1 /* 2 * Copyright (c) Meta Platforms, Inc. and affiliates. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /* ====== Compiler specifics ====== */ 13 #if defined(_MSC_VER) 14 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ 15 #endif 16 17 18 /* ====== Dependencies ====== */ 19 #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */ 20 #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */ 21 #include "../common/mem.h" /* MEM_STATIC */ 22 #include "../common/pool.h" /* threadpool */ 23 #include "../common/threading.h" /* mutex */ 24 #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ 25 #include "zstd_ldm.h" 26 #include "zstdmt_compress.h" 27 28 /* Guards code to support resizing the SeqPool. 29 * We will want to resize the SeqPool to save memory in the future. 30 * Until then, comment the code out since it is unused. 31 */ 32 #define ZSTD_RESIZE_SEQPOOL 0 33 34 /* ====== Debug ====== */ 35 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \ 36 && !defined(_MSC_VER) \ 37 && !defined(__MINGW32__) 38 39 # include <stdio.h> 40 # include <unistd.h> 41 # include <sys/times.h> 42 43 # define DEBUG_PRINTHEX(l,p,n) \ 44 do { \ 45 unsigned debug_u; \ 46 for (debug_u=0; debug_u<(n); debug_u++) \ 47 RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ 48 RAWLOG(l, " \n"); \ 49 } while (0) 50 51 static unsigned long long GetCurrentClockTimeMicroseconds(void) 52 { 53 static clock_t _ticksPerSecond = 0; 54 if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); 55 56 { struct tms junk; clock_t newTicks = (clock_t) times(&junk); 57 return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); 58 } } 59 60 #define MUTEX_WAIT_TIME_DLEVEL 6 61 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) \ 62 do { \ 63 if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \ 64 unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ 65 ZSTD_pthread_mutex_lock(mutex); \ 66 { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ 67 unsigned long long const elapsedTime = (afterTime-beforeTime); \ 68 if (elapsedTime > 1000) { \ 69 /* or whatever threshold you like; I'm using 1 millisecond here */ \ 70 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, \ 71 "Thread took %llu microseconds to acquire mutex %s \n", \ 72 elapsedTime, #mutex); \ 73 } } \ 74 } else { \ 75 ZSTD_pthread_mutex_lock(mutex); \ 76 } \ 77 } while (0) 78 79 #else 80 81 # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) 82 # define DEBUG_PRINTHEX(l,p,n) do { } while (0) 83 84 #endif 85 86 87 /* ===== Buffer Pool ===== */ 88 /* a single Buffer Pool can be invoked from multiple threads in parallel */ 89 90 typedef struct buffer_s { 91 void* start; 92 size_t capacity; 93 } buffer_t; 94 95 static const buffer_t g_nullBuffer = { NULL, 0 }; 96 97 typedef struct ZSTDMT_bufferPool_s { 98 ZSTD_pthread_mutex_t poolMutex; 99 size_t bufferSize; 100 unsigned totalBuffers; 101 unsigned nbBuffers; 102 ZSTD_customMem cMem; 103 buffer_t* buffers; 104 } ZSTDMT_bufferPool; 105 106 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) 107 { 108 DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool); 109 if (!bufPool) return; /* compatibility with free on NULL */ 110 if (bufPool->buffers) { 111 unsigned u; 112 for (u=0; u<bufPool->totalBuffers; u++) { 113 DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->buffers[u].start); 114 ZSTD_customFree(bufPool->buffers[u].start, bufPool->cMem); 115 } 116 ZSTD_customFree(bufPool->buffers, bufPool->cMem); 117 } 118 ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); 119 ZSTD_customFree(bufPool, bufPool->cMem); 120 } 121 122 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem) 123 { 124 ZSTDMT_bufferPool* const bufPool = 125 (ZSTDMT_bufferPool*)ZSTD_customCalloc(sizeof(ZSTDMT_bufferPool), cMem); 126 if (bufPool==NULL) return NULL; 127 if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { 128 ZSTD_customFree(bufPool, cMem); 129 return NULL; 130 } 131 bufPool->buffers = (buffer_t*)ZSTD_customCalloc(maxNbBuffers * sizeof(buffer_t), cMem); 132 if (bufPool->buffers==NULL) { 133 ZSTDMT_freeBufferPool(bufPool); 134 return NULL; 135 } 136 bufPool->bufferSize = 64 KB; 137 bufPool->totalBuffers = maxNbBuffers; 138 bufPool->nbBuffers = 0; 139 bufPool->cMem = cMem; 140 return bufPool; 141 } 142 143 /* only works at initialization, not during compression */ 144 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) 145 { 146 size_t const poolSize = sizeof(*bufPool); 147 size_t const arraySize = bufPool->totalBuffers * sizeof(buffer_t); 148 unsigned u; 149 size_t totalBufferSize = 0; 150 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 151 for (u=0; u<bufPool->totalBuffers; u++) 152 totalBufferSize += bufPool->buffers[u].capacity; 153 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 154 155 return poolSize + arraySize + totalBufferSize; 156 } 157 158 /* ZSTDMT_setBufferSize() : 159 * all future buffers provided by this buffer pool will have _at least_ this size 160 * note : it's better for all buffers to have same size, 161 * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */ 162 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) 163 { 164 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 165 DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize); 166 bufPool->bufferSize = bSize; 167 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 168 } 169 170 171 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers) 172 { 173 if (srcBufPool==NULL) return NULL; 174 if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ 175 return srcBufPool; 176 /* need a larger buffer pool */ 177 { ZSTD_customMem const cMem = srcBufPool->cMem; 178 size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ 179 ZSTDMT_bufferPool* newBufPool; 180 ZSTDMT_freeBufferPool(srcBufPool); 181 newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem); 182 if (newBufPool==NULL) return newBufPool; 183 ZSTDMT_setBufferSize(newBufPool, bSize); 184 return newBufPool; 185 } 186 } 187 188 /** ZSTDMT_getBuffer() : 189 * assumption : bufPool must be valid 190 * @return : a buffer, with start pointer and size 191 * note: allocation may fail, in this case, start==NULL and size==0 */ 192 static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) 193 { 194 size_t const bSize = bufPool->bufferSize; 195 DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize); 196 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 197 if (bufPool->nbBuffers) { /* try to use an existing buffer */ 198 buffer_t const buf = bufPool->buffers[--(bufPool->nbBuffers)]; 199 size_t const availBufferSize = buf.capacity; 200 bufPool->buffers[bufPool->nbBuffers] = g_nullBuffer; 201 if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { 202 /* large enough, but not too much */ 203 DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u", 204 bufPool->nbBuffers, (U32)buf.capacity); 205 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 206 return buf; 207 } 208 /* size conditions not respected : scratch this buffer, create new one */ 209 DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing"); 210 ZSTD_customFree(buf.start, bufPool->cMem); 211 } 212 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 213 /* create new buffer */ 214 DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer"); 215 { buffer_t buffer; 216 void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); 217 buffer.start = start; /* note : start can be NULL if malloc fails ! */ 218 buffer.capacity = (start==NULL) ? 0 : bSize; 219 if (start==NULL) { 220 DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!"); 221 } else { 222 DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize); 223 } 224 return buffer; 225 } 226 } 227 228 #if ZSTD_RESIZE_SEQPOOL 229 /** ZSTDMT_resizeBuffer() : 230 * assumption : bufPool must be valid 231 * @return : a buffer that is at least the buffer pool buffer size. 232 * If a reallocation happens, the data in the input buffer is copied. 233 */ 234 static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer) 235 { 236 size_t const bSize = bufPool->bufferSize; 237 if (buffer.capacity < bSize) { 238 void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); 239 buffer_t newBuffer; 240 newBuffer.start = start; 241 newBuffer.capacity = start == NULL ? 0 : bSize; 242 if (start != NULL) { 243 assert(newBuffer.capacity >= buffer.capacity); 244 ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity); 245 DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize); 246 return newBuffer; 247 } 248 DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!"); 249 } 250 return buffer; 251 } 252 #endif 253 254 /* store buffer for later re-use, up to pool capacity */ 255 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) 256 { 257 DEBUGLOG(5, "ZSTDMT_releaseBuffer"); 258 if (buf.start == NULL) return; /* compatible with release on NULL */ 259 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 260 if (bufPool->nbBuffers < bufPool->totalBuffers) { 261 bufPool->buffers[bufPool->nbBuffers++] = buf; /* stored for later use */ 262 DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u", 263 (U32)buf.capacity, (U32)(bufPool->nbBuffers-1)); 264 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 265 return; 266 } 267 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 268 /* Reached bufferPool capacity (note: should not happen) */ 269 DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing "); 270 ZSTD_customFree(buf.start, bufPool->cMem); 271 } 272 273 /* We need 2 output buffers per worker since each dstBuff must be flushed after it is released. 274 * The 3 additional buffers are as follows: 275 * 1 buffer for input loading 276 * 1 buffer for "next input" when submitting current one 277 * 1 buffer stuck in queue */ 278 #define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) (2*(nbWorkers) + 3) 279 280 /* After a worker releases its rawSeqStore, it is immediately ready for reuse. 281 * So we only need one seq buffer per worker. */ 282 #define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) (nbWorkers) 283 284 /* ===== Seq Pool Wrapper ====== */ 285 286 typedef ZSTDMT_bufferPool ZSTDMT_seqPool; 287 288 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool) 289 { 290 return ZSTDMT_sizeof_bufferPool(seqPool); 291 } 292 293 static rawSeqStore_t bufferToSeq(buffer_t buffer) 294 { 295 rawSeqStore_t seq = kNullRawSeqStore; 296 seq.seq = (rawSeq*)buffer.start; 297 seq.capacity = buffer.capacity / sizeof(rawSeq); 298 return seq; 299 } 300 301 static buffer_t seqToBuffer(rawSeqStore_t seq) 302 { 303 buffer_t buffer; 304 buffer.start = seq.seq; 305 buffer.capacity = seq.capacity * sizeof(rawSeq); 306 return buffer; 307 } 308 309 static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool) 310 { 311 if (seqPool->bufferSize == 0) { 312 return kNullRawSeqStore; 313 } 314 return bufferToSeq(ZSTDMT_getBuffer(seqPool)); 315 } 316 317 #if ZSTD_RESIZE_SEQPOOL 318 static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 319 { 320 return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq))); 321 } 322 #endif 323 324 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 325 { 326 ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq)); 327 } 328 329 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq) 330 { 331 ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq)); 332 } 333 334 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) 335 { 336 ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); 337 if (seqPool == NULL) return NULL; 338 ZSTDMT_setNbSeq(seqPool, 0); 339 return seqPool; 340 } 341 342 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool) 343 { 344 ZSTDMT_freeBufferPool(seqPool); 345 } 346 347 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) 348 { 349 return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers)); 350 } 351 352 353 /* ===== CCtx Pool ===== */ 354 /* a single CCtx Pool can be invoked from multiple threads in parallel */ 355 356 typedef struct { 357 ZSTD_pthread_mutex_t poolMutex; 358 int totalCCtx; 359 int availCCtx; 360 ZSTD_customMem cMem; 361 ZSTD_CCtx** cctxs; 362 } ZSTDMT_CCtxPool; 363 364 /* note : all CCtx borrowed from the pool must be reverted back to the pool _before_ freeing the pool */ 365 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) 366 { 367 if (!pool) return; 368 ZSTD_pthread_mutex_destroy(&pool->poolMutex); 369 if (pool->cctxs) { 370 int cid; 371 for (cid=0; cid<pool->totalCCtx; cid++) 372 ZSTD_freeCCtx(pool->cctxs[cid]); /* free compatible with NULL */ 373 ZSTD_customFree(pool->cctxs, pool->cMem); 374 } 375 ZSTD_customFree(pool, pool->cMem); 376 } 377 378 /* ZSTDMT_createCCtxPool() : 379 * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */ 380 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers, 381 ZSTD_customMem cMem) 382 { 383 ZSTDMT_CCtxPool* const cctxPool = 384 (ZSTDMT_CCtxPool*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtxPool), cMem); 385 assert(nbWorkers > 0); 386 if (!cctxPool) return NULL; 387 if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { 388 ZSTD_customFree(cctxPool, cMem); 389 return NULL; 390 } 391 cctxPool->totalCCtx = nbWorkers; 392 cctxPool->cctxs = (ZSTD_CCtx**)ZSTD_customCalloc(nbWorkers * sizeof(ZSTD_CCtx*), cMem); 393 if (!cctxPool->cctxs) { 394 ZSTDMT_freeCCtxPool(cctxPool); 395 return NULL; 396 } 397 cctxPool->cMem = cMem; 398 cctxPool->cctxs[0] = ZSTD_createCCtx_advanced(cMem); 399 if (!cctxPool->cctxs[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } 400 cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ 401 DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers); 402 return cctxPool; 403 } 404 405 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool, 406 int nbWorkers) 407 { 408 if (srcPool==NULL) return NULL; 409 if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */ 410 /* need a larger cctx pool */ 411 { ZSTD_customMem const cMem = srcPool->cMem; 412 ZSTDMT_freeCCtxPool(srcPool); 413 return ZSTDMT_createCCtxPool(nbWorkers, cMem); 414 } 415 } 416 417 /* only works during initialization phase, not during compression */ 418 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) 419 { 420 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 421 { unsigned const nbWorkers = cctxPool->totalCCtx; 422 size_t const poolSize = sizeof(*cctxPool); 423 size_t const arraySize = cctxPool->totalCCtx * sizeof(ZSTD_CCtx*); 424 size_t totalCCtxSize = 0; 425 unsigned u; 426 for (u=0; u<nbWorkers; u++) { 427 totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctxs[u]); 428 } 429 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 430 assert(nbWorkers > 0); 431 return poolSize + arraySize + totalCCtxSize; 432 } 433 } 434 435 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) 436 { 437 DEBUGLOG(5, "ZSTDMT_getCCtx"); 438 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 439 if (cctxPool->availCCtx) { 440 cctxPool->availCCtx--; 441 { ZSTD_CCtx* const cctx = cctxPool->cctxs[cctxPool->availCCtx]; 442 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 443 return cctx; 444 } } 445 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 446 DEBUGLOG(5, "create one more CCtx"); 447 return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ 448 } 449 450 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) 451 { 452 if (cctx==NULL) return; /* compatibility with release on NULL */ 453 ZSTD_pthread_mutex_lock(&pool->poolMutex); 454 if (pool->availCCtx < pool->totalCCtx) 455 pool->cctxs[pool->availCCtx++] = cctx; 456 else { 457 /* pool overflow : should not happen, since totalCCtx==nbWorkers */ 458 DEBUGLOG(4, "CCtx pool overflow : free cctx"); 459 ZSTD_freeCCtx(cctx); 460 } 461 ZSTD_pthread_mutex_unlock(&pool->poolMutex); 462 } 463 464 /* ==== Serial State ==== */ 465 466 typedef struct { 467 void const* start; 468 size_t size; 469 } range_t; 470 471 typedef struct { 472 /* All variables in the struct are protected by mutex. */ 473 ZSTD_pthread_mutex_t mutex; 474 ZSTD_pthread_cond_t cond; 475 ZSTD_CCtx_params params; 476 ldmState_t ldmState; 477 XXH64_state_t xxhState; 478 unsigned nextJobID; 479 /* Protects ldmWindow. 480 * Must be acquired after the main mutex when acquiring both. 481 */ 482 ZSTD_pthread_mutex_t ldmWindowMutex; 483 ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */ 484 ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */ 485 } serialState_t; 486 487 static int 488 ZSTDMT_serialState_reset(serialState_t* serialState, 489 ZSTDMT_seqPool* seqPool, 490 ZSTD_CCtx_params params, 491 size_t jobSize, 492 const void* dict, size_t const dictSize, 493 ZSTD_dictContentType_e dictContentType) 494 { 495 /* Adjust parameters */ 496 if (params.ldmParams.enableLdm == ZSTD_ps_enable) { 497 DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10); 498 ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); 499 assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); 500 assert(params.ldmParams.hashRateLog < 32); 501 } else { 502 ZSTD_memset(¶ms.ldmParams, 0, sizeof(params.ldmParams)); 503 } 504 serialState->nextJobID = 0; 505 if (params.fParams.checksumFlag) 506 XXH64_reset(&serialState->xxhState, 0); 507 if (params.ldmParams.enableLdm == ZSTD_ps_enable) { 508 ZSTD_customMem cMem = params.customMem; 509 unsigned const hashLog = params.ldmParams.hashLog; 510 size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); 511 unsigned const bucketLog = 512 params.ldmParams.hashLog - params.ldmParams.bucketSizeLog; 513 unsigned const prevBucketLog = 514 serialState->params.ldmParams.hashLog - 515 serialState->params.ldmParams.bucketSizeLog; 516 size_t const numBuckets = (size_t)1 << bucketLog; 517 /* Size the seq pool tables */ 518 ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize)); 519 /* Reset the window */ 520 ZSTD_window_init(&serialState->ldmState.window); 521 /* Resize tables and output space if necessary. */ 522 if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) { 523 ZSTD_customFree(serialState->ldmState.hashTable, cMem); 524 serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem); 525 } 526 if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) { 527 ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); 528 serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem); 529 } 530 if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets) 531 return 1; 532 /* Zero the tables */ 533 ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize); 534 ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets); 535 536 /* Update window state and fill hash table with dict */ 537 serialState->ldmState.loadedDictEnd = 0; 538 if (dictSize > 0) { 539 if (dictContentType == ZSTD_dct_rawContent) { 540 BYTE const* const dictEnd = (const BYTE*)dict + dictSize; 541 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0); 542 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, ¶ms.ldmParams); 543 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base); 544 } else { 545 /* don't even load anything */ 546 } 547 } 548 549 /* Initialize serialState's copy of ldmWindow. */ 550 serialState->ldmWindow = serialState->ldmState.window; 551 } 552 553 serialState->params = params; 554 serialState->params.jobSize = (U32)jobSize; 555 return 0; 556 } 557 558 static int ZSTDMT_serialState_init(serialState_t* serialState) 559 { 560 int initError = 0; 561 ZSTD_memset(serialState, 0, sizeof(*serialState)); 562 initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL); 563 initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL); 564 initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL); 565 initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL); 566 return initError; 567 } 568 569 static void ZSTDMT_serialState_free(serialState_t* serialState) 570 { 571 ZSTD_customMem cMem = serialState->params.customMem; 572 ZSTD_pthread_mutex_destroy(&serialState->mutex); 573 ZSTD_pthread_cond_destroy(&serialState->cond); 574 ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex); 575 ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond); 576 ZSTD_customFree(serialState->ldmState.hashTable, cMem); 577 ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); 578 } 579 580 static void ZSTDMT_serialState_update(serialState_t* serialState, 581 ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore, 582 range_t src, unsigned jobID) 583 { 584 /* Wait for our turn */ 585 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 586 while (serialState->nextJobID < jobID) { 587 DEBUGLOG(5, "wait for serialState->cond"); 588 ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex); 589 } 590 /* A future job may error and skip our job */ 591 if (serialState->nextJobID == jobID) { 592 /* It is now our turn, do any processing necessary */ 593 if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) { 594 size_t error; 595 assert(seqStore.seq != NULL && seqStore.pos == 0 && 596 seqStore.size == 0 && seqStore.capacity > 0); 597 assert(src.size <= serialState->params.jobSize); 598 ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0); 599 error = ZSTD_ldm_generateSequences( 600 &serialState->ldmState, &seqStore, 601 &serialState->params.ldmParams, src.start, src.size); 602 /* We provide a large enough buffer to never fail. */ 603 assert(!ZSTD_isError(error)); (void)error; 604 /* Update ldmWindow to match the ldmState.window and signal the main 605 * thread if it is waiting for a buffer. 606 */ 607 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 608 serialState->ldmWindow = serialState->ldmState.window; 609 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 610 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 611 } 612 if (serialState->params.fParams.checksumFlag && src.size > 0) 613 XXH64_update(&serialState->xxhState, src.start, src.size); 614 } 615 /* Now it is the next jobs turn */ 616 serialState->nextJobID++; 617 ZSTD_pthread_cond_broadcast(&serialState->cond); 618 ZSTD_pthread_mutex_unlock(&serialState->mutex); 619 620 if (seqStore.size > 0) { 621 ZSTD_referenceExternalSequences(jobCCtx, seqStore.seq, seqStore.size); 622 assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable); 623 } 624 } 625 626 static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState, 627 unsigned jobID, size_t cSize) 628 { 629 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 630 if (serialState->nextJobID <= jobID) { 631 assert(ZSTD_isError(cSize)); (void)cSize; 632 DEBUGLOG(5, "Skipping past job %u because of error", jobID); 633 serialState->nextJobID = jobID + 1; 634 ZSTD_pthread_cond_broadcast(&serialState->cond); 635 636 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 637 ZSTD_window_clear(&serialState->ldmWindow); 638 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 639 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 640 } 641 ZSTD_pthread_mutex_unlock(&serialState->mutex); 642 643 } 644 645 646 /* ------------------------------------------ */ 647 /* ===== Worker thread ===== */ 648 /* ------------------------------------------ */ 649 650 static const range_t kNullRange = { NULL, 0 }; 651 652 typedef struct { 653 size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */ 654 size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */ 655 ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */ 656 ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */ 657 ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */ 658 ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */ 659 ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */ 660 serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */ 661 buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */ 662 range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */ 663 range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */ 664 unsigned jobID; /* set by mtctx, then read by worker => no barrier */ 665 unsigned firstJob; /* set by mtctx, then read by worker => no barrier */ 666 unsigned lastJob; /* set by mtctx, then read by worker => no barrier */ 667 ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */ 668 const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */ 669 unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */ 670 size_t dstFlushed; /* used only by mtctx */ 671 unsigned frameChecksumNeeded; /* used only by mtctx */ 672 } ZSTDMT_jobDescription; 673 674 #define JOB_ERROR(e) \ 675 do { \ 676 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \ 677 job->cSize = e; \ 678 ZSTD_pthread_mutex_unlock(&job->job_mutex); \ 679 goto _endJob; \ 680 } while (0) 681 682 /* ZSTDMT_compressionJob() is a POOL_function type */ 683 static void ZSTDMT_compressionJob(void* jobDescription) 684 { 685 ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; 686 ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */ 687 ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); 688 rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool); 689 buffer_t dstBuff = job->dstBuff; 690 size_t lastCBlockSize = 0; 691 692 /* resources */ 693 if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation)); 694 if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */ 695 dstBuff = ZSTDMT_getBuffer(job->bufPool); 696 if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); 697 job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ 698 } 699 if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL) 700 JOB_ERROR(ERROR(memory_allocation)); 701 702 /* Don't compute the checksum for chunks, since we compute it externally, 703 * but write it in the header. 704 */ 705 if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; 706 /* Don't run LDM for the chunks, since we handle it externally */ 707 jobParams.ldmParams.enableLdm = ZSTD_ps_disable; 708 /* Correct nbWorkers to 0. */ 709 jobParams.nbWorkers = 0; 710 711 712 /* init */ 713 if (job->cdict) { 714 size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize); 715 assert(job->firstJob); /* only allowed for first job */ 716 if (ZSTD_isError(initError)) JOB_ERROR(initError); 717 } else { /* srcStart points at reloaded section */ 718 U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size; 719 { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob); 720 if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError); 721 } 722 if (!job->firstJob) { 723 size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0); 724 if (ZSTD_isError(err)) JOB_ERROR(err); 725 } 726 { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, 727 job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */ 728 ZSTD_dtlm_fast, 729 NULL, /*cdict*/ 730 &jobParams, pledgedSrcSize); 731 if (ZSTD_isError(initError)) JOB_ERROR(initError); 732 } } 733 734 /* Perform serial step as early as possible, but after CCtx initialization */ 735 ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID); 736 737 if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */ 738 size_t const hSize = ZSTD_compressContinue_public(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0); 739 if (ZSTD_isError(hSize)) JOB_ERROR(hSize); 740 DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize); 741 ZSTD_invalidateRepCodes(cctx); 742 } 743 744 /* compress */ 745 { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX; 746 int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize); 747 const BYTE* ip = (const BYTE*) job->src.start; 748 BYTE* const ostart = (BYTE*)dstBuff.start; 749 BYTE* op = ostart; 750 BYTE* oend = op + dstBuff.capacity; 751 int chunkNb; 752 if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */ 753 DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks); 754 assert(job->cSize == 0); 755 for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) { 756 size_t const cSize = ZSTD_compressContinue_public(cctx, op, oend-op, ip, chunkSize); 757 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 758 ip += chunkSize; 759 op += cSize; assert(op < oend); 760 /* stats */ 761 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 762 job->cSize += cSize; 763 job->consumed = chunkSize * chunkNb; 764 DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)", 765 (U32)cSize, (U32)job->cSize); 766 ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */ 767 ZSTD_pthread_mutex_unlock(&job->job_mutex); 768 } 769 /* last block */ 770 assert(chunkSize > 0); 771 assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */ 772 if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) { 773 size_t const lastBlockSize1 = job->src.size & (chunkSize-1); 774 size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1; 775 size_t const cSize = (job->lastJob) ? 776 ZSTD_compressEnd_public(cctx, op, oend-op, ip, lastBlockSize) : 777 ZSTD_compressContinue_public(cctx, op, oend-op, ip, lastBlockSize); 778 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 779 lastCBlockSize = cSize; 780 } } 781 if (!job->firstJob) { 782 /* Double check that we don't have an ext-dict, because then our 783 * repcode invalidation doesn't work. 784 */ 785 assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window)); 786 } 787 ZSTD_CCtx_trace(cctx, 0); 788 789 _endJob: 790 ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize); 791 if (job->prefix.size > 0) 792 DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start); 793 DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start); 794 /* release resources */ 795 ZSTDMT_releaseSeq(job->seqPool, rawSeqStore); 796 ZSTDMT_releaseCCtx(job->cctxPool, cctx); 797 /* report */ 798 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 799 if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0); 800 job->cSize += lastCBlockSize; 801 job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */ 802 ZSTD_pthread_cond_signal(&job->job_cond); 803 ZSTD_pthread_mutex_unlock(&job->job_mutex); 804 } 805 806 807 /* ------------------------------------------ */ 808 /* ===== Multi-threaded compression ===== */ 809 /* ------------------------------------------ */ 810 811 typedef struct { 812 range_t prefix; /* read-only non-owned prefix buffer */ 813 buffer_t buffer; 814 size_t filled; 815 } inBuff_t; 816 817 typedef struct { 818 BYTE* buffer; /* The round input buffer. All jobs get references 819 * to pieces of the buffer. ZSTDMT_tryGetInputRange() 820 * handles handing out job input buffers, and makes 821 * sure it doesn't overlap with any pieces still in use. 822 */ 823 size_t capacity; /* The capacity of buffer. */ 824 size_t pos; /* The position of the current inBuff in the round 825 * buffer. Updated past the end if the inBuff once 826 * the inBuff is sent to the worker thread. 827 * pos <= capacity. 828 */ 829 } roundBuff_t; 830 831 static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; 832 833 #define RSYNC_LENGTH 32 834 /* Don't create chunks smaller than the zstd block size. 835 * This stops us from regressing compression ratio too much, 836 * and ensures our output fits in ZSTD_compressBound(). 837 * 838 * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then 839 * ZSTD_COMPRESSBOUND() will need to be updated. 840 */ 841 #define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX 842 #define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG) 843 844 typedef struct { 845 U64 hash; 846 U64 hitMask; 847 U64 primePower; 848 } rsyncState_t; 849 850 struct ZSTDMT_CCtx_s { 851 POOL_ctx* factory; 852 ZSTDMT_jobDescription* jobs; 853 ZSTDMT_bufferPool* bufPool; 854 ZSTDMT_CCtxPool* cctxPool; 855 ZSTDMT_seqPool* seqPool; 856 ZSTD_CCtx_params params; 857 size_t targetSectionSize; 858 size_t targetPrefixSize; 859 int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */ 860 inBuff_t inBuff; 861 roundBuff_t roundBuff; 862 serialState_t serial; 863 rsyncState_t rsync; 864 unsigned jobIDMask; 865 unsigned doneJobID; 866 unsigned nextJobID; 867 unsigned frameEnded; 868 unsigned allJobsCompleted; 869 unsigned long long frameContentSize; 870 unsigned long long consumed; 871 unsigned long long produced; 872 ZSTD_customMem cMem; 873 ZSTD_CDict* cdictLocal; 874 const ZSTD_CDict* cdict; 875 unsigned providedFactory: 1; 876 }; 877 878 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem) 879 { 880 U32 jobNb; 881 if (jobTable == NULL) return; 882 for (jobNb=0; jobNb<nbJobs; jobNb++) { 883 ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex); 884 ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond); 885 } 886 ZSTD_customFree(jobTable, cMem); 887 } 888 889 /* ZSTDMT_allocJobsTable() 890 * allocate and init a job table. 891 * update *nbJobsPtr to next power of 2 value, as size of table */ 892 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem) 893 { 894 U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1; 895 U32 const nbJobs = 1 << nbJobsLog2; 896 U32 jobNb; 897 ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*) 898 ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem); 899 int initError = 0; 900 if (jobTable==NULL) return NULL; 901 *nbJobsPtr = nbJobs; 902 for (jobNb=0; jobNb<nbJobs; jobNb++) { 903 initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL); 904 initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL); 905 } 906 if (initError != 0) { 907 ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem); 908 return NULL; 909 } 910 return jobTable; 911 } 912 913 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) { 914 U32 nbJobs = nbWorkers + 2; 915 if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */ 916 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 917 mtctx->jobIDMask = 0; 918 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem); 919 if (mtctx->jobs==NULL) return ERROR(memory_allocation); 920 assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */ 921 mtctx->jobIDMask = nbJobs - 1; 922 } 923 return 0; 924 } 925 926 927 /* ZSTDMT_CCtxParam_setNbWorkers(): 928 * Internal use only */ 929 static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers) 930 { 931 return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers); 932 } 933 934 MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) 935 { 936 ZSTDMT_CCtx* mtctx; 937 U32 nbJobs = nbWorkers + 2; 938 int initError; 939 DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers); 940 941 if (nbWorkers < 1) return NULL; 942 nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX); 943 if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) 944 /* invalid custom allocator */ 945 return NULL; 946 947 mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem); 948 if (!mtctx) return NULL; 949 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 950 mtctx->cMem = cMem; 951 mtctx->allJobsCompleted = 1; 952 if (pool != NULL) { 953 mtctx->factory = pool; 954 mtctx->providedFactory = 1; 955 } 956 else { 957 mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem); 958 mtctx->providedFactory = 0; 959 } 960 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); 961 assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ 962 mtctx->jobIDMask = nbJobs - 1; 963 mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); 964 mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); 965 mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); 966 initError = ZSTDMT_serialState_init(&mtctx->serial); 967 mtctx->roundBuff = kNullRoundBuff; 968 if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) { 969 ZSTDMT_freeCCtx(mtctx); 970 return NULL; 971 } 972 DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers); 973 return mtctx; 974 } 975 976 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) 977 { 978 #ifdef ZSTD_MULTITHREAD 979 return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool); 980 #else 981 (void)nbWorkers; 982 (void)cMem; 983 (void)pool; 984 return NULL; 985 #endif 986 } 987 988 989 /* ZSTDMT_releaseAllJobResources() : 990 * note : ensure all workers are killed first ! */ 991 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) 992 { 993 unsigned jobID; 994 DEBUGLOG(3, "ZSTDMT_releaseAllJobResources"); 995 for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { 996 /* Copy the mutex/cond out */ 997 ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex; 998 ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond; 999 1000 DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); 1001 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); 1002 1003 /* Clear the job description, but keep the mutex/cond */ 1004 ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID])); 1005 mtctx->jobs[jobID].job_mutex = mutex; 1006 mtctx->jobs[jobID].job_cond = cond; 1007 } 1008 mtctx->inBuff.buffer = g_nullBuffer; 1009 mtctx->inBuff.filled = 0; 1010 mtctx->allJobsCompleted = 1; 1011 } 1012 1013 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx) 1014 { 1015 DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted"); 1016 while (mtctx->doneJobID < mtctx->nextJobID) { 1017 unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask; 1018 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); 1019 while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { 1020 DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */ 1021 ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); 1022 } 1023 ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); 1024 mtctx->doneJobID++; 1025 } 1026 } 1027 1028 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) 1029 { 1030 if (mtctx==NULL) return 0; /* compatible with free on NULL */ 1031 if (!mtctx->providedFactory) 1032 POOL_free(mtctx->factory); /* stop and free worker threads */ 1033 ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ 1034 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 1035 ZSTDMT_freeBufferPool(mtctx->bufPool); 1036 ZSTDMT_freeCCtxPool(mtctx->cctxPool); 1037 ZSTDMT_freeSeqPool(mtctx->seqPool); 1038 ZSTDMT_serialState_free(&mtctx->serial); 1039 ZSTD_freeCDict(mtctx->cdictLocal); 1040 if (mtctx->roundBuff.buffer) 1041 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); 1042 ZSTD_customFree(mtctx, mtctx->cMem); 1043 return 0; 1044 } 1045 1046 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) 1047 { 1048 if (mtctx == NULL) return 0; /* supports sizeof NULL */ 1049 return sizeof(*mtctx) 1050 + POOL_sizeof(mtctx->factory) 1051 + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) 1052 + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) 1053 + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) 1054 + ZSTDMT_sizeof_seqPool(mtctx->seqPool) 1055 + ZSTD_sizeof_CDict(mtctx->cdictLocal) 1056 + mtctx->roundBuff.capacity; 1057 } 1058 1059 1060 /* ZSTDMT_resize() : 1061 * @return : error code if fails, 0 on success */ 1062 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers) 1063 { 1064 if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); 1065 FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , ""); 1066 mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers)); 1067 if (mtctx->bufPool == NULL) return ERROR(memory_allocation); 1068 mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); 1069 if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); 1070 mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers); 1071 if (mtctx->seqPool == NULL) return ERROR(memory_allocation); 1072 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 1073 return 0; 1074 } 1075 1076 1077 /*! ZSTDMT_updateCParams_whileCompressing() : 1078 * Updates a selected set of compression parameters, remaining compatible with currently active frame. 1079 * New parameters will be applied to next compression job. */ 1080 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams) 1081 { 1082 U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */ 1083 int const compressionLevel = cctxParams->compressionLevel; 1084 DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)", 1085 compressionLevel); 1086 mtctx->params.compressionLevel = compressionLevel; 1087 { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); 1088 cParams.windowLog = saved_wlog; 1089 mtctx->params.cParams = cParams; 1090 } 1091 } 1092 1093 /* ZSTDMT_getFrameProgression(): 1094 * tells how much data has been consumed (input) and produced (output) for current frame. 1095 * able to count progression inside worker threads. 1096 * Note : mutex will be acquired during statistics collection inside workers. */ 1097 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx) 1098 { 1099 ZSTD_frameProgression fps; 1100 DEBUGLOG(5, "ZSTDMT_getFrameProgression"); 1101 fps.ingested = mtctx->consumed + mtctx->inBuff.filled; 1102 fps.consumed = mtctx->consumed; 1103 fps.produced = fps.flushed = mtctx->produced; 1104 fps.currentJobID = mtctx->nextJobID; 1105 fps.nbActiveWorkers = 0; 1106 { unsigned jobNb; 1107 unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1); 1108 DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)", 1109 mtctx->doneJobID, lastJobNb, mtctx->jobReady); 1110 for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) { 1111 unsigned const wJobID = jobNb & mtctx->jobIDMask; 1112 ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID]; 1113 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1114 { size_t const cResult = jobPtr->cSize; 1115 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1116 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1117 assert(flushed <= produced); 1118 fps.ingested += jobPtr->src.size; 1119 fps.consumed += jobPtr->consumed; 1120 fps.produced += produced; 1121 fps.flushed += flushed; 1122 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size); 1123 } 1124 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1125 } 1126 } 1127 return fps; 1128 } 1129 1130 1131 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx) 1132 { 1133 size_t toFlush; 1134 unsigned const jobID = mtctx->doneJobID; 1135 assert(jobID <= mtctx->nextJobID); 1136 if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */ 1137 1138 /* look into oldest non-fully-flushed job */ 1139 { unsigned const wJobID = jobID & mtctx->jobIDMask; 1140 ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID]; 1141 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1142 { size_t const cResult = jobPtr->cSize; 1143 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1144 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1145 assert(flushed <= produced); 1146 assert(jobPtr->consumed <= jobPtr->src.size); 1147 toFlush = produced - flushed; 1148 /* if toFlush==0, nothing is available to flush. 1149 * However, jobID is expected to still be active: 1150 * if jobID was already completed and fully flushed, 1151 * ZSTDMT_flushProduced() should have already moved onto next job. 1152 * Therefore, some input has not yet been consumed. */ 1153 if (toFlush==0) { 1154 assert(jobPtr->consumed < jobPtr->src.size); 1155 } 1156 } 1157 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1158 } 1159 1160 return toFlush; 1161 } 1162 1163 1164 /* ------------------------------------------ */ 1165 /* ===== Multi-threaded compression ===== */ 1166 /* ------------------------------------------ */ 1167 1168 static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params) 1169 { 1170 unsigned jobLog; 1171 if (params->ldmParams.enableLdm == ZSTD_ps_enable) { 1172 /* In Long Range Mode, the windowLog is typically oversized. 1173 * In which case, it's preferable to determine the jobSize 1174 * based on cycleLog instead. */ 1175 jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3); 1176 } else { 1177 jobLog = MAX(20, params->cParams.windowLog + 2); 1178 } 1179 return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX); 1180 } 1181 1182 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat) 1183 { 1184 switch(strat) 1185 { 1186 case ZSTD_btultra2: 1187 return 9; 1188 case ZSTD_btultra: 1189 case ZSTD_btopt: 1190 return 8; 1191 case ZSTD_btlazy2: 1192 case ZSTD_lazy2: 1193 return 7; 1194 case ZSTD_lazy: 1195 case ZSTD_greedy: 1196 case ZSTD_dfast: 1197 case ZSTD_fast: 1198 default:; 1199 } 1200 return 6; 1201 } 1202 1203 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat) 1204 { 1205 assert(0 <= ovlog && ovlog <= 9); 1206 if (ovlog == 0) return ZSTDMT_overlapLog_default(strat); 1207 return ovlog; 1208 } 1209 1210 static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params) 1211 { 1212 int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy); 1213 int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog); 1214 assert(0 <= overlapRLog && overlapRLog <= 8); 1215 if (params->ldmParams.enableLdm == ZSTD_ps_enable) { 1216 /* In Long Range Mode, the windowLog is typically oversized. 1217 * In which case, it's preferable to determine the jobSize 1218 * based on chainLog instead. 1219 * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */ 1220 ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2) 1221 - overlapRLog; 1222 } 1223 assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX); 1224 DEBUGLOG(4, "overlapLog : %i", params->overlapLog); 1225 DEBUGLOG(4, "overlap size : %i", 1 << ovLog); 1226 return (ovLog==0) ? 0 : (size_t)1 << ovLog; 1227 } 1228 1229 /* ====================================== */ 1230 /* ======= Streaming API ======= */ 1231 /* ====================================== */ 1232 1233 size_t ZSTDMT_initCStream_internal( 1234 ZSTDMT_CCtx* mtctx, 1235 const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, 1236 const ZSTD_CDict* cdict, ZSTD_CCtx_params params, 1237 unsigned long long pledgedSrcSize) 1238 { 1239 DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)", 1240 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx); 1241 1242 /* params supposed partially fully validated at this point */ 1243 assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); 1244 assert(!((dict) && (cdict))); /* either dict or cdict, not both */ 1245 1246 /* init */ 1247 if (params.nbWorkers != mtctx->params.nbWorkers) 1248 FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , ""); 1249 1250 if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN; 1251 if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX; 1252 1253 DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers); 1254 1255 if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */ 1256 ZSTDMT_waitForAllJobsCompleted(mtctx); 1257 ZSTDMT_releaseAllJobResources(mtctx); 1258 mtctx->allJobsCompleted = 1; 1259 } 1260 1261 mtctx->params = params; 1262 mtctx->frameContentSize = pledgedSrcSize; 1263 if (dict) { 1264 ZSTD_freeCDict(mtctx->cdictLocal); 1265 mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, 1266 ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */ 1267 params.cParams, mtctx->cMem); 1268 mtctx->cdict = mtctx->cdictLocal; 1269 if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation); 1270 } else { 1271 ZSTD_freeCDict(mtctx->cdictLocal); 1272 mtctx->cdictLocal = NULL; 1273 mtctx->cdict = cdict; 1274 } 1275 1276 mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(¶ms); 1277 DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10)); 1278 mtctx->targetSectionSize = params.jobSize; 1279 if (mtctx->targetSectionSize == 0) { 1280 mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(¶ms); 1281 } 1282 assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX); 1283 1284 if (params.rsyncable) { 1285 /* Aim for the targetsectionSize as the average job size. */ 1286 U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10); 1287 U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10); 1288 /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our 1289 * expected job size is at least 4x larger. */ 1290 assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2); 1291 DEBUGLOG(4, "rsyncLog = %u", rsyncBits); 1292 mtctx->rsync.hash = 0; 1293 mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; 1294 mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH); 1295 } 1296 if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */ 1297 DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize); 1298 DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10)); 1299 ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); 1300 { 1301 /* If ldm is enabled we need windowSize space. */ 1302 size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0; 1303 /* Two buffers of slack, plus extra space for the overlap 1304 * This is the minimum slack that LDM works with. One extra because 1305 * flush might waste up to targetSectionSize-1 bytes. Another extra 1306 * for the overlap (if > 0), then one to fill which doesn't overlap 1307 * with the LDM window. 1308 */ 1309 size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0); 1310 size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers; 1311 /* Compute the total size, and always have enough slack */ 1312 size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1); 1313 size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers; 1314 size_t const capacity = MAX(windowSize, sectionsSize) + slackSize; 1315 if (mtctx->roundBuff.capacity < capacity) { 1316 if (mtctx->roundBuff.buffer) 1317 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); 1318 mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem); 1319 if (mtctx->roundBuff.buffer == NULL) { 1320 mtctx->roundBuff.capacity = 0; 1321 return ERROR(memory_allocation); 1322 } 1323 mtctx->roundBuff.capacity = capacity; 1324 } 1325 } 1326 DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10)); 1327 mtctx->roundBuff.pos = 0; 1328 mtctx->inBuff.buffer = g_nullBuffer; 1329 mtctx->inBuff.filled = 0; 1330 mtctx->inBuff.prefix = kNullRange; 1331 mtctx->doneJobID = 0; 1332 mtctx->nextJobID = 0; 1333 mtctx->frameEnded = 0; 1334 mtctx->allJobsCompleted = 0; 1335 mtctx->consumed = 0; 1336 mtctx->produced = 0; 1337 if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize, 1338 dict, dictSize, dictContentType)) 1339 return ERROR(memory_allocation); 1340 return 0; 1341 } 1342 1343 1344 /* ZSTDMT_writeLastEmptyBlock() 1345 * Write a single empty block with an end-of-frame to finish a frame. 1346 * Job must be created from streaming variant. 1347 * This function is always successful if expected conditions are fulfilled. 1348 */ 1349 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job) 1350 { 1351 assert(job->lastJob == 1); 1352 assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */ 1353 assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */ 1354 assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */ 1355 job->dstBuff = ZSTDMT_getBuffer(job->bufPool); 1356 if (job->dstBuff.start == NULL) { 1357 job->cSize = ERROR(memory_allocation); 1358 return; 1359 } 1360 assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */ 1361 job->src = kNullRange; 1362 job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity); 1363 assert(!ZSTD_isError(job->cSize)); 1364 assert(job->consumed == 0); 1365 } 1366 1367 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp) 1368 { 1369 unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask; 1370 int const endFrame = (endOp == ZSTD_e_end); 1371 1372 if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) { 1373 DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full"); 1374 assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask)); 1375 return 0; 1376 } 1377 1378 if (!mtctx->jobReady) { 1379 BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start; 1380 DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ", 1381 mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size); 1382 mtctx->jobs[jobID].src.start = src; 1383 mtctx->jobs[jobID].src.size = srcSize; 1384 assert(mtctx->inBuff.filled >= srcSize); 1385 mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix; 1386 mtctx->jobs[jobID].consumed = 0; 1387 mtctx->jobs[jobID].cSize = 0; 1388 mtctx->jobs[jobID].params = mtctx->params; 1389 mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL; 1390 mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize; 1391 mtctx->jobs[jobID].dstBuff = g_nullBuffer; 1392 mtctx->jobs[jobID].cctxPool = mtctx->cctxPool; 1393 mtctx->jobs[jobID].bufPool = mtctx->bufPool; 1394 mtctx->jobs[jobID].seqPool = mtctx->seqPool; 1395 mtctx->jobs[jobID].serial = &mtctx->serial; 1396 mtctx->jobs[jobID].jobID = mtctx->nextJobID; 1397 mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0); 1398 mtctx->jobs[jobID].lastJob = endFrame; 1399 mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0); 1400 mtctx->jobs[jobID].dstFlushed = 0; 1401 1402 /* Update the round buffer pos and clear the input buffer to be reset */ 1403 mtctx->roundBuff.pos += srcSize; 1404 mtctx->inBuff.buffer = g_nullBuffer; 1405 mtctx->inBuff.filled = 0; 1406 /* Set the prefix */ 1407 if (!endFrame) { 1408 size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize); 1409 mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize; 1410 mtctx->inBuff.prefix.size = newPrefixSize; 1411 } else { /* endFrame==1 => no need for another input buffer */ 1412 mtctx->inBuff.prefix = kNullRange; 1413 mtctx->frameEnded = endFrame; 1414 if (mtctx->nextJobID == 0) { 1415 /* single job exception : checksum is already calculated directly within worker thread */ 1416 mtctx->params.fParams.checksumFlag = 0; 1417 } } 1418 1419 if ( (srcSize == 0) 1420 && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) { 1421 DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame"); 1422 assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */ 1423 ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID); 1424 mtctx->nextJobID++; 1425 return 0; 1426 } 1427 } 1428 1429 DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))", 1430 mtctx->nextJobID, 1431 (U32)mtctx->jobs[jobID].src.size, 1432 mtctx->jobs[jobID].lastJob, 1433 mtctx->nextJobID, 1434 jobID); 1435 if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) { 1436 mtctx->nextJobID++; 1437 mtctx->jobReady = 0; 1438 } else { 1439 DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID); 1440 mtctx->jobReady = 1; 1441 } 1442 return 0; 1443 } 1444 1445 1446 /*! ZSTDMT_flushProduced() : 1447 * flush whatever data has been produced but not yet flushed in current job. 1448 * move to next job if current one is fully flushed. 1449 * `output` : `pos` will be updated with amount of data flushed . 1450 * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush . 1451 * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */ 1452 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end) 1453 { 1454 unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask; 1455 DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)", 1456 blockToFlush, mtctx->doneJobID, mtctx->nextJobID); 1457 assert(output->size >= output->pos); 1458 1459 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1460 if ( blockToFlush 1461 && (mtctx->doneJobID < mtctx->nextJobID) ) { 1462 assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize); 1463 while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */ 1464 if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) { 1465 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none", 1466 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size); 1467 break; 1468 } 1469 DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)", 1470 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1471 ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */ 1472 } } 1473 1474 /* try to flush something */ 1475 { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */ 1476 size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */ 1477 size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */ 1478 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1479 if (ZSTD_isError(cSize)) { 1480 DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s", 1481 mtctx->doneJobID, ZSTD_getErrorName(cSize)); 1482 ZSTDMT_waitForAllJobsCompleted(mtctx); 1483 ZSTDMT_releaseAllJobResources(mtctx); 1484 return cSize; 1485 } 1486 /* add frame checksum if necessary (can only happen once) */ 1487 assert(srcConsumed <= srcSize); 1488 if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */ 1489 && mtctx->jobs[wJobID].frameChecksumNeeded ) { 1490 U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); 1491 DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum); 1492 MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum); 1493 cSize += 4; 1494 mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */ 1495 mtctx->jobs[wJobID].frameChecksumNeeded = 0; 1496 } 1497 1498 if (cSize > 0) { /* compression is ongoing or completed */ 1499 size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos); 1500 DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)", 1501 (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize); 1502 assert(mtctx->doneJobID < mtctx->nextJobID); 1503 assert(cSize >= mtctx->jobs[wJobID].dstFlushed); 1504 assert(mtctx->jobs[wJobID].dstBuff.start != NULL); 1505 if (toFlush > 0) { 1506 ZSTD_memcpy((char*)output->dst + output->pos, 1507 (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed, 1508 toFlush); 1509 } 1510 output->pos += toFlush; 1511 mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */ 1512 1513 if ( (srcConsumed == srcSize) /* job is completed */ 1514 && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */ 1515 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one", 1516 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1517 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff); 1518 DEBUGLOG(5, "dstBuffer released"); 1519 mtctx->jobs[wJobID].dstBuff = g_nullBuffer; 1520 mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */ 1521 mtctx->consumed += srcSize; 1522 mtctx->produced += cSize; 1523 mtctx->doneJobID++; 1524 } } 1525 1526 /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */ 1527 if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed); 1528 if (srcSize > srcConsumed) return 1; /* current job not completely compressed */ 1529 } 1530 if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */ 1531 if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */ 1532 if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */ 1533 mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */ 1534 if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */ 1535 return 0; /* internal buffers fully flushed */ 1536 } 1537 1538 /** 1539 * Returns the range of data used by the earliest job that is not yet complete. 1540 * If the data of the first job is broken up into two segments, we cover both 1541 * sections. 1542 */ 1543 static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx) 1544 { 1545 unsigned const firstJobID = mtctx->doneJobID; 1546 unsigned const lastJobID = mtctx->nextJobID; 1547 unsigned jobID; 1548 1549 for (jobID = firstJobID; jobID < lastJobID; ++jobID) { 1550 unsigned const wJobID = jobID & mtctx->jobIDMask; 1551 size_t consumed; 1552 1553 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1554 consumed = mtctx->jobs[wJobID].consumed; 1555 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1556 1557 if (consumed < mtctx->jobs[wJobID].src.size) { 1558 range_t range = mtctx->jobs[wJobID].prefix; 1559 if (range.size == 0) { 1560 /* Empty prefix */ 1561 range = mtctx->jobs[wJobID].src; 1562 } 1563 /* Job source in multiple segments not supported yet */ 1564 assert(range.start <= mtctx->jobs[wJobID].src.start); 1565 return range; 1566 } 1567 } 1568 return kNullRange; 1569 } 1570 1571 /** 1572 * Returns non-zero iff buffer and range overlap. 1573 */ 1574 static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) 1575 { 1576 BYTE const* const bufferStart = (BYTE const*)buffer.start; 1577 BYTE const* const rangeStart = (BYTE const*)range.start; 1578 1579 if (rangeStart == NULL || bufferStart == NULL) 1580 return 0; 1581 1582 { 1583 BYTE const* const bufferEnd = bufferStart + buffer.capacity; 1584 BYTE const* const rangeEnd = rangeStart + range.size; 1585 1586 /* Empty ranges cannot overlap */ 1587 if (bufferStart == bufferEnd || rangeStart == rangeEnd) 1588 return 0; 1589 1590 return bufferStart < rangeEnd && rangeStart < bufferEnd; 1591 } 1592 } 1593 1594 static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) 1595 { 1596 range_t extDict; 1597 range_t prefix; 1598 1599 DEBUGLOG(5, "ZSTDMT_doesOverlapWindow"); 1600 extDict.start = window.dictBase + window.lowLimit; 1601 extDict.size = window.dictLimit - window.lowLimit; 1602 1603 prefix.start = window.base + window.dictLimit; 1604 prefix.size = window.nextSrc - (window.base + window.dictLimit); 1605 DEBUGLOG(5, "extDict [0x%zx, 0x%zx)", 1606 (size_t)extDict.start, 1607 (size_t)extDict.start + extDict.size); 1608 DEBUGLOG(5, "prefix [0x%zx, 0x%zx)", 1609 (size_t)prefix.start, 1610 (size_t)prefix.start + prefix.size); 1611 1612 return ZSTDMT_isOverlapped(buffer, extDict) 1613 || ZSTDMT_isOverlapped(buffer, prefix); 1614 } 1615 1616 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) 1617 { 1618 if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) { 1619 ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; 1620 DEBUGLOG(5, "ZSTDMT_waitForLdmComplete"); 1621 DEBUGLOG(5, "source [0x%zx, 0x%zx)", 1622 (size_t)buffer.start, 1623 (size_t)buffer.start + buffer.capacity); 1624 ZSTD_PTHREAD_MUTEX_LOCK(mutex); 1625 while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) { 1626 DEBUGLOG(5, "Waiting for LDM to finish..."); 1627 ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex); 1628 } 1629 DEBUGLOG(6, "Done waiting for LDM to finish"); 1630 ZSTD_pthread_mutex_unlock(mutex); 1631 } 1632 } 1633 1634 /** 1635 * Attempts to set the inBuff to the next section to fill. 1636 * If any part of the new section is still in use we give up. 1637 * Returns non-zero if the buffer is filled. 1638 */ 1639 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx) 1640 { 1641 range_t const inUse = ZSTDMT_getInputDataInUse(mtctx); 1642 size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos; 1643 size_t const target = mtctx->targetSectionSize; 1644 buffer_t buffer; 1645 1646 DEBUGLOG(5, "ZSTDMT_tryGetInputRange"); 1647 assert(mtctx->inBuff.buffer.start == NULL); 1648 assert(mtctx->roundBuff.capacity >= target); 1649 1650 if (spaceLeft < target) { 1651 /* ZSTD_invalidateRepCodes() doesn't work for extDict variants. 1652 * Simply copy the prefix to the beginning in that case. 1653 */ 1654 BYTE* const start = (BYTE*)mtctx->roundBuff.buffer; 1655 size_t const prefixSize = mtctx->inBuff.prefix.size; 1656 1657 buffer.start = start; 1658 buffer.capacity = prefixSize; 1659 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1660 DEBUGLOG(5, "Waiting for buffer..."); 1661 return 0; 1662 } 1663 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1664 ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize); 1665 mtctx->inBuff.prefix.start = start; 1666 mtctx->roundBuff.pos = prefixSize; 1667 } 1668 buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos; 1669 buffer.capacity = target; 1670 1671 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1672 DEBUGLOG(5, "Waiting for buffer..."); 1673 return 0; 1674 } 1675 assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix)); 1676 1677 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1678 1679 DEBUGLOG(5, "Using prefix range [%zx, %zx)", 1680 (size_t)mtctx->inBuff.prefix.start, 1681 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size); 1682 DEBUGLOG(5, "Using source range [%zx, %zx)", 1683 (size_t)buffer.start, 1684 (size_t)buffer.start + buffer.capacity); 1685 1686 1687 mtctx->inBuff.buffer = buffer; 1688 mtctx->inBuff.filled = 0; 1689 assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity); 1690 return 1; 1691 } 1692 1693 typedef struct { 1694 size_t toLoad; /* The number of bytes to load from the input. */ 1695 int flush; /* Boolean declaring if we must flush because we found a synchronization point. */ 1696 } syncPoint_t; 1697 1698 /** 1699 * Searches through the input for a synchronization point. If one is found, we 1700 * will instruct the caller to flush, and return the number of bytes to load. 1701 * Otherwise, we will load as many bytes as possible and instruct the caller 1702 * to continue as normal. 1703 */ 1704 static syncPoint_t 1705 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input) 1706 { 1707 BYTE const* const istart = (BYTE const*)input.src + input.pos; 1708 U64 const primePower = mtctx->rsync.primePower; 1709 U64 const hitMask = mtctx->rsync.hitMask; 1710 1711 syncPoint_t syncPoint; 1712 U64 hash; 1713 BYTE const* prev; 1714 size_t pos; 1715 1716 syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled); 1717 syncPoint.flush = 0; 1718 if (!mtctx->params.rsyncable) 1719 /* Rsync is disabled. */ 1720 return syncPoint; 1721 if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE) 1722 /* We don't emit synchronization points if it would produce too small blocks. 1723 * We don't have enough input to find a synchronization point, so don't look. 1724 */ 1725 return syncPoint; 1726 if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) 1727 /* Not enough to compute the hash. 1728 * We will miss any synchronization points in this RSYNC_LENGTH byte 1729 * window. However, since it depends only in the internal buffers, if the 1730 * state is already synchronized, we will remain synchronized. 1731 * Additionally, the probability that we miss a synchronization point is 1732 * low: RSYNC_LENGTH / targetSectionSize. 1733 */ 1734 return syncPoint; 1735 /* Initialize the loop variables. */ 1736 if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) { 1737 /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions 1738 * because they can't possibly be a sync point. So we can start 1739 * part way through the input buffer. 1740 */ 1741 pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled; 1742 if (pos >= RSYNC_LENGTH) { 1743 prev = istart + pos - RSYNC_LENGTH; 1744 hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); 1745 } else { 1746 assert(mtctx->inBuff.filled >= RSYNC_LENGTH); 1747 prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; 1748 hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos)); 1749 hash = ZSTD_rollingHash_append(hash, istart, pos); 1750 } 1751 } else { 1752 /* We have enough bytes buffered to initialize the hash, 1753 * and have processed enough bytes to find a sync point. 1754 * Start scanning at the beginning of the input. 1755 */ 1756 assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE); 1757 assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH); 1758 pos = 0; 1759 prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; 1760 hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); 1761 if ((hash & hitMask) == hitMask) { 1762 /* We're already at a sync point so don't load any more until 1763 * we're able to flush this sync point. 1764 * This likely happened because the job table was full so we 1765 * couldn't add our job. 1766 */ 1767 syncPoint.toLoad = 0; 1768 syncPoint.flush = 1; 1769 return syncPoint; 1770 } 1771 } 1772 /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll 1773 * through the input. If we hit a synchronization point, then cut the 1774 * job off, and tell the compressor to flush the job. Otherwise, load 1775 * all the bytes and continue as normal. 1776 * If we go too long without a synchronization point (targetSectionSize) 1777 * then a block will be emitted anyways, but this is okay, since if we 1778 * are already synchronized we will remain synchronized. 1779 */ 1780 assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); 1781 for (; pos < syncPoint.toLoad; ++pos) { 1782 BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; 1783 /* This assert is very expensive, and Debian compiles with asserts enabled. 1784 * So disable it for now. We can get similar coverage by checking it at the 1785 * beginning & end of the loop. 1786 * assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); 1787 */ 1788 hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); 1789 assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE); 1790 if ((hash & hitMask) == hitMask) { 1791 syncPoint.toLoad = pos + 1; 1792 syncPoint.flush = 1; 1793 ++pos; /* for assert */ 1794 break; 1795 } 1796 } 1797 assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); 1798 return syncPoint; 1799 } 1800 1801 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx) 1802 { 1803 size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled; 1804 if (hintInSize==0) hintInSize = mtctx->targetSectionSize; 1805 return hintInSize; 1806 } 1807 1808 /** ZSTDMT_compressStream_generic() : 1809 * internal use only - exposed to be invoked from zstd_compress.c 1810 * assumption : output and input are valid (pos <= size) 1811 * @return : minimum amount of data remaining to flush, 0 if none */ 1812 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, 1813 ZSTD_outBuffer* output, 1814 ZSTD_inBuffer* input, 1815 ZSTD_EndDirective endOp) 1816 { 1817 unsigned forwardInputProgress = 0; 1818 DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)", 1819 (U32)endOp, (U32)(input->size - input->pos)); 1820 assert(output->pos <= output->size); 1821 assert(input->pos <= input->size); 1822 1823 if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { 1824 /* current frame being ended. Only flush/end are allowed */ 1825 return ERROR(stage_wrong); 1826 } 1827 1828 /* fill input buffer */ 1829 if ( (!mtctx->jobReady) 1830 && (input->size > input->pos) ) { /* support NULL input */ 1831 if (mtctx->inBuff.buffer.start == NULL) { 1832 assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */ 1833 if (!ZSTDMT_tryGetInputRange(mtctx)) { 1834 /* It is only possible for this operation to fail if there are 1835 * still compression jobs ongoing. 1836 */ 1837 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed"); 1838 assert(mtctx->doneJobID != mtctx->nextJobID); 1839 } else 1840 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start); 1841 } 1842 if (mtctx->inBuff.buffer.start != NULL) { 1843 syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input); 1844 if (syncPoint.flush && endOp == ZSTD_e_continue) { 1845 endOp = ZSTD_e_flush; 1846 } 1847 assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize); 1848 DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u", 1849 (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize); 1850 ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad); 1851 input->pos += syncPoint.toLoad; 1852 mtctx->inBuff.filled += syncPoint.toLoad; 1853 forwardInputProgress = syncPoint.toLoad>0; 1854 } 1855 } 1856 if ((input->pos < input->size) && (endOp == ZSTD_e_end)) { 1857 /* Can't end yet because the input is not fully consumed. 1858 * We are in one of these cases: 1859 * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job. 1860 * - We filled the input buffer: flush this job but don't end the frame. 1861 * - We hit a synchronization point: flush this job but don't end the frame. 1862 */ 1863 assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable); 1864 endOp = ZSTD_e_flush; 1865 } 1866 1867 if ( (mtctx->jobReady) 1868 || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */ 1869 || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */ 1870 || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */ 1871 size_t const jobSize = mtctx->inBuff.filled; 1872 assert(mtctx->inBuff.filled <= mtctx->targetSectionSize); 1873 FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , ""); 1874 } 1875 1876 /* check for potential compressed data ready to be flushed */ 1877 { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */ 1878 if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */ 1879 DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush); 1880 return remainingToFlush; 1881 } 1882 } 1883