xref: /netbsd-src/external/gpl3/binutils.old/dist/libctf/ctf-qsort_r.c (revision c42dbd0ed2e61fe6eda8590caa852ccf34719964)
1 /* Copyright (C) 1991-2022 Free Software Foundation, Inc.
2    This file is part of libctf (imported from Gnulib).
3    Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
4 
5    The GNU C Library is free software; you can redistribute it and/or
6    modify it under the terms of the GNU Lesser General Public
7    License as published by the Free Software Foundation; either
8    version 2.1 of the License, or (at your option) any later version.
9 
10    The GNU C Library is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13    Lesser General Public License for more details.
14 
15    You should have received a copy of the GNU Lesser General Public
16    License along with the GNU C Library; if not, see
17    <https://www.gnu.org/licenses/>.  */
18 
19 /* If you consider tuning this algorithm, you should consult first:
20    Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
21    Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993.  */
22 
23 #ifndef _LIBC
24 # include <config.h>
25 #endif
26 
27 #include <limits.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include "ctf-decls.h"
31 
32 #ifndef _LIBC
33 # define _quicksort ctf_qsort_r
34 # define __compar_d_fn_t compar_d_fn_t
35 typedef int (*compar_d_fn_t) (const void *, const void *, void *);
36 #endif
37 
38 /* Byte-wise swap two items of size SIZE. */
39 #define SWAP(a, b, size)						      \
40   do									      \
41     {									      \
42       size_t __size = (size);						      \
43       char *__a = (a), *__b = (b);					      \
44       do								      \
45 	{								      \
46 	  char __tmp = *__a;						      \
47 	  *__a++ = *__b;						      \
48 	  *__b++ = __tmp;						      \
49 	} while (--__size > 0);						      \
50     } while (0)
51 
52 /* Discontinue quicksort algorithm when partition gets below this size.
53    This particular magic number was chosen to work best on a Sun 4/260. */
54 #define MAX_THRESH 4
55 
56 /* Stack node declarations used to store unfulfilled partition obligations. */
57 typedef struct
58   {
59     char *lo;
60     char *hi;
61   } stack_node;
62 
63 /* The next 4 #defines implement a very fast in-line stack abstraction. */
64 /* The stack needs log (total_elements) entries (we could even subtract
65    log(MAX_THRESH)).  Since total_elements has type size_t, we get as
66    upper bound for log (total_elements):
67    bits per byte (CHAR_BIT) * sizeof(size_t).  */
68 #define STACK_SIZE	(CHAR_BIT * sizeof(size_t))
69 #define PUSH(low, high)	((void) ((top->lo = (low)), (top->hi = (high)), ++top))
70 #define	POP(low, high)	((void) (--top, (low = top->lo), (high = top->hi)))
71 #define	STACK_NOT_EMPTY	(stack < top)
72 
73 
74 /* Order size using quicksort.  This implementation incorporates
75    four optimizations discussed in Sedgewick:
76 
77    1. Non-recursive, using an explicit stack of pointer that store the
78       next array partition to sort.  To save time, this maximum amount
79       of space required to store an array of SIZE_MAX is allocated on the
80       stack.  Assuming a 32-bit (64 bit) integer for size_t, this needs
81       only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
82       Pretty cheap, actually.
83 
84    2. Chose the pivot element using a median-of-three decision tree.
85       This reduces the probability of selecting a bad pivot value and
86       eliminates certain extraneous comparisons.
87 
88    3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
89       insertion sort to order the MAX_THRESH items within each partition.
90       This is a big win, since insertion sort is faster for small, mostly
91       sorted array segments.
92 
93    4. The larger of the two sub-partitions is always pushed onto the
94       stack first, with the algorithm then concentrating on the
95       smaller partition.  This *guarantees* no more than log (total_elems)
96       stack size is needed (actually O(1) in this case)!  */
97 
98 void
_quicksort(void * const pbase,size_t total_elems,size_t size,__compar_d_fn_t cmp,void * arg)99 _quicksort (void *const pbase, size_t total_elems, size_t size,
100 	    __compar_d_fn_t cmp, void *arg)
101 {
102   char *base_ptr = (char *) pbase;
103 
104   const size_t max_thresh = MAX_THRESH * size;
105 
106   if (total_elems == 0)
107     /* Avoid lossage with unsigned arithmetic below.  */
108     return;
109 
110   if (total_elems > MAX_THRESH)
111     {
112       char *lo = base_ptr;
113       char *hi = &lo[size * (total_elems - 1)];
114       stack_node stack[STACK_SIZE];
115       stack_node *top = stack;
116 
117       PUSH (NULL, NULL);
118 
119       while (STACK_NOT_EMPTY)
120         {
121           char *left_ptr;
122           char *right_ptr;
123 
124 	  /* Select median value from among LO, MID, and HI. Rearrange
125 	     LO and HI so the three values are sorted. This lowers the
126 	     probability of picking a pathological pivot value and
127 	     skips a comparison for both the LEFT_PTR and RIGHT_PTR in
128 	     the while loops. */
129 
130 	  char *mid = lo + size * ((hi - lo) / size >> 1);
131 
132 	  if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
133 	    SWAP (mid, lo, size);
134 	  if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
135 	    SWAP (mid, hi, size);
136 	  else
137 	    goto jump_over;
138 	  if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
139 	    SWAP (mid, lo, size);
140 	jump_over:;
141 
142 	  left_ptr  = lo + size;
143 	  right_ptr = hi - size;
144 
145 	  /* Here's the famous ``collapse the walls'' section of quicksort.
146 	     Gotta like those tight inner loops!  They are the main reason
147 	     that this algorithm runs much faster than others. */
148 	  do
149 	    {
150 	      while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
151 		left_ptr += size;
152 
153 	      while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
154 		right_ptr -= size;
155 
156 	      if (left_ptr < right_ptr)
157 		{
158 		  SWAP (left_ptr, right_ptr, size);
159 		  if (mid == left_ptr)
160 		    mid = right_ptr;
161 		  else if (mid == right_ptr)
162 		    mid = left_ptr;
163 		  left_ptr += size;
164 		  right_ptr -= size;
165 		}
166 	      else if (left_ptr == right_ptr)
167 		{
168 		  left_ptr += size;
169 		  right_ptr -= size;
170 		  break;
171 		}
172 	    }
173 	  while (left_ptr <= right_ptr);
174 
175           /* Set up pointers for next iteration.  First determine whether
176              left and right partitions are below the threshold size.  If so,
177              ignore one or both.  Otherwise, push the larger partition's
178              bounds on the stack and continue sorting the smaller one. */
179 
180           if ((size_t) (right_ptr - lo) <= max_thresh)
181             {
182               if ((size_t) (hi - left_ptr) <= max_thresh)
183 		/* Ignore both small partitions. */
184                 POP (lo, hi);
185               else
186 		/* Ignore small left partition. */
187                 lo = left_ptr;
188             }
189           else if ((size_t) (hi - left_ptr) <= max_thresh)
190 	    /* Ignore small right partition. */
191             hi = right_ptr;
192           else if ((right_ptr - lo) > (hi - left_ptr))
193             {
194 	      /* Push larger left partition indices. */
195               PUSH (lo, right_ptr);
196               lo = left_ptr;
197             }
198           else
199             {
200 	      /* Push larger right partition indices. */
201               PUSH (left_ptr, hi);
202               hi = right_ptr;
203             }
204         }
205     }
206 
207   /* Once the BASE_PTR array is partially sorted by quicksort the rest
208      is completely sorted using insertion sort, since this is efficient
209      for partitions below MAX_THRESH size. BASE_PTR points to the beginning
210      of the array to sort, and END_PTR points at the very last element in
211      the array (*not* one beyond it!). */
212 
213 #define min(x, y) ((x) < (y) ? (x) : (y))
214 
215   {
216     char *const end_ptr = &base_ptr[size * (total_elems - 1)];
217     char *tmp_ptr = base_ptr;
218     char *thresh = min(end_ptr, base_ptr + max_thresh);
219     char *run_ptr;
220 
221     /* Find smallest element in first threshold and place it at the
222        array's beginning.  This is the smallest array element,
223        and the operation speeds up insertion sort's inner loop. */
224 
225     for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
226       if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
227         tmp_ptr = run_ptr;
228 
229     if (tmp_ptr != base_ptr)
230       SWAP (tmp_ptr, base_ptr, size);
231 
232     /* Insertion sort, running from left-hand-side up to right-hand-side.  */
233 
234     run_ptr = base_ptr + size;
235     while ((run_ptr += size) <= end_ptr)
236       {
237 	tmp_ptr = run_ptr - size;
238 	while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
239 	  tmp_ptr -= size;
240 
241 	tmp_ptr += size;
242         if (tmp_ptr != run_ptr)
243           {
244             char *trav;
245 
246 	    trav = run_ptr + size;
247 	    while (--trav >= run_ptr)
248               {
249                 char c = *trav;
250                 char *hi, *lo;
251 
252                 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
253                   *hi = *lo;
254                 *hi = c;
255               }
256           }
257       }
258   }
259 }
260