1 /* 2 * Copyright (c) Meta Platforms, Inc. and affiliates. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 /* This header contains definitions 12 * that shall **only** be used by modules within lib/compress. 13 */ 14 15 #ifndef ZSTD_COMPRESS_H 16 #define ZSTD_COMPRESS_H 17 18 /*-************************************* 19 * Dependencies 20 ***************************************/ 21 #include "../common/zstd_internal.h" 22 #include "zstd_cwksp.h" 23 #ifdef ZSTD_MULTITHREAD 24 # include "zstdmt_compress.h" 25 #endif 26 #include "../common/bits.h" /* ZSTD_highbit32, ZSTD_NbCommonBytes */ 27 28 #if defined (__cplusplus) 29 extern "C" { 30 #endif 31 32 /*-************************************* 33 * Constants 34 ***************************************/ 35 #define kSearchStrength 8 36 #define HASH_READ_SIZE 8 37 #define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted". 38 It could be confused for a real successor at index "1", if sorted as larger than its predecessor. 39 It's not a big deal though : candidate will just be sorted again. 40 Additionally, candidate position 1 will be lost. 41 But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss. 42 The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table reuse with a different strategy. 43 This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */ 44 45 46 /*-************************************* 47 * Context memory management 48 ***************************************/ 49 typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e; 50 typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage; 51 52 typedef struct ZSTD_prefixDict_s { 53 const void* dict; 54 size_t dictSize; 55 ZSTD_dictContentType_e dictContentType; 56 } ZSTD_prefixDict; 57 58 typedef struct { 59 void* dictBuffer; 60 void const* dict; 61 size_t dictSize; 62 ZSTD_dictContentType_e dictContentType; 63 ZSTD_CDict* cdict; 64 } ZSTD_localDict; 65 66 typedef struct { 67 HUF_CElt CTable[HUF_CTABLE_SIZE_ST(255)]; 68 HUF_repeat repeatMode; 69 } ZSTD_hufCTables_t; 70 71 typedef struct { 72 FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)]; 73 FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)]; 74 FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)]; 75 FSE_repeat offcode_repeatMode; 76 FSE_repeat matchlength_repeatMode; 77 FSE_repeat litlength_repeatMode; 78 } ZSTD_fseCTables_t; 79 80 typedef struct { 81 ZSTD_hufCTables_t huf; 82 ZSTD_fseCTables_t fse; 83 } ZSTD_entropyCTables_t; 84 85 /*********************************************** 86 * Entropy buffer statistics structs and funcs * 87 ***********************************************/ 88 /** ZSTD_hufCTablesMetadata_t : 89 * Stores Literals Block Type for a super-block in hType, and 90 * huffman tree description in hufDesBuffer. 91 * hufDesSize refers to the size of huffman tree description in bytes. 92 * This metadata is populated in ZSTD_buildBlockEntropyStats_literals() */ 93 typedef struct { 94 symbolEncodingType_e hType; 95 BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE]; 96 size_t hufDesSize; 97 } ZSTD_hufCTablesMetadata_t; 98 99 /** ZSTD_fseCTablesMetadata_t : 100 * Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and 101 * fse tables in fseTablesBuffer. 102 * fseTablesSize refers to the size of fse tables in bytes. 103 * This metadata is populated in ZSTD_buildBlockEntropyStats_sequences() */ 104 typedef struct { 105 symbolEncodingType_e llType; 106 symbolEncodingType_e ofType; 107 symbolEncodingType_e mlType; 108 BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE]; 109 size_t fseTablesSize; 110 size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */ 111 } ZSTD_fseCTablesMetadata_t; 112 113 typedef struct { 114 ZSTD_hufCTablesMetadata_t hufMetadata; 115 ZSTD_fseCTablesMetadata_t fseMetadata; 116 } ZSTD_entropyCTablesMetadata_t; 117 118 /** ZSTD_buildBlockEntropyStats() : 119 * Builds entropy for the block. 120 * @return : 0 on success or error code */ 121 size_t ZSTD_buildBlockEntropyStats( 122 const seqStore_t* seqStorePtr, 123 const ZSTD_entropyCTables_t* prevEntropy, 124 ZSTD_entropyCTables_t* nextEntropy, 125 const ZSTD_CCtx_params* cctxParams, 126 ZSTD_entropyCTablesMetadata_t* entropyMetadata, 127 void* workspace, size_t wkspSize); 128 129 /********************************* 130 * Compression internals structs * 131 *********************************/ 132 133 typedef struct { 134 U32 off; /* Offset sumtype code for the match, using ZSTD_storeSeq() format */ 135 U32 len; /* Raw length of match */ 136 } ZSTD_match_t; 137 138 typedef struct { 139 U32 offset; /* Offset of sequence */ 140 U32 litLength; /* Length of literals prior to match */ 141 U32 matchLength; /* Raw length of match */ 142 } rawSeq; 143 144 typedef struct { 145 rawSeq* seq; /* The start of the sequences */ 146 size_t pos; /* The index in seq where reading stopped. pos <= size. */ 147 size_t posInSequence; /* The position within the sequence at seq[pos] where reading 148 stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */ 149 size_t size; /* The number of sequences. <= capacity. */ 150 size_t capacity; /* The capacity starting from `seq` pointer */ 151 } rawSeqStore_t; 152 153 typedef struct { 154 U32 idx; /* Index in array of ZSTD_Sequence */ 155 U32 posInSequence; /* Position within sequence at idx */ 156 size_t posInSrc; /* Number of bytes given by sequences provided so far */ 157 } ZSTD_sequencePosition; 158 159 UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0}; 160 161 typedef struct { 162 int price; /* price from beginning of segment to this position */ 163 U32 off; /* offset of previous match */ 164 U32 mlen; /* length of previous match */ 165 U32 litlen; /* nb of literals since previous match */ 166 U32 rep[ZSTD_REP_NUM]; /* offset history after previous match */ 167 } ZSTD_optimal_t; 168 169 typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e; 170 171 #define ZSTD_OPT_SIZE (ZSTD_OPT_NUM+3) 172 typedef struct { 173 /* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */ 174 unsigned* litFreq; /* table of literals statistics, of size 256 */ 175 unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */ 176 unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */ 177 unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */ 178 ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_SIZE */ 179 ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_SIZE */ 180 181 U32 litSum; /* nb of literals */ 182 U32 litLengthSum; /* nb of litLength codes */ 183 U32 matchLengthSum; /* nb of matchLength codes */ 184 U32 offCodeSum; /* nb of offset codes */ 185 U32 litSumBasePrice; /* to compare to log2(litfreq) */ 186 U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */ 187 U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */ 188 U32 offCodeSumBasePrice; /* to compare to log2(offreq) */ 189 ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */ 190 const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */ 191 ZSTD_paramSwitch_e literalCompressionMode; 192 } optState_t; 193 194 typedef struct { 195 ZSTD_entropyCTables_t entropy; 196 U32 rep[ZSTD_REP_NUM]; 197 } ZSTD_compressedBlockState_t; 198 199 typedef struct { 200 BYTE const* nextSrc; /* next block here to continue on current prefix */ 201 BYTE const* base; /* All regular indexes relative to this position */ 202 BYTE const* dictBase; /* extDict indexes relative to this position */ 203 U32 dictLimit; /* below that point, need extDict */ 204 U32 lowLimit; /* below that point, no more valid data */ 205 U32 nbOverflowCorrections; /* Number of times overflow correction has run since 206 * ZSTD_window_init(). Useful for debugging coredumps 207 * and for ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY. 208 */ 209 } ZSTD_window_t; 210 211 #define ZSTD_WINDOW_START_INDEX 2 212 213 typedef struct ZSTD_matchState_t ZSTD_matchState_t; 214 215 #define ZSTD_ROW_HASH_CACHE_SIZE 8 /* Size of prefetching hash cache for row-based matchfinder */ 216 217 struct ZSTD_matchState_t { 218 ZSTD_window_t window; /* State for window round buffer management */ 219 U32 loadedDictEnd; /* index of end of dictionary, within context's referential. 220 * When loadedDictEnd != 0, a dictionary is in use, and still valid. 221 * This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance. 222 * Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity(). 223 * When dict referential is copied into active context (i.e. not attached), 224 * loadedDictEnd == dictSize, since referential starts from zero. 225 */ 226 U32 nextToUpdate; /* index from which to continue table update */ 227 U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */ 228 229 U32 rowHashLog; /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/ 230 BYTE* tagTable; /* For row-based matchFinder: A row-based table containing the hashes and head index. */ 231 U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */ 232 U64 hashSalt; /* For row-based matchFinder: salts the hash for reuse of tag table */ 233 U32 hashSaltEntropy; /* For row-based matchFinder: collects entropy for salt generation */ 234 235 U32* hashTable; 236 U32* hashTable3; 237 U32* chainTable; 238 239 U32 forceNonContiguous; /* Non-zero if we should force non-contiguous load for the next window update. */ 240 241 int dedicatedDictSearch; /* Indicates whether this matchState is using the 242 * dedicated dictionary search structure. 243 */ 244 optState_t opt; /* optimal parser state */ 245 const ZSTD_matchState_t* dictMatchState; 246 ZSTD_compressionParameters cParams; 247 const rawSeqStore_t* ldmSeqStore; 248 249 /* Controls prefetching in some dictMatchState matchfinders. 250 * This behavior is controlled from the cctx ms. 251 * This parameter has no effect in the cdict ms. */ 252 int prefetchCDictTables; 253 254 /* When == 0, lazy match finders insert every position. 255 * When != 0, lazy match finders only insert positions they search. 256 * This allows them to skip much faster over incompressible data, 257 * at a small cost to compression ratio. 258 */ 259 int lazySkipping; 260 }; 261 262 typedef struct { 263 ZSTD_compressedBlockState_t* prevCBlock; 264 ZSTD_compressedBlockState_t* nextCBlock; 265 ZSTD_matchState_t matchState; 266 } ZSTD_blockState_t; 267 268 typedef struct { 269 U32 offset; 270 U32 checksum; 271 } ldmEntry_t; 272 273 typedef struct { 274 BYTE const* split; 275 U32 hash; 276 U32 checksum; 277 ldmEntry_t* bucket; 278 } ldmMatchCandidate_t; 279 280 #define LDM_BATCH_SIZE 64 281 282 typedef struct { 283 ZSTD_window_t window; /* State for the window round buffer management */ 284 ldmEntry_t* hashTable; 285 U32 loadedDictEnd; 286 BYTE* bucketOffsets; /* Next position in bucket to insert entry */ 287 size_t splitIndices[LDM_BATCH_SIZE]; 288 ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE]; 289 } ldmState_t; 290 291 typedef struct { 292 ZSTD_paramSwitch_e enableLdm; /* ZSTD_ps_enable to enable LDM. ZSTD_ps_auto by default */ 293 U32 hashLog; /* Log size of hashTable */ 294 U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */ 295 U32 minMatchLength; /* Minimum match length */ 296 U32 hashRateLog; /* Log number of entries to skip */ 297 U32 windowLog; /* Window log for the LDM */ 298 } ldmParams_t; 299 300 typedef struct { 301 int collectSequences; 302 ZSTD_Sequence* seqStart; 303 size_t seqIndex; 304 size_t maxSequences; 305 } SeqCollector; 306 307 struct ZSTD_CCtx_params_s { 308 ZSTD_format_e format; 309 ZSTD_compressionParameters cParams; 310 ZSTD_frameParameters fParams; 311 312 int compressionLevel; 313 int forceWindow; /* force back-references to respect limit of 314 * 1<<wLog, even for dictionary */ 315 size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize. 316 * No target when targetCBlockSize == 0. 317 * There is no guarantee on compressed block size */ 318 int srcSizeHint; /* User's best guess of source size. 319 * Hint is not valid when srcSizeHint == 0. 320 * There is no guarantee that hint is close to actual source size */ 321 322 ZSTD_dictAttachPref_e attachDictPref; 323 ZSTD_paramSwitch_e literalCompressionMode; 324 325 /* Multithreading: used to pass parameters to mtctx */ 326 int nbWorkers; 327 size_t jobSize; 328 int overlapLog; 329 int rsyncable; 330 331 /* Long distance matching parameters */ 332 ldmParams_t ldmParams; 333 334 /* Dedicated dict search algorithm trigger */ 335 int enableDedicatedDictSearch; 336 337 /* Input/output buffer modes */ 338 ZSTD_bufferMode_e inBufferMode; 339 ZSTD_bufferMode_e outBufferMode; 340 341 /* Sequence compression API */ 342 ZSTD_sequenceFormat_e blockDelimiters; 343 int validateSequences; 344 345 /* Block splitting */ 346 ZSTD_paramSwitch_e useBlockSplitter; 347 348 /* Param for deciding whether to use row-based matchfinder */ 349 ZSTD_paramSwitch_e useRowMatchFinder; 350 351 /* Always load a dictionary in ext-dict mode (not prefix mode)? */ 352 int deterministicRefPrefix; 353 354 /* Internal use, for createCCtxParams() and freeCCtxParams() only */ 355 ZSTD_customMem customMem; 356 357 /* Controls prefetching in some dictMatchState matchfinders */ 358 ZSTD_paramSwitch_e prefetchCDictTables; 359 360 /* Controls whether zstd will fall back to an internal matchfinder 361 * if the external matchfinder returns an error code. */ 362 int enableMatchFinderFallback; 363 364 /* Parameters for the external sequence producer API. 365 * Users set these parameters through ZSTD_registerSequenceProducer(). 366 * It is not possible to set these parameters individually through the public API. */ 367 void* extSeqProdState; 368 ZSTD_sequenceProducer_F extSeqProdFunc; 369 370 /* Adjust the max block size*/ 371 size_t maxBlockSize; 372 373 /* Controls repcode search in external sequence parsing */ 374 ZSTD_paramSwitch_e searchForExternalRepcodes; 375 }; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */ 376 377 #define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2)) 378 #define ENTROPY_WORKSPACE_SIZE (HUF_WORKSPACE_SIZE + COMPRESS_SEQUENCES_WORKSPACE_SIZE) 379 380 /** 381 * Indicates whether this compression proceeds directly from user-provided 382 * source buffer to user-provided destination buffer (ZSTDb_not_buffered), or 383 * whether the context needs to buffer the input/output (ZSTDb_buffered). 384 */ 385 typedef enum { 386 ZSTDb_not_buffered, 387 ZSTDb_buffered 388 } ZSTD_buffered_policy_e; 389 390 /** 391 * Struct that contains all elements of block splitter that should be allocated 392 * in a wksp. 393 */ 394 #define ZSTD_MAX_NB_BLOCK_SPLITS 196 395 typedef struct { 396 seqStore_t fullSeqStoreChunk; 397 seqStore_t firstHalfSeqStore; 398 seqStore_t secondHalfSeqStore; 399 seqStore_t currSeqStore; 400 seqStore_t nextSeqStore; 401 402 U32 partitions[ZSTD_MAX_NB_BLOCK_SPLITS]; 403 ZSTD_entropyCTablesMetadata_t entropyMetadata; 404 } ZSTD_blockSplitCtx; 405 406 struct ZSTD_CCtx_s { 407 ZSTD_compressionStage_e stage; 408 int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */ 409 int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */ 410 ZSTD_CCtx_params requestedParams; 411 ZSTD_CCtx_params appliedParams; 412 ZSTD_CCtx_params simpleApiParams; /* Param storage used by the simple API - not sticky. Must only be used in top-level simple API functions for storage. */ 413 U32 dictID; 414 size_t dictContentSize; 415 416 ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */ 417 size_t blockSize; 418 unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */ 419 unsigned long long consumedSrcSize; 420 unsigned long long producedCSize; 421 XXH64_state_t xxhState; 422 ZSTD_customMem customMem; 423 ZSTD_threadPool* pool; 424 size_t staticSize; 425 SeqCollector seqCollector; 426 int isFirstBlock; 427 int initialized; 428 429 seqStore_t seqStore; /* sequences storage ptrs */ 430 ldmState_t ldmState; /* long distance matching state */ 431 rawSeq* ldmSequences; /* Storage for the ldm output sequences */ 432 size_t maxNbLdmSequences; 433 rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */ 434 ZSTD_blockState_t blockState; 435 U32* entropyWorkspace; /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */ 436 437 /* Whether we are streaming or not */ 438 ZSTD_buffered_policy_e bufferedPolicy; 439 440 /* streaming */ 441 char* inBuff; 442 size_t inBuffSize; 443 size_t inToCompress; 444 size_t inBuffPos; 445 size_t inBuffTarget; 446 char* outBuff; 447 size_t outBuffSize; 448 size_t outBuffContentSize; 449 size_t outBuffFlushedSize; 450 ZSTD_cStreamStage streamStage; 451 U32 frameEnded; 452 453 /* Stable in/out buffer verification */ 454 ZSTD_inBuffer expectedInBuffer; 455 size_t stableIn_notConsumed; /* nb bytes within stable input buffer that are said to be consumed but are not */ 456 size_t expectedOutBufferSize; 457 458 /* Dictionary */ 459 ZSTD_localDict localDict; 460 const ZSTD_CDict* cdict; 461 ZSTD_prefixDict prefixDict; /* single-usage dictionary */ 462 463 /* Multi-threading */ 464 #ifdef ZSTD_MULTITHREAD 465 ZSTDMT_CCtx* mtctx; 466 #endif 467 468 /* Tracing */ 469 #if ZSTD_TRACE 470 ZSTD_TraceCtx traceCtx; 471 #endif 472 473 /* Workspace for block splitter */ 474 ZSTD_blockSplitCtx blockSplitCtx; 475 476 /* Buffer for output from external sequence producer */ 477 ZSTD_Sequence* extSeqBuf; 478 size_t extSeqBufCapacity; 479 }; 480 481 typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e; 482 typedef enum { ZSTD_tfp_forCCtx, ZSTD_tfp_forCDict } ZSTD_tableFillPurpose_e; 483 484 typedef enum { 485 ZSTD_noDict = 0, 486 ZSTD_extDict = 1, 487 ZSTD_dictMatchState = 2, 488 ZSTD_dedicatedDictSearch = 3 489 } ZSTD_dictMode_e; 490 491 typedef enum { 492 ZSTD_cpm_noAttachDict = 0, /* Compression with ZSTD_noDict or ZSTD_extDict. 493 * In this mode we use both the srcSize and the dictSize 494 * when selecting and adjusting parameters. 495 */ 496 ZSTD_cpm_attachDict = 1, /* Compression with ZSTD_dictMatchState or ZSTD_dedicatedDictSearch. 497 * In this mode we only take the srcSize into account when selecting 498 * and adjusting parameters. 499 */ 500 ZSTD_cpm_createCDict = 2, /* Creating a CDict. 501 * In this mode we take both the source size and the dictionary size 502 * into account when selecting and adjusting the parameters. 503 */ 504 ZSTD_cpm_unknown = 3 /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams. 505 * We don't know what these parameters are for. We default to the legacy 506 * behavior of taking both the source size and the dict size into account 507 * when selecting and adjusting parameters. 508 */ 509 } ZSTD_cParamMode_e; 510 511 typedef size_t (*ZSTD_blockCompressor) ( 512 ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], 513 void const* src, size_t srcSize); 514 ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramSwitch_e rowMatchfinderMode, ZSTD_dictMode_e dictMode); 515 516 517 MEM_STATIC U32 ZSTD_LLcode(U32 litLength) 518 { 519 static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7, 520 8, 9, 10, 11, 12, 13, 14, 15, 521 16, 16, 17, 17, 18, 18, 19, 19, 522 20, 20, 20, 20, 21, 21, 21, 21, 523 22, 22, 22, 22, 22, 22, 22, 22, 524 23, 23, 23, 23, 23, 23, 23, 23, 525 24, 24, 24, 24, 24, 24, 24, 24, 526 24, 24, 24, 24, 24, 24, 24, 24 }; 527 static const U32 LL_deltaCode = 19; 528 return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength]; 529 } 530 531 /* ZSTD_MLcode() : 532 * note : mlBase = matchLength - MINMATCH; 533 * because it's the format it's stored in seqStore->sequences */ 534 MEM_STATIC U32 ZSTD_MLcode(U32 mlBase) 535 { 536 static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 537 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 538 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, 539 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, 540 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 541 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 542 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 543 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 }; 544 static const U32 ML_deltaCode = 36; 545 return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase]; 546 } 547 548 /* ZSTD_cParam_withinBounds: 549 * @return 1 if value is within cParam bounds, 550 * 0 otherwise */ 551 MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value) 552 { 553 ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); 554 if (ZSTD_isError(bounds.error)) return 0; 555 if (value < bounds.lowerBound) return 0; 556 if (value > bounds.upperBound) return 0; 557 return 1; 558 } 559 560 /* ZSTD_noCompressBlock() : 561 * Writes uncompressed block to dst buffer from given src. 562 * Returns the size of the block */ 563 MEM_STATIC size_t 564 ZSTD_noCompressBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock) 565 { 566 U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3); 567 DEBUGLOG(5, "ZSTD_noCompressBlock (srcSize=%zu, dstCapacity=%zu)", srcSize, dstCapacity); 568 RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity, 569 dstSize_tooSmall, "dst buf too small for uncompressed block"); 570 MEM_writeLE24(dst, cBlockHeader24); 571 ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize); 572 return ZSTD_blockHeaderSize + srcSize; 573 } 574 575 MEM_STATIC size_t 576 ZSTD_rleCompressBlock(void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock) 577 { 578 BYTE* const op = (BYTE*)dst; 579 U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3); 580 RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, ""); 581 MEM_writeLE24(op, cBlockHeader); 582 op[3] = src; 583 return 4; 584 } 585 586 587 /* ZSTD_minGain() : 588 * minimum compression required 589 * to generate a compress block or a compressed literals section. 590 * note : use same formula for both situations */ 591 MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat) 592 { 593 U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6; 594 ZSTD_STATIC_ASSERT(ZSTD_btultra == 8); 595 assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, (int)strat)); 596 return (srcSize >> minlog) + 2; 597 } 598 599 MEM_STATIC int ZSTD_literalsCompressionIsDisabled(const ZSTD_CCtx_params* cctxParams) 600 { 601 switch (cctxParams->literalCompressionMode) { 602 case ZSTD_ps_enable: 603 return 0; 604 case ZSTD_ps_disable: 605 return 1; 606 default: 607 assert(0 /* impossible: pre-validated */); 608 ZSTD_FALLTHROUGH; 609 case ZSTD_ps_auto: 610 return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0); 611 } 612 } 613 614 /*! ZSTD_safecopyLiterals() : 615 * memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w. 616 * Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single 617 * large copies. 618 */ 619 static void 620 ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w) 621 { 622 assert(iend > ilimit_w); 623 if (ip <= ilimit_w) { 624 ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap); 625 op += ilimit_w - ip; 626 ip = ilimit_w; 627 } 628 while (ip < iend) *op++ = *ip++; 629 } 630 631 632 #define REPCODE1_TO_OFFBASE REPCODE_TO_OFFBASE(1) 633 #define REPCODE2_TO_OFFBASE REPCODE_TO_OFFBASE(2) 634 #define REPCODE3_TO_OFFBASE REPCODE_TO_OFFBASE(3) 635 #define REPCODE_TO_OFFBASE(r) (assert((r)>=1), assert((r)<=ZSTD_REP_NUM), (r)) /* accepts IDs 1,2,3 */ 636 #define OFFSET_TO_OFFBASE(o) (assert((o)>0), o + ZSTD_REP_NUM) 637 #define OFFBASE_IS_OFFSET(o) ((o) > ZSTD_REP_NUM) 638 #define OFFBASE_IS_REPCODE(o) ( 1 <= (o) && (o) <= ZSTD_REP_NUM) 639 #define OFFBASE_TO_OFFSET(o) (assert(OFFBASE_IS_OFFSET(o)), (o) - ZSTD_REP_NUM) 640 #define OFFBASE_TO_REPCODE(o) (assert(OFFBASE_IS_REPCODE(o)), (o)) /* returns ID 1,2,3 */ 641 642 /*! ZSTD_storeSeq() : 643 * Store a sequence (litlen, litPtr, offBase and matchLength) into seqStore_t. 644 * @offBase : Users should employ macros REPCODE_TO_OFFBASE() and OFFSET_TO_OFFBASE(). 645 * @matchLength : must be >= MINMATCH 646 * Allowed to over-read literals up to litLimit. 647 */ 648 HINT_INLINE UNUSED_ATTR void 649 ZSTD_storeSeq(seqStore_t* seqStorePtr, 650 size_t litLength, const BYTE* literals, const BYTE* litLimit, 651 U32 offBase, 652 size_t matchLength) 653 { 654 BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH; 655 BYTE const* const litEnd = literals + litLength; 656 #if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6) 657 static const BYTE* g_start = NULL; 658 if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */ 659 { U32 const pos = (U32)((const BYTE*)literals - g_start); 660 DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offBase%7u", 661 pos, (U32)litLength, (U32)matchLength, (U32)offBase); 662 } 663 #endif 664 assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq); 665 /* copy Literals */ 666 assert(seqStorePtr->maxNbLit <= 128 KB); 667 assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit); 668 assert(literals + litLength <= litLimit); 669 if (litEnd <= litLimit_w) { 670 /* Common case we can use wildcopy. 671 * First copy 16 bytes, because literals are likely short. 672 */ 673 ZSTD_STATIC_ASSERT(WILDCOPY_OVERLENGTH >= 16); 674 ZSTD_copy16(seqStorePtr->lit, literals); 675 if (litLength > 16) { 676 ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap); 677 } 678 } else { 679 ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w); 680 } 681 seqStorePtr->lit += litLength; 682 683 /* literal Length */ 684 if (litLength>0xFFFF) { 685 assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */ 686 seqStorePtr->longLengthType = ZSTD_llt_literalLength; 687 seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); 688 } 689 seqStorePtr->sequences[0].litLength = (U16)litLength; 690 691 /* match offset */ 692 seqStorePtr->sequences[0].offBase = offBase; 693 694 /* match Length */ 695 assert(matchLength >= MINMATCH); 696 { size_t const mlBase = matchLength - MINMATCH; 697 if (mlBase>0xFFFF) { 698 assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */ 699 seqStorePtr->longLengthType = ZSTD_llt_matchLength; 700 seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); 701 } 702 seqStorePtr->sequences[0].mlBase = (U16)mlBase; 703 } 704 705 seqStorePtr->sequences++; 706 } 707 708 /* ZSTD_updateRep() : 709 * updates in-place @rep (array of repeat offsets) 710 * @offBase : sum-type, using numeric representation of ZSTD_storeSeq() 711 */ 712 MEM_STATIC void 713 ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase, U32 const ll0) 714 { 715 if (OFFBASE_IS_OFFSET(offBase)) { /* full offset */ 716 rep[2] = rep[1]; 717 rep[1] = rep[0]; 718 rep[0] = OFFBASE_TO_OFFSET(offBase); 719 } else { /* repcode */ 720 U32 const repCode = OFFBASE_TO_REPCODE(offBase) - 1 + ll0; 721 if (repCode > 0) { /* note : if repCode==0, no change */ 722 U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; 723 rep[2] = (repCode >= 2) ? rep[1] : rep[2]; 724 rep[1] = rep[0]; 725 rep[0] = currentOffset; 726 } else { /* repCode == 0 */ 727 /* nothing to do */ 728 } 729 } 730 } 731 732 typedef struct repcodes_s { 733 U32 rep[3]; 734 } repcodes_t; 735 736 MEM_STATIC repcodes_t 737 ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase, U32 const ll0) 738 { 739 repcodes_t newReps; 740 ZSTD_memcpy(&newReps, rep, sizeof(newReps)); 741 ZSTD_updateRep(newReps.rep, offBase, ll0); 742 return newReps; 743 } 744 745 746 /*-************************************* 747 * Match length counter 748 ***************************************/ 749 MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit) 750 { 751 const BYTE* const pStart = pIn; 752 const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1); 753 754 if (pIn < pInLoopLimit) { 755 { size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); 756 if (diff) return ZSTD_NbCommonBytes(diff); } 757 pIn+=sizeof(size_t); pMatch+=sizeof(size_t); 758 while (pIn < pInLoopLimit) { 759 size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); 760 if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; } 761 pIn += ZSTD_NbCommonBytes(diff); 762 return (size_t)(pIn - pStart); 763 } } 764 if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; } 765 if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; } 766 if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++; 767 return (size_t)(pIn - pStart); 768 } 769 770 /** ZSTD_count_2segments() : 771 * can count match length with `ip` & `match` in 2 different segments. 772 * convention : on reaching mEnd, match count continue starting from iStart 773 */ 774 MEM_STATIC size_t 775 ZSTD_count_2segments(const BYTE* ip, const BYTE* match, 776 const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart) 777 { 778 const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd); 779 size_t const matchLength = ZSTD_count(ip, match, vEnd); 780 if (match + matchLength != mEnd) return matchLength; 781 DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength); 782 DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match); 783 DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip); 784 DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart); 785 DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd)); 786 return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd); 787 } 788 789 790 /*-************************************* 791 * Hashes 792 ***************************************/ 793 static const U32 prime3bytes = 506832829U; 794 static U32 ZSTD_hash3(U32 u, U32 h, U32 s) { assert(h <= 32); return (((u << (32-24)) * prime3bytes) ^ s) >> (32-h) ; } 795 MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h, 0); } /* only in zstd_opt.h */ 796 MEM_STATIC size_t ZSTD_hash3PtrS(const void* ptr, U32 h, U32 s) { return ZSTD_hash3(MEM_readLE32(ptr), h, s); } 797 798 static const U32 prime4bytes = 2654435761U; 799 static U32 ZSTD_hash4(U32 u, U32 h, U32 s) { assert(h <= 32); return ((u * prime4bytes) ^ s) >> (32-h) ; } 800 static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_readLE32(ptr), h, 0); } 801 static size_t ZSTD_hash4PtrS(const void* ptr, U32 h, U32 s) { return ZSTD_hash4(MEM_readLE32(ptr), h, s); } 802 803 static const U64 prime5bytes = 889523592379ULL; 804 static size_t ZSTD_hash5(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u << (64-40)) * prime5bytes) ^ s) >> (64-h)) ; } 805 static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h, 0); } 806 static size_t ZSTD_hash5PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash5(MEM_readLE64(p), h, s); } 807 808 static const U64 prime6bytes = 227718039650203ULL; 809 static size_t ZSTD_hash6(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u << (64-48)) * prime6bytes) ^ s) >> (64-h)) ; } 810 static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h, 0); } 811 static size_t ZSTD_hash6PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash6(MEM_readLE64(p), h, s); } 812 813 static const U64 prime7bytes = 58295818150454627ULL; 814 static size_t ZSTD_hash7(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u << (64-56)) * prime7bytes) ^ s) >> (64-h)) ; } 815 static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h, 0); } 816 static size_t ZSTD_hash7PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash7(MEM_readLE64(p), h, s); } 817 818 static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL; 819 static size_t ZSTD_hash8(U64 u, U32 h, U64 s) { assert(h <= 64); return (size_t)((((u) * prime8bytes) ^ s) >> (64-h)) ; } 820 static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h, 0); } 821 static size_t ZSTD_hash8PtrS(const void* p, U32 h, U64 s) { return ZSTD_hash8(MEM_readLE64(p), h, s); } 822 823 824 MEM_STATIC FORCE_INLINE_ATTR 825 size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls) 826 { 827 /* Although some of these hashes do support hBits up to 64, some do not. 828 * To be on the safe side, always avoid hBits > 32. */ 829 assert(hBits <= 32); 830 831 switch(mls) 832 { 833 default: 834 case 4: return ZSTD_hash4Ptr(p, hBits); 835 case 5: return ZSTD_hash5Ptr(p, hBits); 836 case 6: return ZSTD_hash6Ptr(p, hBits); 837 case 7: return ZSTD_hash7Ptr(p, hBits); 838 case 8: return ZSTD_hash8Ptr(p, hBits); 839 } 840 } 841 842 MEM_STATIC FORCE_INLINE_ATTR 843 size_t ZSTD_hashPtrSalted(const void* p, U32 hBits, U32 mls, const U64 hashSalt) { 844 /* Although some of these hashes do support hBits up to 64, some do not. 845 * To be on the safe side, always avoid hBits > 32. */ 846 assert(hBits <= 32); 847 848 switch(mls) 849 { 850 default: 851 case 4: return ZSTD_hash4PtrS(p, hBits, (U32)hashSalt); 852 case 5: return ZSTD_hash5PtrS(p, hBits, hashSalt); 853 case 6: return ZSTD_hash6PtrS(p, hBits, hashSalt); 854 case 7: return ZSTD_hash7PtrS(p, hBits, hashSalt); 855 case 8: return ZSTD_hash8PtrS(p, hBits, hashSalt); 856 } 857 } 858 859 860 /** ZSTD_ipow() : 861 * Return base^exponent. 862 */ 863 static U64 ZSTD_ipow(U64 base, U64 exponent) 864 { 865 U64 power = 1; 866 while (exponent) { 867 if (exponent & 1) power *= base; 868 exponent >>= 1; 869 base *= base; 870 } 871 return power; 872 } 873 874 #define ZSTD_ROLL_HASH_CHAR_OFFSET 10 875 876 /** ZSTD_rollingHash_append() : 877 * Add the buffer to the hash value. 878 */ 879 static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size) 880 { 881 BYTE const* istart = (BYTE const*)buf; 882 size_t pos; 883 for (pos = 0; pos < size; ++pos) { 884 hash *= prime8bytes; 885 hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET; 886 } 887 return hash; 888 } 889 890 /** ZSTD_rollingHash_compute() : 891 * Compute the rolling hash value of the buffer. 892 */ 893 MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size) 894 { 895 return ZSTD_rollingHash_append(0, buf, size); 896 } 897 898 /** ZSTD_rollingHash_primePower() : 899 * Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash 900 * over a window of length bytes. 901 */ 902 MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length) 903 { 904 return ZSTD_ipow(prime8bytes, length - 1); 905 } 906 907 /** ZSTD_rollingHash_rotate() : 908 * Rotate the rolling hash by one byte. 909 */ 910 MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower) 911 { 912 hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower; 913 hash *= prime8bytes; 914 hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET; 915 return hash; 916 } 917 918 /*-************************************* 919 * Round buffer management 920 ***************************************/ 921 #if (ZSTD_WINDOWLOG_MAX_64 > 31) 922 # error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX" 923 #endif 924 /* Max current allowed */ 925 #define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX)) 926 /* Maximum chunk size before overflow correction needs to be called again */ 927 #define ZSTD_CHUNKSIZE_MAX \ 928 ( ((U32)-1) /* Maximum ending current index */ \ 929 - ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */ 930 931 /** 932 * ZSTD_window_clear(): 933 * Clears the window containing the history by simply setting it to empty. 934 */ 935 MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window) 936 { 937 size_t const endT = (size_t)(window->nextSrc - window->base); 938 U32 const end = (U32)endT; 939 940 window->lowLimit = end; 941 window->dictLimit = end; 942 } 943 944 MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window) 945 { 946 return window.dictLimit == ZSTD_WINDOW_START_INDEX && 947 window.lowLimit == ZSTD_WINDOW_START_INDEX && 948 (window.nextSrc - window.base) == ZSTD_WINDOW_START_INDEX; 949 } 950 951 /** 952 * ZSTD_window_hasExtDict(): 953 * Returns non-zero if the window has a non-empty extDict. 954 */ 955 MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window) 956 { 957 return window.lowLimit < window.dictLimit; 958 } 959 960 /** 961 * ZSTD_matchState_dictMode(): 962 * Inspects the provided matchState and figures out what dictMode should be 963 * passed to the compressor. 964 */ 965 MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms) 966 { 967 return ZSTD_window_hasExtDict(ms->window) ? 968 ZSTD_extDict : 969 ms->dictMatchState != NULL ? 970 (ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) : 971 ZSTD_noDict; 972 } 973 974 /* Defining this macro to non-zero tells zstd to run the overflow correction 975 * code much more frequently. This is very inefficient, and should only be 976 * used for tests and fuzzers. 977 */ 978 #ifndef ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 979 # ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION 980 # define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 1 981 # else 982 # define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 0 983 # endif 984 #endif 985 986 /** 987 * ZSTD_window_canOverflowCorrect(): 988 * Returns non-zero if the indices are large enough for overflow correction 989 * to work correctly without impacting compression ratio. 990 */ 991 MEM_STATIC U32 ZSTD_window_canOverflowCorrect(ZSTD_window_t const window, 992 U32 cycleLog, 993 U32 maxDist, 994 U32 loadedDictEnd, 995 void const* src) 996 { 997 U32 const cycleSize = 1u << cycleLog; 998 U32 const curr = (U32)((BYTE const*)src - window.base); 999 U32 const minIndexToOverflowCorrect = cycleSize 1000 + MAX(maxDist, cycleSize) 1001 + ZSTD_WINDOW_START_INDEX; 1002 1003 /* Adjust the min index to backoff the overflow correction frequency, 1004 * so we don't waste too much CPU in overflow correction. If this 1005 * computation overflows we don't really care, we just need to make 1006 * sure it is at least minIndexToOverflowCorrect. 1007 */ 1008 U32 const adjustment = window.nbOverflowCorrections + 1; 1009 U32 const adjustedIndex = MAX(minIndexToOverflowCorrect * adjustment, 1010 minIndexToOverflowCorrect); 1011 U32 const indexLargeEnough = curr > adjustedIndex; 1012 1013 /* Only overflow correct early if the dictionary is invalidated already, 1014 * so we don't hurt compression ratio. 1015 */ 1016 U32 const dictionaryInvalidated = curr > maxDist + loadedDictEnd; 1017 1018 return indexLargeEnough && dictionaryInvalidated; 1019 } 1020 1021 /** 1022 * ZSTD_window_needOverflowCorrection(): 1023 * Returns non-zero if the indices are getting too large and need overflow 1024 * protection. 1025 */ 1026 MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window, 1027 U32 cycleLog, 1028 U32 maxDist, 1029 U32 loadedDictEnd, 1030 void const* src, 1031 void const* srcEnd) 1032 { 1033 U32 const curr = (U32)((BYTE const*)srcEnd - window.base); 1034 if (ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) { 1035 if (ZSTD_window_canOverflowCorrect(window, cycleLog, maxDist, loadedDictEnd, src)) { 1036 return 1; 1037 } 1038 } 1039 return curr > ZSTD_CURRENT_MAX; 1040 } 1041 1042 /** 1043 * ZSTD_window_correctOverflow(): 1044 * Reduces the indices to protect from index overflow. 1045 * Returns the correction made to the indices, which must be applied to every 1046 * stored index. 1047 * 1048 * The least significant cycleLog bits of the indices must remain the same, 1049 * which may be 0. Every index up to maxDist in the past must be valid. 1050 */ 1051 MEM_STATIC 1052 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR 1053 U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog, 1054 U32 maxDist, void const* src) 1055 { 1056 /* preemptive overflow correction: 1057 * 1. correction is large enough: 1058 * lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog 1059 * 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog 1060 * 1061 * current - newCurrent 1062 * > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog) 1063 * > (3<<29) - (1<<chainLog) 1064 * > (3<<29) - (1<<30) (NOTE: chainLog <= 30) 1065 * > 1<<29 1066 * 1067 * 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow: 1068 * After correction, current is less than (1<<chainLog + 1<<windowLog). 1069 * In 64-bit mode we are safe, because we have 64-bit ptrdiff_t. 1070 * In 32-bit mode we are safe, because (chainLog <= 29), so 1071 * ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32. 1072 * 3. (cctx->lowLimit + 1<<windowLog) < 1<<32: 1073 * windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32. 1074 */ 1075 U32 const cycleSize = 1u << cycleLog; 1076 U32 const cycleMask = cycleSize - 1; 1077 U32 const curr = (U32)((BYTE const*)src - window->base); 1078 U32 const currentCycle = curr & cycleMask; 1079 /* Ensure newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX. */ 1080 U32 const currentCycleCorrection = currentCycle < ZSTD_WINDOW_START_INDEX 1081 ? MAX(cycleSize, ZSTD_WINDOW_START_INDEX) 1082 : 0; 1083 U32 const newCurrent = currentCycle 1084 + currentCycleCorrection 1085 + MAX(maxDist, cycleSize); 1086 U32 const correction = curr - newCurrent; 1087 /* maxDist must be a power of two so that: 1088 * (newCurrent & cycleMask) == (curr & cycleMask) 1089 * This is required to not corrupt the chains / binary tree. 1090 */ 1091 assert((maxDist & (maxDist - 1)) == 0); 1092 assert((curr & cycleMask) == (newCurrent & cycleMask)); 1093 assert(curr > newCurrent); 1094 if (!ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) { 1095 /* Loose bound, should be around 1<<29 (see above) */ 1096 assert(correction > 1<<28); 1097 } 1098 1099 window->base += correction; 1100 window->dictBase += correction; 1101 if (window->lowLimit < correction + ZSTD_WINDOW_START_INDEX) { 1102 window->lowLimit = ZSTD_WINDOW_START_INDEX; 1103 } else { 1104 window->lowLimit -= correction; 1105 } 1106 if (window->dictLimit < correction + ZSTD_WINDOW_START_INDEX) { 1107 window->dictLimit = ZSTD_WINDOW_START_INDEX; 1108 } else { 1109 window->dictLimit -= correction; 1110 } 1111 1112 /* Ensure we can still reference the full window. */ 1113 assert(newCurrent >= maxDist); 1114 assert(newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX); 1115 /* Ensure that lowLimit and dictLimit didn't underflow. */ 1116 assert(window->lowLimit <= newCurrent); 1117 assert(window->dictLimit <= newCurrent); 1118 1119 ++window->nbOverflowCorrections; 1120 1121 DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction, 1122 window->lowLimit); 1123 return correction; 1124 } 1125 1126 /** 1127 * ZSTD_window_enforceMaxDist(): 1128 * Updates lowLimit so that: 1129 * (srcEnd - base) - lowLimit == maxDist + loadedDictEnd 1130 * 1131 * It ensures index is valid as long as index >= lowLimit. 1132 * This must be called before a block compression call. 1133 * 1134 * loadedDictEnd is only defined if a dictionary is in use for current compression. 1135 * As the name implies, loadedDictEnd represents the index at end of dictionary. 1136 * The value lies within context's referential, it can be directly compared to blockEndIdx. 1137 * 1138 * If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0. 1139 * If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit. 1140 * This is because dictionaries are allowed to be referenced fully 1141 * as long as the last byte of the dictionary is in the window. 1142 * Once input has progressed beyond window size, dictionary cannot be referenced anymore. 1143 * 1144 * In normal dict mode, the dictionary lies between lowLimit and dictLimit. 1145 * In dictMatchState mode, lowLimit and dictLimit are the same, 1146 * and the dictionary is below them. 1147 * forceWindow and dictMatchState are therefore incompatible. 1148 */ 1149 MEM_STATIC void 1150 ZSTD_window_enforceMaxDist(ZSTD_window_t* window, 1151 const void* blockEnd, 1152 U32 maxDist, 1153 U32* loadedDictEndPtr, 1154 const ZSTD_matchState_t** dictMatchStatePtr) 1155 { 1156 U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base); 1157 U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0; 1158 DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u", 1159 (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd); 1160 1161 /* - When there is no dictionary : loadedDictEnd == 0. 1162 In which case, the test (blockEndIdx > maxDist) is merely to avoid 1163 overflowing next operation `newLowLimit = blockEndIdx - maxDist`. 1164 - When there is a standard dictionary : 1165 Index referential is copied from the dictionary, 1166 which means it starts from 0. 1167 In which case, loadedDictEnd == dictSize, 1168 and it makes sense to compare `blockEndIdx > maxDist + dictSize` 1169 since `blockEndIdx` also starts from zero. 1170 - When there is an attached dictionary : 1171 loadedDictEnd is expressed within the referential of the context, 1172 so it can be directly compared against blockEndIdx. 1173 */ 1174 if (blockEndIdx > maxDist + loadedDictEnd) { 1175 U32 const newLowLimit = blockEndIdx - maxDist; 1176 if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit; 1177 if (window->dictLimit < window->lowLimit) { 1178 DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u", 1179 (unsigned)window->dictLimit, (unsigned)window->lowLimit); 1180 window->dictLimit = window->lowLimit; 1181 } 1182 /* On reaching window size, dictionaries are invalidated */ 1183 if (loadedDictEndPtr) *loadedDictEndPtr = 0; 1184 if (dictMatchStatePtr) *dictMatchStatePtr = NULL; 1185 } 1186 } 1187 1188 /* Similar to ZSTD_window_enforceMaxDist(), 1189 * but only invalidates dictionary 1190 * when input progresses beyond window size. 1191 * assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL) 1192 * loadedDictEnd uses same referential as window->base 1193 * maxDist is the window size */ 1194 MEM_STATIC void 1195 ZSTD_checkDictValidity(const ZSTD_window_t* window, 1196 const void* blockEnd, 1197 U32 maxDist, 1198 U32* loadedDictEndPtr, 1199 const ZSTD_matchState_t** dictMatchStatePtr) 1200 { 1201 assert(loadedDictEndPtr != NULL); 1202 assert(dictMatchStatePtr != NULL); 1203 { U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base); 1204 U32 const loadedDictEnd = *loadedDictEndPtr; 1205 DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u", 1206 (unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd); 1207 assert(blockEndIdx >= loadedDictEnd); 1208 1209 if (blockEndIdx > loadedDictEnd + maxDist || loadedDictEnd != window->dictLimit) { 1210 /* On reaching window size, dictionaries are invalidated. 1211 * For simplification, if window size is reached anywhere within next block, 1212 * the dictionary is invalidated for the full block. 1213 * 1214 * We also have to invalidate the dictionary if ZSTD_window_update() has detected 1215 * non-contiguous segments, which means that loadedDictEnd != window->dictLimit. 1216 * loadedDictEnd may be 0, if forceWindow is true, but in that case we never use 1217 * dictMatchState, so setting it to NULL is not a problem. 1218 */ 1219 DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)"); 1220 *loadedDictEndPtr = 0; 1221 *dictMatchStatePtr = NULL; 1222 } else { 1223 if (*loadedDictEndPtr != 0) { 1224 DEBUGLOG(6, "dictionary considered valid for current block"); 1225 } } } 1226 } 1227 1228 MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) { 1229 ZSTD_memset(window, 0, sizeof(*window)); 1230 window->base = (BYTE const*)" "; 1231 window->dictBase = (BYTE const*)" "; 1232 ZSTD_STATIC_ASSERT(ZSTD_DUBT_UNSORTED_MARK < ZSTD_WINDOW_START_INDEX); /* Start above ZSTD_DUBT_UNSORTED_MARK */ 1233 window->dictLimit = ZSTD_WINDOW_START_INDEX; /* start from >0, so that 1st position is valid */ 1234 window->lowLimit = ZSTD_WINDOW_START_INDEX; /* it ensures first and later CCtx usages compress the same */ 1235 window->nextSrc = window->base + ZSTD_WINDOW_START_INDEX; /* see issue #1241 */ 1236 window->nbOverflowCorrections = 0; 1237 } 1238 1239 /** 1240 * ZSTD_window_update(): 1241 * Updates the window by appending [src, src + srcSize) to the window. 1242 * If it is not contiguous, the current prefix becomes the extDict, and we 1243 * forget about the extDict. Handles overlap of the prefix and extDict. 1244 * Returns non-zero if the segment is contiguous. 1245 */ 1246 MEM_STATIC 1247 ZSTD_ALLOW_POINTER_OVERFLOW_ATTR 1248 U32 ZSTD_window_update(ZSTD_window_t* window, 1249 void const* src, size_t srcSize, 1250 int forceNonContiguous) 1251 { 1252 BYTE const* const ip = (BYTE const*)src; 1253 U32 contiguous = 1; 1254 DEBUGLOG(5, "ZSTD_window_update"); 1255 if (srcSize == 0) 1256 return contiguous; 1257 assert(window->base != NULL); 1258 assert(window->dictBase != NULL); 1259 /* Check if blocks follow each other */ 1260 if (src != window->nextSrc || forceNonContiguous) { 1261 /* not contiguous */ 1262 size_t const distanceFromBase = (size_t)(window->nextSrc - window->base); 1263 DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit); 1264 window->lowLimit = window->dictLimit; 1265 assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */ 1266 window->dictLimit = (U32)distanceFromBase; 1267 window->dictBase = window->base; 1268 window->base = ip - distanceFromBase; 1269 /* ms->nextToUpdate = window->dictLimit; */ 1270 if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */ 1271 contiguous = 0; 1272 } 1273 window->nextSrc = ip + srcSize; 1274 /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */ 1275 if ( (ip+srcSize > window->dictBase + window->lowLimit) 1276 & (ip < window->dictBase + window->dictLimit)) { 1277 ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase; 1278 U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx; 1279 window->lowLimit = lowLimitMax; 1280 DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit); 1281 } 1282 return contiguous; 1283 } 1284 1285 /** 1286 * Returns the lowest allowed match index. It may either be in the ext-dict or the prefix. 1287 */ 1288 MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog) 1289 { 1290 U32 const maxDistance = 1U << windowLog; 1291 U32 const lowestValid = ms->window.lowLimit; 1292 U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; 1293 U32 const isDictionary = (ms->loadedDictEnd != 0); 1294 /* When using a dictionary the entire dictionary is valid if a single byte of the dictionary 1295 * is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't 1296 * valid for the entire block. So this check is sufficient to find the lowest valid match index. 1297 */ 1298 U32 const matchLowest = isDictionary ? lowestValid : withinWindow; 1299 return matchLowest; 1300 } 1301 1302 /** 1303 * Returns the lowest allowed match index in the prefix. 1304 */ 1305 MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog) 1306 { 1307 U32 const maxDistance = 1U << windowLog; 1308 U32 const lowestValid = ms->window.dictLimit; 1309 U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid; 1310 U32 const isDictionary = (ms->loadedDictEnd != 0); 1311 /* When computing the lowest prefix index we need to take the dictionary into account to handle 1312 * the edge case where the dictionary and the source are contiguous in memory. 1313 */ 1314 U32 const matchLowest = isDictionary ? lowestValid : withinWindow; 1315 return matchLowest; 1316 } 1317 1318 1319 1320 /* debug functions */ 1321 #if (DEBUGLEVEL>=2) 1322 1323 MEM_STATIC double ZSTD_fWeight(U32 rawStat) 1324 { 1325 U32 const fp_accuracy = 8; 1326 U32 const fp_multiplier = (1 << fp_accuracy); 1327 U32 const newStat = rawStat + 1; 1328 U32 const hb = ZSTD_highbit32(newStat); 1329 U32 const BWeight = hb * fp_multiplier; 1330 U32 const FWeight = (newStat << fp_accuracy) >> hb; 1331 U32 const weight = BWeight + FWeight; 1332 assert(hb + fp_accuracy < 31); 1333 return (double)weight / fp_multiplier; 1334 } 1335 1336 /* display a table content, 1337 * listing each element, its frequency, and its predicted bit cost */ 1338 MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max) 1339 { 1340 unsigned u, sum; 1341 for (u=0, sum=0; u<=max; u++) sum += table[u]; 1342 DEBUGLOG(2, "total nb elts: %u", sum); 1343 for (u=0; u<=max; u++) { 1344 DEBUGLOG(2, "%2u: %5u (%.2f)", 1345 u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) ); 1346 } 1347 } 1348 1349 #endif 1350 1351 /* Short Cache */ 1352 1353 /* Normally, zstd matchfinders follow this flow: 1354 * 1. Compute hash at ip 1355 * 2. Load index from hashTable[hash] 1356 * 3. Check if *ip == *(base + index) 1357 * In dictionary compression, loading *(base + index) is often an L2 or even L3 miss. 1358 * 1359 * Short cache is an optimization which allows us to avoid step 3 most of the time 1360 * when the data doesn't actually match. With short cache, the flow becomes: 1361 * 1. Compute (hash, currentTag) at ip. currentTag is an 8-bit independent hash at ip. 1362 * 2. Load (index, matchTag) from hashTable[hash]. See ZSTD_writeTaggedIndex to understand how this works. 1363 * 3. Only if currentTag == matchTag, check *ip == *(base + index). Otherwise, continue. 1364 * 1365 * Currently, short cache is only implemented in CDict hashtables. Thus, its use is limited to 1366 * dictMatchState matchfinders. 1367 */ 1368 #define ZSTD_SHORT_CACHE_TAG_BITS 8 1369 #define ZSTD_SHORT_CACHE_TAG_MASK ((1u << ZSTD_SHORT_CACHE_TAG_BITS) - 1) 1370 1371 /* Helper function for ZSTD_fillHashTable and ZSTD_fillDoubleHashTable. 1372 * Unpacks hashAndTag into (hash, tag), then packs (index, tag) into hashTable[hash]. */ 1373 MEM_STATIC void ZSTD_writeTaggedIndex(U32* const hashTable, size_t hashAndTag, U32 index) { 1374 size_t const hash = hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS; 1375 U32 const tag = (U32)(hashAndTag & ZSTD_SHORT_CACHE_TAG_MASK); 1376 assert(index >> (32 - ZSTD_SHORT_CACHE_TAG_BITS) == 0); 1377 hashTable[hash] = (index << ZSTD_SHORT_CACHE_TAG_BITS) | tag; 1378 } 1379 1380 /* Helper function for short cache matchfinders. 1381 * Unpacks tag1 and tag2 from lower bits of packedTag1 and packedTag2, then checks if the tags match. */ 1382 MEM_STATIC int ZSTD_comparePackedTags(size_t packedTag1, size_t packedTag2) { 1383 U32 const tag1 = packedTag1 & ZSTD_SHORT_CACHE_TAG_MASK; 1384 U32 const tag2 = packedTag2 & ZSTD_SHORT_CACHE_TAG_MASK; 1385 return tag1 == tag2; 1386 } 1387 1388 #if defined (__cplusplus) 1389 } 1390 #endif 1391 1392 /* =============================================================== 1393 * Shared internal declarations 1394 * These prototypes may be called from sources not in lib/compress 1395 * =============================================================== */ 1396 1397 /* ZSTD_loadCEntropy() : 1398 * dict : must point at beginning of a valid zstd dictionary. 1399 * return : size of dictionary header (size of magic number + dict ID + entropy tables) 1400 * assumptions : magic number supposed already checked 1401 * and dictSize >= 8 */ 1402 size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace, 1403 const void* const dict, size_t dictSize); 1404 1405 void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs); 1406 1407 /* ============================================================== 1408 * Private declarations 1409 * These prototypes shall only be called from within lib/compress 1410 * ============================================================== */ 1411 1412 /* ZSTD_getCParamsFromCCtxParams() : 1413 * cParams are built depending on compressionLevel, src size hints, 1414 * LDM and manually set compression parameters. 1415 * Note: srcSizeHint == 0 means 0! 1416 */ 1417 ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams( 1418 const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode); 1419 1420 /*! ZSTD_initCStream_internal() : 1421 * Private use only. Init streaming operation. 1422 * expects params to be valid. 1423 * must receive dict, or cdict, or none, but not both. 1424 * @return : 0, or an error code */ 1425 size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, 1426 const void* dict, size_t dictSize, 1427 const ZSTD_CDict* cdict, 1428 const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize); 1429 1430 void ZSTD_resetSeqStore(seqStore_t* ssPtr); 1431 1432 /*! ZSTD_getCParamsFromCDict() : 1433 * as the name implies */ 1434 ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict); 1435 1436 /* ZSTD_compressBegin_advanced_internal() : 1437 * Private use only. To be called from zstdmt_compress.c. */ 1438 size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx, 1439 const void* dict, size_t dictSize, 1440 ZSTD_dictContentType_e dictContentType, 1441 ZSTD_dictTableLoadMethod_e dtlm, 1442 const ZSTD_CDict* cdict, 1443 const ZSTD_CCtx_params* params, 1444 unsigned long long pledgedSrcSize); 1445 1446 /* ZSTD_compress_advanced_internal() : 1447 * Private use only. To be called from zstdmt_compress.c. */ 1448 size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx, 1449 void* dst, size_t dstCapacity, 1450 const void* src, size_t srcSize, 1451 const void* dict,size_t dictSize, 1452 const ZSTD_CCtx_params* params); 1453 1454 1455 /* ZSTD_writeLastEmptyBlock() : 1456 * output an empty Block with end-of-frame mark to complete a frame 1457 * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h)) 1458 * or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize) 1459 */ 1460 size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity); 1461 1462 1463 /* ZSTD_referenceExternalSequences() : 1464 * Must be called before starting a compression operation. 1465 * seqs must parse a prefix of the source. 1466 * This cannot be used when long range matching is enabled. 1467 * Zstd will use these sequences, and pass the literals to a secondary block 1468 * compressor. 1469 * NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory 1470 * access and data corruption. 1471 */ 1472 void ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq); 1473 1474 /** ZSTD_cycleLog() : 1475 * condition for correct operation : hashLog > 1 */ 1476 U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat); 1477 1478 /** ZSTD_CCtx_trace() : 1479 * Trace the end of a compression call. 1480 */ 1481 void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize); 1482 1483 /* Returns 0 on success, and a ZSTD_error otherwise. This function scans through an array of 1484 * ZSTD_Sequence, storing the sequences it finds, until it reaches a block delimiter. 1485 * Note that the block delimiter must include the last literals of the block. 1486 */ 1487 size_t 1488 ZSTD_copySequencesToSeqStoreExplicitBlockDelim(ZSTD_CCtx* cctx, 1489 ZSTD_sequencePosition* seqPos, 1490 const ZSTD_Sequence* const inSeqs, size_t inSeqsSize, 1491 const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch); 1492 1493 /* Returns the number of bytes to move the current read position back by. 1494 * Only non-zero if we ended up splitting a sequence. 1495 * Otherwise, it may return a ZSTD error if something went wrong. 1496 * 1497 * This function will attempt to scan through blockSize bytes 1498 * represented by the sequences in @inSeqs, 1499 * storing any (partial) sequences. 1500 * 1501 * Occasionally, we may want to change the actual number of bytes we consumed from inSeqs to 1502 * avoid splitting a match, or to avoid splitting a match such that it would produce a match 1503 * smaller than MINMATCH. In this case, we return the number of bytes that we didn't read from this block. 1504 */ 1505 size_t 1506 ZSTD_copySequencesToSeqStoreNoBlockDelim(ZSTD_CCtx* cctx, ZSTD_sequencePosition* seqPos, 1507 const ZSTD_Sequence* const inSeqs, size_t inSeqsSize, 1508 const void* src, size_t blockSize, ZSTD_paramSwitch_e externalRepSearch); 1509 1510 /* Returns 1 if an external sequence producer is registered, otherwise returns 0. */ 1511 MEM_STATIC int ZSTD_hasExtSeqProd(const ZSTD_CCtx_params* params) { 1512 return params->extSeqProdFunc != NULL; 1513 } 1514 1515 /* =============================================================== 1516 * Deprecated definitions that are still used internally to avoid 1517 * deprecation warnings. These functions are exactly equivalent to 1518 * their public variants, but avoid the deprecation warnings. 1519 * =============================================================== */ 1520 1521 size_t ZSTD_compressBegin_usingCDict_deprecated(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); 1522 1523 size_t ZSTD_compressContinue_public(ZSTD_CCtx* cctx, 1524 void* dst, size_t dstCapacity, 1525 const void* src, size_t srcSize); 1526 1527 size_t ZSTD_compressEnd_public(ZSTD_CCtx* cctx, 1528 void* dst, size_t dstCapacity, 1529 const void* src, size_t srcSize); 1530 1531 size_t ZSTD_compressBlock_deprecated(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); 1532 1533 1534 #endif /* ZSTD_COMPRESS_H */ 1535