xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-loop-prefetch.c (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Array prefetching.
2    Copyright (C) 2005-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "tree-pass.h"
30 #include "gimple-ssa.h"
31 #include "optabs-query.h"
32 #include "tree-pretty-print.h"
33 #include "fold-const.h"
34 #include "stor-layout.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-manip.h"
40 #include "tree-ssa-loop-niter.h"
41 #include "tree-ssa-loop.h"
42 #include "ssa.h"
43 #include "tree-into-ssa.h"
44 #include "cfgloop.h"
45 #include "tree-scalar-evolution.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-data-ref.h"
49 #include "diagnostic-core.h"
50 #include "dbgcnt.h"
51 
52 /* This pass inserts prefetch instructions to optimize cache usage during
53    accesses to arrays in loops.  It processes loops sequentially and:
54 
55    1) Gathers all memory references in the single loop.
56    2) For each of the references it decides when it is profitable to prefetch
57       it.  To do it, we evaluate the reuse among the accesses, and determines
58       two values: PREFETCH_BEFORE (meaning that it only makes sense to do
59       prefetching in the first PREFETCH_BEFORE iterations of the loop) and
60       PREFETCH_MOD (meaning that it only makes sense to prefetch in the
61       iterations of the loop that are zero modulo PREFETCH_MOD).  For example
62       (assuming cache line size is 64 bytes, char has size 1 byte and there
63       is no hardware sequential prefetch):
64 
65       char *a;
66       for (i = 0; i < max; i++)
67 	{
68 	  a[255] = ...;		(0)
69 	  a[i] = ...;		(1)
70 	  a[i + 64] = ...;	(2)
71 	  a[16*i] = ...;	(3)
72 	  a[187*i] = ...;	(4)
73 	  a[187*i + 50] = ...;	(5)
74 	}
75 
76        (0) obviously has PREFETCH_BEFORE 1
77        (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
78            location 64 iterations before it, and PREFETCH_MOD 64 (since
79 	   it hits the same cache line otherwise).
80        (2) has PREFETCH_MOD 64
81        (3) has PREFETCH_MOD 4
82        (4) has PREFETCH_MOD 1.  We do not set PREFETCH_BEFORE here, since
83            the cache line accessed by (5) is the same with probability only
84 	   7/32.
85        (5) has PREFETCH_MOD 1 as well.
86 
87       Additionally, we use data dependence analysis to determine for each
88       reference the distance till the first reuse; this information is used
89       to determine the temporality of the issued prefetch instruction.
90 
91    3) We determine how much ahead we need to prefetch.  The number of
92       iterations needed is time to fetch / time spent in one iteration of
93       the loop.  The problem is that we do not know either of these values,
94       so we just make a heuristic guess based on a magic (possibly)
95       target-specific constant and size of the loop.
96 
97    4) Determine which of the references we prefetch.  We take into account
98       that there is a maximum number of simultaneous prefetches (provided
99       by machine description).  We prefetch as many prefetches as possible
100       while still within this bound (starting with those with lowest
101       prefetch_mod, since they are responsible for most of the cache
102       misses).
103 
104    5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
105       and PREFETCH_BEFORE requirements (within some bounds), and to avoid
106       prefetching nonaccessed memory.
107       TODO -- actually implement peeling.
108 
109    6) We actually emit the prefetch instructions.  ??? Perhaps emit the
110       prefetch instructions with guards in cases where 5) was not sufficient
111       to satisfy the constraints?
112 
113    A cost model is implemented to determine whether or not prefetching is
114    profitable for a given loop.  The cost model has three heuristics:
115 
116    1. Function trip_count_to_ahead_ratio_too_small_p implements a
117       heuristic that determines whether or not the loop has too few
118       iterations (compared to ahead).  Prefetching is not likely to be
119       beneficial if the trip count to ahead ratio is below a certain
120       minimum.
121 
122    2. Function mem_ref_count_reasonable_p implements a heuristic that
123       determines whether the given loop has enough CPU ops that can be
124       overlapped with cache missing memory ops.  If not, the loop
125       won't benefit from prefetching.  In the implementation,
126       prefetching is not considered beneficial if the ratio between
127       the instruction count and the mem ref count is below a certain
128       minimum.
129 
130    3. Function insn_to_prefetch_ratio_too_small_p implements a
131       heuristic that disables prefetching in a loop if the prefetching
132       cost is above a certain limit.  The relative prefetching cost is
133       estimated by taking the ratio between the prefetch count and the
134       total intruction count (this models the I-cache cost).
135 
136    The limits used in these heuristics are defined as parameters with
137    reasonable default values. Machine-specific default values will be
138    added later.
139 
140    Some other TODO:
141       -- write and use more general reuse analysis (that could be also used
142 	 in other cache aimed loop optimizations)
143       -- make it behave sanely together with the prefetches given by user
144 	 (now we just ignore them; at the very least we should avoid
145 	 optimizing loops in that user put his own prefetches)
146       -- we assume cache line size alignment of arrays; this could be
147 	 improved.  */
148 
149 /* Magic constants follow.  These should be replaced by machine specific
150    numbers.  */
151 
152 /* True if write can be prefetched by a read prefetch.  */
153 
154 #ifndef WRITE_CAN_USE_READ_PREFETCH
155 #define WRITE_CAN_USE_READ_PREFETCH 1
156 #endif
157 
158 /* True if read can be prefetched by a write prefetch. */
159 
160 #ifndef READ_CAN_USE_WRITE_PREFETCH
161 #define READ_CAN_USE_WRITE_PREFETCH 0
162 #endif
163 
164 /* The size of the block loaded by a single prefetch.  Usually, this is
165    the same as cache line size (at the moment, we only consider one level
166    of cache hierarchy).  */
167 
168 #ifndef PREFETCH_BLOCK
169 #define PREFETCH_BLOCK param_l1_cache_line_size
170 #endif
171 
172 /* Do we have a forward hardware sequential prefetching?  */
173 
174 #ifndef HAVE_FORWARD_PREFETCH
175 #define HAVE_FORWARD_PREFETCH 0
176 #endif
177 
178 /* Do we have a backward hardware sequential prefetching?  */
179 
180 #ifndef HAVE_BACKWARD_PREFETCH
181 #define HAVE_BACKWARD_PREFETCH 0
182 #endif
183 
184 /* In some cases we are only able to determine that there is a certain
185    probability that the two accesses hit the same cache line.  In this
186    case, we issue the prefetches for both of them if this probability
187    is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand.  */
188 
189 #ifndef ACCEPTABLE_MISS_RATE
190 #define ACCEPTABLE_MISS_RATE 50
191 #endif
192 
193 #define L1_CACHE_SIZE_BYTES ((unsigned) (param_l1_cache_size * 1024))
194 #define L2_CACHE_SIZE_BYTES ((unsigned) (param_l2_cache_size * 1024))
195 
196 /* We consider a memory access nontemporal if it is not reused sooner than
197    after L2_CACHE_SIZE_BYTES of memory are accessed.  However, we ignore
198    accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
199    so that we use nontemporal prefetches e.g. if single memory location
200    is accessed several times in a single iteration of the loop.  */
201 #define NONTEMPORAL_FRACTION 16
202 
203 /* In case we have to emit a memory fence instruction after the loop that
204    uses nontemporal stores, this defines the builtin to use.  */
205 
206 #ifndef FENCE_FOLLOWING_MOVNT
207 #define FENCE_FOLLOWING_MOVNT NULL_TREE
208 #endif
209 
210 /* It is not profitable to prefetch when the trip count is not at
211    least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
212    For example, in a loop with a prefetch ahead distance of 10,
213    supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
214    profitable to prefetch when the trip count is greater or equal to
215    40.  In that case, 30 out of the 40 iterations will benefit from
216    prefetching.  */
217 
218 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
219 #define TRIP_COUNT_TO_AHEAD_RATIO 4
220 #endif
221 
222 /* The group of references between that reuse may occur.  */
223 
224 struct mem_ref_group
225 {
226   tree base;			/* Base of the reference.  */
227   tree step;			/* Step of the reference.  */
228   struct mem_ref *refs;		/* References in the group.  */
229   struct mem_ref_group *next;	/* Next group of references.  */
230   unsigned int uid;		/* Group UID, used only for debugging.  */
231 };
232 
233 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched.  */
234 
235 #define PREFETCH_ALL		HOST_WIDE_INT_M1U
236 
237 /* Do not generate a prefetch if the unroll factor is significantly less
238    than what is required by the prefetch.  This is to avoid redundant
239    prefetches.  For example, when prefetch_mod is 16 and unroll_factor is
240    2, prefetching requires unrolling the loop 16 times, but
241    the loop is actually unrolled twice.  In this case (ratio = 8),
242    prefetching is not likely to be beneficial.  */
243 
244 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
245 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
246 #endif
247 
248 /* Some of the prefetch computations have quadratic complexity.  We want to
249    avoid huge compile times and, therefore, want to limit the amount of
250    memory references per loop where we consider prefetching.  */
251 
252 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
253 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
254 #endif
255 
256 /* The memory reference.  */
257 
258 struct mem_ref
259 {
260   gimple *stmt;			/* Statement in that the reference appears.  */
261   tree mem;			/* The reference.  */
262   HOST_WIDE_INT delta;		/* Constant offset of the reference.  */
263   struct mem_ref_group *group;	/* The group of references it belongs to.  */
264   unsigned HOST_WIDE_INT prefetch_mod;
265 				/* Prefetch only each PREFETCH_MOD-th
266 				   iteration.  */
267   unsigned HOST_WIDE_INT prefetch_before;
268 				/* Prefetch only first PREFETCH_BEFORE
269 				   iterations.  */
270   unsigned reuse_distance;	/* The amount of data accessed before the first
271 				   reuse of this value.  */
272   struct mem_ref *next;		/* The next reference in the group.  */
273   unsigned int uid;		/* Ref UID, used only for debugging.  */
274   unsigned write_p : 1;		/* Is it a write?  */
275   unsigned independent_p : 1;	/* True if the reference is independent on
276 				   all other references inside the loop.  */
277   unsigned issue_prefetch_p : 1;	/* Should we really issue the prefetch?  */
278   unsigned storent_p : 1;	/* True if we changed the store to a
279 				   nontemporal one.  */
280 };
281 
282 /* Dumps information about memory reference */
283 static void
dump_mem_details(FILE * file,tree base,tree step,HOST_WIDE_INT delta,bool write_p)284 dump_mem_details (FILE *file, tree base, tree step,
285 	    HOST_WIDE_INT delta, bool write_p)
286 {
287   fprintf (file, "(base ");
288   print_generic_expr (file, base, TDF_SLIM);
289   fprintf (file, ", step ");
290   if (cst_and_fits_in_hwi (step))
291     fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
292   else
293     print_generic_expr (file, step, TDF_SLIM);
294   fprintf (file, ")\n");
295   fprintf (file, "  delta " HOST_WIDE_INT_PRINT_DEC "\n", delta);
296   fprintf (file, "  %s\n\n", write_p ? "write" : "read");
297 }
298 
299 /* Dumps information about reference REF to FILE.  */
300 
301 static void
dump_mem_ref(FILE * file,struct mem_ref * ref)302 dump_mem_ref (FILE *file, struct mem_ref *ref)
303 {
304   fprintf (file, "reference %u:%u (", ref->group->uid, ref->uid);
305   print_generic_expr (file, ref->mem, TDF_SLIM);
306   fprintf (file, ")\n");
307 }
308 
309 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
310    exist.  */
311 
312 static struct mem_ref_group *
find_or_create_group(struct mem_ref_group ** groups,tree base,tree step)313 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
314 {
315   /* Global count for setting struct mem_ref_group->uid.  */
316   static unsigned int last_mem_ref_group_uid = 0;
317 
318   struct mem_ref_group *group;
319 
320   for (; *groups; groups = &(*groups)->next)
321     {
322       if (operand_equal_p ((*groups)->step, step, 0)
323 	  && operand_equal_p ((*groups)->base, base, 0))
324 	return *groups;
325 
326       /* If step is an integer constant, keep the list of groups sorted
327          by decreasing step.  */
328       if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
329 	  && int_cst_value ((*groups)->step) < int_cst_value (step))
330 	break;
331     }
332 
333   group = XNEW (struct mem_ref_group);
334   group->base = base;
335   group->step = step;
336   group->refs = NULL;
337   group->uid = ++last_mem_ref_group_uid;
338   group->next = *groups;
339   *groups = group;
340 
341   return group;
342 }
343 
344 /* Records a memory reference MEM in GROUP with offset DELTA and write status
345    WRITE_P.  The reference occurs in statement STMT.  */
346 
347 static void
record_ref(struct mem_ref_group * group,gimple * stmt,tree mem,HOST_WIDE_INT delta,bool write_p)348 record_ref (struct mem_ref_group *group, gimple *stmt, tree mem,
349 	    HOST_WIDE_INT delta, bool write_p)
350 {
351   unsigned int last_mem_ref_uid = 0;
352   struct mem_ref **aref;
353 
354   /* Do not record the same address twice.  */
355   for (aref = &group->refs; *aref; aref = &(*aref)->next)
356     {
357       last_mem_ref_uid = (*aref)->uid;
358 
359       /* It does not have to be possible for write reference to reuse the read
360 	 prefetch, or vice versa.  */
361       if (!WRITE_CAN_USE_READ_PREFETCH
362 	  && write_p
363 	  && !(*aref)->write_p)
364 	continue;
365       if (!READ_CAN_USE_WRITE_PREFETCH
366 	  && !write_p
367 	  && (*aref)->write_p)
368 	continue;
369 
370       if ((*aref)->delta == delta)
371 	return;
372     }
373 
374   (*aref) = XNEW (struct mem_ref);
375   (*aref)->stmt = stmt;
376   (*aref)->mem = mem;
377   (*aref)->delta = delta;
378   (*aref)->write_p = write_p;
379   (*aref)->prefetch_before = PREFETCH_ALL;
380   (*aref)->prefetch_mod = 1;
381   (*aref)->reuse_distance = 0;
382   (*aref)->issue_prefetch_p = false;
383   (*aref)->group = group;
384   (*aref)->next = NULL;
385   (*aref)->independent_p = false;
386   (*aref)->storent_p = false;
387   (*aref)->uid = last_mem_ref_uid + 1;
388 
389   if (dump_file && (dump_flags & TDF_DETAILS))
390     {
391       dump_mem_ref (dump_file, *aref);
392 
393       fprintf (dump_file, "  group %u ", group->uid);
394       dump_mem_details (dump_file, group->base, group->step, delta,
395 			write_p);
396     }
397 }
398 
399 /* Release memory references in GROUPS.  */
400 
401 static void
release_mem_refs(struct mem_ref_group * groups)402 release_mem_refs (struct mem_ref_group *groups)
403 {
404   struct mem_ref_group *next_g;
405   struct mem_ref *ref, *next_r;
406 
407   for (; groups; groups = next_g)
408     {
409       next_g = groups->next;
410       for (ref = groups->refs; ref; ref = next_r)
411 	{
412 	  next_r = ref->next;
413 	  free (ref);
414 	}
415       free (groups);
416     }
417 }
418 
419 /* A structure used to pass arguments to idx_analyze_ref.  */
420 
421 struct ar_data
422 {
423   class loop *loop;			/* Loop of the reference.  */
424   gimple *stmt;				/* Statement of the reference.  */
425   tree *step;				/* Step of the memory reference.  */
426   HOST_WIDE_INT *delta;			/* Offset of the memory reference.  */
427 };
428 
429 /* Analyzes a single INDEX of a memory reference to obtain information
430    described at analyze_ref.  Callback for for_each_index.  */
431 
432 static bool
idx_analyze_ref(tree base,tree * index,void * data)433 idx_analyze_ref (tree base, tree *index, void *data)
434 {
435   struct ar_data *ar_data = (struct ar_data *) data;
436   tree ibase, step, stepsize;
437   HOST_WIDE_INT idelta = 0, imult = 1;
438   affine_iv iv;
439 
440   if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
441 		  *index, &iv, true))
442     return false;
443   ibase = iv.base;
444   step = iv.step;
445 
446   if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
447       && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
448     {
449       idelta = int_cst_value (TREE_OPERAND (ibase, 1));
450       ibase = TREE_OPERAND (ibase, 0);
451     }
452   if (cst_and_fits_in_hwi (ibase))
453     {
454       idelta += int_cst_value (ibase);
455       ibase = build_int_cst (TREE_TYPE (ibase), 0);
456     }
457 
458   if (TREE_CODE (base) == ARRAY_REF)
459     {
460       stepsize = array_ref_element_size (base);
461       if (!cst_and_fits_in_hwi (stepsize))
462 	return false;
463       imult = int_cst_value (stepsize);
464       step = fold_build2 (MULT_EXPR, sizetype,
465 			  fold_convert (sizetype, step),
466 			  fold_convert (sizetype, stepsize));
467       idelta *= imult;
468     }
469 
470   if (*ar_data->step == NULL_TREE)
471     *ar_data->step = step;
472   else
473     *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
474 				  fold_convert (sizetype, *ar_data->step),
475 				  fold_convert (sizetype, step));
476   *ar_data->delta += idelta;
477   *index = ibase;
478 
479   return true;
480 }
481 
482 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
483    STEP are integer constants and iter is number of iterations of LOOP.  The
484    reference occurs in statement STMT.  Strips nonaddressable component
485    references from REF_P.  */
486 
487 static bool
analyze_ref(class loop * loop,tree * ref_p,tree * base,tree * step,HOST_WIDE_INT * delta,gimple * stmt)488 analyze_ref (class loop *loop, tree *ref_p, tree *base,
489 	     tree *step, HOST_WIDE_INT *delta,
490 	     gimple *stmt)
491 {
492   struct ar_data ar_data;
493   tree off;
494   HOST_WIDE_INT bit_offset;
495   tree ref = *ref_p;
496 
497   *step = NULL_TREE;
498   *delta = 0;
499 
500   /* First strip off the component references.  Ignore bitfields.
501      Also strip off the real and imagine parts of a complex, so that
502      they can have the same base.  */
503   if (TREE_CODE (ref) == REALPART_EXPR
504       || TREE_CODE (ref) == IMAGPART_EXPR
505       || (TREE_CODE (ref) == COMPONENT_REF
506           && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
507     {
508       if (TREE_CODE (ref) == IMAGPART_EXPR)
509         *delta += int_size_in_bytes (TREE_TYPE (ref));
510       ref = TREE_OPERAND (ref, 0);
511     }
512 
513   *ref_p = ref;
514 
515   for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
516     {
517       off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
518       bit_offset = TREE_INT_CST_LOW (off);
519       gcc_assert (bit_offset % BITS_PER_UNIT == 0);
520 
521       *delta += bit_offset / BITS_PER_UNIT;
522     }
523 
524   *base = unshare_expr (ref);
525   ar_data.loop = loop;
526   ar_data.stmt = stmt;
527   ar_data.step = step;
528   ar_data.delta = delta;
529   return for_each_index (base, idx_analyze_ref, &ar_data);
530 }
531 
532 /* Record a memory reference REF to the list REFS.  The reference occurs in
533    LOOP in statement STMT and it is write if WRITE_P.  Returns true if the
534    reference was recorded, false otherwise.  */
535 
536 static bool
gather_memory_references_ref(class loop * loop,struct mem_ref_group ** refs,tree ref,bool write_p,gimple * stmt)537 gather_memory_references_ref (class loop *loop, struct mem_ref_group **refs,
538 			      tree ref, bool write_p, gimple *stmt)
539 {
540   tree base, step;
541   HOST_WIDE_INT delta;
542   struct mem_ref_group *agrp;
543 
544   if (get_base_address (ref) == NULL)
545     return false;
546 
547   if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
548     return false;
549   /* If analyze_ref fails the default is a NULL_TREE.  We can stop here.  */
550   if (step == NULL_TREE)
551     return false;
552 
553   /* Stop if the address of BASE could not be taken.  */
554   if (may_be_nonaddressable_p (base))
555     return false;
556 
557   /* Limit non-constant step prefetching only to the innermost loops and
558      only when the step is loop invariant in the entire loop nest. */
559   if (!cst_and_fits_in_hwi (step))
560     {
561       if (loop->inner != NULL)
562         {
563           if (dump_file && (dump_flags & TDF_DETAILS))
564             {
565               fprintf (dump_file, "Memory expression %p\n",(void *) ref );
566 	      print_generic_expr (dump_file, ref, TDF_SLIM);
567 	      fprintf (dump_file,":");
568               dump_mem_details (dump_file, base, step, delta, write_p);
569               fprintf (dump_file,
570                        "Ignoring %p, non-constant step prefetching is "
571                        "limited to inner most loops \n",
572                        (void *) ref);
573             }
574             return false;
575          }
576       else
577         {
578           if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
579           {
580             if (dump_file && (dump_flags & TDF_DETAILS))
581               {
582                 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
583 		print_generic_expr (dump_file, ref, TDF_SLIM);
584                 fprintf (dump_file,":");
585                 dump_mem_details (dump_file, base, step, delta, write_p);
586                 fprintf (dump_file,
587                          "Not prefetching, ignoring %p due to "
588                          "loop variant step\n",
589                          (void *) ref);
590               }
591               return false;
592             }
593         }
594     }
595 
596   /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
597      are integer constants.  */
598   agrp = find_or_create_group (refs, base, step);
599   record_ref (agrp, stmt, ref, delta, write_p);
600 
601   return true;
602 }
603 
604 /* Record the suitable memory references in LOOP.  NO_OTHER_REFS is set to
605    true if there are no other memory references inside the loop.  */
606 
607 static struct mem_ref_group *
gather_memory_references(class loop * loop,bool * no_other_refs,unsigned * ref_count)608 gather_memory_references (class loop *loop, bool *no_other_refs, unsigned *ref_count)
609 {
610   basic_block *body = get_loop_body_in_dom_order (loop);
611   basic_block bb;
612   unsigned i;
613   gimple_stmt_iterator bsi;
614   gimple *stmt;
615   tree lhs, rhs;
616   struct mem_ref_group *refs = NULL;
617 
618   *no_other_refs = true;
619   *ref_count = 0;
620 
621   /* Scan the loop body in order, so that the former references precede the
622      later ones.  */
623   for (i = 0; i < loop->num_nodes; i++)
624     {
625       bb = body[i];
626       if (bb->loop_father != loop)
627 	continue;
628 
629       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
630 	{
631 	  stmt = gsi_stmt (bsi);
632 
633 	  if (gimple_code (stmt) != GIMPLE_ASSIGN)
634 	    {
635 	      if (gimple_vuse (stmt)
636 		  || (is_gimple_call (stmt)
637 		      && !(gimple_call_flags (stmt) & ECF_CONST)))
638 		*no_other_refs = false;
639 	      continue;
640 	    }
641 
642 	  if (! gimple_vuse (stmt))
643 	    continue;
644 
645 	  lhs = gimple_assign_lhs (stmt);
646 	  rhs = gimple_assign_rhs1 (stmt);
647 
648 	  if (REFERENCE_CLASS_P (rhs))
649 	    {
650 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
651 							    rhs, false, stmt);
652 	    *ref_count += 1;
653 	    }
654 	  if (REFERENCE_CLASS_P (lhs))
655 	    {
656 	    *no_other_refs &= gather_memory_references_ref (loop, &refs,
657 							    lhs, true, stmt);
658 	    *ref_count += 1;
659 	    }
660 	}
661     }
662   free (body);
663 
664   return refs;
665 }
666 
667 /* Prune the prefetch candidate REF using the self-reuse.  */
668 
669 static void
prune_ref_by_self_reuse(struct mem_ref * ref)670 prune_ref_by_self_reuse (struct mem_ref *ref)
671 {
672   HOST_WIDE_INT step;
673   bool backward;
674 
675   /* If the step size is non constant, we cannot calculate prefetch_mod.  */
676   if (!cst_and_fits_in_hwi (ref->group->step))
677     return;
678 
679   step = int_cst_value (ref->group->step);
680 
681   backward = step < 0;
682 
683   if (step == 0)
684     {
685       /* Prefetch references to invariant address just once.  */
686       ref->prefetch_before = 1;
687       return;
688     }
689 
690   if (backward)
691     step = -step;
692 
693   if (step > PREFETCH_BLOCK)
694     return;
695 
696   if ((backward && HAVE_BACKWARD_PREFETCH)
697       || (!backward && HAVE_FORWARD_PREFETCH))
698     {
699       ref->prefetch_before = 1;
700       return;
701     }
702 
703   ref->prefetch_mod = PREFETCH_BLOCK / step;
704 }
705 
706 /* Divides X by BY, rounding down.  */
707 
708 static HOST_WIDE_INT
ddown(HOST_WIDE_INT x,unsigned HOST_WIDE_INT by)709 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
710 {
711   gcc_assert (by > 0);
712 
713   if (x >= 0)
714     return x / (HOST_WIDE_INT) by;
715   else
716     return (x + (HOST_WIDE_INT) by - 1) / (HOST_WIDE_INT) by;
717 }
718 
719 /* Given a CACHE_LINE_SIZE and two inductive memory references
720    with a common STEP greater than CACHE_LINE_SIZE and an address
721    difference DELTA, compute the probability that they will fall
722    in different cache lines.  Return true if the computed miss rate
723    is not greater than the ACCEPTABLE_MISS_RATE.  DISTINCT_ITERS is the
724    number of distinct iterations after which the pattern repeats itself.
725    ALIGN_UNIT is the unit of alignment in bytes.  */
726 
727 static bool
is_miss_rate_acceptable(unsigned HOST_WIDE_INT cache_line_size,HOST_WIDE_INT step,HOST_WIDE_INT delta,unsigned HOST_WIDE_INT distinct_iters,int align_unit)728 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
729 		   HOST_WIDE_INT step, HOST_WIDE_INT delta,
730 		   unsigned HOST_WIDE_INT distinct_iters,
731 		   int align_unit)
732 {
733   unsigned align, iter;
734   int total_positions, miss_positions, max_allowed_miss_positions;
735   int address1, address2, cache_line1, cache_line2;
736 
737   /* It always misses if delta is greater than or equal to the cache
738      line size.  */
739   if (delta >= (HOST_WIDE_INT) cache_line_size)
740     return false;
741 
742   miss_positions = 0;
743   total_positions = (cache_line_size / align_unit) * distinct_iters;
744   max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
745 
746   /* Iterate through all possible alignments of the first
747      memory reference within its cache line.  */
748   for (align = 0; align < cache_line_size; align += align_unit)
749 
750     /* Iterate through all distinct iterations.  */
751     for (iter = 0; iter < distinct_iters; iter++)
752       {
753 	address1 = align + step * iter;
754 	address2 = address1 + delta;
755 	cache_line1 = address1 / cache_line_size;
756 	cache_line2 = address2 / cache_line_size;
757 	if (cache_line1 != cache_line2)
758 	  {
759 	    miss_positions += 1;
760             if (miss_positions > max_allowed_miss_positions)
761 	      return false;
762           }
763       }
764   return true;
765 }
766 
767 /* Prune the prefetch candidate REF using the reuse with BY.
768    If BY_IS_BEFORE is true, BY is before REF in the loop.  */
769 
770 static void
prune_ref_by_group_reuse(struct mem_ref * ref,struct mem_ref * by,bool by_is_before)771 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
772 			  bool by_is_before)
773 {
774   HOST_WIDE_INT step;
775   bool backward;
776   HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
777   HOST_WIDE_INT delta = delta_b - delta_r;
778   HOST_WIDE_INT hit_from;
779   unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
780   HOST_WIDE_INT reduced_step;
781   unsigned HOST_WIDE_INT reduced_prefetch_block;
782   tree ref_type;
783   int align_unit;
784 
785   /* If the step is non constant we cannot calculate prefetch_before.  */
786   if (!cst_and_fits_in_hwi (ref->group->step)) {
787     return;
788   }
789 
790   step = int_cst_value (ref->group->step);
791 
792   backward = step < 0;
793 
794 
795   if (delta == 0)
796     {
797       /* If the references has the same address, only prefetch the
798 	 former.  */
799       if (by_is_before)
800 	ref->prefetch_before = 0;
801 
802       return;
803     }
804 
805   if (!step)
806     {
807       /* If the reference addresses are invariant and fall into the
808 	 same cache line, prefetch just the first one.  */
809       if (!by_is_before)
810 	return;
811 
812       if (ddown (ref->delta, PREFETCH_BLOCK)
813 	  != ddown (by->delta, PREFETCH_BLOCK))
814 	return;
815 
816       ref->prefetch_before = 0;
817       return;
818     }
819 
820   /* Only prune the reference that is behind in the array.  */
821   if (backward)
822     {
823       if (delta > 0)
824 	return;
825 
826       /* Transform the data so that we may assume that the accesses
827 	 are forward.  */
828       delta = - delta;
829       step = -step;
830       delta_r = PREFETCH_BLOCK - 1 - delta_r;
831       delta_b = PREFETCH_BLOCK - 1 - delta_b;
832     }
833   else
834     {
835       if (delta < 0)
836 	return;
837     }
838 
839   /* Check whether the two references are likely to hit the same cache
840      line, and how distant the iterations in that it occurs are from
841      each other.  */
842 
843   if (step <= PREFETCH_BLOCK)
844     {
845       /* The accesses are sure to meet.  Let us check when.  */
846       hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
847       prefetch_before = (hit_from - delta_r + step - 1) / step;
848 
849       /* Do not reduce prefetch_before if we meet beyond cache size.  */
850       if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
851         prefetch_before = PREFETCH_ALL;
852       if (prefetch_before < ref->prefetch_before)
853 	ref->prefetch_before = prefetch_before;
854 
855       return;
856     }
857 
858   /* A more complicated case with step > prefetch_block.  First reduce
859      the ratio between the step and the cache line size to its simplest
860      terms.  The resulting denominator will then represent the number of
861      distinct iterations after which each address will go back to its
862      initial location within the cache line.  This computation assumes
863      that PREFETCH_BLOCK is a power of two.  */
864   prefetch_block = PREFETCH_BLOCK;
865   reduced_prefetch_block = prefetch_block;
866   reduced_step = step;
867   while ((reduced_step & 1) == 0
868 	 && reduced_prefetch_block > 1)
869     {
870       reduced_step >>= 1;
871       reduced_prefetch_block >>= 1;
872     }
873 
874   prefetch_before = delta / step;
875   delta %= step;
876   ref_type = TREE_TYPE (ref->mem);
877   align_unit = TYPE_ALIGN (ref_type) / 8;
878   if (is_miss_rate_acceptable (prefetch_block, step, delta,
879 			       reduced_prefetch_block, align_unit))
880     {
881       /* Do not reduce prefetch_before if we meet beyond cache size.  */
882       if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
883         prefetch_before = PREFETCH_ALL;
884       if (prefetch_before < ref->prefetch_before)
885 	ref->prefetch_before = prefetch_before;
886 
887       return;
888     }
889 
890   /* Try also the following iteration.  */
891   prefetch_before++;
892   delta = step - delta;
893   if (is_miss_rate_acceptable (prefetch_block, step, delta,
894 			       reduced_prefetch_block, align_unit))
895     {
896       if (prefetch_before < ref->prefetch_before)
897 	ref->prefetch_before = prefetch_before;
898 
899       return;
900     }
901 
902   /* The ref probably does not reuse by.  */
903   return;
904 }
905 
906 /* Prune the prefetch candidate REF using the reuses with other references
907    in REFS.  */
908 
909 static void
prune_ref_by_reuse(struct mem_ref * ref,struct mem_ref * refs)910 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
911 {
912   struct mem_ref *prune_by;
913   bool before = true;
914 
915   prune_ref_by_self_reuse (ref);
916 
917   for (prune_by = refs; prune_by; prune_by = prune_by->next)
918     {
919       if (prune_by == ref)
920 	{
921 	  before = false;
922 	  continue;
923 	}
924 
925       if (!WRITE_CAN_USE_READ_PREFETCH
926 	  && ref->write_p
927 	  && !prune_by->write_p)
928 	continue;
929       if (!READ_CAN_USE_WRITE_PREFETCH
930 	  && !ref->write_p
931 	  && prune_by->write_p)
932 	continue;
933 
934       prune_ref_by_group_reuse (ref, prune_by, before);
935     }
936 }
937 
938 /* Prune the prefetch candidates in GROUP using the reuse analysis.  */
939 
940 static void
prune_group_by_reuse(struct mem_ref_group * group)941 prune_group_by_reuse (struct mem_ref_group *group)
942 {
943   struct mem_ref *ref_pruned;
944 
945   for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
946     {
947       prune_ref_by_reuse (ref_pruned, group->refs);
948 
949       if (dump_file && (dump_flags & TDF_DETAILS))
950 	{
951 	  dump_mem_ref (dump_file, ref_pruned);
952 
953 	  if (ref_pruned->prefetch_before == PREFETCH_ALL
954 	      && ref_pruned->prefetch_mod == 1)
955 	    fprintf (dump_file, " no restrictions");
956 	  else if (ref_pruned->prefetch_before == 0)
957 	    fprintf (dump_file, " do not prefetch");
958 	  else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
959 	    fprintf (dump_file, " prefetch once");
960 	  else
961 	    {
962 	      if (ref_pruned->prefetch_before != PREFETCH_ALL)
963 		{
964 		  fprintf (dump_file, " prefetch before ");
965 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
966 			   ref_pruned->prefetch_before);
967 		}
968 	      if (ref_pruned->prefetch_mod != 1)
969 		{
970 		  fprintf (dump_file, " prefetch mod ");
971 		  fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
972 			   ref_pruned->prefetch_mod);
973 		}
974 	    }
975 	  fprintf (dump_file, "\n");
976 	}
977     }
978 }
979 
980 /* Prune the list of prefetch candidates GROUPS using the reuse analysis.  */
981 
982 static void
prune_by_reuse(struct mem_ref_group * groups)983 prune_by_reuse (struct mem_ref_group *groups)
984 {
985   for (; groups; groups = groups->next)
986     prune_group_by_reuse (groups);
987 }
988 
989 /* Returns true if we should issue prefetch for REF.  */
990 
991 static bool
should_issue_prefetch_p(struct mem_ref * ref)992 should_issue_prefetch_p (struct mem_ref *ref)
993 {
994   /* Do we want to issue prefetches for non-constant strides?  */
995   if (!cst_and_fits_in_hwi (ref->group->step)
996       && param_prefetch_dynamic_strides == 0)
997     {
998       if (dump_file && (dump_flags & TDF_DETAILS))
999 	fprintf (dump_file,
1000 		 "Skipping non-constant step for reference %u:%u\n",
1001 		 ref->group->uid, ref->uid);
1002       return false;
1003     }
1004 
1005   /* Some processors may have a hardware prefetcher that may conflict with
1006      prefetch hints for a range of strides.  Make sure we don't issue
1007      prefetches for such cases if the stride is within this particular
1008      range.  */
1009   if (cst_and_fits_in_hwi (ref->group->step)
1010       && abs_hwi (int_cst_value (ref->group->step))
1011 	  < (HOST_WIDE_INT) param_prefetch_minimum_stride)
1012     {
1013       if (dump_file && (dump_flags & TDF_DETAILS))
1014 	fprintf (dump_file,
1015 		 "Step for reference %u:%u (" HOST_WIDE_INT_PRINT_DEC
1016 		 ") is less than the mininum required stride of %d\n",
1017 		 ref->group->uid, ref->uid, int_cst_value (ref->group->step),
1018 		 param_prefetch_minimum_stride);
1019       return false;
1020     }
1021 
1022   /* For now do not issue prefetches for only first few of the
1023      iterations.  */
1024   if (ref->prefetch_before != PREFETCH_ALL)
1025     {
1026       if (dump_file && (dump_flags & TDF_DETAILS))
1027         fprintf (dump_file, "Ignoring reference %u:%u due to prefetch_before\n",
1028 		 ref->group->uid, ref->uid);
1029       return false;
1030     }
1031 
1032   /* Do not prefetch nontemporal stores.  */
1033   if (ref->storent_p)
1034     {
1035       if (dump_file && (dump_flags & TDF_DETAILS))
1036         fprintf (dump_file, "Ignoring nontemporal store reference %u:%u\n", ref->group->uid, ref->uid);
1037       return false;
1038     }
1039 
1040   return true;
1041 }
1042 
1043 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1044    AHEAD is the number of iterations to prefetch ahead (which corresponds
1045    to the number of simultaneous instances of one prefetch running at a
1046    time).  UNROLL_FACTOR is the factor by that the loop is going to be
1047    unrolled.  Returns true if there is anything to prefetch.  */
1048 
1049 static bool
schedule_prefetches(struct mem_ref_group * groups,unsigned unroll_factor,unsigned ahead)1050 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1051 		     unsigned ahead)
1052 {
1053   unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1054   unsigned slots_per_prefetch;
1055   struct mem_ref *ref;
1056   bool any = false;
1057 
1058   /* At most param_simultaneous_prefetches should be running
1059      at the same time.  */
1060   remaining_prefetch_slots = param_simultaneous_prefetches;
1061 
1062   /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1063      AHEAD / UNROLL_FACTOR iterations of the unrolled loop.  In each iteration,
1064      it will need a prefetch slot.  */
1065   slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1066   if (dump_file && (dump_flags & TDF_DETAILS))
1067     fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1068 	     slots_per_prefetch);
1069 
1070   /* For now we just take memory references one by one and issue
1071      prefetches for as many as possible.  The groups are sorted
1072      starting with the largest step, since the references with
1073      large step are more likely to cause many cache misses.  */
1074 
1075   for (; groups; groups = groups->next)
1076     for (ref = groups->refs; ref; ref = ref->next)
1077       {
1078 	if (!should_issue_prefetch_p (ref))
1079 	  continue;
1080 
1081         /* The loop is far from being sufficiently unrolled for this
1082            prefetch.  Do not generate prefetch to avoid many redudant
1083            prefetches.  */
1084         if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1085           continue;
1086 
1087 	/* If we need to prefetch the reference each PREFETCH_MOD iterations,
1088 	   and we unroll the loop UNROLL_FACTOR times, we need to insert
1089 	   ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1090 	   iteration.  */
1091 	n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1092 			/ ref->prefetch_mod);
1093 	prefetch_slots = n_prefetches * slots_per_prefetch;
1094 
1095 	/* If more than half of the prefetches would be lost anyway, do not
1096 	   issue the prefetch.  */
1097 	if (2 * remaining_prefetch_slots < prefetch_slots)
1098 	  continue;
1099 
1100 	/* Stop prefetching if debug counter is activated.  */
1101 	if (!dbg_cnt (prefetch))
1102 	  continue;
1103 
1104 	ref->issue_prefetch_p = true;
1105 	if (dump_file && (dump_flags & TDF_DETAILS))
1106 	  fprintf (dump_file, "Decided to issue prefetch for reference %u:%u\n",
1107 		   ref->group->uid, ref->uid);
1108 
1109 	if (remaining_prefetch_slots <= prefetch_slots)
1110 	  return true;
1111 	remaining_prefetch_slots -= prefetch_slots;
1112 	any = true;
1113       }
1114 
1115   return any;
1116 }
1117 
1118 /* Return TRUE if no prefetch is going to be generated in the given
1119    GROUPS.  */
1120 
1121 static bool
nothing_to_prefetch_p(struct mem_ref_group * groups)1122 nothing_to_prefetch_p (struct mem_ref_group *groups)
1123 {
1124   struct mem_ref *ref;
1125 
1126   for (; groups; groups = groups->next)
1127     for (ref = groups->refs; ref; ref = ref->next)
1128       if (should_issue_prefetch_p (ref))
1129 	return false;
1130 
1131   return true;
1132 }
1133 
1134 /* Estimate the number of prefetches in the given GROUPS.
1135    UNROLL_FACTOR is the factor by which LOOP was unrolled.  */
1136 
1137 static int
estimate_prefetch_count(struct mem_ref_group * groups,unsigned unroll_factor)1138 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1139 {
1140   struct mem_ref *ref;
1141   unsigned n_prefetches;
1142   int prefetch_count = 0;
1143 
1144   for (; groups; groups = groups->next)
1145     for (ref = groups->refs; ref; ref = ref->next)
1146       if (should_issue_prefetch_p (ref))
1147 	{
1148 	  n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1149 			  / ref->prefetch_mod);
1150 	  prefetch_count += n_prefetches;
1151 	}
1152 
1153   return prefetch_count;
1154 }
1155 
1156 /* Issue prefetches for the reference REF into loop as decided before.
1157    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR
1158    is the factor by which LOOP was unrolled.  */
1159 
1160 static void
issue_prefetch_ref(struct mem_ref * ref,unsigned unroll_factor,unsigned ahead)1161 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1162 {
1163   HOST_WIDE_INT delta;
1164   tree addr, addr_base, write_p, local, forward;
1165   gcall *prefetch;
1166   gimple_stmt_iterator bsi;
1167   unsigned n_prefetches, ap;
1168   bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1169 
1170   if (dump_file && (dump_flags & TDF_DETAILS))
1171     fprintf (dump_file, "Issued%s prefetch for reference %u:%u.\n",
1172 	     nontemporal ? " nontemporal" : "",
1173 	     ref->group->uid, ref->uid);
1174 
1175   bsi = gsi_for_stmt (ref->stmt);
1176 
1177   n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1178 		  / ref->prefetch_mod);
1179   addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1180   addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1181 					true, NULL, true, GSI_SAME_STMT);
1182   write_p = ref->write_p ? integer_one_node : integer_zero_node;
1183   local = nontemporal ? integer_zero_node : integer_three_node;
1184 
1185   for (ap = 0; ap < n_prefetches; ap++)
1186     {
1187       if (cst_and_fits_in_hwi (ref->group->step))
1188         {
1189           /* Determine the address to prefetch.  */
1190           delta = (ahead + ap * ref->prefetch_mod) *
1191 		   int_cst_value (ref->group->step);
1192           addr = fold_build_pointer_plus_hwi (addr_base, delta);
1193           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1194 					   NULL, true, GSI_SAME_STMT);
1195         }
1196       else
1197         {
1198           /* The step size is non-constant but loop-invariant.  We use the
1199              heuristic to simply prefetch ahead iterations ahead.  */
1200           forward = fold_build2 (MULT_EXPR, sizetype,
1201                                  fold_convert (sizetype, ref->group->step),
1202                                  fold_convert (sizetype, size_int (ahead)));
1203           addr = fold_build_pointer_plus (addr_base, forward);
1204           addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1205 					   NULL, true, GSI_SAME_STMT);
1206       }
1207 
1208       if (addr_base != addr
1209 	  && TREE_CODE (addr_base) == SSA_NAME
1210 	  && TREE_CODE (addr) == SSA_NAME)
1211 	{
1212 	  duplicate_ssa_name_ptr_info (addr, SSA_NAME_PTR_INFO (addr_base));
1213 	  /* As this isn't a plain copy we have to reset alignment
1214 	     information.  */
1215 	  if (SSA_NAME_PTR_INFO (addr))
1216 	    mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr));
1217 	}
1218 
1219       /* Create the prefetch instruction.  */
1220       prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1221 				    3, addr, write_p, local);
1222       gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1223     }
1224 }
1225 
1226 /* Issue prefetches for the references in GROUPS into loop as decided before.
1227    HEAD is the number of iterations to prefetch ahead.  UNROLL_FACTOR is the
1228    factor by that LOOP was unrolled.  */
1229 
1230 static void
issue_prefetches(struct mem_ref_group * groups,unsigned unroll_factor,unsigned ahead)1231 issue_prefetches (struct mem_ref_group *groups,
1232 		  unsigned unroll_factor, unsigned ahead)
1233 {
1234   struct mem_ref *ref;
1235 
1236   for (; groups; groups = groups->next)
1237     for (ref = groups->refs; ref; ref = ref->next)
1238       if (ref->issue_prefetch_p)
1239 	issue_prefetch_ref (ref, unroll_factor, ahead);
1240 }
1241 
1242 /* Returns true if REF is a memory write for that a nontemporal store insn
1243    can be used.  */
1244 
1245 static bool
nontemporal_store_p(struct mem_ref * ref)1246 nontemporal_store_p (struct mem_ref *ref)
1247 {
1248   machine_mode mode;
1249   enum insn_code code;
1250 
1251   /* REF must be a write that is not reused.  We require it to be independent
1252      on all other memory references in the loop, as the nontemporal stores may
1253      be reordered with respect to other memory references.  */
1254   if (!ref->write_p
1255       || !ref->independent_p
1256       || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1257     return false;
1258 
1259   /* Check that we have the storent instruction for the mode.  */
1260   mode = TYPE_MODE (TREE_TYPE (ref->mem));
1261   if (mode == BLKmode)
1262     return false;
1263 
1264   code = optab_handler (storent_optab, mode);
1265   return code != CODE_FOR_nothing;
1266 }
1267 
1268 /* If REF is a nontemporal store, we mark the corresponding modify statement
1269    and return true.  Otherwise, we return false.  */
1270 
1271 static bool
mark_nontemporal_store(struct mem_ref * ref)1272 mark_nontemporal_store (struct mem_ref *ref)
1273 {
1274   if (!nontemporal_store_p (ref))
1275     return false;
1276 
1277   if (dump_file && (dump_flags & TDF_DETAILS))
1278     fprintf (dump_file, "Marked reference %u:%u as a nontemporal store.\n",
1279 	     ref->group->uid, ref->uid);
1280 
1281   gimple_assign_set_nontemporal_move (ref->stmt, true);
1282   ref->storent_p = true;
1283 
1284   return true;
1285 }
1286 
1287 /* Issue a memory fence instruction after LOOP.  */
1288 
1289 static void
emit_mfence_after_loop(class loop * loop)1290 emit_mfence_after_loop (class loop *loop)
1291 {
1292   vec<edge> exits = get_loop_exit_edges (loop);
1293   edge exit;
1294   gcall *call;
1295   gimple_stmt_iterator bsi;
1296   unsigned i;
1297 
1298   FOR_EACH_VEC_ELT (exits, i, exit)
1299     {
1300       call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1301 
1302       if (!single_pred_p (exit->dest)
1303 	  /* If possible, we prefer not to insert the fence on other paths
1304 	     in cfg.  */
1305 	  && !(exit->flags & EDGE_ABNORMAL))
1306 	split_loop_exit_edge (exit);
1307       bsi = gsi_after_labels (exit->dest);
1308 
1309       gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1310     }
1311 
1312   exits.release ();
1313   update_ssa (TODO_update_ssa_only_virtuals);
1314 }
1315 
1316 /* Returns true if we can use storent in loop, false otherwise.  */
1317 
1318 static bool
may_use_storent_in_loop_p(class loop * loop)1319 may_use_storent_in_loop_p (class loop *loop)
1320 {
1321   bool ret = true;
1322 
1323   if (loop->inner != NULL)
1324     return false;
1325 
1326   /* If we must issue a mfence insn after using storent, check that there
1327      is a suitable place for it at each of the loop exits.  */
1328   if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1329     {
1330       vec<edge> exits = get_loop_exit_edges (loop);
1331       unsigned i;
1332       edge exit;
1333 
1334       FOR_EACH_VEC_ELT (exits, i, exit)
1335 	if ((exit->flags & EDGE_ABNORMAL)
1336 	    && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1337 	  ret = false;
1338 
1339       exits.release ();
1340     }
1341 
1342   return ret;
1343 }
1344 
1345 /* Marks nontemporal stores in LOOP.  GROUPS contains the description of memory
1346    references in the loop.  */
1347 
1348 static void
mark_nontemporal_stores(class loop * loop,struct mem_ref_group * groups)1349 mark_nontemporal_stores (class loop *loop, struct mem_ref_group *groups)
1350 {
1351   struct mem_ref *ref;
1352   bool any = false;
1353 
1354   if (!may_use_storent_in_loop_p (loop))
1355     return;
1356 
1357   for (; groups; groups = groups->next)
1358     for (ref = groups->refs; ref; ref = ref->next)
1359       any |= mark_nontemporal_store (ref);
1360 
1361   if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1362     emit_mfence_after_loop (loop);
1363 }
1364 
1365 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1366    this is the case, fill in DESC by the description of number of
1367    iterations.  */
1368 
1369 static bool
should_unroll_loop_p(class loop * loop,class tree_niter_desc * desc,unsigned factor)1370 should_unroll_loop_p (class loop *loop, class tree_niter_desc *desc,
1371 		      unsigned factor)
1372 {
1373   if (!can_unroll_loop_p (loop, factor, desc))
1374     return false;
1375 
1376   /* We only consider loops without control flow for unrolling.  This is not
1377      a hard restriction -- tree_unroll_loop works with arbitrary loops
1378      as well; but the unrolling/prefetching is usually more profitable for
1379      loops consisting of a single basic block, and we want to limit the
1380      code growth.  */
1381   if (loop->num_nodes > 2)
1382     return false;
1383 
1384   return true;
1385 }
1386 
1387 /* Determine the coefficient by that unroll LOOP, from the information
1388    contained in the list of memory references REFS.  Description of
1389    number of iterations of LOOP is stored to DESC.  NINSNS is the number of
1390    insns of the LOOP.  EST_NITER is the estimated number of iterations of
1391    the loop, or -1 if no estimate is available.  */
1392 
1393 static unsigned
determine_unroll_factor(class loop * loop,struct mem_ref_group * refs,unsigned ninsns,class tree_niter_desc * desc,HOST_WIDE_INT est_niter)1394 determine_unroll_factor (class loop *loop, struct mem_ref_group *refs,
1395 			 unsigned ninsns, class tree_niter_desc *desc,
1396 			 HOST_WIDE_INT est_niter)
1397 {
1398   unsigned upper_bound;
1399   unsigned nfactor, factor, mod_constraint;
1400   struct mem_ref_group *agp;
1401   struct mem_ref *ref;
1402 
1403   /* First check whether the loop is not too large to unroll.  We ignore
1404      PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1405      from unrolling them enough to make exactly one cache line covered by each
1406      iteration.  Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1407      us from unrolling the loops too many times in cases where we only expect
1408      gains from better scheduling and decreasing loop overhead, which is not
1409      the case here.  */
1410   upper_bound = param_max_unrolled_insns / ninsns;
1411 
1412   /* If we unrolled the loop more times than it iterates, the unrolled version
1413      of the loop would be never entered.  */
1414   if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1415     upper_bound = est_niter;
1416 
1417   if (upper_bound <= 1)
1418     return 1;
1419 
1420   /* Choose the factor so that we may prefetch each cache just once,
1421      but bound the unrolling by UPPER_BOUND.  */
1422   factor = 1;
1423   for (agp = refs; agp; agp = agp->next)
1424     for (ref = agp->refs; ref; ref = ref->next)
1425       if (should_issue_prefetch_p (ref))
1426 	{
1427 	  mod_constraint = ref->prefetch_mod;
1428 	  nfactor = least_common_multiple (mod_constraint, factor);
1429 	  if (nfactor <= upper_bound)
1430 	    factor = nfactor;
1431 	}
1432 
1433   if (!should_unroll_loop_p (loop, desc, factor))
1434     return 1;
1435 
1436   return factor;
1437 }
1438 
1439 /* Returns the total volume of the memory references REFS, taking into account
1440    reuses in the innermost loop and cache line size.  TODO -- we should also
1441    take into account reuses across the iterations of the loops in the loop
1442    nest.  */
1443 
1444 static unsigned
volume_of_references(struct mem_ref_group * refs)1445 volume_of_references (struct mem_ref_group *refs)
1446 {
1447   unsigned volume = 0;
1448   struct mem_ref_group *gr;
1449   struct mem_ref *ref;
1450 
1451   for (gr = refs; gr; gr = gr->next)
1452     for (ref = gr->refs; ref; ref = ref->next)
1453       {
1454 	/* Almost always reuses another value?  */
1455 	if (ref->prefetch_before != PREFETCH_ALL)
1456 	  continue;
1457 
1458 	/* If several iterations access the same cache line, use the size of
1459 	   the line divided by this number.  Otherwise, a cache line is
1460 	   accessed in each iteration.  TODO -- in the latter case, we should
1461 	   take the size of the reference into account, rounding it up on cache
1462 	   line size multiple.  */
1463 	volume += param_l1_cache_line_size / ref->prefetch_mod;
1464       }
1465   return volume;
1466 }
1467 
1468 /* Returns the volume of memory references accessed across VEC iterations of
1469    loops, whose sizes are described in the LOOP_SIZES array.  N is the number
1470    of the loops in the nest (length of VEC and LOOP_SIZES vectors).  */
1471 
1472 static unsigned
volume_of_dist_vector(lambda_vector vec,unsigned * loop_sizes,unsigned n)1473 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1474 {
1475   unsigned i;
1476 
1477   for (i = 0; i < n; i++)
1478     if (vec[i] != 0)
1479       break;
1480 
1481   if (i == n)
1482     return 0;
1483 
1484   gcc_assert (vec[i] > 0);
1485 
1486   /* We ignore the parts of the distance vector in subloops, since usually
1487      the numbers of iterations are much smaller.  */
1488   return loop_sizes[i] * vec[i];
1489 }
1490 
1491 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1492    at the position corresponding to the loop of the step.  N is the depth
1493    of the considered loop nest, and, LOOP is its innermost loop.  */
1494 
1495 static void
add_subscript_strides(tree access_fn,unsigned stride,HOST_WIDE_INT * strides,unsigned n,class loop * loop)1496 add_subscript_strides (tree access_fn, unsigned stride,
1497 		       HOST_WIDE_INT *strides, unsigned n, class loop *loop)
1498 {
1499   class loop *aloop;
1500   tree step;
1501   HOST_WIDE_INT astep;
1502   unsigned min_depth = loop_depth (loop) - n;
1503 
1504   while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1505     {
1506       aloop = get_chrec_loop (access_fn);
1507       step = CHREC_RIGHT (access_fn);
1508       access_fn = CHREC_LEFT (access_fn);
1509 
1510       if ((unsigned) loop_depth (aloop) <= min_depth)
1511 	continue;
1512 
1513       if (tree_fits_shwi_p (step))
1514 	astep = tree_to_shwi (step);
1515       else
1516 	astep = param_l1_cache_line_size;
1517 
1518       strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1519 
1520     }
1521 }
1522 
1523 /* Returns the volume of memory references accessed between two consecutive
1524    self-reuses of the reference DR.  We consider the subscripts of DR in N
1525    loops, and LOOP_SIZES contains the volumes of accesses in each of the
1526    loops.  LOOP is the innermost loop of the current loop nest.  */
1527 
1528 static unsigned
self_reuse_distance(data_reference_p dr,unsigned * loop_sizes,unsigned n,class loop * loop)1529 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1530 		     class loop *loop)
1531 {
1532   tree stride, access_fn;
1533   HOST_WIDE_INT *strides, astride;
1534   vec<tree> access_fns;
1535   tree ref = DR_REF (dr);
1536   unsigned i, ret = ~0u;
1537 
1538   /* In the following example:
1539 
1540      for (i = 0; i < N; i++)
1541        for (j = 0; j < N; j++)
1542          use (a[j][i]);
1543      the same cache line is accessed each N steps (except if the change from
1544      i to i + 1 crosses the boundary of the cache line).  Thus, for self-reuse,
1545      we cannot rely purely on the results of the data dependence analysis.
1546 
1547      Instead, we compute the stride of the reference in each loop, and consider
1548      the innermost loop in that the stride is less than cache size.  */
1549 
1550   strides = XCNEWVEC (HOST_WIDE_INT, n);
1551   access_fns = DR_ACCESS_FNS (dr);
1552 
1553   FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1554     {
1555       /* Keep track of the reference corresponding to the subscript, so that we
1556 	 know its stride.  */
1557       while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1558 	ref = TREE_OPERAND (ref, 0);
1559 
1560       if (TREE_CODE (ref) == ARRAY_REF)
1561 	{
1562 	  stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1563 	  if (tree_fits_uhwi_p (stride))
1564 	    astride = tree_to_uhwi (stride);
1565 	  else
1566 	    astride = param_l1_cache_line_size;
1567 
1568 	  ref = TREE_OPERAND (ref, 0);
1569 	}
1570       else
1571 	astride = 1;
1572 
1573       add_subscript_strides (access_fn, astride, strides, n, loop);
1574     }
1575 
1576   for (i = n; i-- > 0; )
1577     {
1578       unsigned HOST_WIDE_INT s;
1579 
1580       s = strides[i] < 0 ?  -strides[i] : strides[i];
1581 
1582       if (s < (unsigned) param_l1_cache_line_size
1583 	  && (loop_sizes[i]
1584 	      > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1585 	{
1586 	  ret = loop_sizes[i];
1587 	  break;
1588 	}
1589     }
1590 
1591   free (strides);
1592   return ret;
1593 }
1594 
1595 /* Determines the distance till the first reuse of each reference in REFS
1596    in the loop nest of LOOP.  NO_OTHER_REFS is true if there are no other
1597    memory references in the loop.  Return false if the analysis fails.  */
1598 
1599 static bool
determine_loop_nest_reuse(class loop * loop,struct mem_ref_group * refs,bool no_other_refs)1600 determine_loop_nest_reuse (class loop *loop, struct mem_ref_group *refs,
1601 			   bool no_other_refs)
1602 {
1603   class loop *nest, *aloop;
1604   vec<data_reference_p> datarefs = vNULL;
1605   vec<ddr_p> dependences = vNULL;
1606   struct mem_ref_group *gr;
1607   struct mem_ref *ref, *refb;
1608   auto_vec<loop_p> vloops;
1609   unsigned *loop_data_size;
1610   unsigned i, j, n;
1611   unsigned volume, dist, adist;
1612   HOST_WIDE_INT vol;
1613   data_reference_p dr;
1614   ddr_p dep;
1615 
1616   if (loop->inner)
1617     return true;
1618 
1619   /* Find the outermost loop of the loop nest of loop (we require that
1620      there are no sibling loops inside the nest).  */
1621   nest = loop;
1622   while (1)
1623     {
1624       aloop = loop_outer (nest);
1625 
1626       if (aloop == current_loops->tree_root
1627 	  || aloop->inner->next)
1628 	break;
1629 
1630       nest = aloop;
1631     }
1632 
1633   /* For each loop, determine the amount of data accessed in each iteration.
1634      We use this to estimate whether the reference is evicted from the
1635      cache before its reuse.  */
1636   find_loop_nest (nest, &vloops);
1637   n = vloops.length ();
1638   loop_data_size = XNEWVEC (unsigned, n);
1639   volume = volume_of_references (refs);
1640   i = n;
1641   while (i-- != 0)
1642     {
1643       loop_data_size[i] = volume;
1644       /* Bound the volume by the L2 cache size, since above this bound,
1645 	 all dependence distances are equivalent.  */
1646       if (volume > L2_CACHE_SIZE_BYTES)
1647 	continue;
1648 
1649       aloop = vloops[i];
1650       vol = estimated_stmt_executions_int (aloop);
1651       if (vol == -1)
1652 	vol = expected_loop_iterations (aloop);
1653       volume *= vol;
1654     }
1655 
1656   /* Prepare the references in the form suitable for data dependence
1657      analysis.  We ignore unanalyzable data references (the results
1658      are used just as a heuristics to estimate temporality of the
1659      references, hence we do not need to worry about correctness).  */
1660   for (gr = refs; gr; gr = gr->next)
1661     for (ref = gr->refs; ref; ref = ref->next)
1662       {
1663 	dr = create_data_ref (loop_preheader_edge (nest),
1664 			      loop_containing_stmt (ref->stmt),
1665 			      ref->mem, ref->stmt, !ref->write_p, false);
1666 
1667 	if (dr)
1668 	  {
1669 	    ref->reuse_distance = volume;
1670 	    dr->aux = ref;
1671 	    datarefs.safe_push (dr);
1672 	  }
1673 	else
1674 	  no_other_refs = false;
1675       }
1676 
1677   FOR_EACH_VEC_ELT (datarefs, i, dr)
1678     {
1679       dist = self_reuse_distance (dr, loop_data_size, n, loop);
1680       ref = (struct mem_ref *) dr->aux;
1681       if (ref->reuse_distance > dist)
1682 	ref->reuse_distance = dist;
1683 
1684       if (no_other_refs)
1685 	ref->independent_p = true;
1686     }
1687 
1688   if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1689     return false;
1690 
1691   FOR_EACH_VEC_ELT (dependences, i, dep)
1692     {
1693       if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1694 	continue;
1695 
1696       ref = (struct mem_ref *) DDR_A (dep)->aux;
1697       refb = (struct mem_ref *) DDR_B (dep)->aux;
1698 
1699       if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1700 	  || DDR_COULD_BE_INDEPENDENT_P (dep)
1701 	  || DDR_NUM_DIST_VECTS (dep) == 0)
1702 	{
1703 	  /* If the dependence cannot be analyzed, assume that there might be
1704 	     a reuse.  */
1705 	  dist = 0;
1706 
1707 	  ref->independent_p = false;
1708 	  refb->independent_p = false;
1709 	}
1710       else
1711 	{
1712 	  /* The distance vectors are normalized to be always lexicographically
1713 	     positive, hence we cannot tell just from them whether DDR_A comes
1714 	     before DDR_B or vice versa.  However, it is not important,
1715 	     anyway -- if DDR_A is close to DDR_B, then it is either reused in
1716 	     DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1717 	     in cache (and marking it as nontemporal would not affect
1718 	     anything).  */
1719 
1720 	  dist = volume;
1721 	  for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1722 	    {
1723 	      adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1724 					     loop_data_size, n);
1725 
1726 	      /* If this is a dependence in the innermost loop (i.e., the
1727 		 distances in all superloops are zero) and it is not
1728 		 the trivial self-dependence with distance zero, record that
1729 		 the references are not completely independent.  */
1730 	      if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1731 		  && (ref != refb
1732 		      || DDR_DIST_VECT (dep, j)[n-1] != 0))
1733 		{
1734 		  ref->independent_p = false;
1735 		  refb->independent_p = false;
1736 		}
1737 
1738 	      /* Ignore accesses closer than
1739 		 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1740 	      	 so that we use nontemporal prefetches e.g. if single memory
1741 		 location is accessed several times in a single iteration of
1742 		 the loop.  */
1743 	      if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1744 		continue;
1745 
1746 	      if (adist < dist)
1747 		dist = adist;
1748 	    }
1749 	}
1750 
1751       if (ref->reuse_distance > dist)
1752 	ref->reuse_distance = dist;
1753       if (refb->reuse_distance > dist)
1754 	refb->reuse_distance = dist;
1755     }
1756 
1757   free_dependence_relations (dependences);
1758   free_data_refs (datarefs);
1759   free (loop_data_size);
1760 
1761   if (dump_file && (dump_flags & TDF_DETAILS))
1762     {
1763       fprintf (dump_file, "Reuse distances:\n");
1764       for (gr = refs; gr; gr = gr->next)
1765 	for (ref = gr->refs; ref; ref = ref->next)
1766 	  fprintf (dump_file, " reference %u:%u distance %u\n",
1767 		   ref->group->uid, ref->uid, ref->reuse_distance);
1768     }
1769 
1770   return true;
1771 }
1772 
1773 /* Determine whether or not the trip count to ahead ratio is too small based
1774    on prefitablility consideration.
1775    AHEAD: the iteration ahead distance,
1776    EST_NITER: the estimated trip count.  */
1777 
1778 static bool
trip_count_to_ahead_ratio_too_small_p(unsigned ahead,HOST_WIDE_INT est_niter)1779 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1780 {
1781   /* Assume trip count to ahead ratio is big enough if the trip count could not
1782      be estimated at compile time.  */
1783   if (est_niter < 0)
1784     return false;
1785 
1786   if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1787     {
1788       if (dump_file && (dump_flags & TDF_DETAILS))
1789 	fprintf (dump_file,
1790 		 "Not prefetching -- loop estimated to roll only %d times\n",
1791 		 (int) est_niter);
1792       return true;
1793     }
1794 
1795   return false;
1796 }
1797 
1798 /* Determine whether or not the number of memory references in the loop is
1799    reasonable based on the profitablity and compilation time considerations.
1800    NINSNS: estimated number of instructions in the loop,
1801    MEM_REF_COUNT: total number of memory references in the loop.  */
1802 
1803 static bool
mem_ref_count_reasonable_p(unsigned ninsns,unsigned mem_ref_count)1804 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1805 {
1806   int insn_to_mem_ratio;
1807 
1808   if (mem_ref_count == 0)
1809     return false;
1810 
1811   /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1812      (compute_all_dependences) have high costs based on quadratic complexity.
1813      To avoid huge compilation time, we give up prefetching if mem_ref_count
1814      is too large.  */
1815   if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1816     return false;
1817 
1818   /* Prefetching improves performance by overlapping cache missing
1819      memory accesses with CPU operations.  If the loop does not have
1820      enough CPU operations to overlap with memory operations, prefetching
1821      won't give a significant benefit.  One approximate way of checking
1822      this is to require the ratio of instructions to memory references to
1823      be above a certain limit.  This approximation works well in practice.
1824      TODO: Implement a more precise computation by estimating the time
1825      for each CPU or memory op in the loop. Time estimates for memory ops
1826      should account for cache misses.  */
1827   insn_to_mem_ratio = ninsns / mem_ref_count;
1828 
1829   if (insn_to_mem_ratio < param_prefetch_min_insn_to_mem_ratio)
1830     {
1831       if (dump_file && (dump_flags & TDF_DETAILS))
1832         fprintf (dump_file,
1833 		 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1834 		 insn_to_mem_ratio);
1835       return false;
1836     }
1837 
1838   return true;
1839 }
1840 
1841 /* Determine whether or not the instruction to prefetch ratio in the loop is
1842    too small based on the profitablity consideration.
1843    NINSNS: estimated number of instructions in the loop,
1844    PREFETCH_COUNT: an estimate of the number of prefetches,
1845    UNROLL_FACTOR:  the factor to unroll the loop if prefetching.  */
1846 
1847 static bool
insn_to_prefetch_ratio_too_small_p(unsigned ninsns,unsigned prefetch_count,unsigned unroll_factor)1848 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1849                                      unsigned unroll_factor)
1850 {
1851   int insn_to_prefetch_ratio;
1852 
1853   /* Prefetching most likely causes performance degradation when the instruction
1854      to prefetch ratio is too small.  Too many prefetch instructions in a loop
1855      may reduce the I-cache performance.
1856      (unroll_factor * ninsns) is used to estimate the number of instructions in
1857      the unrolled loop.  This implementation is a bit simplistic -- the number
1858      of issued prefetch instructions is also affected by unrolling.  So,
1859      prefetch_mod and the unroll factor should be taken into account when
1860      determining prefetch_count.  Also, the number of insns of the unrolled
1861      loop will usually be significantly smaller than the number of insns of the
1862      original loop * unroll_factor (at least the induction variable increases
1863      and the exit branches will get eliminated), so it might be better to use
1864      tree_estimate_loop_size + estimated_unrolled_size.  */
1865   insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1866   if (insn_to_prefetch_ratio < param_min_insn_to_prefetch_ratio)
1867     {
1868       if (dump_file && (dump_flags & TDF_DETAILS))
1869         fprintf (dump_file,
1870 		 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1871 		 insn_to_prefetch_ratio);
1872       return true;
1873     }
1874 
1875   return false;
1876 }
1877 
1878 
1879 /* Issue prefetch instructions for array references in LOOP.  Returns
1880    true if the LOOP was unrolled.  */
1881 
1882 static bool
loop_prefetch_arrays(class loop * loop)1883 loop_prefetch_arrays (class loop *loop)
1884 {
1885   struct mem_ref_group *refs;
1886   unsigned ahead, ninsns, time, unroll_factor;
1887   HOST_WIDE_INT est_niter;
1888   class tree_niter_desc desc;
1889   bool unrolled = false, no_other_refs;
1890   unsigned prefetch_count;
1891   unsigned mem_ref_count;
1892 
1893   if (optimize_loop_nest_for_size_p (loop))
1894     {
1895       if (dump_file && (dump_flags & TDF_DETAILS))
1896 	fprintf (dump_file, "  ignored (cold area)\n");
1897       return false;
1898     }
1899 
1900   /* FIXME: the time should be weighted by the probabilities of the blocks in
1901      the loop body.  */
1902   time = tree_num_loop_insns (loop, &eni_time_weights);
1903   if (time == 0)
1904     return false;
1905 
1906   ahead = (param_prefetch_latency + time - 1) / time;
1907   est_niter = estimated_stmt_executions_int (loop);
1908   if (est_niter == -1)
1909     est_niter = likely_max_stmt_executions_int (loop);
1910 
1911   /* Prefetching is not likely to be profitable if the trip count to ahead
1912      ratio is too small.  */
1913   if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1914     return false;
1915 
1916   ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1917 
1918   /* Step 1: gather the memory references.  */
1919   refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1920 
1921   /* Give up prefetching if the number of memory references in the
1922      loop is not reasonable based on profitablity and compilation time
1923      considerations.  */
1924   if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1925     goto fail;
1926 
1927   /* Step 2: estimate the reuse effects.  */
1928   prune_by_reuse (refs);
1929 
1930   if (nothing_to_prefetch_p (refs))
1931     goto fail;
1932 
1933   if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1934     goto fail;
1935 
1936   /* Step 3: determine unroll factor.  */
1937   unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1938 					   est_niter);
1939 
1940   /* Estimate prefetch count for the unrolled loop.  */
1941   prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1942   if (prefetch_count == 0)
1943     goto fail;
1944 
1945   if (dump_file && (dump_flags & TDF_DETAILS))
1946     fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1947 	     HOST_WIDE_INT_PRINT_DEC "\n"
1948 	     "insn count %d, mem ref count %d, prefetch count %d\n",
1949 	     ahead, unroll_factor, est_niter,
1950 	     ninsns, mem_ref_count, prefetch_count);
1951 
1952   /* Prefetching is not likely to be profitable if the instruction to prefetch
1953      ratio is too small.  */
1954   if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1955 					  unroll_factor))
1956     goto fail;
1957 
1958   mark_nontemporal_stores (loop, refs);
1959 
1960   /* Step 4: what to prefetch?  */
1961   if (!schedule_prefetches (refs, unroll_factor, ahead))
1962     goto fail;
1963 
1964   /* Step 5: unroll the loop.  TODO -- peeling of first and last few
1965      iterations so that we do not issue superfluous prefetches.  */
1966   if (unroll_factor != 1)
1967     {
1968       tree_unroll_loop (loop, unroll_factor,
1969 			single_dom_exit (loop), &desc);
1970       unrolled = true;
1971     }
1972 
1973   /* Step 6: issue the prefetches.  */
1974   issue_prefetches (refs, unroll_factor, ahead);
1975 
1976 fail:
1977   release_mem_refs (refs);
1978   return unrolled;
1979 }
1980 
1981 /* Issue prefetch instructions for array references in loops.  */
1982 
1983 unsigned int
tree_ssa_prefetch_arrays(void)1984 tree_ssa_prefetch_arrays (void)
1985 {
1986   class loop *loop;
1987   bool unrolled = false;
1988   int todo_flags = 0;
1989 
1990   if (!targetm.have_prefetch ()
1991       /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1992 	 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1993 	 of processor costs and i486 does not have prefetch, but
1994 	 -march=pentium4 causes targetm.have_prefetch to be true.  Ugh.  */
1995       || PREFETCH_BLOCK == 0)
1996     return 0;
1997 
1998   if (dump_file && (dump_flags & TDF_DETAILS))
1999     {
2000       fprintf (dump_file, "Prefetching parameters:\n");
2001       fprintf (dump_file, "    simultaneous prefetches: %d\n",
2002 	       param_simultaneous_prefetches);
2003       fprintf (dump_file, "    prefetch latency: %d\n", param_prefetch_latency);
2004       fprintf (dump_file, "    prefetch block size: %d\n", PREFETCH_BLOCK);
2005       fprintf (dump_file, "    L1 cache size: %d lines, %d kB\n",
2006 	       L1_CACHE_SIZE_BYTES / param_l1_cache_line_size,
2007 	       param_l1_cache_size);
2008       fprintf (dump_file, "    L1 cache line size: %d\n",
2009 	       param_l1_cache_line_size);
2010       fprintf (dump_file, "    L2 cache size: %d kB\n", param_l2_cache_size);
2011       fprintf (dump_file, "    min insn-to-prefetch ratio: %d \n",
2012 	       param_min_insn_to_prefetch_ratio);
2013       fprintf (dump_file, "    min insn-to-mem ratio: %d \n",
2014 	       param_prefetch_min_insn_to_mem_ratio);
2015       fprintf (dump_file, "\n");
2016     }
2017 
2018   initialize_original_copy_tables ();
2019 
2020   if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
2021     {
2022       tree type = build_function_type_list (void_type_node,
2023 					    const_ptr_type_node, NULL_TREE);
2024       tree decl = add_builtin_function ("__builtin_prefetch", type,
2025 					BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
2026 					NULL, NULL_TREE);
2027       DECL_IS_NOVOPS (decl) = true;
2028       set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
2029     }
2030 
2031   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2032     {
2033       if (dump_file && (dump_flags & TDF_DETAILS))
2034 	fprintf (dump_file, "Processing loop %d:\n", loop->num);
2035 
2036       unrolled |= loop_prefetch_arrays (loop);
2037 
2038       if (dump_file && (dump_flags & TDF_DETAILS))
2039 	fprintf (dump_file, "\n\n");
2040     }
2041 
2042   if (unrolled)
2043     {
2044       scev_reset ();
2045       todo_flags |= TODO_cleanup_cfg;
2046     }
2047 
2048   free_original_copy_tables ();
2049   return todo_flags;
2050 }
2051 
2052 /* Prefetching.  */
2053 
2054 namespace {
2055 
2056 const pass_data pass_data_loop_prefetch =
2057 {
2058   GIMPLE_PASS, /* type */
2059   "aprefetch", /* name */
2060   OPTGROUP_LOOP, /* optinfo_flags */
2061   TV_TREE_PREFETCH, /* tv_id */
2062   ( PROP_cfg | PROP_ssa ), /* properties_required */
2063   0, /* properties_provided */
2064   0, /* properties_destroyed */
2065   0, /* todo_flags_start */
2066   0, /* todo_flags_finish */
2067 };
2068 
2069 class pass_loop_prefetch : public gimple_opt_pass
2070 {
2071 public:
pass_loop_prefetch(gcc::context * ctxt)2072   pass_loop_prefetch (gcc::context *ctxt)
2073     : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2074   {}
2075 
2076   /* opt_pass methods: */
gate(function *)2077   virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
2078   virtual unsigned int execute (function *);
2079 
2080 }; // class pass_loop_prefetch
2081 
2082 unsigned int
execute(function * fun)2083 pass_loop_prefetch::execute (function *fun)
2084 {
2085   if (number_of_loops (fun) <= 1)
2086     return 0;
2087 
2088   if ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) != 0)
2089     {
2090       static bool warned = false;
2091 
2092       if (!warned)
2093 	{
2094 	  warning (OPT_Wdisabled_optimization,
2095 		   "%<l1-cache-size%> parameter is not a power of two %d",
2096 		   PREFETCH_BLOCK);
2097 	  warned = true;
2098 	}
2099       return 0;
2100     }
2101 
2102   return tree_ssa_prefetch_arrays ();
2103 }
2104 
2105 } // anon namespace
2106 
2107 gimple_opt_pass *
make_pass_loop_prefetch(gcc::context * ctxt)2108 make_pass_loop_prefetch (gcc::context *ctxt)
2109 {
2110   return new pass_loop_prefetch (ctxt);
2111 }
2112 
2113 
2114