1 /* 2 * Copyright (c) Meta Platforms, Inc. and affiliates. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 #ifndef ZSTD_CWKSP_H 12 #define ZSTD_CWKSP_H 13 14 /*-************************************* 15 * Dependencies 16 ***************************************/ 17 #include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */ 18 #include "../common/zstd_internal.h" 19 #include "../common/portability_macros.h" 20 21 #if defined (__cplusplus) 22 extern "C" { 23 #endif 24 25 /*-************************************* 26 * Constants 27 ***************************************/ 28 29 /* Since the workspace is effectively its own little malloc implementation / 30 * arena, when we run under ASAN, we should similarly insert redzones between 31 * each internal element of the workspace, so ASAN will catch overruns that 32 * reach outside an object but that stay inside the workspace. 33 * 34 * This defines the size of that redzone. 35 */ 36 #ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE 37 #define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128 38 #endif 39 40 41 /* Set our tables and aligneds to align by 64 bytes */ 42 #define ZSTD_CWKSP_ALIGNMENT_BYTES 64 43 44 /*-************************************* 45 * Structures 46 ***************************************/ 47 typedef enum { 48 ZSTD_cwksp_alloc_objects, 49 ZSTD_cwksp_alloc_aligned_init_once, 50 ZSTD_cwksp_alloc_aligned, 51 ZSTD_cwksp_alloc_buffers 52 } ZSTD_cwksp_alloc_phase_e; 53 54 /** 55 * Used to describe whether the workspace is statically allocated (and will not 56 * necessarily ever be freed), or if it's dynamically allocated and we can 57 * expect a well-formed caller to free this. 58 */ 59 typedef enum { 60 ZSTD_cwksp_dynamic_alloc, 61 ZSTD_cwksp_static_alloc 62 } ZSTD_cwksp_static_alloc_e; 63 64 /** 65 * Zstd fits all its internal datastructures into a single continuous buffer, 66 * so that it only needs to perform a single OS allocation (or so that a buffer 67 * can be provided to it and it can perform no allocations at all). This buffer 68 * is called the workspace. 69 * 70 * Several optimizations complicate that process of allocating memory ranges 71 * from this workspace for each internal datastructure: 72 * 73 * - These different internal datastructures have different setup requirements: 74 * 75 * - The static objects need to be cleared once and can then be trivially 76 * reused for each compression. 77 * 78 * - Various buffers don't need to be initialized at all--they are always 79 * written into before they're read. 80 * 81 * - The matchstate tables have a unique requirement that they don't need 82 * their memory to be totally cleared, but they do need the memory to have 83 * some bound, i.e., a guarantee that all values in the memory they've been 84 * allocated is less than some maximum value (which is the starting value 85 * for the indices that they will then use for compression). When this 86 * guarantee is provided to them, they can use the memory without any setup 87 * work. When it can't, they have to clear the area. 88 * 89 * - These buffers also have different alignment requirements. 90 * 91 * - We would like to reuse the objects in the workspace for multiple 92 * compressions without having to perform any expensive reallocation or 93 * reinitialization work. 94 * 95 * - We would like to be able to efficiently reuse the workspace across 96 * multiple compressions **even when the compression parameters change** and 97 * we need to resize some of the objects (where possible). 98 * 99 * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp 100 * abstraction was created. It works as follows: 101 * 102 * Workspace Layout: 103 * 104 * [ ... workspace ... ] 105 * [objects][tables ->] free space [<- buffers][<- aligned][<- init once] 106 * 107 * The various objects that live in the workspace are divided into the 108 * following categories, and are allocated separately: 109 * 110 * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict, 111 * so that literally everything fits in a single buffer. Note: if present, 112 * this must be the first object in the workspace, since ZSTD_customFree{CCtx, 113 * CDict}() rely on a pointer comparison to see whether one or two frees are 114 * required. 115 * 116 * - Fixed size objects: these are fixed-size, fixed-count objects that are 117 * nonetheless "dynamically" allocated in the workspace so that we can 118 * control how they're initialized separately from the broader ZSTD_CCtx. 119 * Examples: 120 * - Entropy Workspace 121 * - 2 x ZSTD_compressedBlockState_t 122 * - CDict dictionary contents 123 * 124 * - Tables: these are any of several different datastructures (hash tables, 125 * chain tables, binary trees) that all respect a common format: they are 126 * uint32_t arrays, all of whose values are between 0 and (nextSrc - base). 127 * Their sizes depend on the cparams. These tables are 64-byte aligned. 128 * 129 * - Init once: these buffers require to be initialized at least once before 130 * use. They should be used when we want to skip memory initialization 131 * while not triggering memory checkers (like Valgrind) when reading from 132 * from this memory without writing to it first. 133 * These buffers should be used carefully as they might contain data 134 * from previous compressions. 135 * Buffers are aligned to 64 bytes. 136 * 137 * - Aligned: these buffers don't require any initialization before they're 138 * used. The user of the buffer should make sure they write into a buffer 139 * location before reading from it. 140 * Buffers are aligned to 64 bytes. 141 * 142 * - Buffers: these buffers are used for various purposes that don't require 143 * any alignment or initialization before they're used. This means they can 144 * be moved around at no cost for a new compression. 145 * 146 * Allocating Memory: 147 * 148 * The various types of objects must be allocated in order, so they can be 149 * correctly packed into the workspace buffer. That order is: 150 * 151 * 1. Objects 152 * 2. Init once / Tables 153 * 3. Aligned / Tables 154 * 4. Buffers / Tables 155 * 156 * Attempts to reserve objects of different types out of order will fail. 157 */ 158 typedef struct { 159 void* workspace; 160 void* workspaceEnd; 161 162 void* objectEnd; 163 void* tableEnd; 164 void* tableValidEnd; 165 void* allocStart; 166 void* initOnceStart; 167 168 BYTE allocFailed; 169 int workspaceOversizedDuration; 170 ZSTD_cwksp_alloc_phase_e phase; 171 ZSTD_cwksp_static_alloc_e isStatic; 172 } ZSTD_cwksp; 173 174 /*-************************************* 175 * Functions 176 ***************************************/ 177 178 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws); 179 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws); 180 181 MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) { 182 (void)ws; 183 assert(ws->workspace <= ws->objectEnd); 184 assert(ws->objectEnd <= ws->tableEnd); 185 assert(ws->objectEnd <= ws->tableValidEnd); 186 assert(ws->tableEnd <= ws->allocStart); 187 assert(ws->tableValidEnd <= ws->allocStart); 188 assert(ws->allocStart <= ws->workspaceEnd); 189 assert(ws->initOnceStart <= ZSTD_cwksp_initialAllocStart(ws)); 190 assert(ws->workspace <= ws->initOnceStart); 191 #if ZSTD_MEMORY_SANITIZER 192 { 193 intptr_t const offset = __msan_test_shadow(ws->initOnceStart, 194 (U8*)ZSTD_cwksp_initialAllocStart(ws) - (U8*)ws->initOnceStart); 195 (void)offset; 196 #if defined(ZSTD_MSAN_PRINT) 197 if(offset!=-1) { 198 __msan_print_shadow((U8*)ws->initOnceStart + offset - 8, 32); 199 } 200 #endif 201 assert(offset==-1); 202 }; 203 #endif 204 } 205 206 /** 207 * Align must be a power of 2. 208 */ 209 MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) { 210 size_t const mask = align - 1; 211 assert((align & mask) == 0); 212 return (size + mask) & ~mask; 213 } 214 215 /** 216 * Use this to determine how much space in the workspace we will consume to 217 * allocate this object. (Normally it should be exactly the size of the object, 218 * but under special conditions, like ASAN, where we pad each object, it might 219 * be larger.) 220 * 221 * Since tables aren't currently redzoned, you don't need to call through this 222 * to figure out how much space you need for the matchState tables. Everything 223 * else is though. 224 * 225 * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned_alloc_size(). 226 */ 227 MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) { 228 if (size == 0) 229 return 0; 230 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 231 return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; 232 #else 233 return size; 234 #endif 235 } 236 237 /** 238 * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes. 239 * Used to determine the number of bytes required for a given "aligned". 240 */ 241 MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) { 242 return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, ZSTD_CWKSP_ALIGNMENT_BYTES)); 243 } 244 245 /** 246 * Returns the amount of additional space the cwksp must allocate 247 * for internal purposes (currently only alignment). 248 */ 249 MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) { 250 /* For alignment, the wksp will always allocate an additional 2*ZSTD_CWKSP_ALIGNMENT_BYTES 251 * bytes to align the beginning of tables section and end of buffers; 252 */ 253 size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES * 2; 254 return slackSpace; 255 } 256 257 258 /** 259 * Return the number of additional bytes required to align a pointer to the given number of bytes. 260 * alignBytes must be a power of two. 261 */ 262 MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) { 263 size_t const alignBytesMask = alignBytes - 1; 264 size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask; 265 assert((alignBytes & alignBytesMask) == 0); 266 assert(bytes < alignBytes); 267 return bytes; 268 } 269 270 /** 271 * Returns the initial value for allocStart which is used to determine the position from 272 * which we can allocate from the end of the workspace. 273 */ 274 MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws) { 275 return (void*)((size_t)ws->workspaceEnd & ~(ZSTD_CWKSP_ALIGNMENT_BYTES-1)); 276 } 277 278 /** 279 * Internal function. Do not use directly. 280 * Reserves the given number of bytes within the aligned/buffer segment of the wksp, 281 * which counts from the end of the wksp (as opposed to the object/table segment). 282 * 283 * Returns a pointer to the beginning of that space. 284 */ 285 MEM_STATIC void* 286 ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes) 287 { 288 void* const alloc = (BYTE*)ws->allocStart - bytes; 289 void* const bottom = ws->tableEnd; 290 DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining", 291 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes); 292 ZSTD_cwksp_assert_internal_consistency(ws); 293 assert(alloc >= bottom); 294 if (alloc < bottom) { 295 DEBUGLOG(4, "cwksp: alloc failed!"); 296 ws->allocFailed = 1; 297 return NULL; 298 } 299 /* the area is reserved from the end of wksp. 300 * If it overlaps with tableValidEnd, it voids guarantees on values' range */ 301 if (alloc < ws->tableValidEnd) { 302 ws->tableValidEnd = alloc; 303 } 304 ws->allocStart = alloc; 305 return alloc; 306 } 307 308 /** 309 * Moves the cwksp to the next phase, and does any necessary allocations. 310 * cwksp initialization must necessarily go through each phase in order. 311 * Returns a 0 on success, or zstd error 312 */ 313 MEM_STATIC size_t 314 ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) 315 { 316 assert(phase >= ws->phase); 317 if (phase > ws->phase) { 318 /* Going from allocating objects to allocating initOnce / tables */ 319 if (ws->phase < ZSTD_cwksp_alloc_aligned_init_once && 320 phase >= ZSTD_cwksp_alloc_aligned_init_once) { 321 ws->tableValidEnd = ws->objectEnd; 322 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws); 323 324 { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */ 325 void *const alloc = ws->objectEnd; 326 size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES); 327 void *const objectEnd = (BYTE *) alloc + bytesToAlign; 328 DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign); 329 RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation, 330 "table phase - alignment initial allocation failed!"); 331 ws->objectEnd = objectEnd; 332 ws->tableEnd = objectEnd; /* table area starts being empty */ 333 if (ws->tableValidEnd < ws->tableEnd) { 334 ws->tableValidEnd = ws->tableEnd; 335 } 336 } 337 } 338 ws->phase = phase; 339 ZSTD_cwksp_assert_internal_consistency(ws); 340 } 341 return 0; 342 } 343 344 /** 345 * Returns whether this object/buffer/etc was allocated in this workspace. 346 */ 347 MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) 348 { 349 return (ptr != NULL) && (ws->workspace <= ptr) && (ptr < ws->workspaceEnd); 350 } 351 352 /** 353 * Internal function. Do not use directly. 354 */ 355 MEM_STATIC void* 356 ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) 357 { 358 void* alloc; 359 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) { 360 return NULL; 361 } 362 363 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 364 /* over-reserve space */ 365 bytes += 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; 366 #endif 367 368 alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes); 369 370 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 371 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on 372 * either size. */ 373 if (alloc) { 374 alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE; 375 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 376 /* We need to keep the redzone poisoned while unpoisoning the bytes that 377 * are actually allocated. */ 378 __asan_unpoison_memory_region(alloc, bytes - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE); 379 } 380 } 381 #endif 382 383 return alloc; 384 } 385 386 /** 387 * Reserves and returns unaligned memory. 388 */ 389 MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) 390 { 391 return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers); 392 } 393 394 /** 395 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes). 396 * This memory has been initialized at least once in the past. 397 * This doesn't mean it has been initialized this time, and it might contain data from previous 398 * operations. 399 * The main usage is for algorithms that might need read access into uninitialized memory. 400 * The algorithm must maintain safety under these conditions and must make sure it doesn't 401 * leak any of the past data (directly or in side channels). 402 */ 403 MEM_STATIC void* ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp* ws, size_t bytes) 404 { 405 size_t const alignedBytes = ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES); 406 void* ptr = ZSTD_cwksp_reserve_internal(ws, alignedBytes, ZSTD_cwksp_alloc_aligned_init_once); 407 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0); 408 if(ptr && ptr < ws->initOnceStart) { 409 /* We assume the memory following the current allocation is either: 410 * 1. Not usable as initOnce memory (end of workspace) 411 * 2. Another initOnce buffer that has been allocated before (and so was previously memset) 412 * 3. An ASAN redzone, in which case we don't want to write on it 413 * For these reasons it should be fine to not explicitly zero every byte up to ws->initOnceStart. 414 * Note that we assume here that MSAN and ASAN cannot run in the same time. */ 415 ZSTD_memset(ptr, 0, MIN((size_t)((U8*)ws->initOnceStart - (U8*)ptr), alignedBytes)); 416 ws->initOnceStart = ptr; 417 } 418 #if ZSTD_MEMORY_SANITIZER 419 assert(__msan_test_shadow(ptr, bytes) == -1); 420 #endif 421 return ptr; 422 } 423 424 /** 425 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes). 426 */ 427 MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes) 428 { 429 void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES), 430 ZSTD_cwksp_alloc_aligned); 431 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0); 432 return ptr; 433 } 434 435 /** 436 * Aligned on 64 bytes. These buffers have the special property that 437 * their values remain constrained, allowing us to reuse them without 438 * memset()-ing them. 439 */ 440 MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) 441 { 442 const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned_init_once; 443 void* alloc; 444 void* end; 445 void* top; 446 447 /* We can only start allocating tables after we are done reserving space for objects at the 448 * start of the workspace */ 449 if(ws->phase < phase) { 450 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) { 451 return NULL; 452 } 453 } 454 alloc = ws->tableEnd; 455 end = (BYTE *)alloc + bytes; 456 top = ws->allocStart; 457 458 DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining", 459 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes); 460 assert((bytes & (sizeof(U32)-1)) == 0); 461 ZSTD_cwksp_assert_internal_consistency(ws); 462 assert(end <= top); 463 if (end > top) { 464 DEBUGLOG(4, "cwksp: table alloc failed!"); 465 ws->allocFailed = 1; 466 return NULL; 467 } 468 ws->tableEnd = end; 469 470 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 471 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 472 __asan_unpoison_memory_region(alloc, bytes); 473 } 474 #endif 475 476 assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); 477 assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0); 478 return alloc; 479 } 480 481 /** 482 * Aligned on sizeof(void*). 483 * Note : should happen only once, at workspace first initialization 484 */ 485 MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) 486 { 487 size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*)); 488 void* alloc = ws->objectEnd; 489 void* end = (BYTE*)alloc + roundedBytes; 490 491 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 492 /* over-reserve space */ 493 end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; 494 #endif 495 496 DEBUGLOG(4, 497 "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining", 498 alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes); 499 assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0); 500 assert(bytes % ZSTD_ALIGNOF(void*) == 0); 501 ZSTD_cwksp_assert_internal_consistency(ws); 502 /* we must be in the first phase, no advance is possible */ 503 if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) { 504 DEBUGLOG(3, "cwksp: object alloc failed!"); 505 ws->allocFailed = 1; 506 return NULL; 507 } 508 ws->objectEnd = end; 509 ws->tableEnd = end; 510 ws->tableValidEnd = end; 511 512 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 513 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on 514 * either size. */ 515 alloc = (BYTE*)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE; 516 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 517 __asan_unpoison_memory_region(alloc, bytes); 518 } 519 #endif 520 521 return alloc; 522 } 523 524 MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) 525 { 526 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty"); 527 528 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE) 529 /* To validate that the table reuse logic is sound, and that we don't 530 * access table space that we haven't cleaned, we re-"poison" the table 531 * space every time we mark it dirty. 532 * Since tableValidEnd space and initOnce space may overlap we don't poison 533 * the initOnce portion as it break its promise. This means that this poisoning 534 * check isn't always applied fully. */ 535 { 536 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd; 537 assert(__msan_test_shadow(ws->objectEnd, size) == -1); 538 if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) { 539 __msan_poison(ws->objectEnd, size); 540 } else { 541 assert(ws->initOnceStart >= ws->objectEnd); 542 __msan_poison(ws->objectEnd, (BYTE*)ws->initOnceStart - (BYTE*)ws->objectEnd); 543 } 544 } 545 #endif 546 547 assert(ws->tableValidEnd >= ws->objectEnd); 548 assert(ws->tableValidEnd <= ws->allocStart); 549 ws->tableValidEnd = ws->objectEnd; 550 ZSTD_cwksp_assert_internal_consistency(ws); 551 } 552 553 MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) { 554 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean"); 555 assert(ws->tableValidEnd >= ws->objectEnd); 556 assert(ws->tableValidEnd <= ws->allocStart); 557 if (ws->tableValidEnd < ws->tableEnd) { 558 ws->tableValidEnd = ws->tableEnd; 559 } 560 ZSTD_cwksp_assert_internal_consistency(ws); 561 } 562 563 /** 564 * Zero the part of the allocated tables not already marked clean. 565 */ 566 MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) { 567 DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables"); 568 assert(ws->tableValidEnd >= ws->objectEnd); 569 assert(ws->tableValidEnd <= ws->allocStart); 570 if (ws->tableValidEnd < ws->tableEnd) { 571 ZSTD_memset(ws->tableValidEnd, 0, (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd)); 572 } 573 ZSTD_cwksp_mark_tables_clean(ws); 574 } 575 576 /** 577 * Invalidates table allocations. 578 * All other allocations remain valid. 579 */ 580 MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) { 581 DEBUGLOG(4, "cwksp: clearing tables!"); 582 583 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 584 /* We don't do this when the workspace is statically allocated, because 585 * when that is the case, we have no capability to hook into the end of the 586 * workspace's lifecycle to unpoison the memory. 587 */ 588 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 589 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd; 590 __asan_poison_memory_region(ws->objectEnd, size); 591 } 592 #endif 593 594 ws->tableEnd = ws->objectEnd; 595 ZSTD_cwksp_assert_internal_consistency(ws); 596 } 597 598 /** 599 * Invalidates all buffer, aligned, and table allocations. 600 * Object allocations remain valid. 601 */ 602 MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) { 603 DEBUGLOG(4, "cwksp: clearing!"); 604 605 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE) 606 /* To validate that the context reuse logic is sound, and that we don't 607 * access stuff that this compression hasn't initialized, we re-"poison" 608 * the workspace except for the areas in which we expect memory reuse 609 * without initialization (objects, valid tables area and init once 610 * memory). */ 611 { 612 if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) { 613 size_t size = (BYTE*)ws->initOnceStart - (BYTE*)ws->tableValidEnd; 614 __msan_poison(ws->tableValidEnd, size); 615 } 616 } 617 #endif 618 619 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 620 /* We don't do this when the workspace is statically allocated, because 621 * when that is the case, we have no capability to hook into the end of the 622 * workspace's lifecycle to unpoison the memory. 623 */ 624 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 625 size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd; 626 __asan_poison_memory_region(ws->objectEnd, size); 627 } 628 #endif 629 630 ws->tableEnd = ws->objectEnd; 631 ws->allocStart = ZSTD_cwksp_initialAllocStart(ws); 632 ws->allocFailed = 0; 633 if (ws->phase > ZSTD_cwksp_alloc_aligned_init_once) { 634 ws->phase = ZSTD_cwksp_alloc_aligned_init_once; 635 } 636 ZSTD_cwksp_assert_internal_consistency(ws); 637 } 638 639 MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) { 640 return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace); 641 } 642 643 MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) { 644 return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace) 645 + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart); 646 } 647 648 /** 649 * The provided workspace takes ownership of the buffer [start, start+size). 650 * Any existing values in the workspace are ignored (the previously managed 651 * buffer, if present, must be separately freed). 652 */ 653 MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) { 654 DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size); 655 assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */ 656 ws->workspace = start; 657 ws->workspaceEnd = (BYTE*)start + size; 658 ws->objectEnd = ws->workspace; 659 ws->tableValidEnd = ws->objectEnd; 660 ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws); 661 ws->phase = ZSTD_cwksp_alloc_objects; 662 ws->isStatic = isStatic; 663 ZSTD_cwksp_clear(ws); 664 ws->workspaceOversizedDuration = 0; 665 ZSTD_cwksp_assert_internal_consistency(ws); 666 } 667 668 MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) { 669 void* workspace = ZSTD_customMalloc(size, customMem); 670 DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size); 671 RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!"); 672 ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc); 673 return 0; 674 } 675 676 MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) { 677 void *ptr = ws->workspace; 678 DEBUGLOG(4, "cwksp: freeing workspace"); 679 #if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE) 680 if (ptr != NULL && customMem.customFree != NULL) { 681 __msan_unpoison(ptr, ZSTD_cwksp_sizeof(ws)); 682 } 683 #endif 684 ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp)); 685 ZSTD_customFree(ptr, customMem); 686 } 687 688 /** 689 * Moves the management of a workspace from one cwksp to another. The src cwksp 690 * is left in an invalid state (src must be re-init()'ed before it's used again). 691 */ 692 MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) { 693 *dst = *src; 694 ZSTD_memset(src, 0, sizeof(ZSTD_cwksp)); 695 } 696 697 MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) { 698 return ws->allocFailed; 699 } 700 701 /*-************************************* 702 * Functions Checking Free Space 703 ***************************************/ 704 705 /* ZSTD_alignmentSpaceWithinBounds() : 706 * Returns if the estimated space needed for a wksp is within an acceptable limit of the 707 * actual amount of space used. 708 */ 709 MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp *const ws, size_t const estimatedSpace) { 710 /* We have an alignment space between objects and tables between tables and buffers, so we can have up to twice 711 * the alignment bytes difference between estimation and actual usage */ 712 return (estimatedSpace - ZSTD_cwksp_slack_space_required()) <= ZSTD_cwksp_used(ws) && 713 ZSTD_cwksp_used(ws) <= estimatedSpace; 714 } 715 716 717 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) { 718 return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd); 719 } 720 721 MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) { 722 return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace; 723 } 724 725 MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) { 726 return ZSTD_cwksp_check_available( 727 ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR); 728 } 729 730 MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) { 731 return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace) 732 && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION; 733 } 734 735 MEM_STATIC void ZSTD_cwksp_bump_oversized_duration( 736 ZSTD_cwksp* ws, size_t additionalNeededSpace) { 737 if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) { 738 ws->workspaceOversizedDuration++; 739 } else { 740 ws->workspaceOversizedDuration = 0; 741 } 742 } 743 744 #if defined (__cplusplus) 745 } 746 #endif 747 748 #endif /* ZSTD_CWKSP_H */ 749