LINE_SIZE and an address 711 difference DELTA, compute the probability that they will fall 712 in different cache lines. Return true if the computed miss rate 713 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the 714 number of distinct iterations after which the pattern repeats itself. 715 ALIGN_UNIT is the unit of alignment in bytes. */ 716 717 static bool 718 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size, 719 HOST_WIDE_INT step, HOST_WIDE_INT delta, 720 unsigned HOST_WIDE_INT distinct_iters, 721 int align_unit) 722 { 723 unsigned align, iter; 724 int total_positions, miss_positions, max_allowed_miss_positions; 725 int address1, address2, cache_line1, cache_line2; 726 727 /* It always misses if delta is greater than or equal to the cache 728 line size. */ 729 if (delta >= (HOST_WIDE_INT) cache_line_size) 730 return false; 731 732 miss_positions = 0; 733 total_positions = (cache_line_size / align_unit) * distinct_iters; 734 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000; 735 736 /* Iterate through all possible alignments of the first 737 memory reference within its cache line. */ 738 for (align = 0; align < cache_line_size; align += align_unit) 739 740 /* Iterate through all distinct iterations. */ 741 for (iter = 0; iter < distinct_iters; iter++) 742 { 743 address1 = align + step * iter; 744 address2 = address1 + delta; 745 cache_line1 = address1 / cache_line_size; 746 cache_line2 = address2 / cache_line_size; 747 if (cache_line1 != cache_line2) 748 { 749 miss_positions += 1; 750 if (miss_positions > max_allowed_miss_positions) 751 return false; 752 } 753 } 754 return true; 755 } 756 757 /* Prune the prefetch candidate REF using the reuse with BY. 758 If BY_IS_BEFORE is true, BY is before REF in the loop. */ 759 760 static void 761 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by, 762 bool by_is_before) 763 { 764 HOST_WIDE_INT step; 765 bool backward; 766 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta; 767 HOST_WIDE_INT delta = delta_b - delta_r; 768 HOST_WIDE_INT hit_from; 769 unsigned HOST_WIDE_INT prefetch_before, prefetch_block; 770 HOST_WIDE_INT reduced_step; 771 unsigned HOST_WIDE_INT reduced_prefetch_block; 772 tree ref_type; 773 int align_unit; 774 775 /* If the step is non constant we cannot calculate prefetch_before. */ 776 if (!cst_and_fits_in_hwi (ref->group->step)) { 777 return; 778 } 779 780 step = int_cst_value (ref->group->step); 781 782 backward = step < 0; 783 784 785 if (delta == 0) 786 { 787 /* If the references has the same address, only prefetch the 788 former. */ 789 if (by_is_before) 790 ref->prefetch_before = 0; 791 792 return; 793 } 794 795 if (!step) 796 { 797 /* If the reference addresses are invariant and fall into the 798 same cache line, prefetch just the first one. */ 799 if (!by_is_before) 800 return; 801 802 if (ddown (ref->delta, PREFETCH_BLOCK) 803 != ddown (by->delta, PREFETCH_BLOCK)) 804 return; 805 806 ref->prefetch_before = 0; 807 return; 808 } 809 810 /* Only prune the reference that is behind in the array. */ 811 if (backward) 812 { 813 if (delta > 0) 814 return; 815 816 /* Transform the data so that we may assume that the accesses 817 are forward. */ 818 delta = - delta; 819 step = -step; 820 delta_r = PREFETCH_BLOCK - 1 - delta_r; 821 delta_b = PREFETCH_BLOCK - 1 - delta_b; 822 } 823 else 824 { 825 if (delta < 0) 826 return; 827 } 828 829 /* Check whether the two references are likely to hit the same cache 830 line, and how distant the iterations in that it occurs are from 831 each other. */ 832 833 if (step <= PREFETCH_BLOCK) 834 { 835 /* The accesses are sure to meet. Let us check when. */ 836 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK; 837 prefetch_before = (hit_from - delta_r + step - 1) / step; 838 839 /* Do not reduce prefetch_before if we meet beyond cache size. */ 840 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step)) 841 prefetch_before = PREFETCH_ALL; 842 if (prefetch_before < ref->prefetch_before) 843 ref->prefetch_before = prefetch_before; 844 845 return; 846 } 847 848 /* A more complicated case with step > prefetch_block. First reduce 849 the ratio between the step and the cache line size to its simplest 850 terms. The resulting denominator will then represent the number of 851 distinct iterations after which each address will go back to its 852 initial location within the cache line. This computation assumes 853 that PREFETCH_BLOCK is a power of two. */ 854 prefetch_block = PREFETCH_BLOCK; 855 reduced_prefetch_block = prefetch_block; 856 reduced_step = step; 857 while ((reduced_step & 1) == 0 858 && reduced_prefetch_block > 1) 859 { 860 reduced_step >>= 1; 861 reduced_prefetch_block >>= 1; 862 } 863 864 prefetch_before = delta / step; 865 delta %= step; 866 ref_type = TREE_TYPE (ref->mem); 867 align_unit = TYPE_ALIGN (ref_type) / 8; 868 if (is_miss_rate_acceptable (prefetch_block, step, delta, 869 reduced_prefetch_block, align_unit)) 870 { 871 /* Do not reduce prefetch_before if we meet beyond cache size. */ 872 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK) 873 prefetch_before = PREFETCH_ALL; 874 if (prefetch_before < ref->prefetch_before) 875 ref->prefetch_before = prefetch_before; 876 877 return; 878 } 879 880 /* Try also the following iteration. */ 881 prefetch_before++; 882 delta = step - delta; 883 if (is_miss_rate_acceptable (prefetch_block, step, delta, 884 reduced_prefetch_block, align_unit)) 885 { 886 if (prefetch_before < ref->prefetch_before) 887 ref->prefetch_before = prefetch_before; 888 889 return; 890 } 891 892 /* The ref probably does not reuse by. */ 893 return; 894 } 895 896 /* Prune the prefetch candidate REF using the reuses with other references 897 in REFS. */ 898 899 static void 900 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs) 901 { 902 struct mem_ref *prune_by; 903 bool before = true; 904 905 prune_ref_by_self_reuse (ref); 906 907 for (prune_by = refs; prune_by; prune_by = prune_by->next) 908 { 909 if (prune_by == ref) 910 { 911 before = false; 912 continue; 913 } 914 915 if (!WRITE_CAN_USE_READ_PREFETCH 916 && ref->write_p 917 && !prune_by->write_p) 918 continue; 919 if (!READ_CAN_USE_WRITE_PREFETCH 920 && !ref->write_p 921 && prune_by->write_p) 922 continue; 923 924 prune_ref_by_group_reuse (ref, prune_by, before); 925 } 926 } 927 928 /* Prune the prefetch candidates in GROUP using the reuse analysis. */ 929 930 static void 931 prune_group_by_reuse (struct mem_ref_group *group) 932 { 933 struct mem_ref *ref_pruned; 934 935 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next) 936 { 937 prune_ref_by_reuse (ref_pruned, group->refs); 938 939 if (dump_file && (dump_flags & TDF_DETAILS)) 940 { 941 fprintf (dump_file, "Reference %p:", (void *) ref_pruned); 942 943 if (ref_pruned->prefetch_before == PREFETCH_ALL 944 && ref_pruned->prefetch_mod == 1) 945 fprintf (dump_file, " no restrictions"); 946 else if (ref_pruned->prefetch_before == 0) 947 fprintf (dump_file, " do not prefetch"); 948 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod) 949 fprintf (dump_file, " prefetch once"); 950 else 951 { 952 if (ref_pruned->prefetch_before != PREFETCH_ALL) 953 { 954 fprintf (dump_file, " prefetch before "); 955 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, 956 ref_pruned->prefetch_before); 957 } 958 if (ref_pruned->prefetch_mod != 1) 959 { 960 fprintf (dump_file, " prefetch mod "); 961 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, 962 ref_pruned->prefetch_mod); 963 } 964 } 965 fprintf (dump_file, "\n"); 966 } 967 } 968 } 969 970 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */ 971 972 static void 973 prune_by_reuse (struct mem_ref_group *groups) 974 { 975 for (; groups; groups = groups->next) 976 prune_group_by_reuse (groups); 977 } 978 979 /* Returns true if we should issue prefetch for REF. */ 980 981 static bool 982 should_issue_prefetch_p (struct mem_ref *ref) 983 { 984 /* For now do not issue prefetches for only first few of the 985 iterations. */ 986 if (ref->prefetch_before != PREFETCH_ALL) 987 { 988 if (dump_file && (dump_flags & TDF_DETAILS)) 989 fprintf (dump_file, "Ignoring %p due to prefetch_before\n", 990 (void *) ref); 991 return false; 992 } 993 994 /* Do not prefetch nontemporal stores. */ 995 if (ref->storent_p) 996 { 997 if (dump_file && (dump_flags & TDF_DETAILS)) 998 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref); 999 return false; 1000 } 1001 1002 return true; 1003 } 1004 1005 /* Decide which of the prefetch candidates in GROUPS to prefetch. 1006 AHEAD is the number of iterations to prefetch ahead (which corresponds 1007 to the number of simultaneous instances of one prefetch running at a 1008 time). UNROLL_FACTOR is the factor by that the loop is going to be 1009 unrolled. Returns true if there is anything to prefetch. */ 1010 1011 static bool 1012 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor, 1013 unsigned ahead) 1014 { 1015 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots; 1016 unsigned slots_per_prefetch; 1017 struct mem_ref *ref; 1018 bool any = false; 1019 1020 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */ 1021 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES; 1022 1023 /* The prefetch will run for AHEAD iterations of the original loop, i.e., 1024 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration, 1025 it will need a prefetch slot. */ 1026 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor; 1027 if (dump_file && (dump_flags & TDF_DETAILS)) 1028 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n", 1029 slots_per_prefetch); 1030 1031 /* For now we just take memory references one by one and issue 1032 prefetches for as many as possible. The groups are sorted 1033 starting with the largest step, since the references with 1034 large step are more likely to cause many cache misses. */ 1035 1036 for (; groups; groups = groups->next) 1037 for (ref = groups->refs; ref; ref = ref->next) 1038 { 1039 if (!should_issue_prefetch_p (ref)) 1040 continue; 1041 1042 /* The loop is far from being sufficiently unrolled for this 1043 prefetch. Do not generate prefetch to avoid many redudant 1044 prefetches. */ 1045 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO) 1046 continue; 1047 1048 /* If we need to prefetch the reference each PREFETCH_MOD iterations, 1049 and we unroll the loop UNROLL_FACTOR times, we need to insert 1050 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each 1051 iteration. */ 1052 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1053 / ref->prefetch_mod); 1054 prefetch_slots = n_prefetches * slots_per_prefetch; 1055 1056 /* If more than half of the prefetches would be lost anyway, do not 1057 issue the prefetch. */ 1058 if (2 * remaining_prefetch_slots < prefetch_slots) 1059 continue; 1060 1061 ref->issue_prefetch_p = true; 1062 1063 if (remaining_prefetch_slots <= prefetch_slots) 1064 return true; 1065 remaining_prefetch_slots -= prefetch_slots; 1066 any = true; 1067 } 1068 1069 return any; 1070 } 1071 1072 /* Return TRUE if no prefetch is going to be generated in the given 1073 GROUPS. */ 1074 1075 static bool 1076 nothing_to_prefetch_p (struct mem_ref_group *groups) 1077 { 1078 struct mem_ref *ref; 1079 1080 for (; groups; groups = groups->next) 1081 for (ref = groups->refs; ref; ref = ref->next) 1082 if (should_issue_prefetch_p (ref)) 1083 return false; 1084 1085 return true; 1086 } 1087 1088 /* Estimate the number of prefetches in the given GROUPS. 1089 UNROLL_FACTOR is the factor by which LOOP was unrolled. */ 1090 1091 static int 1092 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor) 1093 { 1094 struct mem_ref *ref; 1095 unsigned n_prefetches; 1096 int prefetch_count = 0; 1097 1098 for (; groups; groups = groups->next) 1099 for (ref = groups->refs; ref; ref = ref->next) 1100 if (should_issue_prefetch_p (ref)) 1101 { 1102 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1103 / ref->prefetch_mod); 1104 prefetch_count += n_prefetches; 1105 } 1106 1107 return prefetch_count; 1108 } 1109 1110 /* Issue prefetches for the reference REF into loop as decided before. 1111 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR 1112 is the factor by which LOOP was unrolled. */ 1113 1114 static void 1115 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead) 1116 { 1117 HOST_WIDE_INT delta; 1118 tree addr, addr_base, write_p, local, forward; 1119 gcall *prefetch; 1120 gimple_stmt_iterator bsi; 1121 unsigned n_prefetches, ap; 1122 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES; 1123 1124 if (dump_file && (dump_flags & TDF_DETAILS)) 1125 fprintf (dump_file, "Issued%s prefetch for %p.\n", 1126 nontemporal ? " nontemporal" : "", 1127 (void *) ref); 1128 1129 bsi = gsi_for_stmt (ref->stmt); 1130 1131 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1) 1132 / ref->prefetch_mod); 1133 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node); 1134 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base), 1135 true, NULL, true, GSI_SAME_STMT); 1136 write_p = ref->write_p ? integer_one_node : integer_zero_node; 1137 local = nontemporal ? integer_zero_node : integer_three_node; 1138 1139 for (ap = 0; ap < n_prefetches; ap++) 1140 { 1141 if (cst_and_fits_in_hwi (ref->group->step)) 1142 { 1143 /* Determine the address to prefetch. */ 1144 delta = (ahead + ap * ref->prefetch_mod) * 1145 int_cst_value (ref->group->step); 1146 addr = fold_build_pointer_plus_hwi (addr_base, delta); 1147 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL, 1148 true, GSI_SAME_STMT); 1149 } 1150 else 1151 { 1152 /* The step size is non-constant but loop-invariant. We use the 1153 heuristic to simply prefetch ahead iterations ahead. */ 1154 forward = fold_build2 (MULT_EXPR, sizetype, 1155 fold_convert (sizetype, ref->group->step), 1156 fold_convert (sizetype, size_int (ahead))); 1157 addr = fold_build_pointer_plus (addr_base, forward); 1158 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, 1159 NULL, true, GSI_SAME_STMT); 1160 } 1161 /* Create the prefetch instruction. */ 1162 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH), 1163 3, addr, write_p, local); 1164 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT); 1165 } 1166 } 1167 1168 /* Issue prefetches for the references in GROUPS into loop as decided before. 1169 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the 1170 factor by that LOOP was unrolled. */ 1171 1172 static void 1173 issue_prefetches (struct mem_ref_group *groups, 1174 unsigned unroll_factor, unsigned ahead) 1175 { 1176 struct mem_ref *ref; 1177 1178 for (; groups; groups = groups->next) 1179 for (ref = groups->refs; ref; ref = ref->next) 1180 if (ref->issue_prefetch_p) 1181 issue_prefetch_ref (ref, unroll_factor, ahead); 1182 } 1183 1184 /* Returns true if REF is a memory write for that a nontemporal store insn 1185 can be used. */ 1186 1187 static bool 1188 nontemporal_store_p (struct mem_ref *ref) 1189 { 1190 machine_mode mode; 1191 enum insn_code code; 1192 1193 /* REF must be a write that is not reused. We require it to be independent 1194 on all other memory references in the loop, as the nontemporal stores may 1195 be reordered with respect to other memory references. */ 1196 if (!ref->write_p 1197 || !ref->independent_p 1198 || ref->reuse_distance < L2_CACHE_SIZE_BYTES) 1199 return false; 1200 1201 /* Check that we have the storent instruction for the mode. */ 1202 mode = TYPE_MODE (TREE_TYPE (ref->mem)); 1203 if (mode == BLKmode) 1204 return false; 1205 1206 code = optab_handler (storent_optab, mode); 1207 return code != CODE_FOR_nothing; 1208 } 1209 1210 /* If REF is a nontemporal store, we mark the corresponding modify statement 1211 and return true. Otherwise, we return false. */ 1212 1213 static bool 1214 mark_nontemporal_store (struct mem_ref *ref) 1215 { 1216 if (!nontemporal_store_p (ref)) 1217 return false; 1218 1219 if (dump_file && (dump_flags & TDF_DETAILS)) 1220 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n", 1221 (void *) ref); 1222 1223 gimple_assign_set_nontemporal_move (ref->stmt, true); 1224 ref->storent_p = true; 1225 1226 return true; 1227 } 1228 1229 /* Issue a memory fence instruction after LOOP. */ 1230 1231 static void 1232 emit_mfence_after_loop (struct loop *loop) 1233 { 1234 vec<edge> exits = get_loop_exit_edges (loop); 1235 edge exit; 1236 gcall *call; 1237 gimple_stmt_iterator bsi; 1238 unsigned i; 1239 1240 FOR_EACH_VEC_ELT (exits, i, exit) 1241 { 1242 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0); 1243 1244 if (!single_pred_p (exit->dest) 1245 /* If possible, we prefer not to insert the fence on other paths 1246 in cfg. */ 1247 && !(exit->flags & EDGE_ABNORMAL)) 1248 split_loop_exit_edge (exit); 1249 bsi = gsi_after_labels (exit->dest); 1250 1251 gsi_insert_before (&bsi, call, GSI_NEW_STMT); 1252 } 1253 1254 exits.release (); 1255 update_ssa (TODO_update_ssa_only_virtuals); 1256 } 1257 1258 /* Returns true if we can use storent in loop, false otherwise. */ 1259 1260 static bool 1261 may_use_storent_in_loop_p (struct loop *loop) 1262 { 1263 bool ret = true; 1264 1265 if (loop->inner != NULL) 1266 return false; 1267 1268 /* If we must issue a mfence insn after using storent, check that there 1269 is a suitable place for it at each of the loop exits. */ 1270 if (FENCE_FOLLOWING_MOVNT != NULL_TREE) 1271 { 1272 vec<edge> exits = get_loop_exit_edges (loop); 1273 unsigned i; 1274 edge exit; 1275 1276 FOR_EACH_VEC_ELT (exits, i, exit) 1277 if ((exit->flags & EDGE_ABNORMAL) 1278 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1279 ret = false; 1280 1281 exits.release (); 1282 } 1283 1284 return ret; 1285 } 1286 1287 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory 1288 references in the loop. */ 1289 1290 static void 1291 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups) 1292 { 1293 struct mem_ref *ref; 1294 bool any = false; 1295 1296 if (!may_use_storent_in_loop_p (loop)) 1297 return; 1298 1299 for (; groups; groups = groups->next) 1300 for (ref = groups->refs; ref; ref = ref->next) 1301 any |= mark_nontemporal_store (ref); 1302 1303 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE) 1304 emit_mfence_after_loop (loop); 1305 } 1306 1307 /* Determines whether we can profitably unroll LOOP FACTOR times, and if 1308 this is the case, fill in DESC by the description of number of 1309 iterations. */ 1310 1311 static bool 1312 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc, 1313 unsigned factor) 1314 { 1315 if (!can_unroll_loop_p (loop, factor, desc)) 1316 return false; 1317 1318 /* We only consider loops without control flow for unrolling. This is not 1319 a hard restriction -- tree_unroll_loop works with arbitrary loops 1320 as well; but the unrolling/prefetching is usually more profitable for 1321 loops consisting of a single basic block, and we want to limit the 1322 code growth. */ 1323 if (loop->num_nodes > 2) 1324 return false; 1325 1326 return true; 1327 } 1328 1329 /* Determine the coefficient by that unroll LOOP, from the information 1330 contained in the list of memory references REFS. Description of 1331 umber of iterations of LOOP is stored to DESC. NINSNS is the number of 1332 insns of the LOOP. EST_NITER is the estimated number of iterations of 1333 the loop, or -1 if no estimate is available. */ 1334 1335 static unsigned 1336 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs, 1337 unsigned ninsns, struct tree_niter_desc *desc, 1338 HOST_WIDE_INT est_niter) 1339 { 1340 unsigned upper_bound; 1341 unsigned nfactor, factor, mod_constraint; 1342 struct mem_ref_group *agp; 1343 struct mem_ref *ref; 1344 1345 /* First check whether the loop is not too large to unroll. We ignore 1346 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us 1347 from unrolling them enough to make exactly one cache line covered by each 1348 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent 1349 us from unrolling the loops too many times in cases where we only expect 1350 gains from better scheduling and decreasing loop overhead, which is not 1351 the case here. */ 1352 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns; 1353 1354 /* If we unrolled the loop more times than it iterates, the unrolled version 1355 of the loop would be never entered. */ 1356 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound) 1357 upper_bound = est_niter; 1358 1359 if (upper_bound <= 1) 1360 return 1; 1361 1362 /* Choose the factor so that we may prefetch each cache just once, 1363 but bound the unrolling by UPPER_BOUND. */ 1364 factor = 1; 1365 for (agp = refs; agp; agp = agp->next) 1366 for (ref = agp->refs; ref; ref = ref->next) 1367 if (should_issue_prefetch_p (ref)) 1368 { 1369 mod_constraint = ref->prefetch_mod; 1370 nfactor = least_common_multiple (mod_constraint, factor); 1371 if (nfactor <= upper_bound) 1372 factor = nfactor; 1373 } 1374 1375 if (!should_unroll_loop_p (loop, desc, factor)) 1376 return 1; 1377 1378 return factor; 1379 } 1380 1381 /* Returns the total volume of the memory references REFS, taking into account 1382 reuses in the innermost loop and cache line size. TODO -- we should also 1383 take into account reuses across the iterations of the loops in the loop 1384 nest. */ 1385 1386 static unsigned 1387 volume_of_references (struct mem_ref_group *refs) 1388 { 1389 unsigned volume = 0; 1390 struct mem_ref_group *gr; 1391 struct mem_ref *ref; 1392 1393 for (gr = refs; gr; gr = gr->next) 1394 for (ref = gr->refs; ref; ref = ref->next) 1395 { 1396 /* Almost always reuses another value? */ 1397 if (ref->prefetch_before != PREFETCH_ALL) 1398 continue; 1399 1400 /* If several iterations access the same cache line, use the size of 1401 the line divided by this number. Otherwise, a cache line is 1402 accessed in each iteration. TODO -- in the latter case, we should 1403 take the size of the reference into account, rounding it up on cache 1404 line size multiple. */ 1405 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod; 1406 } 1407 return volume; 1408 } 1409 1410 /* Returns the volume of memory references accessed across VEC iterations of 1411 loops, whose sizes are described in the LOOP_SIZES array. N is the number 1412 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */ 1413 1414 static unsigned 1415 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n) 1416 { 1417 unsigned i; 1418 1419 for (i = 0; i < n; i++) 1420 if (vec[i] != 0) 1421 break; 1422 1423 if (i == n) 1424 return 0; 1425 1426 gcc_assert (vec[i] > 0); 1427 1428 /* We ignore the parts of the distance vector in subloops, since usually 1429 the numbers of iterations are much smaller. */ 1430 return loop_sizes[i] * vec[i]; 1431 } 1432 1433 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE 1434 at the position corresponding to the loop of the step. N is the depth 1435 of the considered loop nest, and, LOOP is its innermost loop. */ 1436 1437 static void 1438 add_subscript_strides (tree access_fn, unsigned stride, 1439 HOST_WIDE_INT *strides, unsigned n, struct loop *loop) 1440 { 1441 struct loop *aloop; 1442 tree step; 1443 HOST_WIDE_INT astep; 1444 unsigned min_depth = loop_depth (loop) - n; 1445 1446 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC) 1447 { 1448 aloop = get_chrec_loop (access_fn); 1449 step = CHREC_RIGHT (access_fn); 1450 access_fn = CHREC_LEFT (access_fn); 1451 1452 if ((unsigned) loop_depth (aloop) <= min_depth) 1453 continue; 1454 1455 if (tree_fits_shwi_p (step)) 1456 astep = tree_to_shwi (step); 1457 else 1458 astep = L1_CACHE_LINE_SIZE; 1459 1460 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride; 1461 1462 } 1463 } 1464 1465 /* Returns the volume of memory references accessed between two consecutive 1466 self-reuses of the reference DR. We consider the subscripts of DR in N 1467 loops, and LOOP_SIZES contains the volumes of accesses in each of the 1468 loops. LOOP is the innermost loop of the current loop nest. */ 1469 1470 static unsigned 1471 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n, 1472 struct loop *loop) 1473 { 1474 tree stride, access_fn; 1475 HOST_WIDE_INT *strides, astride; 1476 vec<tree> access_fns; 1477 tree ref = DR_REF (dr); 1478 unsigned i, ret = ~0u; 1479 1480 /* In the following example: 1481 1482 for (i = 0; i < N; i++) 1483 for (j = 0; j < N; j++) 1484 use (a[j][i]); 1485 the same cache line is accessed each N steps (except if the change from 1486 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse, 1487 we cannot rely purely on the results of the data dependence analysis. 1488 1489 Instead, we compute the stride of the reference in each loop, and consider 1490 the innermost loop in that the stride is less than cache size. */ 1491 1492 strides = XCNEWVEC (HOST_WIDE_INT, n); 1493 access_fns = DR_ACCESS_FNS (dr); 1494 1495 FOR_EACH_VEC_ELT (access_fns, i, access_fn) 1496 { 1497 /* Keep track of the reference corresponding to the subscript, so that we 1498 know its stride. */ 1499 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF) 1500 ref = TREE_OPERAND (ref, 0); 1501 1502 if (TREE_CODE (ref) == ARRAY_REF) 1503 { 1504 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref)); 1505 if (tree_fits_uhwi_p (stride)) 1506 astride = tree_to_uhwi (stride); 1507 else 1508 astride = L1_CACHE_LINE_SIZE; 1509 1510 ref = TREE_OPERAND (ref, 0); 1511 } 1512 else 1513 astride = 1; 1514 1515 add_subscript_strides (access_fn, astride, strides, n, loop); 1516 } 1517 1518 for (i = n; i-- > 0; ) 1519 { 1520 unsigned HOST_WIDE_INT s; 1521 1522 s = strides[i] < 0 ? -strides[i] : strides[i]; 1523 1524 if (s < (unsigned) L1_CACHE_LINE_SIZE 1525 && (loop_sizes[i] 1526 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION))) 1527 { 1528 ret = loop_sizes[i]; 1529 break; 1530 } 1531 } 1532 1533 free (strides); 1534 return ret; 1535 } 1536 1537 /* Determines the distance till the first reuse of each reference in REFS 1538 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other 1539 memory references in the loop. Return false if the analysis fails. */ 1540 1541 static bool 1542 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs, 1543 bool no_other_refs) 1544 { 1545 struct loop *nest, *aloop; 1546 vec<data_reference_p> datarefs = vNULL; 1547 vec<ddr_p> dependences = vNULL; 1548 struct mem_ref_group *gr; 1549 struct mem_ref *ref, *refb; 1550 vec<loop_p> vloops = vNULL; 1551 unsigned *loop_data_size; 1552 unsigned i, j, n; 1553 unsigned volume, dist, adist; 1554 HOST_WIDE_INT vol; 1555 data_reference_p dr; 1556 ddr_p dep; 1557 1558 if (loop->inner) 1559 return true; 1560 1561 /* Find the outermost loop of the loop nest of loop (we require that 1562 there are no sibling loops inside the nest). */ 1563 nest = loop; 1564 while (1) 1565 { 1566 aloop = loop_outer (nest); 1567 1568 if (aloop == current_loops->tree_root 1569 || aloop->inner->next) 1570 break; 1571 1572 nest = aloop; 1573 } 1574 1575 /* For each loop, determine the amount of data accessed in each iteration. 1576 We use this to estimate whether the reference is evicted from the 1577 cache before its reuse. */ 1578 find_loop_nest (nest, &vloops); 1579 n = vloops.length (); 1580 loop_data_size = XNEWVEC (unsigned, n); 1581 volume = volume_of_references (refs); 1582 i = n; 1583 while (i-- != 0) 1584 { 1585 loop_data_size[i] = volume; 1586 /* Bound the volume by the L2 cache size, since above this bound, 1587 all dependence distances are equivalent. */ 1588 if (volume > L2_CACHE_SIZE_BYTES) 1589 continue; 1590 1591 aloop = vloops[i]; 1592 vol = estimated_stmt_executions_int (aloop); 1593 if (vol == -1) 1594 vol = expected_loop_iterations (aloop); 1595 volume *= vol; 1596 } 1597 1598 /* Prepare the references in the form suitable for data dependence 1599 analysis. We ignore unanalyzable data references (the results 1600 are used just as a heuristics to estimate temporality of the 1601 references, hence we do not need to worry about correctness). */ 1602 for (gr = refs; gr; gr = gr->next) 1603 for (ref = gr->refs; ref; ref = ref->next) 1604 { 1605 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt), 1606 ref->mem, ref->stmt, !ref->write_p); 1607 1608 if (dr) 1609 { 1610 ref->reuse_distance = volume; 1611 dr->aux = ref; 1612 datarefs.safe_push (dr); 1613 } 1614 else 1615 no_other_refs = false; 1616 } 1617 1618 FOR_EACH_VEC_ELT (datarefs, i, dr) 1619 { 1620 dist = self_reuse_distance (dr, loop_data_size, n, loop); 1621 ref = (struct mem_ref *) dr->aux; 1622 if (ref->reuse_distance > dist) 1623 ref->reuse_distance = dist; 1624 1625 if (no_other_refs) 1626 ref->independent_p = true; 1627 } 1628 1629 if (!compute_all_dependences (datarefs, &dependences, vloops, true)) 1630 return false; 1631 1632 FOR_EACH_VEC_ELT (dependences, i, dep) 1633 { 1634 if (DDR_ARE_DEPENDENT (dep) == chrec_known) 1635 continue; 1636 1637 ref = (struct mem_ref *) DDR_A (dep)->aux; 1638 refb = (struct mem_ref *) DDR_B (dep)->aux; 1639 1640 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know 1641 || DDR_NUM_DIST_VECTS (dep) == 0) 1642 { 1643 /* If the dependence cannot be analyzed, assume that there might be 1644 a reuse. */ 1645 dist = 0; 1646 1647 ref->independent_p = false; 1648 refb->independent_p = false; 1649 } 1650 else 1651 { 1652 /* The distance vectors are normalized to be always lexicographically 1653 positive, hence we cannot tell just from them whether DDR_A comes 1654 before DDR_B or vice versa. However, it is not important, 1655 anyway -- if DDR_A is close to DDR_B, then it is either reused in 1656 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B 1657 in cache (and marking it as nontemporal would not affect 1658 anything). */ 1659 1660 dist = volume; 1661 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++) 1662 { 1663 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j), 1664 loop_data_size, n); 1665 1666 /* If this is a dependence in the innermost loop (i.e., the 1667 distances in all superloops are zero) and it is not 1668 the trivial self-dependence with distance zero, record that 1669 the references are not completely independent. */ 1670 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1) 1671 && (ref != refb 1672 || DDR_DIST_VECT (dep, j)[n-1] != 0)) 1673 { 1674 ref->independent_p = false; 1675 refb->independent_p = false; 1676 } 1677 1678 /* Ignore accesses closer than 1679 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION, 1680 so that we use nontemporal prefetches e.g. if single memory 1681 location is accessed several times in a single iteration of 1682 the loop. */ 1683 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION) 1684 continue; 1685 1686 if (adist < dist) 1687 dist = adist; 1688 } 1689 } 1690 1691 if (ref->reuse_distance > dist) 1692 ref->reuse_distance = dist; 1693 if (refb->reuse_distance > dist) 1694 refb->reuse_distance = dist; 1695 } 1696 1697 free_dependence_relations (dependences); 1698 free_data_refs (datarefs); 1699 free (loop_data_size); 1700 1701 if (dump_file && (dump_flags & TDF_DETAILS)) 1702 { 1703 fprintf (dump_file, "Reuse distances:\n"); 1704 for (gr = refs; gr; gr = gr->next) 1705 for (ref = gr->refs; ref; ref = ref->next) 1706 fprintf (dump_file, " ref %p distance %u\n", 1707 (void *) ref, ref->reuse_distance); 1708 } 1709 1710 return true; 1711 } 1712 1713 /* Determine whether or not the trip count to ahead ratio is too small based 1714 on prefitablility consideration. 1715 AHEAD: the iteration ahead distance, 1716 EST_NITER: the estimated trip count. */ 1717 1718 static bool 1719 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter) 1720 { 1721 /* Assume trip count to ahead ratio is big enough if the trip count could not 1722 be estimated at compile time. */ 1723 if (est_niter < 0) 1724 return false; 1725 1726 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead)) 1727 { 1728 if (dump_file && (dump_flags & TDF_DETAILS)) 1729 fprintf (dump_file, 1730 "Not prefetching -- loop estimated to roll only %d times\n", 1731 (int) est_niter); 1732 return true; 1733 } 1734 1735 return false; 1736 } 1737 1738 /* Determine whether or not the number of memory references in the loop is 1739 reasonable based on the profitablity and compilation time considerations. 1740 NINSNS: estimated number of instructions in the loop, 1741 MEM_REF_COUNT: total number of memory references in the loop. */ 1742 1743 static bool 1744 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count) 1745 { 1746 int insn_to_mem_ratio; 1747 1748 if (mem_ref_count == 0) 1749 return false; 1750 1751 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis 1752 (compute_all_dependences) have high costs based on quadratic complexity. 1753 To avoid huge compilation time, we give up prefetching if mem_ref_count 1754 is too large. */ 1755 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP) 1756 return false; 1757 1758 /* Prefetching improves performance by overlapping cache missing 1759 memory accesses with CPU operations. If the loop does not have 1760 enough CPU operations to overlap with memory operations, prefetching 1761 won't give a significant benefit. One approximate way of checking 1762 this is to require the ratio of instructions to memory references to 1763 be above a certain limit. This approximation works well in practice. 1764 TODO: Implement a more precise computation by estimating the time 1765 for each CPU or memory op in the loop. Time estimates for memory ops 1766 should account for cache misses. */ 1767 insn_to_mem_ratio = ninsns / mem_ref_count; 1768 1769 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO) 1770 { 1771 if (dump_file && (dump_flags & TDF_DETAILS)) 1772 fprintf (dump_file, 1773 "Not prefetching -- instruction to memory reference ratio (%d) too small\n", 1774 insn_to_mem_ratio); 1775 return false; 1776 } 1777 1778 return true; 1779 } 1780 1781 /* Determine whether or not the instruction to prefetch ratio in the loop is 1782 too small based on the profitablity consideration. 1783 NINSNS: estimated number of instructions in the loop, 1784 PREFETCH_COUNT: an estimate of the number of prefetches, 1785 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */ 1786 1787 static bool 1788 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count, 1789 unsigned unroll_factor) 1790 { 1791 int insn_to_prefetch_ratio; 1792 1793 /* Prefetching most likely causes performance degradation when the instruction 1794 to prefetch ratio is too small. Too many prefetch instructions in a loop 1795 may reduce the I-cache performance. 1796 (unroll_factor * ninsns) is used to estimate the number of instructions in 1797 the unrolled loop. This implementation is a bit simplistic -- the number 1798 of issued prefetch instructions is also affected by unrolling. So, 1799 prefetch_mod and the unroll factor should be taken into account when 1800 determining prefetch_count. Also, the number of insns of the unrolled 1801 loop will usually be significantly smaller than the number of insns of the 1802 original loop * unroll_factor (at least the induction variable increases 1803 and the exit branches will get eliminated), so it might be better to use 1804 tree_estimate_loop_size + estimated_unrolled_size. */ 1805 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count; 1806 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO) 1807 { 1808 if (dump_file && (dump_flags & TDF_DETAILS)) 1809 fprintf (dump_file, 1810 "Not prefetching -- instruction to prefetch ratio (%d) too small\n", 1811 insn_to_prefetch_ratio); 1812 return true; 1813 } 1814 1815 return false; 1816 } 1817 1818 1819 /* Issue prefetch instructions for array references in LOOP. Returns 1820 true if the LOOP was unrolled. */ 1821 1822 static bool 1823 loop_prefetch_arrays (struct loop *loop) 1824 { 1825 struct mem_ref_group *refs; 1826 unsigned ahead, ninsns, time, unroll_factor; 1827 HOST_WIDE_INT est_niter; 1828 struct tree_niter_desc desc; 1829 bool unrolled = false, no_other_refs; 1830 unsigned prefetch_count; 1831 unsigned mem_ref_count; 1832 1833 if (optimize_loop_nest_for_size_p (loop)) 1834 { 1835 if (dump_file && (dump_flags & TDF_DETAILS)) 1836 fprintf (dump_file, " ignored (cold area)\n"); 1837 return false; 1838 } 1839 1840 /* FIXME: the time should be weighted by the probabilities of the blocks in 1841 the loop body. */ 1842 time = tree_num_loop_insns (loop, &eni_time_weights); 1843 if (time == 0) 1844 return false; 1845 1846 ahead = (PREFETCH_LATENCY + time - 1) / time; 1847 est_niter = estimated_stmt_executions_int (loop); 1848 if (est_niter == -1) 1849 est_niter = max_stmt_executions_int (loop); 1850 1851 /* Prefetching is not likely to be profitable if the trip count to ahead 1852 ratio is too small. */ 1853 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter)) 1854 return false; 1855 1856 ninsns = tree_num_loop_insns (loop, &eni_size_weights); 1857 1858 /* Step 1: gather the memory references. */ 1859 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count); 1860 1861 /* Give up prefetching if the number of memory references in the 1862 loop is not reasonable based on profitablity and compilation time 1863 considerations. */ 1864 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count)) 1865 goto fail; 1866 1867 /* Step 2: estimate the reuse effects. */ 1868 prune_by_reuse (refs); 1869 1870 if (nothing_to_prefetch_p (refs)) 1871 goto fail; 1872 1873 if (!determine_loop_nest_reuse (loop, refs, no_other_refs)) 1874 goto fail; 1875 1876 /* Step 3: determine unroll factor. */ 1877 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc, 1878 est_niter); 1879 1880 /* Estimate prefetch count for the unrolled loop. */ 1881 prefetch_count = estimate_prefetch_count (refs, unroll_factor); 1882 if (prefetch_count == 0) 1883 goto fail; 1884 1885 if (dump_file && (dump_flags & TDF_DETAILS)) 1886 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count " 1887 HOST_WIDE_INT_PRINT_DEC "\n" 1888 "insn count %d, mem ref count %d, prefetch count %d\n", 1889 ahead, unroll_factor, est_niter, 1890 ninsns, mem_ref_count, prefetch_count); 1891 1892 /* Prefetching is not likely to be profitable if the instruction to prefetch 1893 ratio is too small. */ 1894 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count, 1895 unroll_factor)) 1896 goto fail; 1897 1898 mark_nontemporal_stores (loop, refs); 1899 1900 /* Step 4: what to prefetch? */ 1901 if (!schedule_prefetches (refs, unroll_factor, ahead)) 1902 goto fail; 1903 1904 /* Step 5: unroll the loop. TODO -- peeling of first and last few 1905 iterations so that we do not issue superfluous prefetches. */ 1906 if (unroll_factor != 1) 1907 { 1908 tree_unroll_loop (loop, unroll_factor, 1909 single_dom_exit (loop), &desc); 1910 unrolled = true; 1911 } 1912 1913 /* Step 6: issue the prefetches. */ 1914 issue_prefetches (refs, unroll_factor, ahead); 1915 1916 fail: 1917 release_mem_refs (refs); 1918 return unrolled; 1919 } 1920 1921 /* Issue prefetch instructions for array references in loops. */ 1922 1923 unsigned int 1924 tree_ssa_prefetch_arrays (void) 1925 { 1926 struct loop *loop; 1927 bool unrolled = false; 1928 int todo_flags = 0; 1929 1930 if (!targetm.have_prefetch () 1931 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4. 1932 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part 1933 of processor costs and i486 does not have prefetch, but 1934 -march=pentium4 causes targetm.have_prefetch to be true. Ugh. */ 1935 || PREFETCH_BLOCK == 0) 1936 return 0; 1937 1938 if (dump_file && (dump_flags & TDF_DETAILS)) 1939 { 1940 fprintf (dump_file, "Prefetching parameters:\n"); 1941 fprintf (dump_file, " simultaneous prefetches: %d\n", 1942 SIMULTANEOUS_PREFETCHES); 1943 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY); 1944 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK); 1945 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n", 1946 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE); 1947 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE); 1948 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE); 1949 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n", 1950 MIN_INSN_TO_PREFETCH_RATIO); 1951 fprintf (dump_file, " min insn-to-mem ratio: %d \n", 1952 PREFETCH_MIN_INSN_TO_MEM_RATIO); 1953 fprintf (dump_file, "\n"); 1954 } 1955 1956 initialize_original_copy_tables (); 1957 1958 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH)) 1959 { 1960 tree type = build_function_type_list (void_type_node, 1961 const_ptr_type_node, NULL_TREE); 1962 tree decl = add_builtin_function ("__builtin_prefetch", type, 1963 BUILT_IN_PREFETCH, BUILT_IN_NORMAL, 1964 NULL, NULL_TREE); 1965 DECL_IS_NOVOPS (decl) = true; 1966 set_builtin_decl (BUILT_IN_PREFETCH, decl, false); 1967 } 1968 1969 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) 1970 { 1971 if (dump_file && (dump_flags & TDF_DETAILS)) 1972 fprintf (dump_file, "Processing loop %d:\n", loop->num); 1973 1974 unrolled |= loop_prefetch_arrays (loop); 1975 1976 if (dump_file && (dump_flags & TDF_DETAILS)) 1977 fprintf (dump_file, "\n\n"); 1978 } 1979 1980 if (unrolled) 1981 { 1982 scev_reset (); 1983 todo_flags |= TODO_cleanup_cfg; 1984 } 1985 1986 free_original_copy_tables (); 1987 return todo_flags; 1988 } 1989 1990 /* Prefetching. */ 1991 1992 namespace { 1993 1994 const pass_data pass_data_loop_prefetch = 1995 { 1996 GIMPLE_PASS, /* type */ 1997 "aprefetch", /* name */ 1998 OPTGROUP_LOOP, /* optinfo_flags */ 1999 TV_TREE_PREFETCH, /* tv_id */ 2000 ( PROP_cfg | PROP_ssa ), /* properties_required */ 2001 0, /* properties_provided */ 2002 0, /* properties_destroyed */ 2003 0, /* todo_flags_start */ 2004 0, /* todo_flags_finish */ 2005 }; 2006 2007 class pass_loop_prefetch : public gimple_opt_pass 2008 { 2009 public: 2010 pass_loop_prefetch (gcc::context *ctxt) 2011 : gimple_opt_pass (pass_data_loop_prefetch, ctxt) 2012 {} 2013 2014 /* opt_pass methods: */ 2015 virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; } 2016 virtual unsigned int execute (function *); 2017 2018 }; // class pass_loop_prefetch 2019 2020 unsigned int 2021 pass_loop_prefetch::execute (function *fun) 2022 { 2023 if (number_of_loops (fun) <= 1) 2024 return 0; 2025 2026 if ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) != 0) 2027 { 2028 static bool warned = false; 2029 2030 if (!warned) 2031 { 2032 warning (OPT_Wdisabled_optimization, 2033 "%<l1-cache-size%> parameter is not a power of two %d", 2034 PREFETCH_BLOCK); 2035 warned = true; 2036 } 2037 return 0; 2038 } 2039 2040 return tree_ssa_prefetch_arrays (); 2041 } 2042 2043 } // anon namespace 2044 2045 gimple_opt_pass * 2046 make_pass_loop_prefetch (gcc::context *ctxt) 2047 { 2048 return new pass_loop_prefetch (ctxt); 2049 } 2050 2051 2052