1 /* Loop invariant motion.
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "tree-affine.h"
42 #include "tree-ssa-propagate.h"
43 #include "trans-mem.h"
44 #include "gimple-fold.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "alias.h"
48 #include "builtins.h"
49 #include "tree-dfa.h"
50
51 /* TODO: Support for predicated code motion. I.e.
52
53 while (1)
54 {
55 if (cond)
56 {
57 a = inv;
58 something;
59 }
60 }
61
62 Where COND and INV are invariants, but evaluating INV may trap or be
63 invalid from some other reason if !COND. This may be transformed to
64
65 if (cond)
66 a = inv;
67 while (1)
68 {
69 if (cond)
70 something;
71 } */
72
73 /* The auxiliary data kept for each statement. */
74
75 struct lim_aux_data
76 {
77 class loop *max_loop; /* The outermost loop in that the statement
78 is invariant. */
79
80 class loop *tgt_loop; /* The loop out of that we want to move the
81 invariant. */
82
83 class loop *always_executed_in;
84 /* The outermost loop for that we are sure
85 the statement is executed if the loop
86 is entered. */
87
88 unsigned cost; /* Cost of the computation performed by the
89 statement. */
90
91 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
92
93 vec<gimple *> depends; /* Vector of statements that must be also
94 hoisted out of the loop when this statement
95 is hoisted; i.e. those that define the
96 operands of the statement and are inside of
97 the MAX_LOOP loop. */
98 };
99
100 /* Maps statements to their lim_aux_data. */
101
102 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
103
104 /* Description of a memory reference location. */
105
106 struct mem_ref_loc
107 {
108 tree *ref; /* The reference itself. */
109 gimple *stmt; /* The statement in that it occurs. */
110 };
111
112
113 /* Description of a memory reference. */
114
115 class im_mem_ref
116 {
117 public:
118 unsigned id : 30; /* ID assigned to the memory reference
119 (its index in memory_accesses.refs_list) */
120 unsigned ref_canonical : 1; /* Whether mem.ref was canonicalized. */
121 unsigned ref_decomposed : 1; /* Whether the ref was hashed from mem. */
122 hashval_t hash; /* Its hash value. */
123
124 /* The memory access itself and associated caching of alias-oracle
125 query meta-data. */
126 ao_ref mem;
127
128 bitmap stored; /* The set of loops in that this memory location
129 is stored to. */
130 vec<mem_ref_loc> accesses_in_loop;
131 /* The locations of the accesses. Vector
132 indexed by the loop number. */
133
134 /* The following sets are computed on demand. We keep both set and
135 its complement, so that we know whether the information was
136 already computed or not. */
137 bitmap_head indep_loop; /* The set of loops in that the memory
138 reference is independent, meaning:
139 If it is stored in the loop, this store
140 is independent on all other loads and
141 stores.
142 If it is only loaded, then it is independent
143 on all stores in the loop. */
144 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
145 };
146
147 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
148 to record (in)dependence against stores in the loop and its subloops, the
149 second to record (in)dependence against all references in the loop
150 and its subloops. */
151 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
152
153 /* Mem_ref hashtable helpers. */
154
155 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
156 {
157 typedef ao_ref *compare_type;
158 static inline hashval_t hash (const im_mem_ref *);
159 static inline bool equal (const im_mem_ref *, const ao_ref *);
160 };
161
162 /* A hash function for class im_mem_ref object OBJ. */
163
164 inline hashval_t
hash(const im_mem_ref * mem)165 mem_ref_hasher::hash (const im_mem_ref *mem)
166 {
167 return mem->hash;
168 }
169
170 /* An equality function for class im_mem_ref object MEM1 with
171 memory reference OBJ2. */
172
173 inline bool
equal(const im_mem_ref * mem1,const ao_ref * obj2)174 mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2)
175 {
176 if (obj2->max_size_known_p ())
177 return (mem1->ref_decomposed
178 && operand_equal_p (mem1->mem.base, obj2->base, 0)
179 && known_eq (mem1->mem.offset, obj2->offset)
180 && known_eq (mem1->mem.size, obj2->size)
181 && known_eq (mem1->mem.max_size, obj2->max_size)
182 && mem1->mem.volatile_p == obj2->volatile_p
183 && (mem1->mem.ref_alias_set == obj2->ref_alias_set
184 /* We are not canonicalizing alias-sets but for the
185 special-case we didn't canonicalize yet and the
186 incoming ref is a alias-set zero MEM we pick
187 the correct one already. */
188 || (!mem1->ref_canonical
189 && (TREE_CODE (obj2->ref) == MEM_REF
190 || TREE_CODE (obj2->ref) == TARGET_MEM_REF)
191 && obj2->ref_alias_set == 0)
192 /* Likewise if there's a canonical ref with alias-set zero. */
193 || (mem1->ref_canonical && mem1->mem.ref_alias_set == 0))
194 && types_compatible_p (TREE_TYPE (mem1->mem.ref),
195 TREE_TYPE (obj2->ref)));
196 else
197 return operand_equal_p (mem1->mem.ref, obj2->ref, 0);
198 }
199
200
201 /* Description of memory accesses in loops. */
202
203 static struct
204 {
205 /* The hash table of memory references accessed in loops. */
206 hash_table<mem_ref_hasher> *refs;
207
208 /* The list of memory references. */
209 vec<im_mem_ref *> refs_list;
210
211 /* The set of memory references accessed in each loop. */
212 vec<bitmap_head> refs_in_loop;
213
214 /* The set of memory references stored in each loop. */
215 vec<bitmap_head> refs_stored_in_loop;
216
217 /* The set of memory references stored in each loop, including subloops . */
218 vec<bitmap_head> all_refs_stored_in_loop;
219
220 /* Cache for expanding memory addresses. */
221 hash_map<tree, name_expansion *> *ttae_cache;
222 } memory_accesses;
223
224 /* Obstack for the bitmaps in the above data structures. */
225 static bitmap_obstack lim_bitmap_obstack;
226 static obstack mem_ref_obstack;
227
228 static bool ref_indep_loop_p (class loop *, im_mem_ref *);
229 static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool);
230
231 /* Minimum cost of an expensive expression. */
232 #define LIM_EXPENSIVE ((unsigned) param_lim_expensive)
233
234 /* The outermost loop for which execution of the header guarantees that the
235 block will be executed. */
236 #define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux)
237 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
238
239 /* ID of the shared unanalyzable mem. */
240 #define UNANALYZABLE_MEM_ID 0
241
242 /* Whether the reference was analyzable. */
243 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
244
245 static struct lim_aux_data *
init_lim_data(gimple * stmt)246 init_lim_data (gimple *stmt)
247 {
248 lim_aux_data *p = XCNEW (struct lim_aux_data);
249 lim_aux_data_map->put (stmt, p);
250
251 return p;
252 }
253
254 static struct lim_aux_data *
get_lim_data(gimple * stmt)255 get_lim_data (gimple *stmt)
256 {
257 lim_aux_data **p = lim_aux_data_map->get (stmt);
258 if (!p)
259 return NULL;
260
261 return *p;
262 }
263
264 /* Releases the memory occupied by DATA. */
265
266 static void
free_lim_aux_data(struct lim_aux_data * data)267 free_lim_aux_data (struct lim_aux_data *data)
268 {
269 data->depends.release ();
270 free (data);
271 }
272
273 static void
clear_lim_data(gimple * stmt)274 clear_lim_data (gimple *stmt)
275 {
276 lim_aux_data **p = lim_aux_data_map->get (stmt);
277 if (!p)
278 return;
279
280 free_lim_aux_data (*p);
281 *p = NULL;
282 }
283
284
285 /* The possibilities of statement movement. */
286 enum move_pos
287 {
288 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
289 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
290 become executed -- memory accesses, ... */
291 MOVE_POSSIBLE /* Unlimited movement. */
292 };
293
294
295 /* If it is possible to hoist the statement STMT unconditionally,
296 returns MOVE_POSSIBLE.
297 If it is possible to hoist the statement STMT, but we must avoid making
298 it executed if it would not be executed in the original program (e.g.
299 because it may trap), return MOVE_PRESERVE_EXECUTION.
300 Otherwise return MOVE_IMPOSSIBLE. */
301
302 enum move_pos
movement_possibility(gimple * stmt)303 movement_possibility (gimple *stmt)
304 {
305 tree lhs;
306 enum move_pos ret = MOVE_POSSIBLE;
307
308 if (flag_unswitch_loops
309 && gimple_code (stmt) == GIMPLE_COND)
310 {
311 /* If we perform unswitching, force the operands of the invariant
312 condition to be moved out of the loop. */
313 return MOVE_POSSIBLE;
314 }
315
316 if (gimple_code (stmt) == GIMPLE_PHI
317 && gimple_phi_num_args (stmt) <= 2
318 && !virtual_operand_p (gimple_phi_result (stmt))
319 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
320 return MOVE_POSSIBLE;
321
322 if (gimple_get_lhs (stmt) == NULL_TREE)
323 return MOVE_IMPOSSIBLE;
324
325 if (gimple_vdef (stmt))
326 return MOVE_IMPOSSIBLE;
327
328 if (stmt_ends_bb_p (stmt)
329 || gimple_has_volatile_ops (stmt)
330 || gimple_has_side_effects (stmt)
331 || stmt_could_throw_p (cfun, stmt))
332 return MOVE_IMPOSSIBLE;
333
334 if (is_gimple_call (stmt))
335 {
336 /* While pure or const call is guaranteed to have no side effects, we
337 cannot move it arbitrarily. Consider code like
338
339 char *s = something ();
340
341 while (1)
342 {
343 if (s)
344 t = strlen (s);
345 else
346 t = 0;
347 }
348
349 Here the strlen call cannot be moved out of the loop, even though
350 s is invariant. In addition to possibly creating a call with
351 invalid arguments, moving out a function call that is not executed
352 may cause performance regressions in case the call is costly and
353 not executed at all. */
354 ret = MOVE_PRESERVE_EXECUTION;
355 lhs = gimple_call_lhs (stmt);
356 }
357 else if (is_gimple_assign (stmt))
358 lhs = gimple_assign_lhs (stmt);
359 else
360 return MOVE_IMPOSSIBLE;
361
362 if (TREE_CODE (lhs) == SSA_NAME
363 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
364 return MOVE_IMPOSSIBLE;
365
366 if (TREE_CODE (lhs) != SSA_NAME
367 || gimple_could_trap_p (stmt))
368 return MOVE_PRESERVE_EXECUTION;
369
370 /* Non local loads in a transaction cannot be hoisted out. Well,
371 unless the load happens on every path out of the loop, but we
372 don't take this into account yet. */
373 if (flag_tm
374 && gimple_in_transaction (stmt)
375 && gimple_assign_single_p (stmt))
376 {
377 tree rhs = gimple_assign_rhs1 (stmt);
378 if (DECL_P (rhs) && is_global_var (rhs))
379 {
380 if (dump_file)
381 {
382 fprintf (dump_file, "Cannot hoist conditional load of ");
383 print_generic_expr (dump_file, rhs, TDF_SLIM);
384 fprintf (dump_file, " because it is in a transaction.\n");
385 }
386 return MOVE_IMPOSSIBLE;
387 }
388 }
389
390 return ret;
391 }
392
393 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
394 loop to that we could move the expression using DEF if it did not have
395 other operands, i.e. the outermost loop enclosing LOOP in that the value
396 of DEF is invariant. */
397
398 static class loop *
outermost_invariant_loop(tree def,class loop * loop)399 outermost_invariant_loop (tree def, class loop *loop)
400 {
401 gimple *def_stmt;
402 basic_block def_bb;
403 class loop *max_loop;
404 struct lim_aux_data *lim_data;
405
406 if (!def)
407 return superloop_at_depth (loop, 1);
408
409 if (TREE_CODE (def) != SSA_NAME)
410 {
411 gcc_assert (is_gimple_min_invariant (def));
412 return superloop_at_depth (loop, 1);
413 }
414
415 def_stmt = SSA_NAME_DEF_STMT (def);
416 def_bb = gimple_bb (def_stmt);
417 if (!def_bb)
418 return superloop_at_depth (loop, 1);
419
420 max_loop = find_common_loop (loop, def_bb->loop_father);
421
422 lim_data = get_lim_data (def_stmt);
423 if (lim_data != NULL && lim_data->max_loop != NULL)
424 max_loop = find_common_loop (max_loop,
425 loop_outer (lim_data->max_loop));
426 if (max_loop == loop)
427 return NULL;
428 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
429
430 return max_loop;
431 }
432
433 /* DATA is a structure containing information associated with a statement
434 inside LOOP. DEF is one of the operands of this statement.
435
436 Find the outermost loop enclosing LOOP in that value of DEF is invariant
437 and record this in DATA->max_loop field. If DEF itself is defined inside
438 this loop as well (i.e. we need to hoist it out of the loop if we want
439 to hoist the statement represented by DATA), record the statement in that
440 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
441 add the cost of the computation of DEF to the DATA->cost.
442
443 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
444
445 static bool
add_dependency(tree def,struct lim_aux_data * data,class loop * loop,bool add_cost)446 add_dependency (tree def, struct lim_aux_data *data, class loop *loop,
447 bool add_cost)
448 {
449 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
450 basic_block def_bb = gimple_bb (def_stmt);
451 class loop *max_loop;
452 struct lim_aux_data *def_data;
453
454 if (!def_bb)
455 return true;
456
457 max_loop = outermost_invariant_loop (def, loop);
458 if (!max_loop)
459 return false;
460
461 if (flow_loop_nested_p (data->max_loop, max_loop))
462 data->max_loop = max_loop;
463
464 def_data = get_lim_data (def_stmt);
465 if (!def_data)
466 return true;
467
468 if (add_cost
469 /* Only add the cost if the statement defining DEF is inside LOOP,
470 i.e. if it is likely that by moving the invariants dependent
471 on it, we will be able to avoid creating a new register for
472 it (since it will be only used in these dependent invariants). */
473 && def_bb->loop_father == loop)
474 data->cost += def_data->cost;
475
476 data->depends.safe_push (def_stmt);
477
478 return true;
479 }
480
481 /* Returns an estimate for a cost of statement STMT. The values here
482 are just ad-hoc constants, similar to costs for inlining. */
483
484 static unsigned
stmt_cost(gimple * stmt)485 stmt_cost (gimple *stmt)
486 {
487 /* Always try to create possibilities for unswitching. */
488 if (gimple_code (stmt) == GIMPLE_COND
489 || gimple_code (stmt) == GIMPLE_PHI)
490 return LIM_EXPENSIVE;
491
492 /* We should be hoisting calls if possible. */
493 if (is_gimple_call (stmt))
494 {
495 tree fndecl;
496
497 /* Unless the call is a builtin_constant_p; this always folds to a
498 constant, so moving it is useless. */
499 fndecl = gimple_call_fndecl (stmt);
500 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P))
501 return 0;
502
503 return LIM_EXPENSIVE;
504 }
505
506 /* Hoisting memory references out should almost surely be a win. */
507 if (gimple_references_memory_p (stmt))
508 return LIM_EXPENSIVE;
509
510 if (gimple_code (stmt) != GIMPLE_ASSIGN)
511 return 1;
512
513 switch (gimple_assign_rhs_code (stmt))
514 {
515 case MULT_EXPR:
516 case WIDEN_MULT_EXPR:
517 case WIDEN_MULT_PLUS_EXPR:
518 case WIDEN_MULT_MINUS_EXPR:
519 case DOT_PROD_EXPR:
520 case TRUNC_DIV_EXPR:
521 case CEIL_DIV_EXPR:
522 case FLOOR_DIV_EXPR:
523 case ROUND_DIV_EXPR:
524 case EXACT_DIV_EXPR:
525 case CEIL_MOD_EXPR:
526 case FLOOR_MOD_EXPR:
527 case ROUND_MOD_EXPR:
528 case TRUNC_MOD_EXPR:
529 case RDIV_EXPR:
530 /* Division and multiplication are usually expensive. */
531 return LIM_EXPENSIVE;
532
533 case LSHIFT_EXPR:
534 case RSHIFT_EXPR:
535 case WIDEN_LSHIFT_EXPR:
536 case LROTATE_EXPR:
537 case RROTATE_EXPR:
538 /* Shifts and rotates are usually expensive. */
539 return LIM_EXPENSIVE;
540
541 case CONSTRUCTOR:
542 /* Make vector construction cost proportional to the number
543 of elements. */
544 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
545
546 case SSA_NAME:
547 case PAREN_EXPR:
548 /* Whether or not something is wrapped inside a PAREN_EXPR
549 should not change move cost. Nor should an intermediate
550 unpropagated SSA name copy. */
551 return 0;
552
553 default:
554 return 1;
555 }
556 }
557
558 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
559 REF is independent. If REF is not independent in LOOP, NULL is returned
560 instead. */
561
562 static class loop *
outermost_indep_loop(class loop * outer,class loop * loop,im_mem_ref * ref)563 outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref)
564 {
565 class loop *aloop;
566
567 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
568 return NULL;
569
570 for (aloop = outer;
571 aloop != loop;
572 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
573 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
574 && ref_indep_loop_p (aloop, ref))
575 return aloop;
576
577 if (ref_indep_loop_p (loop, ref))
578 return loop;
579 else
580 return NULL;
581 }
582
583 /* If there is a simple load or store to a memory reference in STMT, returns
584 the location of the memory reference, and sets IS_STORE according to whether
585 it is a store or load. Otherwise, returns NULL. */
586
587 static tree *
simple_mem_ref_in_stmt(gimple * stmt,bool * is_store)588 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
589 {
590 tree *lhs, *rhs;
591
592 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
593 if (!gimple_assign_single_p (stmt))
594 return NULL;
595
596 lhs = gimple_assign_lhs_ptr (stmt);
597 rhs = gimple_assign_rhs1_ptr (stmt);
598
599 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
600 {
601 *is_store = false;
602 return rhs;
603 }
604 else if (gimple_vdef (stmt)
605 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
606 {
607 *is_store = true;
608 return lhs;
609 }
610 else
611 return NULL;
612 }
613
614 /* From a controlling predicate in DOM determine the arguments from
615 the PHI node PHI that are chosen if the predicate evaluates to
616 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
617 they are non-NULL. Returns true if the arguments can be determined,
618 else return false. */
619
620 static bool
extract_true_false_args_from_phi(basic_block dom,gphi * phi,tree * true_arg_p,tree * false_arg_p)621 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
622 tree *true_arg_p, tree *false_arg_p)
623 {
624 edge te, fe;
625 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
626 &te, &fe))
627 return false;
628
629 if (true_arg_p)
630 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
631 if (false_arg_p)
632 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
633
634 return true;
635 }
636
637 /* Determine the outermost loop to that it is possible to hoist a statement
638 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
639 the outermost loop in that the value computed by STMT is invariant.
640 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
641 we preserve the fact whether STMT is executed. It also fills other related
642 information to LIM_DATA (STMT).
643
644 The function returns false if STMT cannot be hoisted outside of the loop it
645 is defined in, and true otherwise. */
646
647 static bool
determine_max_movement(gimple * stmt,bool must_preserve_exec)648 determine_max_movement (gimple *stmt, bool must_preserve_exec)
649 {
650 basic_block bb = gimple_bb (stmt);
651 class loop *loop = bb->loop_father;
652 class loop *level;
653 struct lim_aux_data *lim_data = get_lim_data (stmt);
654 tree val;
655 ssa_op_iter iter;
656
657 if (must_preserve_exec)
658 level = ALWAYS_EXECUTED_IN (bb);
659 else
660 level = superloop_at_depth (loop, 1);
661 lim_data->max_loop = level;
662
663 if (gphi *phi = dyn_cast <gphi *> (stmt))
664 {
665 use_operand_p use_p;
666 unsigned min_cost = UINT_MAX;
667 unsigned total_cost = 0;
668 struct lim_aux_data *def_data;
669
670 /* We will end up promoting dependencies to be unconditionally
671 evaluated. For this reason the PHI cost (and thus the
672 cost we remove from the loop by doing the invariant motion)
673 is that of the cheapest PHI argument dependency chain. */
674 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
675 {
676 val = USE_FROM_PTR (use_p);
677
678 if (TREE_CODE (val) != SSA_NAME)
679 {
680 /* Assign const 1 to constants. */
681 min_cost = MIN (min_cost, 1);
682 total_cost += 1;
683 continue;
684 }
685 if (!add_dependency (val, lim_data, loop, false))
686 return false;
687
688 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
689 if (gimple_bb (def_stmt)
690 && gimple_bb (def_stmt)->loop_father == loop)
691 {
692 def_data = get_lim_data (def_stmt);
693 if (def_data)
694 {
695 min_cost = MIN (min_cost, def_data->cost);
696 total_cost += def_data->cost;
697 }
698 }
699 }
700
701 min_cost = MIN (min_cost, total_cost);
702 lim_data->cost += min_cost;
703
704 if (gimple_phi_num_args (phi) > 1)
705 {
706 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
707 gimple *cond;
708 if (gsi_end_p (gsi_last_bb (dom)))
709 return false;
710 cond = gsi_stmt (gsi_last_bb (dom));
711 if (gimple_code (cond) != GIMPLE_COND)
712 return false;
713 /* Verify that this is an extended form of a diamond and
714 the PHI arguments are completely controlled by the
715 predicate in DOM. */
716 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
717 return false;
718
719 /* Fold in dependencies and cost of the condition. */
720 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
721 {
722 if (!add_dependency (val, lim_data, loop, false))
723 return false;
724 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
725 if (def_data)
726 lim_data->cost += def_data->cost;
727 }
728
729 /* We want to avoid unconditionally executing very expensive
730 operations. As costs for our dependencies cannot be
731 negative just claim we are not invariand for this case.
732 We also are not sure whether the control-flow inside the
733 loop will vanish. */
734 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
735 && !(min_cost != 0
736 && total_cost / min_cost <= 2))
737 return false;
738
739 /* Assume that the control-flow in the loop will vanish.
740 ??? We should verify this and not artificially increase
741 the cost if that is not the case. */
742 lim_data->cost += stmt_cost (stmt);
743 }
744
745 return true;
746 }
747 else
748 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
749 if (!add_dependency (val, lim_data, loop, true))
750 return false;
751
752 if (gimple_vuse (stmt))
753 {
754 im_mem_ref *ref
755 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
756 if (ref
757 && MEM_ANALYZABLE (ref))
758 {
759 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
760 loop, ref);
761 if (!lim_data->max_loop)
762 return false;
763 }
764 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
765 return false;
766 }
767
768 lim_data->cost += stmt_cost (stmt);
769
770 return true;
771 }
772
773 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
774 and that one of the operands of this statement is computed by STMT.
775 Ensure that STMT (together with all the statements that define its
776 operands) is hoisted at least out of the loop LEVEL. */
777
778 static void
set_level(gimple * stmt,class loop * orig_loop,class loop * level)779 set_level (gimple *stmt, class loop *orig_loop, class loop *level)
780 {
781 class loop *stmt_loop = gimple_bb (stmt)->loop_father;
782 struct lim_aux_data *lim_data;
783 gimple *dep_stmt;
784 unsigned i;
785
786 stmt_loop = find_common_loop (orig_loop, stmt_loop);
787 lim_data = get_lim_data (stmt);
788 if (lim_data != NULL && lim_data->tgt_loop != NULL)
789 stmt_loop = find_common_loop (stmt_loop,
790 loop_outer (lim_data->tgt_loop));
791 if (flow_loop_nested_p (stmt_loop, level))
792 return;
793
794 gcc_assert (level == lim_data->max_loop
795 || flow_loop_nested_p (lim_data->max_loop, level));
796
797 lim_data->tgt_loop = level;
798 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
799 set_level (dep_stmt, orig_loop, level);
800 }
801
802 /* Determines an outermost loop from that we want to hoist the statement STMT.
803 For now we chose the outermost possible loop. TODO -- use profiling
804 information to set it more sanely. */
805
806 static void
set_profitable_level(gimple * stmt)807 set_profitable_level (gimple *stmt)
808 {
809 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
810 }
811
812 /* Returns true if STMT is a call that has side effects. */
813
814 static bool
nonpure_call_p(gimple * stmt)815 nonpure_call_p (gimple *stmt)
816 {
817 if (gimple_code (stmt) != GIMPLE_CALL)
818 return false;
819
820 return gimple_has_side_effects (stmt);
821 }
822
823 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
824
825 static gimple *
rewrite_reciprocal(gimple_stmt_iterator * bsi)826 rewrite_reciprocal (gimple_stmt_iterator *bsi)
827 {
828 gassign *stmt, *stmt1, *stmt2;
829 tree name, lhs, type;
830 tree real_one;
831 gimple_stmt_iterator gsi;
832
833 stmt = as_a <gassign *> (gsi_stmt (*bsi));
834 lhs = gimple_assign_lhs (stmt);
835 type = TREE_TYPE (lhs);
836
837 real_one = build_one_cst (type);
838
839 name = make_temp_ssa_name (type, NULL, "reciptmp");
840 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
841 gimple_assign_rhs2 (stmt));
842 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
843 gimple_assign_rhs1 (stmt));
844
845 /* Replace division stmt with reciprocal and multiply stmts.
846 The multiply stmt is not invariant, so update iterator
847 and avoid rescanning. */
848 gsi = *bsi;
849 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
850 gsi_replace (&gsi, stmt2, true);
851
852 /* Continue processing with invariant reciprocal statement. */
853 return stmt1;
854 }
855
856 /* Check if the pattern at *BSI is a bittest of the form
857 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
858
859 static gimple *
rewrite_bittest(gimple_stmt_iterator * bsi)860 rewrite_bittest (gimple_stmt_iterator *bsi)
861 {
862 gassign *stmt;
863 gimple *stmt1;
864 gassign *stmt2;
865 gimple *use_stmt;
866 gcond *cond_stmt;
867 tree lhs, name, t, a, b;
868 use_operand_p use;
869
870 stmt = as_a <gassign *> (gsi_stmt (*bsi));
871 lhs = gimple_assign_lhs (stmt);
872
873 /* Verify that the single use of lhs is a comparison against zero. */
874 if (TREE_CODE (lhs) != SSA_NAME
875 || !single_imm_use (lhs, &use, &use_stmt))
876 return stmt;
877 cond_stmt = dyn_cast <gcond *> (use_stmt);
878 if (!cond_stmt)
879 return stmt;
880 if (gimple_cond_lhs (cond_stmt) != lhs
881 || (gimple_cond_code (cond_stmt) != NE_EXPR
882 && gimple_cond_code (cond_stmt) != EQ_EXPR)
883 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
884 return stmt;
885
886 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
887 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
888 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
889 return stmt;
890
891 /* There is a conversion in between possibly inserted by fold. */
892 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
893 {
894 t = gimple_assign_rhs1 (stmt1);
895 if (TREE_CODE (t) != SSA_NAME
896 || !has_single_use (t))
897 return stmt;
898 stmt1 = SSA_NAME_DEF_STMT (t);
899 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
900 return stmt;
901 }
902
903 /* Verify that B is loop invariant but A is not. Verify that with
904 all the stmt walking we are still in the same loop. */
905 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
906 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
907 return stmt;
908
909 a = gimple_assign_rhs1 (stmt1);
910 b = gimple_assign_rhs2 (stmt1);
911
912 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
913 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
914 {
915 gimple_stmt_iterator rsi;
916
917 /* 1 << B */
918 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
919 build_int_cst (TREE_TYPE (a), 1), b);
920 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
921 stmt1 = gimple_build_assign (name, t);
922
923 /* A & (1 << B) */
924 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
925 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
926 stmt2 = gimple_build_assign (name, t);
927
928 /* Replace the SSA_NAME we compare against zero. Adjust
929 the type of zero accordingly. */
930 SET_USE (use, name);
931 gimple_cond_set_rhs (cond_stmt,
932 build_int_cst_type (TREE_TYPE (name),
933 0));
934
935 /* Don't use gsi_replace here, none of the new assignments sets
936 the variable originally set in stmt. Move bsi to stmt1, and
937 then remove the original stmt, so that we get a chance to
938 retain debug info for it. */
939 rsi = *bsi;
940 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
941 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
942 gimple *to_release = gsi_stmt (rsi);
943 gsi_remove (&rsi, true);
944 release_defs (to_release);
945
946 return stmt1;
947 }
948
949 return stmt;
950 }
951
952 /* For each statement determines the outermost loop in that it is invariant,
953 - statements on whose motion it depends and the cost of the computation.
954 - This information is stored to the LIM_DATA structure associated with
955 - each statement. */
956 class invariantness_dom_walker : public dom_walker
957 {
958 public:
invariantness_dom_walker(cdi_direction direction)959 invariantness_dom_walker (cdi_direction direction)
960 : dom_walker (direction) {}
961
962 virtual edge before_dom_children (basic_block);
963 };
964
965 /* Determine the outermost loops in that statements in basic block BB are
966 invariant, and record them to the LIM_DATA associated with the statements.
967 Callback for dom_walker. */
968
969 edge
before_dom_children(basic_block bb)970 invariantness_dom_walker::before_dom_children (basic_block bb)
971 {
972 enum move_pos pos;
973 gimple_stmt_iterator bsi;
974 gimple *stmt;
975 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
976 class loop *outermost = ALWAYS_EXECUTED_IN (bb);
977 struct lim_aux_data *lim_data;
978
979 if (!loop_outer (bb->loop_father))
980 return NULL;
981
982 if (dump_file && (dump_flags & TDF_DETAILS))
983 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
984 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
985
986 /* Look at PHI nodes, but only if there is at most two.
987 ??? We could relax this further by post-processing the inserted
988 code and transforming adjacent cond-exprs with the same predicate
989 to control flow again. */
990 bsi = gsi_start_phis (bb);
991 if (!gsi_end_p (bsi)
992 && ((gsi_next (&bsi), gsi_end_p (bsi))
993 || (gsi_next (&bsi), gsi_end_p (bsi))))
994 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
995 {
996 stmt = gsi_stmt (bsi);
997
998 pos = movement_possibility (stmt);
999 if (pos == MOVE_IMPOSSIBLE)
1000 continue;
1001
1002 lim_data = get_lim_data (stmt);
1003 if (! lim_data)
1004 lim_data = init_lim_data (stmt);
1005 lim_data->always_executed_in = outermost;
1006
1007 if (!determine_max_movement (stmt, false))
1008 {
1009 lim_data->max_loop = NULL;
1010 continue;
1011 }
1012
1013 if (dump_file && (dump_flags & TDF_DETAILS))
1014 {
1015 print_gimple_stmt (dump_file, stmt, 2);
1016 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1017 loop_depth (lim_data->max_loop),
1018 lim_data->cost);
1019 }
1020
1021 if (lim_data->cost >= LIM_EXPENSIVE)
1022 set_profitable_level (stmt);
1023 }
1024
1025 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1026 {
1027 stmt = gsi_stmt (bsi);
1028
1029 pos = movement_possibility (stmt);
1030 if (pos == MOVE_IMPOSSIBLE)
1031 {
1032 if (nonpure_call_p (stmt))
1033 {
1034 maybe_never = true;
1035 outermost = NULL;
1036 }
1037 /* Make sure to note always_executed_in for stores to make
1038 store-motion work. */
1039 else if (stmt_makes_single_store (stmt))
1040 {
1041 struct lim_aux_data *lim_data = get_lim_data (stmt);
1042 if (! lim_data)
1043 lim_data = init_lim_data (stmt);
1044 lim_data->always_executed_in = outermost;
1045 }
1046 continue;
1047 }
1048
1049 if (is_gimple_assign (stmt)
1050 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1051 == GIMPLE_BINARY_RHS))
1052 {
1053 tree op0 = gimple_assign_rhs1 (stmt);
1054 tree op1 = gimple_assign_rhs2 (stmt);
1055 class loop *ol1 = outermost_invariant_loop (op1,
1056 loop_containing_stmt (stmt));
1057
1058 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1059 to be hoisted out of loop, saving expensive divide. */
1060 if (pos == MOVE_POSSIBLE
1061 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1062 && flag_unsafe_math_optimizations
1063 && !flag_trapping_math
1064 && ol1 != NULL
1065 && outermost_invariant_loop (op0, ol1) == NULL)
1066 stmt = rewrite_reciprocal (&bsi);
1067
1068 /* If the shift count is invariant, convert (A >> B) & 1 to
1069 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1070 saving an expensive shift. */
1071 if (pos == MOVE_POSSIBLE
1072 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1073 && integer_onep (op1)
1074 && TREE_CODE (op0) == SSA_NAME
1075 && has_single_use (op0))
1076 stmt = rewrite_bittest (&bsi);
1077 }
1078
1079 lim_data = get_lim_data (stmt);
1080 if (! lim_data)
1081 lim_data = init_lim_data (stmt);
1082 lim_data->always_executed_in = outermost;
1083
1084 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1085 continue;
1086
1087 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1088 {
1089 lim_data->max_loop = NULL;
1090 continue;
1091 }
1092
1093 if (dump_file && (dump_flags & TDF_DETAILS))
1094 {
1095 print_gimple_stmt (dump_file, stmt, 2);
1096 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1097 loop_depth (lim_data->max_loop),
1098 lim_data->cost);
1099 }
1100
1101 if (lim_data->cost >= LIM_EXPENSIVE)
1102 set_profitable_level (stmt);
1103 }
1104 return NULL;
1105 }
1106
1107 /* Hoist the statements in basic block BB out of the loops prescribed by
1108 data stored in LIM_DATA structures associated with each statement. Callback
1109 for walk_dominator_tree. */
1110
1111 unsigned int
move_computations_worker(basic_block bb)1112 move_computations_worker (basic_block bb)
1113 {
1114 class loop *level;
1115 unsigned cost = 0;
1116 struct lim_aux_data *lim_data;
1117 unsigned int todo = 0;
1118
1119 if (!loop_outer (bb->loop_father))
1120 return todo;
1121
1122 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1123 {
1124 gassign *new_stmt;
1125 gphi *stmt = bsi.phi ();
1126
1127 lim_data = get_lim_data (stmt);
1128 if (lim_data == NULL)
1129 {
1130 gsi_next (&bsi);
1131 continue;
1132 }
1133
1134 cost = lim_data->cost;
1135 level = lim_data->tgt_loop;
1136 clear_lim_data (stmt);
1137
1138 if (!level)
1139 {
1140 gsi_next (&bsi);
1141 continue;
1142 }
1143
1144 if (dump_file && (dump_flags & TDF_DETAILS))
1145 {
1146 fprintf (dump_file, "Moving PHI node\n");
1147 print_gimple_stmt (dump_file, stmt, 0);
1148 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1149 cost, level->num);
1150 }
1151
1152 if (gimple_phi_num_args (stmt) == 1)
1153 {
1154 tree arg = PHI_ARG_DEF (stmt, 0);
1155 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1156 TREE_CODE (arg), arg);
1157 }
1158 else
1159 {
1160 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1161 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1162 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1163 /* Get the PHI arguments corresponding to the true and false
1164 edges of COND. */
1165 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1166 gcc_assert (arg0 && arg1);
1167 t = build2 (gimple_cond_code (cond), boolean_type_node,
1168 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1169 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1170 COND_EXPR, t, arg0, arg1);
1171 todo |= TODO_cleanup_cfg;
1172 }
1173 if (!ALWAYS_EXECUTED_IN (bb)
1174 || (ALWAYS_EXECUTED_IN (bb) != level
1175 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))
1176 reset_flow_sensitive_info (gimple_assign_lhs (new_stmt));
1177 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1178 remove_phi_node (&bsi, false);
1179 }
1180
1181 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1182 {
1183 edge e;
1184
1185 gimple *stmt = gsi_stmt (bsi);
1186
1187 lim_data = get_lim_data (stmt);
1188 if (lim_data == NULL)
1189 {
1190 gsi_next (&bsi);
1191 continue;
1192 }
1193
1194 cost = lim_data->cost;
1195 level = lim_data->tgt_loop;
1196 clear_lim_data (stmt);
1197
1198 if (!level)
1199 {
1200 gsi_next (&bsi);
1201 continue;
1202 }
1203
1204 /* We do not really want to move conditionals out of the loop; we just
1205 placed it here to force its operands to be moved if necessary. */
1206 if (gimple_code (stmt) == GIMPLE_COND)
1207 continue;
1208
1209 if (dump_file && (dump_flags & TDF_DETAILS))
1210 {
1211 fprintf (dump_file, "Moving statement\n");
1212 print_gimple_stmt (dump_file, stmt, 0);
1213 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1214 cost, level->num);
1215 }
1216
1217 e = loop_preheader_edge (level);
1218 gcc_assert (!gimple_vdef (stmt));
1219 if (gimple_vuse (stmt))
1220 {
1221 /* The new VUSE is the one from the virtual PHI in the loop
1222 header or the one already present. */
1223 gphi_iterator gsi2;
1224 for (gsi2 = gsi_start_phis (e->dest);
1225 !gsi_end_p (gsi2); gsi_next (&gsi2))
1226 {
1227 gphi *phi = gsi2.phi ();
1228 if (virtual_operand_p (gimple_phi_result (phi)))
1229 {
1230 SET_USE (gimple_vuse_op (stmt),
1231 PHI_ARG_DEF_FROM_EDGE (phi, e));
1232 break;
1233 }
1234 }
1235 }
1236 gsi_remove (&bsi, false);
1237 if (gimple_has_lhs (stmt)
1238 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1239 && (!ALWAYS_EXECUTED_IN (bb)
1240 || !(ALWAYS_EXECUTED_IN (bb) == level
1241 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1242 reset_flow_sensitive_info (gimple_get_lhs (stmt));
1243 /* In case this is a stmt that is not unconditionally executed
1244 when the target loop header is executed and the stmt may
1245 invoke undefined integer or pointer overflow rewrite it to
1246 unsigned arithmetic. */
1247 if (is_gimple_assign (stmt)
1248 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1249 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1250 && arith_code_with_undefined_signed_overflow
1251 (gimple_assign_rhs_code (stmt))
1252 && (!ALWAYS_EXECUTED_IN (bb)
1253 || !(ALWAYS_EXECUTED_IN (bb) == level
1254 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1255 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1256 else
1257 gsi_insert_on_edge (e, stmt);
1258 }
1259
1260 return todo;
1261 }
1262
1263 /* Hoist the statements out of the loops prescribed by data stored in
1264 LIM_DATA structures associated with each statement.*/
1265
1266 static unsigned int
move_computations(void)1267 move_computations (void)
1268 {
1269 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1270 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false);
1271 unsigned todo = 0;
1272
1273 for (int i = 0; i < n; ++i)
1274 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (cfun, rpo[i]));
1275
1276 free (rpo);
1277
1278 gsi_commit_edge_inserts ();
1279 if (need_ssa_update_p (cfun))
1280 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1281
1282 return todo;
1283 }
1284
1285 /* Checks whether the statement defining variable *INDEX can be hoisted
1286 out of the loop passed in DATA. Callback for for_each_index. */
1287
1288 static bool
may_move_till(tree ref,tree * index,void * data)1289 may_move_till (tree ref, tree *index, void *data)
1290 {
1291 class loop *loop = (class loop *) data, *max_loop;
1292
1293 /* If REF is an array reference, check also that the step and the lower
1294 bound is invariant in LOOP. */
1295 if (TREE_CODE (ref) == ARRAY_REF)
1296 {
1297 tree step = TREE_OPERAND (ref, 3);
1298 tree lbound = TREE_OPERAND (ref, 2);
1299
1300 max_loop = outermost_invariant_loop (step, loop);
1301 if (!max_loop)
1302 return false;
1303
1304 max_loop = outermost_invariant_loop (lbound, loop);
1305 if (!max_loop)
1306 return false;
1307 }
1308
1309 max_loop = outermost_invariant_loop (*index, loop);
1310 if (!max_loop)
1311 return false;
1312
1313 return true;
1314 }
1315
1316 /* If OP is SSA NAME, force the statement that defines it to be
1317 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1318
1319 static void
force_move_till_op(tree op,class loop * orig_loop,class loop * loop)1320 force_move_till_op (tree op, class loop *orig_loop, class loop *loop)
1321 {
1322 gimple *stmt;
1323
1324 if (!op
1325 || is_gimple_min_invariant (op))
1326 return;
1327
1328 gcc_assert (TREE_CODE (op) == SSA_NAME);
1329
1330 stmt = SSA_NAME_DEF_STMT (op);
1331 if (gimple_nop_p (stmt))
1332 return;
1333
1334 set_level (stmt, orig_loop, loop);
1335 }
1336
1337 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1338 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1339 for_each_index. */
1340
1341 struct fmt_data
1342 {
1343 class loop *loop;
1344 class loop *orig_loop;
1345 };
1346
1347 static bool
force_move_till(tree ref,tree * index,void * data)1348 force_move_till (tree ref, tree *index, void *data)
1349 {
1350 struct fmt_data *fmt_data = (struct fmt_data *) data;
1351
1352 if (TREE_CODE (ref) == ARRAY_REF)
1353 {
1354 tree step = TREE_OPERAND (ref, 3);
1355 tree lbound = TREE_OPERAND (ref, 2);
1356
1357 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1358 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1359 }
1360
1361 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1362
1363 return true;
1364 }
1365
1366 /* A function to free the mem_ref object OBJ. */
1367
1368 static void
memref_free(class im_mem_ref * mem)1369 memref_free (class im_mem_ref *mem)
1370 {
1371 mem->accesses_in_loop.release ();
1372 }
1373
1374 /* Allocates and returns a memory reference description for MEM whose hash
1375 value is HASH and id is ID. */
1376
1377 static im_mem_ref *
mem_ref_alloc(ao_ref * mem,unsigned hash,unsigned id)1378 mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id)
1379 {
1380 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref);
1381 if (mem)
1382 ref->mem = *mem;
1383 else
1384 ao_ref_init (&ref->mem, error_mark_node);
1385 ref->id = id;
1386 ref->ref_canonical = false;
1387 ref->ref_decomposed = false;
1388 ref->hash = hash;
1389 ref->stored = NULL;
1390 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1391 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1392 ref->accesses_in_loop.create (1);
1393
1394 return ref;
1395 }
1396
1397 /* Records memory reference location *LOC in LOOP to the memory reference
1398 description REF. The reference occurs in statement STMT. */
1399
1400 static void
record_mem_ref_loc(im_mem_ref * ref,gimple * stmt,tree * loc)1401 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1402 {
1403 mem_ref_loc aref;
1404 aref.stmt = stmt;
1405 aref.ref = loc;
1406 ref->accesses_in_loop.safe_push (aref);
1407 }
1408
1409 /* Set the LOOP bit in REF stored bitmap and allocate that if
1410 necessary. Return whether a bit was changed. */
1411
1412 static bool
set_ref_stored_in_loop(im_mem_ref * ref,class loop * loop)1413 set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop)
1414 {
1415 if (!ref->stored)
1416 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1417 return bitmap_set_bit (ref->stored, loop->num);
1418 }
1419
1420 /* Marks reference REF as stored in LOOP. */
1421
1422 static void
mark_ref_stored(im_mem_ref * ref,class loop * loop)1423 mark_ref_stored (im_mem_ref *ref, class loop *loop)
1424 {
1425 while (loop != current_loops->tree_root
1426 && set_ref_stored_in_loop (ref, loop))
1427 loop = loop_outer (loop);
1428 }
1429
1430 /* Gathers memory references in statement STMT in LOOP, storing the
1431 information about them in the memory_accesses structure. Marks
1432 the vops accessed through unrecognized statements there as
1433 well. */
1434
1435 static void
gather_mem_refs_stmt(class loop * loop,gimple * stmt)1436 gather_mem_refs_stmt (class loop *loop, gimple *stmt)
1437 {
1438 tree *mem = NULL;
1439 hashval_t hash;
1440 im_mem_ref **slot;
1441 im_mem_ref *ref;
1442 bool is_stored;
1443 unsigned id;
1444
1445 if (!gimple_vuse (stmt))
1446 return;
1447
1448 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1449 if (!mem)
1450 {
1451 /* We use the shared mem_ref for all unanalyzable refs. */
1452 id = UNANALYZABLE_MEM_ID;
1453 ref = memory_accesses.refs_list[id];
1454 if (dump_file && (dump_flags & TDF_DETAILS))
1455 {
1456 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1457 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1458 }
1459 is_stored = gimple_vdef (stmt);
1460 }
1461 else
1462 {
1463 /* We are looking for equal refs that might differ in structure
1464 such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but
1465 make sure we can canonicalize the ref in the hashtable if
1466 non-operand_equal_p refs are found. For the lookup we mark
1467 the case we want strict equality with aor.max_size == -1. */
1468 ao_ref aor;
1469 ao_ref_init (&aor, *mem);
1470 ao_ref_base (&aor);
1471 ao_ref_alias_set (&aor);
1472 HOST_WIDE_INT offset, size, max_size;
1473 poly_int64 saved_maxsize = aor.max_size, mem_off;
1474 tree mem_base;
1475 bool ref_decomposed;
1476 if (aor.max_size_known_p ()
1477 && aor.offset.is_constant (&offset)
1478 && aor.size.is_constant (&size)
1479 && aor.max_size.is_constant (&max_size)
1480 && size == max_size
1481 && (size % BITS_PER_UNIT) == 0
1482 /* We're canonicalizing to a MEM where TYPE_SIZE specifies the
1483 size. Make sure this is consistent with the extraction. */
1484 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem)))
1485 && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))),
1486 aor.size)
1487 && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off)))
1488 {
1489 ref_decomposed = true;
1490 hash = iterative_hash_expr (ao_ref_base (&aor), 0);
1491 hash = iterative_hash_host_wide_int (offset, hash);
1492 hash = iterative_hash_host_wide_int (size, hash);
1493 }
1494 else
1495 {
1496 ref_decomposed = false;
1497 hash = iterative_hash_expr (aor.ref, 0);
1498 aor.max_size = -1;
1499 }
1500 slot = memory_accesses.refs->find_slot_with_hash (&aor, hash, INSERT);
1501 aor.max_size = saved_maxsize;
1502 if (*slot)
1503 {
1504 if (!(*slot)->ref_canonical
1505 && !operand_equal_p (*mem, (*slot)->mem.ref, 0))
1506 {
1507 /* If we didn't yet canonicalize the hashtable ref (which
1508 we'll end up using for code insertion) and hit a second
1509 equal ref that is not structurally equivalent create
1510 a canonical ref which is a bare MEM_REF. */
1511 if (TREE_CODE (*mem) == MEM_REF
1512 || TREE_CODE (*mem) == TARGET_MEM_REF)
1513 {
1514 (*slot)->mem.ref = *mem;
1515 (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor);
1516 }
1517 else
1518 {
1519 tree ref_alias_type = reference_alias_ptr_type (*mem);
1520 unsigned int ref_align = get_object_alignment (*mem);
1521 tree ref_type = TREE_TYPE (*mem);
1522 tree tmp = build1 (ADDR_EXPR, ptr_type_node,
1523 unshare_expr (mem_base));
1524 if (TYPE_ALIGN (ref_type) != ref_align)
1525 ref_type = build_aligned_type (ref_type, ref_align);
1526 (*slot)->mem.ref
1527 = fold_build2 (MEM_REF, ref_type, tmp,
1528 build_int_cst (ref_alias_type, mem_off));
1529 if ((*slot)->mem.volatile_p)
1530 TREE_THIS_VOLATILE ((*slot)->mem.ref) = 1;
1531 gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF
1532 && is_gimple_mem_ref_addr
1533 (TREE_OPERAND ((*slot)->mem.ref,
1534 0)));
1535 (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set;
1536 }
1537 (*slot)->ref_canonical = true;
1538 }
1539 ref = *slot;
1540 id = ref->id;
1541 }
1542 else
1543 {
1544 id = memory_accesses.refs_list.length ();
1545 ref = mem_ref_alloc (&aor, hash, id);
1546 ref->ref_decomposed = ref_decomposed;
1547 memory_accesses.refs_list.safe_push (ref);
1548 *slot = ref;
1549
1550 if (dump_file && (dump_flags & TDF_DETAILS))
1551 {
1552 fprintf (dump_file, "Memory reference %u: ", id);
1553 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1554 fprintf (dump_file, "\n");
1555 }
1556 }
1557
1558 record_mem_ref_loc (ref, stmt, mem);
1559 }
1560 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1561 if (is_stored)
1562 {
1563 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1564 mark_ref_stored (ref, loop);
1565 }
1566 init_lim_data (stmt)->ref = ref->id;
1567 return;
1568 }
1569
1570 static unsigned *bb_loop_postorder;
1571
1572 /* qsort sort function to sort blocks after their loop fathers postorder. */
1573
1574 static int
sort_bbs_in_loop_postorder_cmp(const void * bb1_,const void * bb2_,void * bb_loop_postorder_)1575 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_,
1576 void *bb_loop_postorder_)
1577 {
1578 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1579 basic_block bb1 = *(const basic_block *)bb1_;
1580 basic_block bb2 = *(const basic_block *)bb2_;
1581 class loop *loop1 = bb1->loop_father;
1582 class loop *loop2 = bb2->loop_father;
1583 if (loop1->num == loop2->num)
1584 return bb1->index - bb2->index;
1585 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1586 }
1587
1588 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1589
1590 static int
sort_locs_in_loop_postorder_cmp(const void * loc1_,const void * loc2_,void * bb_loop_postorder_)1591 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_,
1592 void *bb_loop_postorder_)
1593 {
1594 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1595 const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_;
1596 const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_;
1597 class loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1598 class loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1599 if (loop1->num == loop2->num)
1600 return 0;
1601 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1602 }
1603
1604 /* Gathers memory references in loops. */
1605
1606 static void
analyze_memory_references(void)1607 analyze_memory_references (void)
1608 {
1609 gimple_stmt_iterator bsi;
1610 basic_block bb, *bbs;
1611 class loop *loop, *outer;
1612 unsigned i, n;
1613
1614 /* Collect all basic-blocks in loops and sort them after their
1615 loops postorder. */
1616 i = 0;
1617 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1618 FOR_EACH_BB_FN (bb, cfun)
1619 if (bb->loop_father != current_loops->tree_root)
1620 bbs[i++] = bb;
1621 n = i;
1622 gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp,
1623 bb_loop_postorder);
1624
1625 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1626 That results in better locality for all the bitmaps. */
1627 for (i = 0; i < n; ++i)
1628 {
1629 basic_block bb = bbs[i];
1630 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1631 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1632 }
1633
1634 /* Sort the location list of gathered memory references after their
1635 loop postorder number. */
1636 im_mem_ref *ref;
1637 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1638 ref->accesses_in_loop.sort (sort_locs_in_loop_postorder_cmp,
1639 bb_loop_postorder);
1640
1641 free (bbs);
1642
1643 /* Propagate the information about accessed memory references up
1644 the loop hierarchy. */
1645 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1646 {
1647 /* Finalize the overall touched references (including subloops). */
1648 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1649 &memory_accesses.refs_stored_in_loop[loop->num]);
1650
1651 /* Propagate the information about accessed memory references up
1652 the loop hierarchy. */
1653 outer = loop_outer (loop);
1654 if (outer == current_loops->tree_root)
1655 continue;
1656
1657 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1658 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1659 }
1660 }
1661
1662 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1663 tree_to_aff_combination_expand. */
1664
1665 static bool
mem_refs_may_alias_p(im_mem_ref * mem1,im_mem_ref * mem2,hash_map<tree,name_expansion * > ** ttae_cache)1666 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1667 hash_map<tree, name_expansion *> **ttae_cache)
1668 {
1669 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1670 object and their offset differ in such a way that the locations cannot
1671 overlap, then they cannot alias. */
1672 poly_widest_int size1, size2;
1673 aff_tree off1, off2;
1674
1675 /* Perform basic offset and type-based disambiguation. */
1676 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1677 return false;
1678
1679 /* The expansion of addresses may be a bit expensive, thus we only do
1680 the check at -O2 and higher optimization levels. */
1681 if (optimize < 2)
1682 return true;
1683
1684 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1685 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1686 aff_combination_expand (&off1, ttae_cache);
1687 aff_combination_expand (&off2, ttae_cache);
1688 aff_combination_scale (&off1, -1);
1689 aff_combination_add (&off2, &off1);
1690
1691 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1692 return false;
1693
1694 return true;
1695 }
1696
1697 /* Compare function for bsearch searching for reference locations
1698 in a loop. */
1699
1700 static int
find_ref_loc_in_loop_cmp(const void * loop_,const void * loc_,void * bb_loop_postorder_)1701 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_,
1702 void *bb_loop_postorder_)
1703 {
1704 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1705 class loop *loop = (class loop *)const_cast<void *>(loop_);
1706 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1707 class loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1708 if (loop->num == loc_loop->num
1709 || flow_loop_nested_p (loop, loc_loop))
1710 return 0;
1711 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1712 ? -1 : 1);
1713 }
1714
1715 /* Iterates over all locations of REF in LOOP and its subloops calling
1716 fn.operator() with the location as argument. When that operator
1717 returns true the iteration is stopped and true is returned.
1718 Otherwise false is returned. */
1719
1720 template <typename FN>
1721 static bool
for_all_locs_in_loop(class loop * loop,im_mem_ref * ref,FN fn)1722 for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn)
1723 {
1724 unsigned i;
1725 mem_ref_loc *loc;
1726
1727 /* Search for the cluster of locs in the accesses_in_loop vector
1728 which is sorted after postorder index of the loop father. */
1729 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp,
1730 bb_loop_postorder);
1731 if (!loc)
1732 return false;
1733
1734 /* We have found one location inside loop or its sub-loops. Iterate
1735 both forward and backward to cover the whole cluster. */
1736 i = loc - ref->accesses_in_loop.address ();
1737 while (i > 0)
1738 {
1739 --i;
1740 mem_ref_loc *l = &ref->accesses_in_loop[i];
1741 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1742 break;
1743 if (fn (l))
1744 return true;
1745 }
1746 for (i = loc - ref->accesses_in_loop.address ();
1747 i < ref->accesses_in_loop.length (); ++i)
1748 {
1749 mem_ref_loc *l = &ref->accesses_in_loop[i];
1750 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1751 break;
1752 if (fn (l))
1753 return true;
1754 }
1755
1756 return false;
1757 }
1758
1759 /* Rewrites location LOC by TMP_VAR. */
1760
1761 class rewrite_mem_ref_loc
1762 {
1763 public:
rewrite_mem_ref_loc(tree tmp_var_)1764 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1765 bool operator () (mem_ref_loc *loc);
1766 tree tmp_var;
1767 };
1768
1769 bool
operator()1770 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1771 {
1772 *loc->ref = tmp_var;
1773 update_stmt (loc->stmt);
1774 return false;
1775 }
1776
1777 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1778
1779 static void
rewrite_mem_refs(class loop * loop,im_mem_ref * ref,tree tmp_var)1780 rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var)
1781 {
1782 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1783 }
1784
1785 /* Stores the first reference location in LOCP. */
1786
1787 class first_mem_ref_loc_1
1788 {
1789 public:
first_mem_ref_loc_1(mem_ref_loc ** locp_)1790 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1791 bool operator () (mem_ref_loc *loc);
1792 mem_ref_loc **locp;
1793 };
1794
1795 bool
operator()1796 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1797 {
1798 *locp = loc;
1799 return true;
1800 }
1801
1802 /* Returns the first reference location to REF in LOOP. */
1803
1804 static mem_ref_loc *
first_mem_ref_loc(class loop * loop,im_mem_ref * ref)1805 first_mem_ref_loc (class loop *loop, im_mem_ref *ref)
1806 {
1807 mem_ref_loc *locp = NULL;
1808 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1809 return locp;
1810 }
1811
1812 struct prev_flag_edges {
1813 /* Edge to insert new flag comparison code. */
1814 edge append_cond_position;
1815
1816 /* Edge for fall through from previous flag comparison. */
1817 edge last_cond_fallthru;
1818 };
1819
1820 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1821 MEM along edge EX.
1822
1823 The store is only done if MEM has changed. We do this so no
1824 changes to MEM occur on code paths that did not originally store
1825 into it.
1826
1827 The common case for execute_sm will transform:
1828
1829 for (...) {
1830 if (foo)
1831 stuff;
1832 else
1833 MEM = TMP_VAR;
1834 }
1835
1836 into:
1837
1838 lsm = MEM;
1839 for (...) {
1840 if (foo)
1841 stuff;
1842 else
1843 lsm = TMP_VAR;
1844 }
1845 MEM = lsm;
1846
1847 This function will generate:
1848
1849 lsm = MEM;
1850
1851 lsm_flag = false;
1852 ...
1853 for (...) {
1854 if (foo)
1855 stuff;
1856 else {
1857 lsm = TMP_VAR;
1858 lsm_flag = true;
1859 }
1860 }
1861 if (lsm_flag) <--
1862 MEM = lsm; <--
1863 */
1864
1865 static void
execute_sm_if_changed(edge ex,tree mem,tree tmp_var,tree flag,edge preheader,hash_set<basic_block> * flag_bbs)1866 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
1867 edge preheader, hash_set <basic_block> *flag_bbs)
1868 {
1869 basic_block new_bb, then_bb, old_dest;
1870 bool loop_has_only_one_exit;
1871 edge then_old_edge, orig_ex = ex;
1872 gimple_stmt_iterator gsi;
1873 gimple *stmt;
1874 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1875 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1876
1877 profile_count count_sum = profile_count::zero ();
1878 int nbbs = 0, ncount = 0;
1879 profile_probability flag_probability = profile_probability::uninitialized ();
1880
1881 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
1882 at loop exit.
1883
1884 This code may look fancy, but it cannot update profile very realistically
1885 because we do not know the probability that flag will be true at given
1886 loop exit.
1887
1888 We look for two interesting extremes
1889 - when exit is dominated by block setting the flag, we know it will
1890 always be true. This is a common case.
1891 - when all blocks setting the flag have very low frequency we know
1892 it will likely be false.
1893 In all other cases we default to 2/3 for flag being true. */
1894
1895 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
1896 it != flag_bbs->end (); ++it)
1897 {
1898 if ((*it)->count.initialized_p ())
1899 count_sum += (*it)->count, ncount ++;
1900 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
1901 flag_probability = profile_probability::always ();
1902 nbbs++;
1903 }
1904
1905 profile_probability cap = profile_probability::always ().apply_scale (2, 3);
1906
1907 if (flag_probability.initialized_p ())
1908 ;
1909 else if (ncount == nbbs
1910 && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
1911 {
1912 flag_probability = count_sum.probability_in (preheader->count ());
1913 if (flag_probability > cap)
1914 flag_probability = cap;
1915 }
1916
1917 if (!flag_probability.initialized_p ())
1918 flag_probability = cap;
1919
1920 /* ?? Insert store after previous store if applicable. See note
1921 below. */
1922 if (prev_edges)
1923 ex = prev_edges->append_cond_position;
1924
1925 loop_has_only_one_exit = single_pred_p (ex->dest);
1926
1927 if (loop_has_only_one_exit)
1928 ex = split_block_after_labels (ex->dest);
1929 else
1930 {
1931 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1932 !gsi_end_p (gpi); gsi_next (&gpi))
1933 {
1934 gphi *phi = gpi.phi ();
1935 if (virtual_operand_p (gimple_phi_result (phi)))
1936 continue;
1937
1938 /* When the destination has a non-virtual PHI node with multiple
1939 predecessors make sure we preserve the PHI structure by
1940 forcing a forwarder block so that hoisting of that PHI will
1941 still work. */
1942 split_edge (ex);
1943 break;
1944 }
1945 }
1946
1947 old_dest = ex->dest;
1948 new_bb = split_edge (ex);
1949 then_bb = create_empty_bb (new_bb);
1950 then_bb->count = new_bb->count.apply_probability (flag_probability);
1951 if (irr)
1952 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1953 add_bb_to_loop (then_bb, new_bb->loop_father);
1954
1955 gsi = gsi_start_bb (new_bb);
1956 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1957 NULL_TREE, NULL_TREE);
1958 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1959
1960 gsi = gsi_start_bb (then_bb);
1961 /* Insert actual store. */
1962 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1963 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1964
1965 edge e1 = single_succ_edge (new_bb);
1966 edge e2 = make_edge (new_bb, then_bb,
1967 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1968 e2->probability = flag_probability;
1969
1970 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
1971 e1->flags &= ~EDGE_FALLTHRU;
1972
1973 e1->probability = flag_probability.invert ();
1974
1975 then_old_edge = make_single_succ_edge (then_bb, old_dest,
1976 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1977
1978 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1979
1980 if (prev_edges)
1981 {
1982 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1983 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1984 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1985 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1986 recompute_dominator (CDI_DOMINATORS, old_dest));
1987 }
1988
1989 /* ?? Because stores may alias, they must happen in the exact
1990 sequence they originally happened. Save the position right after
1991 the (_lsm) store we just created so we can continue appending after
1992 it and maintain the original order. */
1993 {
1994 struct prev_flag_edges *p;
1995
1996 if (orig_ex->aux)
1997 orig_ex->aux = NULL;
1998 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1999 p = (struct prev_flag_edges *) orig_ex->aux;
2000 p->append_cond_position = then_old_edge;
2001 p->last_cond_fallthru = find_edge (new_bb, old_dest);
2002 orig_ex->aux = (void *) p;
2003 }
2004
2005 if (!loop_has_only_one_exit)
2006 for (gphi_iterator gpi = gsi_start_phis (old_dest);
2007 !gsi_end_p (gpi); gsi_next (&gpi))
2008 {
2009 gphi *phi = gpi.phi ();
2010 unsigned i;
2011
2012 for (i = 0; i < gimple_phi_num_args (phi); i++)
2013 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
2014 {
2015 tree arg = gimple_phi_arg_def (phi, i);
2016 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
2017 update_stmt (phi);
2018 }
2019 }
2020 }
2021
2022 /* When REF is set on the location, set flag indicating the store. */
2023
2024 class sm_set_flag_if_changed
2025 {
2026 public:
sm_set_flag_if_changed(tree flag_,hash_set<basic_block> * bbs_)2027 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
2028 : flag (flag_), bbs (bbs_) {}
2029 bool operator () (mem_ref_loc *loc);
2030 tree flag;
2031 hash_set <basic_block> *bbs;
2032 };
2033
2034 bool
operator()2035 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
2036 {
2037 /* Only set the flag for writes. */
2038 if (is_gimple_assign (loc->stmt)
2039 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
2040 {
2041 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
2042 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
2043 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2044 bbs->add (gimple_bb (stmt));
2045 }
2046 return false;
2047 }
2048
2049 /* Helper function for execute_sm. On every location where REF is
2050 set, set an appropriate flag indicating the store. */
2051
2052 static tree
execute_sm_if_changed_flag_set(class loop * loop,im_mem_ref * ref,hash_set<basic_block> * bbs)2053 execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref,
2054 hash_set <basic_block> *bbs)
2055 {
2056 tree flag;
2057 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
2058 flag = create_tmp_reg (boolean_type_node, str);
2059 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
2060 return flag;
2061 }
2062
2063 /* Executes store motion of memory reference REF from LOOP.
2064 Exits from the LOOP are stored in EXITS. The initialization of the
2065 temporary variable is put to the preheader of the loop, and assignments
2066 to the reference from the temporary variable are emitted to exits. */
2067
2068 static void
execute_sm(class loop * loop,vec<edge> exits,im_mem_ref * ref)2069 execute_sm (class loop *loop, vec<edge> exits, im_mem_ref *ref)
2070 {
2071 tree tmp_var, store_flag = NULL_TREE;
2072 unsigned i;
2073 gassign *load;
2074 struct fmt_data fmt_data;
2075 edge ex;
2076 struct lim_aux_data *lim_data;
2077 bool multi_threaded_model_p = false;
2078 gimple_stmt_iterator gsi;
2079 hash_set<basic_block> flag_bbs;
2080
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 {
2083 fprintf (dump_file, "Executing store motion of ");
2084 print_generic_expr (dump_file, ref->mem.ref);
2085 fprintf (dump_file, " from loop %d\n", loop->num);
2086 }
2087
2088 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
2089 get_lsm_tmp_name (ref->mem.ref, ~0));
2090
2091 fmt_data.loop = loop;
2092 fmt_data.orig_loop = loop;
2093 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2094
2095 if (bb_in_transaction (loop_preheader_edge (loop)->src)
2096 || (! flag_store_data_races
2097 && ! ref_always_accessed_p (loop, ref, true)))
2098 multi_threaded_model_p = true;
2099
2100 if (multi_threaded_model_p)
2101 store_flag = execute_sm_if_changed_flag_set (loop, ref, &flag_bbs);
2102
2103 rewrite_mem_refs (loop, ref, tmp_var);
2104
2105 /* Emit the load code on a random exit edge or into the latch if
2106 the loop does not exit, so that we are sure it will be processed
2107 by move_computations after all dependencies. */
2108 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2109
2110 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2111 load altogether, since the store is predicated by a flag. We
2112 could, do the load only if it was originally in the loop. */
2113 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
2114 lim_data = init_lim_data (load);
2115 lim_data->max_loop = loop;
2116 lim_data->tgt_loop = loop;
2117 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2118
2119 if (multi_threaded_model_p)
2120 {
2121 load = gimple_build_assign (store_flag, boolean_false_node);
2122 lim_data = init_lim_data (load);
2123 lim_data->max_loop = loop;
2124 lim_data->tgt_loop = loop;
2125 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2126 }
2127
2128 /* Sink the store to every exit from the loop. */
2129 FOR_EACH_VEC_ELT (exits, i, ex)
2130 if (!multi_threaded_model_p)
2131 {
2132 gassign *store;
2133 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2134 gsi_insert_on_edge (ex, store);
2135 }
2136 else
2137 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag,
2138 loop_preheader_edge (loop), &flag_bbs);
2139 }
2140
2141 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2142 edges of the LOOP. */
2143
2144 static void
hoist_memory_references(class loop * loop,bitmap mem_refs,vec<edge> exits)2145 hoist_memory_references (class loop *loop, bitmap mem_refs,
2146 vec<edge> exits)
2147 {
2148 im_mem_ref *ref;
2149 unsigned i;
2150 bitmap_iterator bi;
2151
2152 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2153 {
2154 ref = memory_accesses.refs_list[i];
2155 execute_sm (loop, exits, ref);
2156 }
2157 }
2158
2159 class ref_always_accessed
2160 {
2161 public:
ref_always_accessed(class loop * loop_,bool stored_p_)2162 ref_always_accessed (class loop *loop_, bool stored_p_)
2163 : loop (loop_), stored_p (stored_p_) {}
2164 bool operator () (mem_ref_loc *loc);
2165 class loop *loop;
2166 bool stored_p;
2167 };
2168
2169 bool
operator()2170 ref_always_accessed::operator () (mem_ref_loc *loc)
2171 {
2172 class loop *must_exec;
2173
2174 struct lim_aux_data *lim_data = get_lim_data (loc->stmt);
2175 if (!lim_data)
2176 return false;
2177
2178 /* If we require an always executed store make sure the statement
2179 is a store. */
2180 if (stored_p)
2181 {
2182 tree lhs = gimple_get_lhs (loc->stmt);
2183 if (!lhs
2184 || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs)))
2185 return false;
2186 }
2187
2188 must_exec = lim_data->always_executed_in;
2189 if (!must_exec)
2190 return false;
2191
2192 if (must_exec == loop
2193 || flow_loop_nested_p (must_exec, loop))
2194 return true;
2195
2196 return false;
2197 }
2198
2199 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2200 make sure REF is always stored to in LOOP. */
2201
2202 static bool
ref_always_accessed_p(class loop * loop,im_mem_ref * ref,bool stored_p)2203 ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p)
2204 {
2205 return for_all_locs_in_loop (loop, ref,
2206 ref_always_accessed (loop, stored_p));
2207 }
2208
2209 /* Returns true if REF1 and REF2 are independent. */
2210
2211 static bool
refs_independent_p(im_mem_ref * ref1,im_mem_ref * ref2)2212 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2)
2213 {
2214 if (ref1 == ref2)
2215 return true;
2216
2217 if (dump_file && (dump_flags & TDF_DETAILS))
2218 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2219 ref1->id, ref2->id);
2220
2221 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2222 {
2223 if (dump_file && (dump_flags & TDF_DETAILS))
2224 fprintf (dump_file, "dependent.\n");
2225 return false;
2226 }
2227 else
2228 {
2229 if (dump_file && (dump_flags & TDF_DETAILS))
2230 fprintf (dump_file, "independent.\n");
2231 return true;
2232 }
2233 }
2234
2235 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2236 and its super-loops. */
2237
2238 static void
record_dep_loop(class loop * loop,im_mem_ref * ref,bool stored_p)2239 record_dep_loop (class loop *loop, im_mem_ref *ref, bool stored_p)
2240 {
2241 /* We can propagate dependent-in-loop bits up the loop
2242 hierarchy to all outer loops. */
2243 while (loop != current_loops->tree_root
2244 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2245 loop = loop_outer (loop);
2246 }
2247
2248 /* Returns true if REF is independent on all other memory
2249 references in LOOP. */
2250
2251 static bool
ref_indep_loop_p_1(class loop * loop,im_mem_ref * ref,bool stored_p)2252 ref_indep_loop_p_1 (class loop *loop, im_mem_ref *ref, bool stored_p)
2253 {
2254 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2255
2256 bool indep_p = true;
2257 bitmap refs_to_check;
2258
2259 if (stored_p)
2260 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2261 else
2262 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2263
2264 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2265 indep_p = false;
2266 else
2267 {
2268 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2269 return true;
2270 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2271 return false;
2272
2273 class loop *inner = loop->inner;
2274 while (inner)
2275 {
2276 if (!ref_indep_loop_p_1 (inner, ref, stored_p))
2277 {
2278 indep_p = false;
2279 break;
2280 }
2281 inner = inner->next;
2282 }
2283
2284 if (indep_p)
2285 {
2286 unsigned i;
2287 bitmap_iterator bi;
2288 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2289 {
2290 im_mem_ref *aref = memory_accesses.refs_list[i];
2291 if (!refs_independent_p (ref, aref))
2292 {
2293 indep_p = false;
2294 break;
2295 }
2296 }
2297 }
2298 }
2299
2300 if (dump_file && (dump_flags & TDF_DETAILS))
2301 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2302 ref->id, loop->num, indep_p ? "independent" : "dependent");
2303
2304 /* Record the computed result in the cache. */
2305 if (indep_p)
2306 {
2307 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2308 && stored_p)
2309 {
2310 /* If it's independend against all refs then it's independent
2311 against stores, too. */
2312 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2313 }
2314 }
2315 else
2316 {
2317 record_dep_loop (loop, ref, stored_p);
2318 if (!stored_p)
2319 {
2320 /* If it's dependent against stores it's dependent against
2321 all refs, too. */
2322 record_dep_loop (loop, ref, true);
2323 }
2324 }
2325
2326 return indep_p;
2327 }
2328
2329 /* Returns true if REF is independent on all other memory references in
2330 LOOP. */
2331
2332 static bool
ref_indep_loop_p(class loop * loop,im_mem_ref * ref)2333 ref_indep_loop_p (class loop *loop, im_mem_ref *ref)
2334 {
2335 gcc_checking_assert (MEM_ANALYZABLE (ref));
2336
2337 return ref_indep_loop_p_1 (loop, ref, false);
2338 }
2339
2340 /* Returns true if we can perform store motion of REF from LOOP. */
2341
2342 static bool
can_sm_ref_p(class loop * loop,im_mem_ref * ref)2343 can_sm_ref_p (class loop *loop, im_mem_ref *ref)
2344 {
2345 tree base;
2346
2347 /* Can't hoist unanalyzable refs. */
2348 if (!MEM_ANALYZABLE (ref))
2349 return false;
2350
2351 /* It should be movable. */
2352 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2353 || TREE_THIS_VOLATILE (ref->mem.ref)
2354 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2355 return false;
2356
2357 /* If it can throw fail, we do not properly update EH info. */
2358 if (tree_could_throw_p (ref->mem.ref))
2359 return false;
2360
2361 /* If it can trap, it must be always executed in LOOP.
2362 Readonly memory locations may trap when storing to them, but
2363 tree_could_trap_p is a predicate for rvalues, so check that
2364 explicitly. */
2365 base = get_base_address (ref->mem.ref);
2366 if ((tree_could_trap_p (ref->mem.ref)
2367 || (DECL_P (base) && TREE_READONLY (base)))
2368 && !ref_always_accessed_p (loop, ref, true))
2369 return false;
2370
2371 /* And it must be independent on all other memory references
2372 in LOOP. */
2373 if (!ref_indep_loop_p (loop, ref))
2374 return false;
2375
2376 return true;
2377 }
2378
2379 /* Marks the references in LOOP for that store motion should be performed
2380 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2381 motion was performed in one of the outer loops. */
2382
2383 static void
find_refs_for_sm(class loop * loop,bitmap sm_executed,bitmap refs_to_sm)2384 find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2385 {
2386 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2387 unsigned i;
2388 bitmap_iterator bi;
2389 im_mem_ref *ref;
2390
2391 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2392 {
2393 ref = memory_accesses.refs_list[i];
2394 if (can_sm_ref_p (loop, ref))
2395 bitmap_set_bit (refs_to_sm, i);
2396 }
2397 }
2398
2399 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2400 for a store motion optimization (i.e. whether we can insert statement
2401 on its exits). */
2402
2403 static bool
loop_suitable_for_sm(class loop * loop ATTRIBUTE_UNUSED,vec<edge> exits)2404 loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED,
2405 vec<edge> exits)
2406 {
2407 unsigned i;
2408 edge ex;
2409
2410 FOR_EACH_VEC_ELT (exits, i, ex)
2411 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2412 return false;
2413
2414 return true;
2415 }
2416
2417 /* Try to perform store motion for all memory references modified inside
2418 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2419 store motion was executed in one of the outer loops. */
2420
2421 static void
store_motion_loop(class loop * loop,bitmap sm_executed)2422 store_motion_loop (class loop *loop, bitmap sm_executed)
2423 {
2424 vec<edge> exits = get_loop_exit_edges (loop);
2425 class loop *subloop;
2426 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2427
2428 if (loop_suitable_for_sm (loop, exits))
2429 {
2430 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2431 hoist_memory_references (loop, sm_in_loop, exits);
2432 }
2433 exits.release ();
2434
2435 bitmap_ior_into (sm_executed, sm_in_loop);
2436 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2437 store_motion_loop (subloop, sm_executed);
2438 bitmap_and_compl_into (sm_executed, sm_in_loop);
2439 BITMAP_FREE (sm_in_loop);
2440 }
2441
2442 /* Try to perform store motion for all memory references modified inside
2443 loops. */
2444
2445 static void
store_motion(void)2446 store_motion (void)
2447 {
2448 class loop *loop;
2449 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2450
2451 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2452 store_motion_loop (loop, sm_executed);
2453
2454 BITMAP_FREE (sm_executed);
2455 gsi_commit_edge_inserts ();
2456 }
2457
2458 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2459 for each such basic block bb records the outermost loop for that execution
2460 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2461 blocks that contain a nonpure call. */
2462
2463 static void
fill_always_executed_in_1(class loop * loop,sbitmap contains_call)2464 fill_always_executed_in_1 (class loop *loop, sbitmap contains_call)
2465 {
2466 basic_block bb = NULL, *bbs, last = NULL;
2467 unsigned i;
2468 edge e;
2469 class loop *inn_loop = loop;
2470
2471 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2472 {
2473 bbs = get_loop_body_in_dom_order (loop);
2474
2475 for (i = 0; i < loop->num_nodes; i++)
2476 {
2477 edge_iterator ei;
2478 bb = bbs[i];
2479
2480 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2481 last = bb;
2482
2483 if (bitmap_bit_p (contains_call, bb->index))
2484 break;
2485
2486 FOR_EACH_EDGE (e, ei, bb->succs)
2487 {
2488 /* If there is an exit from this BB. */
2489 if (!flow_bb_inside_loop_p (loop, e->dest))
2490 break;
2491 /* Or we enter a possibly non-finite loop. */
2492 if (flow_loop_nested_p (bb->loop_father,
2493 e->dest->loop_father)
2494 && ! finite_loop_p (e->dest->loop_father))
2495 break;
2496 }
2497 if (e)
2498 break;
2499
2500 /* A loop might be infinite (TODO use simple loop analysis
2501 to disprove this if possible). */
2502 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2503 break;
2504
2505 if (!flow_bb_inside_loop_p (inn_loop, bb))
2506 break;
2507
2508 if (bb->loop_father->header == bb)
2509 {
2510 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2511 break;
2512
2513 /* In a loop that is always entered we may proceed anyway.
2514 But record that we entered it and stop once we leave it. */
2515 inn_loop = bb->loop_father;
2516 }
2517 }
2518
2519 while (1)
2520 {
2521 SET_ALWAYS_EXECUTED_IN (last, loop);
2522 if (last == loop->header)
2523 break;
2524 last = get_immediate_dominator (CDI_DOMINATORS, last);
2525 }
2526
2527 free (bbs);
2528 }
2529
2530 for (loop = loop->inner; loop; loop = loop->next)
2531 fill_always_executed_in_1 (loop, contains_call);
2532 }
2533
2534 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2535 for each such basic block bb records the outermost loop for that execution
2536 of its header implies execution of bb. */
2537
2538 static void
fill_always_executed_in(void)2539 fill_always_executed_in (void)
2540 {
2541 basic_block bb;
2542 class loop *loop;
2543
2544 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
2545 bitmap_clear (contains_call);
2546 FOR_EACH_BB_FN (bb, cfun)
2547 {
2548 gimple_stmt_iterator gsi;
2549 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2550 {
2551 if (nonpure_call_p (gsi_stmt (gsi)))
2552 break;
2553 }
2554
2555 if (!gsi_end_p (gsi))
2556 bitmap_set_bit (contains_call, bb->index);
2557 }
2558
2559 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2560 fill_always_executed_in_1 (loop, contains_call);
2561 }
2562
2563
2564 /* Compute the global information needed by the loop invariant motion pass. */
2565
2566 static void
tree_ssa_lim_initialize(void)2567 tree_ssa_lim_initialize (void)
2568 {
2569 class loop *loop;
2570 unsigned i;
2571
2572 bitmap_obstack_initialize (&lim_bitmap_obstack);
2573 gcc_obstack_init (&mem_ref_obstack);
2574 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
2575
2576 if (flag_tm)
2577 compute_transaction_bits ();
2578
2579 alloc_aux_for_edges (0);
2580
2581 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2582 memory_accesses.refs_list.create (100);
2583 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2584 memory_accesses.refs_list.quick_push
2585 (mem_ref_alloc (NULL, 0, UNANALYZABLE_MEM_ID));
2586
2587 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2588 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2589 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2590 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2591 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2592 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2593
2594 for (i = 0; i < number_of_loops (cfun); i++)
2595 {
2596 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2597 &lim_bitmap_obstack);
2598 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2599 &lim_bitmap_obstack);
2600 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2601 &lim_bitmap_obstack);
2602 }
2603
2604 memory_accesses.ttae_cache = NULL;
2605
2606 /* Initialize bb_loop_postorder with a mapping from loop->num to
2607 its postorder index. */
2608 i = 0;
2609 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2610 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2611 bb_loop_postorder[loop->num] = i++;
2612 }
2613
2614 /* Cleans up after the invariant motion pass. */
2615
2616 static void
tree_ssa_lim_finalize(void)2617 tree_ssa_lim_finalize (void)
2618 {
2619 basic_block bb;
2620 unsigned i;
2621 im_mem_ref *ref;
2622
2623 free_aux_for_edges ();
2624
2625 FOR_EACH_BB_FN (bb, cfun)
2626 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2627
2628 bitmap_obstack_release (&lim_bitmap_obstack);
2629 delete lim_aux_data_map;
2630
2631 delete memory_accesses.refs;
2632 memory_accesses.refs = NULL;
2633
2634 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2635 memref_free (ref);
2636 memory_accesses.refs_list.release ();
2637 obstack_free (&mem_ref_obstack, NULL);
2638
2639 memory_accesses.refs_in_loop.release ();
2640 memory_accesses.refs_stored_in_loop.release ();
2641 memory_accesses.all_refs_stored_in_loop.release ();
2642
2643 if (memory_accesses.ttae_cache)
2644 free_affine_expand_cache (&memory_accesses.ttae_cache);
2645
2646 free (bb_loop_postorder);
2647 }
2648
2649 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2650 i.e. those that are likely to be win regardless of the register pressure. */
2651
2652 static unsigned int
tree_ssa_lim(void)2653 tree_ssa_lim (void)
2654 {
2655 unsigned int todo;
2656
2657 tree_ssa_lim_initialize ();
2658
2659 /* Gathers information about memory accesses in the loops. */
2660 analyze_memory_references ();
2661
2662 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2663 fill_always_executed_in ();
2664
2665 /* For each statement determine the outermost loop in that it is
2666 invariant and cost for computing the invariant. */
2667 invariantness_dom_walker (CDI_DOMINATORS)
2668 .walk (cfun->cfg->x_entry_block_ptr);
2669
2670 /* Execute store motion. Force the necessary invariants to be moved
2671 out of the loops as well. */
2672 store_motion ();
2673
2674 /* Move the expressions that are expensive enough. */
2675 todo = move_computations ();
2676
2677 tree_ssa_lim_finalize ();
2678
2679 return todo;
2680 }
2681
2682 /* Loop invariant motion pass. */
2683
2684 namespace {
2685
2686 const pass_data pass_data_lim =
2687 {
2688 GIMPLE_PASS, /* type */
2689 "lim", /* name */
2690 OPTGROUP_LOOP, /* optinfo_flags */
2691 TV_LIM, /* tv_id */
2692 PROP_cfg, /* properties_required */
2693 0, /* properties_provided */
2694 0, /* properties_destroyed */
2695 0, /* todo_flags_start */
2696 0, /* todo_flags_finish */
2697 };
2698
2699 class pass_lim : public gimple_opt_pass
2700 {
2701 public:
pass_lim(gcc::context * ctxt)2702 pass_lim (gcc::context *ctxt)
2703 : gimple_opt_pass (pass_data_lim, ctxt)
2704 {}
2705
2706 /* opt_pass methods: */
clone()2707 opt_pass * clone () { return new pass_lim (m_ctxt); }
gate(function *)2708 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2709 virtual unsigned int execute (function *);
2710
2711 }; // class pass_lim
2712
2713 unsigned int
execute(function * fun)2714 pass_lim::execute (function *fun)
2715 {
2716 bool in_loop_pipeline = scev_initialized_p ();
2717 if (!in_loop_pipeline)
2718 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2719
2720 if (number_of_loops (fun) <= 1)
2721 return 0;
2722 unsigned int todo = tree_ssa_lim ();
2723
2724 if (!in_loop_pipeline)
2725 loop_optimizer_finalize ();
2726 else
2727 scev_reset ();
2728 return todo;
2729 }
2730
2731 } // anon namespace
2732
2733 gimple_opt_pass *
make_pass_lim(gcc::context * ctxt)2734 make_pass_lim (gcc::context *ctxt)
2735 {
2736 return new pass_lim (ctxt);
2737 }
2738
2739
2740