1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/GenericDomTree.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Cloning.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/LoopUtils.h"
57 #include "llvm/Transforms/Utils/ValueMapper.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <numeric>
62 #include <utility>
63
64 #define DEBUG_TYPE "simple-loop-unswitch"
65
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
68
69 STATISTIC(NumBranches, "Number of branches unswitched");
70 STATISTIC(NumSwitches, "Number of switches unswitched");
71 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
72 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
73 STATISTIC(
74 NumCostMultiplierSkipped,
75 "Number of unswitch candidates that had their cost multiplier skipped");
76
77 static cl::opt<bool> EnableNonTrivialUnswitch(
78 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
79 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
80 "following the configuration passed into the pass."));
81
82 static cl::opt<int>
83 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
84 cl::desc("The cost threshold for unswitching a loop."));
85
86 static cl::opt<bool> EnableUnswitchCostMultiplier(
87 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
88 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
89 "explosion in nontrivial unswitch."));
90 static cl::opt<int> UnswitchSiblingsToplevelDiv(
91 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
92 cl::desc("Toplevel siblings divisor for cost multiplier."));
93 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
94 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
95 cl::desc("Number of unswitch candidates that are ignored when calculating "
96 "cost multiplier."));
97 static cl::opt<bool> UnswitchGuards(
98 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
99 cl::desc("If enabled, simple loop unswitching will also consider "
100 "llvm.experimental.guard intrinsics as unswitch candidates."));
101 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
102 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
103 cl::init(false), cl::Hidden,
104 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
105 "null checks to save time analyzing if we can keep it."));
106
107 /// Collect all of the loop invariant input values transitively used by the
108 /// homogeneous instruction graph from a given root.
109 ///
110 /// This essentially walks from a root recursively through loop variant operands
111 /// which have the exact same opcode and finds all inputs which are loop
112 /// invariant. For some operations these can be re-associated and unswitched out
113 /// of the loop entirely.
114 static TinyPtrVector<Value *>
collectHomogenousInstGraphLoopInvariants(Loop & L,Instruction & Root,LoopInfo & LI)115 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
116 LoopInfo &LI) {
117 assert(!L.isLoopInvariant(&Root) &&
118 "Only need to walk the graph if root itself is not invariant.");
119 TinyPtrVector<Value *> Invariants;
120
121 bool IsRootAnd = match(&Root, m_LogicalAnd());
122 bool IsRootOr = match(&Root, m_LogicalOr());
123
124 // Build a worklist and recurse through operators collecting invariants.
125 SmallVector<Instruction *, 4> Worklist;
126 SmallPtrSet<Instruction *, 8> Visited;
127 Worklist.push_back(&Root);
128 Visited.insert(&Root);
129 do {
130 Instruction &I = *Worklist.pop_back_val();
131 for (Value *OpV : I.operand_values()) {
132 // Skip constants as unswitching isn't interesting for them.
133 if (isa<Constant>(OpV))
134 continue;
135
136 // Add it to our result if loop invariant.
137 if (L.isLoopInvariant(OpV)) {
138 Invariants.push_back(OpV);
139 continue;
140 }
141
142 // If not an instruction with the same opcode, nothing we can do.
143 Instruction *OpI = dyn_cast<Instruction>(OpV);
144
145 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
146 (IsRootOr && match(OpI, m_LogicalOr())))) {
147 // Visit this operand.
148 if (Visited.insert(OpI).second)
149 Worklist.push_back(OpI);
150 }
151 }
152 } while (!Worklist.empty());
153
154 return Invariants;
155 }
156
replaceLoopInvariantUses(Loop & L,Value * Invariant,Constant & Replacement)157 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
158 Constant &Replacement) {
159 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
160
161 // Replace uses of LIC in the loop with the given constant.
162 // We use make_early_inc_range as set invalidates the iterator.
163 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
164 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
165
166 // Replace this use within the loop body.
167 if (UserI && L.contains(UserI))
168 U.set(&Replacement);
169 }
170 }
171
172 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
173 /// incoming values along this edge.
areLoopExitPHIsLoopInvariant(Loop & L,BasicBlock & ExitingBB,BasicBlock & ExitBB)174 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
175 BasicBlock &ExitBB) {
176 for (Instruction &I : ExitBB) {
177 auto *PN = dyn_cast<PHINode>(&I);
178 if (!PN)
179 // No more PHIs to check.
180 return true;
181
182 // If the incoming value for this edge isn't loop invariant the unswitch
183 // won't be trivial.
184 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
185 return false;
186 }
187 llvm_unreachable("Basic blocks should never be empty!");
188 }
189
190 /// Insert code to test a set of loop invariant values, and conditionally branch
191 /// on them.
buildPartialUnswitchConditionalBranch(BasicBlock & BB,ArrayRef<Value * > Invariants,bool Direction,BasicBlock & UnswitchedSucc,BasicBlock & NormalSucc)192 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
193 ArrayRef<Value *> Invariants,
194 bool Direction,
195 BasicBlock &UnswitchedSucc,
196 BasicBlock &NormalSucc) {
197 IRBuilder<> IRB(&BB);
198
199 Value *Cond = Direction ? IRB.CreateOr(Invariants) :
200 IRB.CreateAnd(Invariants);
201 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
202 Direction ? &NormalSucc : &UnswitchedSucc);
203 }
204
205 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
206 ///
207 /// Requires that the loop exit and unswitched basic block are the same, and
208 /// that the exiting block was a unique predecessor of that block. Rewrites the
209 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
210 /// PHI nodes from the old preheader that now contains the unswitched
211 /// terminator.
rewritePHINodesForUnswitchedExitBlock(BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH)212 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
213 BasicBlock &OldExitingBB,
214 BasicBlock &OldPH) {
215 for (PHINode &PN : UnswitchedBB.phis()) {
216 // When the loop exit is directly unswitched we just need to update the
217 // incoming basic block. We loop to handle weird cases with repeated
218 // incoming blocks, but expect to typically only have one operand here.
219 for (auto i : seq<int>(0, PN.getNumOperands())) {
220 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
221 "Found incoming block different from unique predecessor!");
222 PN.setIncomingBlock(i, &OldPH);
223 }
224 }
225 }
226
227 /// Rewrite the PHI nodes in the loop exit basic block and the split off
228 /// unswitched block.
229 ///
230 /// Because the exit block remains an exit from the loop, this rewrites the
231 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
232 /// nodes into the unswitched basic block to select between the value in the
233 /// old preheader and the loop exit.
rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock & ExitBB,BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH,bool FullUnswitch)234 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
235 BasicBlock &UnswitchedBB,
236 BasicBlock &OldExitingBB,
237 BasicBlock &OldPH,
238 bool FullUnswitch) {
239 assert(&ExitBB != &UnswitchedBB &&
240 "Must have different loop exit and unswitched blocks!");
241 Instruction *InsertPt = &*UnswitchedBB.begin();
242 for (PHINode &PN : ExitBB.phis()) {
243 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
244 PN.getName() + ".split", InsertPt);
245
246 // Walk backwards over the old PHI node's inputs to minimize the cost of
247 // removing each one. We have to do this weird loop manually so that we
248 // create the same number of new incoming edges in the new PHI as we expect
249 // each case-based edge to be included in the unswitched switch in some
250 // cases.
251 // FIXME: This is really, really gross. It would be much cleaner if LLVM
252 // allowed us to create a single entry for a predecessor block without
253 // having separate entries for each "edge" even though these edges are
254 // required to produce identical results.
255 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
256 if (PN.getIncomingBlock(i) != &OldExitingBB)
257 continue;
258
259 Value *Incoming = PN.getIncomingValue(i);
260 if (FullUnswitch)
261 // No more edge from the old exiting block to the exit block.
262 PN.removeIncomingValue(i);
263
264 NewPN->addIncoming(Incoming, &OldPH);
265 }
266
267 // Now replace the old PHI with the new one and wire the old one in as an
268 // input to the new one.
269 PN.replaceAllUsesWith(NewPN);
270 NewPN->addIncoming(&PN, &ExitBB);
271 }
272 }
273
274 /// Hoist the current loop up to the innermost loop containing a remaining exit.
275 ///
276 /// Because we've removed an exit from the loop, we may have changed the set of
277 /// loops reachable and need to move the current loop up the loop nest or even
278 /// to an entirely separate nest.
hoistLoopToNewParent(Loop & L,BasicBlock & Preheader,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU,ScalarEvolution * SE)279 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
280 DominatorTree &DT, LoopInfo &LI,
281 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
282 // If the loop is already at the top level, we can't hoist it anywhere.
283 Loop *OldParentL = L.getParentLoop();
284 if (!OldParentL)
285 return;
286
287 SmallVector<BasicBlock *, 4> Exits;
288 L.getExitBlocks(Exits);
289 Loop *NewParentL = nullptr;
290 for (auto *ExitBB : Exits)
291 if (Loop *ExitL = LI.getLoopFor(ExitBB))
292 if (!NewParentL || NewParentL->contains(ExitL))
293 NewParentL = ExitL;
294
295 if (NewParentL == OldParentL)
296 return;
297
298 // The new parent loop (if different) should always contain the old one.
299 if (NewParentL)
300 assert(NewParentL->contains(OldParentL) &&
301 "Can only hoist this loop up the nest!");
302
303 // The preheader will need to move with the body of this loop. However,
304 // because it isn't in this loop we also need to update the primary loop map.
305 assert(OldParentL == LI.getLoopFor(&Preheader) &&
306 "Parent loop of this loop should contain this loop's preheader!");
307 LI.changeLoopFor(&Preheader, NewParentL);
308
309 // Remove this loop from its old parent.
310 OldParentL->removeChildLoop(&L);
311
312 // Add the loop either to the new parent or as a top-level loop.
313 if (NewParentL)
314 NewParentL->addChildLoop(&L);
315 else
316 LI.addTopLevelLoop(&L);
317
318 // Remove this loops blocks from the old parent and every other loop up the
319 // nest until reaching the new parent. Also update all of these
320 // no-longer-containing loops to reflect the nesting change.
321 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
322 OldContainingL = OldContainingL->getParentLoop()) {
323 llvm::erase_if(OldContainingL->getBlocksVector(),
324 [&](const BasicBlock *BB) {
325 return BB == &Preheader || L.contains(BB);
326 });
327
328 OldContainingL->getBlocksSet().erase(&Preheader);
329 for (BasicBlock *BB : L.blocks())
330 OldContainingL->getBlocksSet().erase(BB);
331
332 // Because we just hoisted a loop out of this one, we have essentially
333 // created new exit paths from it. That means we need to form LCSSA PHI
334 // nodes for values used in the no-longer-nested loop.
335 formLCSSA(*OldContainingL, DT, &LI, SE);
336
337 // We shouldn't need to form dedicated exits because the exit introduced
338 // here is the (just split by unswitching) preheader. However, after trivial
339 // unswitching it is possible to get new non-dedicated exits out of parent
340 // loop so let's conservatively form dedicated exit blocks and figure out
341 // if we can optimize later.
342 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
343 /*PreserveLCSSA*/ true);
344 }
345 }
346
347 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
348 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
349 // as exiting block.
getTopMostExitingLoop(BasicBlock * ExitBB,LoopInfo & LI)350 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
351 Loop *TopMost = LI.getLoopFor(ExitBB);
352 Loop *Current = TopMost;
353 while (Current) {
354 if (Current->isLoopExiting(ExitBB))
355 TopMost = Current;
356 Current = Current->getParentLoop();
357 }
358 return TopMost;
359 }
360
361 /// Unswitch a trivial branch if the condition is loop invariant.
362 ///
363 /// This routine should only be called when loop code leading to the branch has
364 /// been validated as trivial (no side effects). This routine checks if the
365 /// condition is invariant and one of the successors is a loop exit. This
366 /// allows us to unswitch without duplicating the loop, making it trivial.
367 ///
368 /// If this routine fails to unswitch the branch it returns false.
369 ///
370 /// If the branch can be unswitched, this routine splits the preheader and
371 /// hoists the branch above that split. Preserves loop simplified form
372 /// (splitting the exit block as necessary). It simplifies the branch within
373 /// the loop to an unconditional branch but doesn't remove it entirely. Further
374 /// cleanup can be done with some simplify-cfg like pass.
375 ///
376 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
377 /// invalidated by this.
unswitchTrivialBranch(Loop & L,BranchInst & BI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)378 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
379 LoopInfo &LI, ScalarEvolution *SE,
380 MemorySSAUpdater *MSSAU) {
381 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
382 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
383
384 // The loop invariant values that we want to unswitch.
385 TinyPtrVector<Value *> Invariants;
386
387 // When true, we're fully unswitching the branch rather than just unswitching
388 // some input conditions to the branch.
389 bool FullUnswitch = false;
390
391 if (L.isLoopInvariant(BI.getCondition())) {
392 Invariants.push_back(BI.getCondition());
393 FullUnswitch = true;
394 } else {
395 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
396 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
397 if (Invariants.empty())
398 // Couldn't find invariant inputs!
399 return false;
400 }
401
402 // Check that one of the branch's successors exits, and which one.
403 bool ExitDirection = true;
404 int LoopExitSuccIdx = 0;
405 auto *LoopExitBB = BI.getSuccessor(0);
406 if (L.contains(LoopExitBB)) {
407 ExitDirection = false;
408 LoopExitSuccIdx = 1;
409 LoopExitBB = BI.getSuccessor(1);
410 if (L.contains(LoopExitBB))
411 return false;
412 }
413 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
414 auto *ParentBB = BI.getParent();
415 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
416 return false;
417
418 // When unswitching only part of the branch's condition, we need the exit
419 // block to be reached directly from the partially unswitched input. This can
420 // be done when the exit block is along the true edge and the branch condition
421 // is a graph of `or` operations, or the exit block is along the false edge
422 // and the condition is a graph of `and` operations.
423 if (!FullUnswitch) {
424 if (ExitDirection) {
425 if (!match(BI.getCondition(), m_LogicalOr()))
426 return false;
427 } else {
428 if (!match(BI.getCondition(), m_LogicalAnd()))
429 return false;
430 }
431 }
432
433 LLVM_DEBUG({
434 dbgs() << " unswitching trivial invariant conditions for: " << BI
435 << "\n";
436 for (Value *Invariant : Invariants) {
437 dbgs() << " " << *Invariant << " == true";
438 if (Invariant != Invariants.back())
439 dbgs() << " ||";
440 dbgs() << "\n";
441 }
442 });
443
444 // If we have scalar evolutions, we need to invalidate them including this
445 // loop, the loop containing the exit block and the topmost parent loop
446 // exiting via LoopExitBB.
447 if (SE) {
448 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
449 SE->forgetLoop(ExitL);
450 else
451 // Forget the entire nest as this exits the entire nest.
452 SE->forgetTopmostLoop(&L);
453 }
454
455 if (MSSAU && VerifyMemorySSA)
456 MSSAU->getMemorySSA()->verifyMemorySSA();
457
458 // Split the preheader, so that we know that there is a safe place to insert
459 // the conditional branch. We will change the preheader to have a conditional
460 // branch on LoopCond.
461 BasicBlock *OldPH = L.getLoopPreheader();
462 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
463
464 // Now that we have a place to insert the conditional branch, create a place
465 // to branch to: this is the exit block out of the loop that we are
466 // unswitching. We need to split this if there are other loop predecessors.
467 // Because the loop is in simplified form, *any* other predecessor is enough.
468 BasicBlock *UnswitchedBB;
469 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
470 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
471 "A branch's parent isn't a predecessor!");
472 UnswitchedBB = LoopExitBB;
473 } else {
474 UnswitchedBB =
475 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
476 }
477
478 if (MSSAU && VerifyMemorySSA)
479 MSSAU->getMemorySSA()->verifyMemorySSA();
480
481 // Actually move the invariant uses into the unswitched position. If possible,
482 // we do this by moving the instructions, but when doing partial unswitching
483 // we do it by building a new merge of the values in the unswitched position.
484 OldPH->getTerminator()->eraseFromParent();
485 if (FullUnswitch) {
486 // If fully unswitching, we can use the existing branch instruction.
487 // Splice it into the old PH to gate reaching the new preheader and re-point
488 // its successors.
489 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
490 BI);
491 if (MSSAU) {
492 // Temporarily clone the terminator, to make MSSA update cheaper by
493 // separating "insert edge" updates from "remove edge" ones.
494 ParentBB->getInstList().push_back(BI.clone());
495 } else {
496 // Create a new unconditional branch that will continue the loop as a new
497 // terminator.
498 BranchInst::Create(ContinueBB, ParentBB);
499 }
500 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
501 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
502 } else {
503 // Only unswitching a subset of inputs to the condition, so we will need to
504 // build a new branch that merges the invariant inputs.
505 if (ExitDirection)
506 assert(match(BI.getCondition(), m_LogicalOr()) &&
507 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
508 "condition!");
509 else
510 assert(match(BI.getCondition(), m_LogicalAnd()) &&
511 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
512 " condition!");
513 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
514 *UnswitchedBB, *NewPH);
515 }
516
517 // Update the dominator tree with the added edge.
518 DT.insertEdge(OldPH, UnswitchedBB);
519
520 // After the dominator tree was updated with the added edge, update MemorySSA
521 // if available.
522 if (MSSAU) {
523 SmallVector<CFGUpdate, 1> Updates;
524 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
525 MSSAU->applyInsertUpdates(Updates, DT);
526 }
527
528 // Finish updating dominator tree and memory ssa for full unswitch.
529 if (FullUnswitch) {
530 if (MSSAU) {
531 // Remove the cloned branch instruction.
532 ParentBB->getTerminator()->eraseFromParent();
533 // Create unconditional branch now.
534 BranchInst::Create(ContinueBB, ParentBB);
535 MSSAU->removeEdge(ParentBB, LoopExitBB);
536 }
537 DT.deleteEdge(ParentBB, LoopExitBB);
538 }
539
540 if (MSSAU && VerifyMemorySSA)
541 MSSAU->getMemorySSA()->verifyMemorySSA();
542
543 // Rewrite the relevant PHI nodes.
544 if (UnswitchedBB == LoopExitBB)
545 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
546 else
547 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
548 *ParentBB, *OldPH, FullUnswitch);
549
550 // The constant we can replace all of our invariants with inside the loop
551 // body. If any of the invariants have a value other than this the loop won't
552 // be entered.
553 ConstantInt *Replacement = ExitDirection
554 ? ConstantInt::getFalse(BI.getContext())
555 : ConstantInt::getTrue(BI.getContext());
556
557 // Since this is an i1 condition we can also trivially replace uses of it
558 // within the loop with a constant.
559 for (Value *Invariant : Invariants)
560 replaceLoopInvariantUses(L, Invariant, *Replacement);
561
562 // If this was full unswitching, we may have changed the nesting relationship
563 // for this loop so hoist it to its correct parent if needed.
564 if (FullUnswitch)
565 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
566
567 if (MSSAU && VerifyMemorySSA)
568 MSSAU->getMemorySSA()->verifyMemorySSA();
569
570 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
571 ++NumTrivial;
572 ++NumBranches;
573 return true;
574 }
575
576 /// Unswitch a trivial switch if the condition is loop invariant.
577 ///
578 /// This routine should only be called when loop code leading to the switch has
579 /// been validated as trivial (no side effects). This routine checks if the
580 /// condition is invariant and that at least one of the successors is a loop
581 /// exit. This allows us to unswitch without duplicating the loop, making it
582 /// trivial.
583 ///
584 /// If this routine fails to unswitch the switch it returns false.
585 ///
586 /// If the switch can be unswitched, this routine splits the preheader and
587 /// copies the switch above that split. If the default case is one of the
588 /// exiting cases, it copies the non-exiting cases and points them at the new
589 /// preheader. If the default case is not exiting, it copies the exiting cases
590 /// and points the default at the preheader. It preserves loop simplified form
591 /// (splitting the exit blocks as necessary). It simplifies the switch within
592 /// the loop by removing now-dead cases. If the default case is one of those
593 /// unswitched, it replaces its destination with a new basic block containing
594 /// only unreachable. Such basic blocks, while technically loop exits, are not
595 /// considered for unswitching so this is a stable transform and the same
596 /// switch will not be revisited. If after unswitching there is only a single
597 /// in-loop successor, the switch is further simplified to an unconditional
598 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
599 ///
600 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
601 /// invalidated by this.
unswitchTrivialSwitch(Loop & L,SwitchInst & SI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)602 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
603 LoopInfo &LI, ScalarEvolution *SE,
604 MemorySSAUpdater *MSSAU) {
605 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
606 Value *LoopCond = SI.getCondition();
607
608 // If this isn't switching on an invariant condition, we can't unswitch it.
609 if (!L.isLoopInvariant(LoopCond))
610 return false;
611
612 auto *ParentBB = SI.getParent();
613
614 // The same check must be used both for the default and the exit cases. We
615 // should never leave edges from the switch instruction to a basic block that
616 // we are unswitching, hence the condition used to determine the default case
617 // needs to also be used to populate ExitCaseIndices, which is then used to
618 // remove cases from the switch.
619 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
620 // BBToCheck is not an exit block if it is inside loop L.
621 if (L.contains(&BBToCheck))
622 return false;
623 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
624 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
625 return false;
626 // We do not unswitch a block that only has an unreachable statement, as
627 // it's possible this is a previously unswitched block. Only unswitch if
628 // either the terminator is not unreachable, or, if it is, it's not the only
629 // instruction in the block.
630 auto *TI = BBToCheck.getTerminator();
631 bool isUnreachable = isa<UnreachableInst>(TI);
632 return !isUnreachable ||
633 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
634 };
635
636 SmallVector<int, 4> ExitCaseIndices;
637 for (auto Case : SI.cases())
638 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
639 ExitCaseIndices.push_back(Case.getCaseIndex());
640 BasicBlock *DefaultExitBB = nullptr;
641 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
642 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
643 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
644 DefaultExitBB = SI.getDefaultDest();
645 } else if (ExitCaseIndices.empty())
646 return false;
647
648 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
649
650 if (MSSAU && VerifyMemorySSA)
651 MSSAU->getMemorySSA()->verifyMemorySSA();
652
653 // We may need to invalidate SCEVs for the outermost loop reached by any of
654 // the exits.
655 Loop *OuterL = &L;
656
657 if (DefaultExitBB) {
658 // Clear out the default destination temporarily to allow accurate
659 // predecessor lists to be examined below.
660 SI.setDefaultDest(nullptr);
661 // Check the loop containing this exit.
662 Loop *ExitL = LI.getLoopFor(DefaultExitBB);
663 if (!ExitL || ExitL->contains(OuterL))
664 OuterL = ExitL;
665 }
666
667 // Store the exit cases into a separate data structure and remove them from
668 // the switch.
669 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
670 SwitchInstProfUpdateWrapper::CaseWeightOpt>,
671 4> ExitCases;
672 ExitCases.reserve(ExitCaseIndices.size());
673 SwitchInstProfUpdateWrapper SIW(SI);
674 // We walk the case indices backwards so that we remove the last case first
675 // and don't disrupt the earlier indices.
676 for (unsigned Index : reverse(ExitCaseIndices)) {
677 auto CaseI = SI.case_begin() + Index;
678 // Compute the outer loop from this exit.
679 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
680 if (!ExitL || ExitL->contains(OuterL))
681 OuterL = ExitL;
682 // Save the value of this case.
683 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
684 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
685 // Delete the unswitched cases.
686 SIW.removeCase(CaseI);
687 }
688
689 if (SE) {
690 if (OuterL)
691 SE->forgetLoop(OuterL);
692 else
693 SE->forgetTopmostLoop(&L);
694 }
695
696 // Check if after this all of the remaining cases point at the same
697 // successor.
698 BasicBlock *CommonSuccBB = nullptr;
699 if (SI.getNumCases() > 0 &&
700 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
701 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
702 }))
703 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
704 if (!DefaultExitBB) {
705 // If we're not unswitching the default, we need it to match any cases to
706 // have a common successor or if we have no cases it is the common
707 // successor.
708 if (SI.getNumCases() == 0)
709 CommonSuccBB = SI.getDefaultDest();
710 else if (SI.getDefaultDest() != CommonSuccBB)
711 CommonSuccBB = nullptr;
712 }
713
714 // Split the preheader, so that we know that there is a safe place to insert
715 // the switch.
716 BasicBlock *OldPH = L.getLoopPreheader();
717 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
718 OldPH->getTerminator()->eraseFromParent();
719
720 // Now add the unswitched switch.
721 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
722 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
723
724 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
725 // First, we split any exit blocks with remaining in-loop predecessors. Then
726 // we update the PHIs in one of two ways depending on if there was a split.
727 // We walk in reverse so that we split in the same order as the cases
728 // appeared. This is purely for convenience of reading the resulting IR, but
729 // it doesn't cost anything really.
730 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
731 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
732 // Handle the default exit if necessary.
733 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
734 // ranges aren't quite powerful enough yet.
735 if (DefaultExitBB) {
736 if (pred_empty(DefaultExitBB)) {
737 UnswitchedExitBBs.insert(DefaultExitBB);
738 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
739 } else {
740 auto *SplitBB =
741 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
742 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
743 *ParentBB, *OldPH,
744 /*FullUnswitch*/ true);
745 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
746 }
747 }
748 // Note that we must use a reference in the for loop so that we update the
749 // container.
750 for (auto &ExitCase : reverse(ExitCases)) {
751 // Grab a reference to the exit block in the pair so that we can update it.
752 BasicBlock *ExitBB = std::get<1>(ExitCase);
753
754 // If this case is the last edge into the exit block, we can simply reuse it
755 // as it will no longer be a loop exit. No mapping necessary.
756 if (pred_empty(ExitBB)) {
757 // Only rewrite once.
758 if (UnswitchedExitBBs.insert(ExitBB).second)
759 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
760 continue;
761 }
762
763 // Otherwise we need to split the exit block so that we retain an exit
764 // block from the loop and a target for the unswitched condition.
765 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
766 if (!SplitExitBB) {
767 // If this is the first time we see this, do the split and remember it.
768 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
769 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
770 *ParentBB, *OldPH,
771 /*FullUnswitch*/ true);
772 }
773 // Update the case pair to point to the split block.
774 std::get<1>(ExitCase) = SplitExitBB;
775 }
776
777 // Now add the unswitched cases. We do this in reverse order as we built them
778 // in reverse order.
779 for (auto &ExitCase : reverse(ExitCases)) {
780 ConstantInt *CaseVal = std::get<0>(ExitCase);
781 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
782
783 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
784 }
785
786 // If the default was unswitched, re-point it and add explicit cases for
787 // entering the loop.
788 if (DefaultExitBB) {
789 NewSIW->setDefaultDest(DefaultExitBB);
790 NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
791
792 // We removed all the exit cases, so we just copy the cases to the
793 // unswitched switch.
794 for (const auto &Case : SI.cases())
795 NewSIW.addCase(Case.getCaseValue(), NewPH,
796 SIW.getSuccessorWeight(Case.getSuccessorIndex()));
797 } else if (DefaultCaseWeight) {
798 // We have to set branch weight of the default case.
799 uint64_t SW = *DefaultCaseWeight;
800 for (const auto &Case : SI.cases()) {
801 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
802 assert(W &&
803 "case weight must be defined as default case weight is defined");
804 SW += *W;
805 }
806 NewSIW.setSuccessorWeight(0, SW);
807 }
808
809 // If we ended up with a common successor for every path through the switch
810 // after unswitching, rewrite it to an unconditional branch to make it easy
811 // to recognize. Otherwise we potentially have to recognize the default case
812 // pointing at unreachable and other complexity.
813 if (CommonSuccBB) {
814 BasicBlock *BB = SI.getParent();
815 // We may have had multiple edges to this common successor block, so remove
816 // them as predecessors. We skip the first one, either the default or the
817 // actual first case.
818 bool SkippedFirst = DefaultExitBB == nullptr;
819 for (auto Case : SI.cases()) {
820 assert(Case.getCaseSuccessor() == CommonSuccBB &&
821 "Non-common successor!");
822 (void)Case;
823 if (!SkippedFirst) {
824 SkippedFirst = true;
825 continue;
826 }
827 CommonSuccBB->removePredecessor(BB,
828 /*KeepOneInputPHIs*/ true);
829 }
830 // Now nuke the switch and replace it with a direct branch.
831 SIW.eraseFromParent();
832 BranchInst::Create(CommonSuccBB, BB);
833 } else if (DefaultExitBB) {
834 assert(SI.getNumCases() > 0 &&
835 "If we had no cases we'd have a common successor!");
836 // Move the last case to the default successor. This is valid as if the
837 // default got unswitched it cannot be reached. This has the advantage of
838 // being simple and keeping the number of edges from this switch to
839 // successors the same, and avoiding any PHI update complexity.
840 auto LastCaseI = std::prev(SI.case_end());
841
842 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
843 SIW.setSuccessorWeight(
844 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
845 SIW.removeCase(LastCaseI);
846 }
847
848 // Walk the unswitched exit blocks and the unswitched split blocks and update
849 // the dominator tree based on the CFG edits. While we are walking unordered
850 // containers here, the API for applyUpdates takes an unordered list of
851 // updates and requires them to not contain duplicates.
852 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
853 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
854 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
855 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
856 }
857 for (auto SplitUnswitchedPair : SplitExitBBMap) {
858 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
859 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
860 }
861
862 if (MSSAU) {
863 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
864 if (VerifyMemorySSA)
865 MSSAU->getMemorySSA()->verifyMemorySSA();
866 } else {
867 DT.applyUpdates(DTUpdates);
868 }
869
870 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
871
872 // We may have changed the nesting relationship for this loop so hoist it to
873 // its correct parent if needed.
874 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
875
876 if (MSSAU && VerifyMemorySSA)
877 MSSAU->getMemorySSA()->verifyMemorySSA();
878
879 ++NumTrivial;
880 ++NumSwitches;
881 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
882 return true;
883 }
884
885 /// This routine scans the loop to find a branch or switch which occurs before
886 /// any side effects occur. These can potentially be unswitched without
887 /// duplicating the loop. If a branch or switch is successfully unswitched the
888 /// scanning continues to see if subsequent branches or switches have become
889 /// trivial. Once all trivial candidates have been unswitched, this routine
890 /// returns.
891 ///
892 /// The return value indicates whether anything was unswitched (and therefore
893 /// changed).
894 ///
895 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
896 /// invalidated by this.
unswitchAllTrivialConditions(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)897 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
898 LoopInfo &LI, ScalarEvolution *SE,
899 MemorySSAUpdater *MSSAU) {
900 bool Changed = false;
901
902 // If loop header has only one reachable successor we should keep looking for
903 // trivial condition candidates in the successor as well. An alternative is
904 // to constant fold conditions and merge successors into loop header (then we
905 // only need to check header's terminator). The reason for not doing this in
906 // LoopUnswitch pass is that it could potentially break LoopPassManager's
907 // invariants. Folding dead branches could either eliminate the current loop
908 // or make other loops unreachable. LCSSA form might also not be preserved
909 // after deleting branches. The following code keeps traversing loop header's
910 // successors until it finds the trivial condition candidate (condition that
911 // is not a constant). Since unswitching generates branches with constant
912 // conditions, this scenario could be very common in practice.
913 BasicBlock *CurrentBB = L.getHeader();
914 SmallPtrSet<BasicBlock *, 8> Visited;
915 Visited.insert(CurrentBB);
916 do {
917 // Check if there are any side-effecting instructions (e.g. stores, calls,
918 // volatile loads) in the part of the loop that the code *would* execute
919 // without unswitching.
920 if (MSSAU) // Possible early exit with MSSA
921 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
922 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
923 return Changed;
924 if (llvm::any_of(*CurrentBB,
925 [](Instruction &I) { return I.mayHaveSideEffects(); }))
926 return Changed;
927
928 Instruction *CurrentTerm = CurrentBB->getTerminator();
929
930 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
931 // Don't bother trying to unswitch past a switch with a constant
932 // condition. This should be removed prior to running this pass by
933 // simplify-cfg.
934 if (isa<Constant>(SI->getCondition()))
935 return Changed;
936
937 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
938 // Couldn't unswitch this one so we're done.
939 return Changed;
940
941 // Mark that we managed to unswitch something.
942 Changed = true;
943
944 // If unswitching turned the terminator into an unconditional branch then
945 // we can continue. The unswitching logic specifically works to fold any
946 // cases it can into an unconditional branch to make it easier to
947 // recognize here.
948 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
949 if (!BI || BI->isConditional())
950 return Changed;
951
952 CurrentBB = BI->getSuccessor(0);
953 continue;
954 }
955
956 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
957 if (!BI)
958 // We do not understand other terminator instructions.
959 return Changed;
960
961 // Don't bother trying to unswitch past an unconditional branch or a branch
962 // with a constant value. These should be removed by simplify-cfg prior to
963 // running this pass.
964 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
965 return Changed;
966
967 // Found a trivial condition candidate: non-foldable conditional branch. If
968 // we fail to unswitch this, we can't do anything else that is trivial.
969 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
970 return Changed;
971
972 // Mark that we managed to unswitch something.
973 Changed = true;
974
975 // If we only unswitched some of the conditions feeding the branch, we won't
976 // have collapsed it to a single successor.
977 BI = cast<BranchInst>(CurrentBB->getTerminator());
978 if (BI->isConditional())
979 return Changed;
980
981 // Follow the newly unconditional branch into its successor.
982 CurrentBB = BI->getSuccessor(0);
983
984 // When continuing, if we exit the loop or reach a previous visited block,
985 // then we can not reach any trivial condition candidates (unfoldable
986 // branch instructions or switch instructions) and no unswitch can happen.
987 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
988
989 return Changed;
990 }
991
992 /// Build the cloned blocks for an unswitched copy of the given loop.
993 ///
994 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
995 /// after the split block (`SplitBB`) that will be used to select between the
996 /// cloned and original loop.
997 ///
998 /// This routine handles cloning all of the necessary loop blocks and exit
999 /// blocks including rewriting their instructions and the relevant PHI nodes.
1000 /// Any loop blocks or exit blocks which are dominated by a different successor
1001 /// than the one for this clone of the loop blocks can be trivially skipped. We
1002 /// use the `DominatingSucc` map to determine whether a block satisfies that
1003 /// property with a simple map lookup.
1004 ///
1005 /// It also correctly creates the unconditional branch in the cloned
1006 /// unswitched parent block to only point at the unswitched successor.
1007 ///
1008 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1009 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1010 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1011 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1012 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1013 /// instead the caller must recompute an accurate DT. It *does* correctly
1014 /// update the `AssumptionCache` provided in `AC`.
buildClonedLoopBlocks(Loop & L,BasicBlock * LoopPH,BasicBlock * SplitBB,ArrayRef<BasicBlock * > ExitBlocks,BasicBlock * ParentBB,BasicBlock * UnswitchedSuccBB,BasicBlock * ContinueSuccBB,const SmallDenseMap<BasicBlock *,BasicBlock *,16> & DominatingSucc,ValueToValueMapTy & VMap,SmallVectorImpl<DominatorTree::UpdateType> & DTUpdates,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)1015 static BasicBlock *buildClonedLoopBlocks(
1016 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1017 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1018 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1019 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1020 ValueToValueMapTy &VMap,
1021 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1022 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1023 SmallVector<BasicBlock *, 4> NewBlocks;
1024 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1025
1026 // We will need to clone a bunch of blocks, wrap up the clone operation in
1027 // a helper.
1028 auto CloneBlock = [&](BasicBlock *OldBB) {
1029 // Clone the basic block and insert it before the new preheader.
1030 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1031 NewBB->moveBefore(LoopPH);
1032
1033 // Record this block and the mapping.
1034 NewBlocks.push_back(NewBB);
1035 VMap[OldBB] = NewBB;
1036
1037 return NewBB;
1038 };
1039
1040 // We skip cloning blocks when they have a dominating succ that is not the
1041 // succ we are cloning for.
1042 auto SkipBlock = [&](BasicBlock *BB) {
1043 auto It = DominatingSucc.find(BB);
1044 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1045 };
1046
1047 // First, clone the preheader.
1048 auto *ClonedPH = CloneBlock(LoopPH);
1049
1050 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1051 for (auto *LoopBB : L.blocks())
1052 if (!SkipBlock(LoopBB))
1053 CloneBlock(LoopBB);
1054
1055 // Split all the loop exit edges so that when we clone the exit blocks, if
1056 // any of the exit blocks are *also* a preheader for some other loop, we
1057 // don't create multiple predecessors entering the loop header.
1058 for (auto *ExitBB : ExitBlocks) {
1059 if (SkipBlock(ExitBB))
1060 continue;
1061
1062 // When we are going to clone an exit, we don't need to clone all the
1063 // instructions in the exit block and we want to ensure we have an easy
1064 // place to merge the CFG, so split the exit first. This is always safe to
1065 // do because there cannot be any non-loop predecessors of a loop exit in
1066 // loop simplified form.
1067 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1068
1069 // Rearrange the names to make it easier to write test cases by having the
1070 // exit block carry the suffix rather than the merge block carrying the
1071 // suffix.
1072 MergeBB->takeName(ExitBB);
1073 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1074
1075 // Now clone the original exit block.
1076 auto *ClonedExitBB = CloneBlock(ExitBB);
1077 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1078 "Exit block should have been split to have one successor!");
1079 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1080 "Cloned exit block has the wrong successor!");
1081
1082 // Remap any cloned instructions and create a merge phi node for them.
1083 for (auto ZippedInsts : llvm::zip_first(
1084 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1085 llvm::make_range(ClonedExitBB->begin(),
1086 std::prev(ClonedExitBB->end())))) {
1087 Instruction &I = std::get<0>(ZippedInsts);
1088 Instruction &ClonedI = std::get<1>(ZippedInsts);
1089
1090 // The only instructions in the exit block should be PHI nodes and
1091 // potentially a landing pad.
1092 assert(
1093 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1094 "Bad instruction in exit block!");
1095 // We should have a value map between the instruction and its clone.
1096 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1097
1098 auto *MergePN =
1099 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1100 &*MergeBB->getFirstInsertionPt());
1101 I.replaceAllUsesWith(MergePN);
1102 MergePN->addIncoming(&I, ExitBB);
1103 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1104 }
1105 }
1106
1107 // Rewrite the instructions in the cloned blocks to refer to the instructions
1108 // in the cloned blocks. We have to do this as a second pass so that we have
1109 // everything available. Also, we have inserted new instructions which may
1110 // include assume intrinsics, so we update the assumption cache while
1111 // processing this.
1112 for (auto *ClonedBB : NewBlocks)
1113 for (Instruction &I : *ClonedBB) {
1114 RemapInstruction(&I, VMap,
1115 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1116 if (auto *II = dyn_cast<AssumeInst>(&I))
1117 AC.registerAssumption(II);
1118 }
1119
1120 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1121 // have spurious incoming values.
1122 for (auto *LoopBB : L.blocks())
1123 if (SkipBlock(LoopBB))
1124 for (auto *SuccBB : successors(LoopBB))
1125 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1126 for (PHINode &PN : ClonedSuccBB->phis())
1127 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1128
1129 // Remove the cloned parent as a predecessor of any successor we ended up
1130 // cloning other than the unswitched one.
1131 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1132 for (auto *SuccBB : successors(ParentBB)) {
1133 if (SuccBB == UnswitchedSuccBB)
1134 continue;
1135
1136 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1137 if (!ClonedSuccBB)
1138 continue;
1139
1140 ClonedSuccBB->removePredecessor(ClonedParentBB,
1141 /*KeepOneInputPHIs*/ true);
1142 }
1143
1144 // Replace the cloned branch with an unconditional branch to the cloned
1145 // unswitched successor.
1146 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1147 Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1148 // Trivial Simplification. If Terminator is a conditional branch and
1149 // condition becomes dead - erase it.
1150 Value *ClonedConditionToErase = nullptr;
1151 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1152 ClonedConditionToErase = BI->getCondition();
1153 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1154 ClonedConditionToErase = SI->getCondition();
1155
1156 ClonedTerminator->eraseFromParent();
1157 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1158
1159 if (ClonedConditionToErase)
1160 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1161 MSSAU);
1162
1163 // If there are duplicate entries in the PHI nodes because of multiple edges
1164 // to the unswitched successor, we need to nuke all but one as we replaced it
1165 // with a direct branch.
1166 for (PHINode &PN : ClonedSuccBB->phis()) {
1167 bool Found = false;
1168 // Loop over the incoming operands backwards so we can easily delete as we
1169 // go without invalidating the index.
1170 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1171 if (PN.getIncomingBlock(i) != ClonedParentBB)
1172 continue;
1173 if (!Found) {
1174 Found = true;
1175 continue;
1176 }
1177 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1178 }
1179 }
1180
1181 // Record the domtree updates for the new blocks.
1182 SmallPtrSet<BasicBlock *, 4> SuccSet;
1183 for (auto *ClonedBB : NewBlocks) {
1184 for (auto *SuccBB : successors(ClonedBB))
1185 if (SuccSet.insert(SuccBB).second)
1186 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1187 SuccSet.clear();
1188 }
1189
1190 return ClonedPH;
1191 }
1192
1193 /// Recursively clone the specified loop and all of its children.
1194 ///
1195 /// The target parent loop for the clone should be provided, or can be null if
1196 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1197 /// with the provided value map. The entire original loop must be present in
1198 /// the value map. The cloned loop is returned.
cloneLoopNest(Loop & OrigRootL,Loop * RootParentL,const ValueToValueMapTy & VMap,LoopInfo & LI)1199 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1200 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1201 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1202 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1203 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1204 for (auto *BB : OrigL.blocks()) {
1205 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1206 ClonedL.addBlockEntry(ClonedBB);
1207 if (LI.getLoopFor(BB) == &OrigL)
1208 LI.changeLoopFor(ClonedBB, &ClonedL);
1209 }
1210 };
1211
1212 // We specially handle the first loop because it may get cloned into
1213 // a different parent and because we most commonly are cloning leaf loops.
1214 Loop *ClonedRootL = LI.AllocateLoop();
1215 if (RootParentL)
1216 RootParentL->addChildLoop(ClonedRootL);
1217 else
1218 LI.addTopLevelLoop(ClonedRootL);
1219 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1220
1221 if (OrigRootL.isInnermost())
1222 return ClonedRootL;
1223
1224 // If we have a nest, we can quickly clone the entire loop nest using an
1225 // iterative approach because it is a tree. We keep the cloned parent in the
1226 // data structure to avoid repeatedly querying through a map to find it.
1227 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1228 // Build up the loops to clone in reverse order as we'll clone them from the
1229 // back.
1230 for (Loop *ChildL : llvm::reverse(OrigRootL))
1231 LoopsToClone.push_back({ClonedRootL, ChildL});
1232 do {
1233 Loop *ClonedParentL, *L;
1234 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1235 Loop *ClonedL = LI.AllocateLoop();
1236 ClonedParentL->addChildLoop(ClonedL);
1237 AddClonedBlocksToLoop(*L, *ClonedL);
1238 for (Loop *ChildL : llvm::reverse(*L))
1239 LoopsToClone.push_back({ClonedL, ChildL});
1240 } while (!LoopsToClone.empty());
1241
1242 return ClonedRootL;
1243 }
1244
1245 /// Build the cloned loops of an original loop from unswitching.
1246 ///
1247 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1248 /// operation. We need to re-verify that there even is a loop (as the backedge
1249 /// may not have been cloned), and even if there are remaining backedges the
1250 /// backedge set may be different. However, we know that each child loop is
1251 /// undisturbed, we only need to find where to place each child loop within
1252 /// either any parent loop or within a cloned version of the original loop.
1253 ///
1254 /// Because child loops may end up cloned outside of any cloned version of the
1255 /// original loop, multiple cloned sibling loops may be created. All of them
1256 /// are returned so that the newly introduced loop nest roots can be
1257 /// identified.
buildClonedLoops(Loop & OrigL,ArrayRef<BasicBlock * > ExitBlocks,const ValueToValueMapTy & VMap,LoopInfo & LI,SmallVectorImpl<Loop * > & NonChildClonedLoops)1258 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1259 const ValueToValueMapTy &VMap, LoopInfo &LI,
1260 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1261 Loop *ClonedL = nullptr;
1262
1263 auto *OrigPH = OrigL.getLoopPreheader();
1264 auto *OrigHeader = OrigL.getHeader();
1265
1266 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1267 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1268
1269 // We need to know the loops of the cloned exit blocks to even compute the
1270 // accurate parent loop. If we only clone exits to some parent of the
1271 // original parent, we want to clone into that outer loop. We also keep track
1272 // of the loops that our cloned exit blocks participate in.
1273 Loop *ParentL = nullptr;
1274 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1275 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1276 ClonedExitsInLoops.reserve(ExitBlocks.size());
1277 for (auto *ExitBB : ExitBlocks)
1278 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1279 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1280 ExitLoopMap[ClonedExitBB] = ExitL;
1281 ClonedExitsInLoops.push_back(ClonedExitBB);
1282 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1283 ParentL = ExitL;
1284 }
1285 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1286 ParentL->contains(OrigL.getParentLoop())) &&
1287 "The computed parent loop should always contain (or be) the parent of "
1288 "the original loop.");
1289
1290 // We build the set of blocks dominated by the cloned header from the set of
1291 // cloned blocks out of the original loop. While not all of these will
1292 // necessarily be in the cloned loop, it is enough to establish that they
1293 // aren't in unreachable cycles, etc.
1294 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1295 for (auto *BB : OrigL.blocks())
1296 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1297 ClonedLoopBlocks.insert(ClonedBB);
1298
1299 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1300 // skipped cloning some region of this loop which can in turn skip some of
1301 // the backedges so we have to rebuild the blocks in the loop based on the
1302 // backedges that remain after cloning.
1303 SmallVector<BasicBlock *, 16> Worklist;
1304 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1305 for (auto *Pred : predecessors(ClonedHeader)) {
1306 // The only possible non-loop header predecessor is the preheader because
1307 // we know we cloned the loop in simplified form.
1308 if (Pred == ClonedPH)
1309 continue;
1310
1311 // Because the loop was in simplified form, the only non-loop predecessor
1312 // should be the preheader.
1313 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1314 "header other than the preheader "
1315 "that is not part of the loop!");
1316
1317 // Insert this block into the loop set and on the first visit (and if it
1318 // isn't the header we're currently walking) put it into the worklist to
1319 // recurse through.
1320 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1321 Worklist.push_back(Pred);
1322 }
1323
1324 // If we had any backedges then there *is* a cloned loop. Put the header into
1325 // the loop set and then walk the worklist backwards to find all the blocks
1326 // that remain within the loop after cloning.
1327 if (!BlocksInClonedLoop.empty()) {
1328 BlocksInClonedLoop.insert(ClonedHeader);
1329
1330 while (!Worklist.empty()) {
1331 BasicBlock *BB = Worklist.pop_back_val();
1332 assert(BlocksInClonedLoop.count(BB) &&
1333 "Didn't put block into the loop set!");
1334
1335 // Insert any predecessors that are in the possible set into the cloned
1336 // set, and if the insert is successful, add them to the worklist. Note
1337 // that we filter on the blocks that are definitely reachable via the
1338 // backedge to the loop header so we may prune out dead code within the
1339 // cloned loop.
1340 for (auto *Pred : predecessors(BB))
1341 if (ClonedLoopBlocks.count(Pred) &&
1342 BlocksInClonedLoop.insert(Pred).second)
1343 Worklist.push_back(Pred);
1344 }
1345
1346 ClonedL = LI.AllocateLoop();
1347 if (ParentL) {
1348 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1349 ParentL->addChildLoop(ClonedL);
1350 } else {
1351 LI.addTopLevelLoop(ClonedL);
1352 }
1353 NonChildClonedLoops.push_back(ClonedL);
1354
1355 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1356 // We don't want to just add the cloned loop blocks based on how we
1357 // discovered them. The original order of blocks was carefully built in
1358 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1359 // that logic, we just re-walk the original blocks (and those of the child
1360 // loops) and filter them as we add them into the cloned loop.
1361 for (auto *BB : OrigL.blocks()) {
1362 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1363 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1364 continue;
1365
1366 // Directly add the blocks that are only in this loop.
1367 if (LI.getLoopFor(BB) == &OrigL) {
1368 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1369 continue;
1370 }
1371
1372 // We want to manually add it to this loop and parents.
1373 // Registering it with LoopInfo will happen when we clone the top
1374 // loop for this block.
1375 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1376 PL->addBlockEntry(ClonedBB);
1377 }
1378
1379 // Now add each child loop whose header remains within the cloned loop. All
1380 // of the blocks within the loop must satisfy the same constraints as the
1381 // header so once we pass the header checks we can just clone the entire
1382 // child loop nest.
1383 for (Loop *ChildL : OrigL) {
1384 auto *ClonedChildHeader =
1385 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1386 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1387 continue;
1388
1389 #ifndef NDEBUG
1390 // We should never have a cloned child loop header but fail to have
1391 // all of the blocks for that child loop.
1392 for (auto *ChildLoopBB : ChildL->blocks())
1393 assert(BlocksInClonedLoop.count(
1394 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1395 "Child cloned loop has a header within the cloned outer "
1396 "loop but not all of its blocks!");
1397 #endif
1398
1399 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1400 }
1401 }
1402
1403 // Now that we've handled all the components of the original loop that were
1404 // cloned into a new loop, we still need to handle anything from the original
1405 // loop that wasn't in a cloned loop.
1406
1407 // Figure out what blocks are left to place within any loop nest containing
1408 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1409 // them.
1410 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1411 if (BlocksInClonedLoop.empty())
1412 UnloopedBlockSet.insert(ClonedPH);
1413 for (auto *ClonedBB : ClonedLoopBlocks)
1414 if (!BlocksInClonedLoop.count(ClonedBB))
1415 UnloopedBlockSet.insert(ClonedBB);
1416
1417 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1418 // backwards across these to process them inside out. The order shouldn't
1419 // matter as we're just trying to build up the map from inside-out; we use
1420 // the map in a more stably ordered way below.
1421 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1422 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1423 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1424 ExitLoopMap.lookup(RHS)->getLoopDepth();
1425 });
1426
1427 // Populate the existing ExitLoopMap with everything reachable from each
1428 // exit, starting from the inner most exit.
1429 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1430 assert(Worklist.empty() && "Didn't clear worklist!");
1431
1432 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1433 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1434
1435 // Walk the CFG back until we hit the cloned PH adding everything reachable
1436 // and in the unlooped set to this exit block's loop.
1437 Worklist.push_back(ExitBB);
1438 do {
1439 BasicBlock *BB = Worklist.pop_back_val();
1440 // We can stop recursing at the cloned preheader (if we get there).
1441 if (BB == ClonedPH)
1442 continue;
1443
1444 for (BasicBlock *PredBB : predecessors(BB)) {
1445 // If this pred has already been moved to our set or is part of some
1446 // (inner) loop, no update needed.
1447 if (!UnloopedBlockSet.erase(PredBB)) {
1448 assert(
1449 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1450 "Predecessor not mapped to a loop!");
1451 continue;
1452 }
1453
1454 // We just insert into the loop set here. We'll add these blocks to the
1455 // exit loop after we build up the set in an order that doesn't rely on
1456 // predecessor order (which in turn relies on use list order).
1457 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1458 (void)Inserted;
1459 assert(Inserted && "Should only visit an unlooped block once!");
1460
1461 // And recurse through to its predecessors.
1462 Worklist.push_back(PredBB);
1463 }
1464 } while (!Worklist.empty());
1465 }
1466
1467 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1468 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1469 // in their original order adding them to the correct loop.
1470
1471 // We need a stable insertion order. We use the order of the original loop
1472 // order and map into the correct parent loop.
1473 for (auto *BB : llvm::concat<BasicBlock *const>(
1474 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1475 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1476 OuterL->addBasicBlockToLoop(BB, LI);
1477
1478 #ifndef NDEBUG
1479 for (auto &BBAndL : ExitLoopMap) {
1480 auto *BB = BBAndL.first;
1481 auto *OuterL = BBAndL.second;
1482 assert(LI.getLoopFor(BB) == OuterL &&
1483 "Failed to put all blocks into outer loops!");
1484 }
1485 #endif
1486
1487 // Now that all the blocks are placed into the correct containing loop in the
1488 // absence of child loops, find all the potentially cloned child loops and
1489 // clone them into whatever outer loop we placed their header into.
1490 for (Loop *ChildL : OrigL) {
1491 auto *ClonedChildHeader =
1492 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1493 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1494 continue;
1495
1496 #ifndef NDEBUG
1497 for (auto *ChildLoopBB : ChildL->blocks())
1498 assert(VMap.count(ChildLoopBB) &&
1499 "Cloned a child loop header but not all of that loops blocks!");
1500 #endif
1501
1502 NonChildClonedLoops.push_back(cloneLoopNest(
1503 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1504 }
1505 }
1506
1507 static void
deleteDeadClonedBlocks(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,DominatorTree & DT,MemorySSAUpdater * MSSAU)1508 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1509 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1510 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1511 // Find all the dead clones, and remove them from their successors.
1512 SmallVector<BasicBlock *, 16> DeadBlocks;
1513 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1514 for (auto &VMap : VMaps)
1515 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1516 if (!DT.isReachableFromEntry(ClonedBB)) {
1517 for (BasicBlock *SuccBB : successors(ClonedBB))
1518 SuccBB->removePredecessor(ClonedBB);
1519 DeadBlocks.push_back(ClonedBB);
1520 }
1521
1522 // Remove all MemorySSA in the dead blocks
1523 if (MSSAU) {
1524 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1525 DeadBlocks.end());
1526 MSSAU->removeBlocks(DeadBlockSet);
1527 }
1528
1529 // Drop any remaining references to break cycles.
1530 for (BasicBlock *BB : DeadBlocks)
1531 BB->dropAllReferences();
1532 // Erase them from the IR.
1533 for (BasicBlock *BB : DeadBlocks)
1534 BB->eraseFromParent();
1535 }
1536
deleteDeadBlocksFromLoop(Loop & L,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)1537 static void deleteDeadBlocksFromLoop(Loop &L,
1538 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1539 DominatorTree &DT, LoopInfo &LI,
1540 MemorySSAUpdater *MSSAU) {
1541 // Find all the dead blocks tied to this loop, and remove them from their
1542 // successors.
1543 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1544
1545 // Start with loop/exit blocks and get a transitive closure of reachable dead
1546 // blocks.
1547 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1548 ExitBlocks.end());
1549 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1550 while (!DeathCandidates.empty()) {
1551 auto *BB = DeathCandidates.pop_back_val();
1552 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1553 for (BasicBlock *SuccBB : successors(BB)) {
1554 SuccBB->removePredecessor(BB);
1555 DeathCandidates.push_back(SuccBB);
1556 }
1557 DeadBlockSet.insert(BB);
1558 }
1559 }
1560
1561 // Remove all MemorySSA in the dead blocks
1562 if (MSSAU)
1563 MSSAU->removeBlocks(DeadBlockSet);
1564
1565 // Filter out the dead blocks from the exit blocks list so that it can be
1566 // used in the caller.
1567 llvm::erase_if(ExitBlocks,
1568 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1569
1570 // Walk from this loop up through its parents removing all of the dead blocks.
1571 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1572 for (auto *BB : DeadBlockSet)
1573 ParentL->getBlocksSet().erase(BB);
1574 llvm::erase_if(ParentL->getBlocksVector(),
1575 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1576 }
1577
1578 // Now delete the dead child loops. This raw delete will clear them
1579 // recursively.
1580 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1581 if (!DeadBlockSet.count(ChildL->getHeader()))
1582 return false;
1583
1584 assert(llvm::all_of(ChildL->blocks(),
1585 [&](BasicBlock *ChildBB) {
1586 return DeadBlockSet.count(ChildBB);
1587 }) &&
1588 "If the child loop header is dead all blocks in the child loop must "
1589 "be dead as well!");
1590 LI.destroy(ChildL);
1591 return true;
1592 });
1593
1594 // Remove the loop mappings for the dead blocks and drop all the references
1595 // from these blocks to others to handle cyclic references as we start
1596 // deleting the blocks themselves.
1597 for (auto *BB : DeadBlockSet) {
1598 // Check that the dominator tree has already been updated.
1599 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1600 LI.changeLoopFor(BB, nullptr);
1601 // Drop all uses of the instructions to make sure we won't have dangling
1602 // uses in other blocks.
1603 for (auto &I : *BB)
1604 if (!I.use_empty())
1605 I.replaceAllUsesWith(UndefValue::get(I.getType()));
1606 BB->dropAllReferences();
1607 }
1608
1609 // Actually delete the blocks now that they've been fully unhooked from the
1610 // IR.
1611 for (auto *BB : DeadBlockSet)
1612 BB->eraseFromParent();
1613 }
1614
1615 /// Recompute the set of blocks in a loop after unswitching.
1616 ///
1617 /// This walks from the original headers predecessors to rebuild the loop. We
1618 /// take advantage of the fact that new blocks can't have been added, and so we
1619 /// filter by the original loop's blocks. This also handles potentially
1620 /// unreachable code that we don't want to explore but might be found examining
1621 /// the predecessors of the header.
1622 ///
1623 /// If the original loop is no longer a loop, this will return an empty set. If
1624 /// it remains a loop, all the blocks within it will be added to the set
1625 /// (including those blocks in inner loops).
recomputeLoopBlockSet(Loop & L,LoopInfo & LI)1626 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1627 LoopInfo &LI) {
1628 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1629
1630 auto *PH = L.getLoopPreheader();
1631 auto *Header = L.getHeader();
1632
1633 // A worklist to use while walking backwards from the header.
1634 SmallVector<BasicBlock *, 16> Worklist;
1635
1636 // First walk the predecessors of the header to find the backedges. This will
1637 // form the basis of our walk.
1638 for (auto *Pred : predecessors(Header)) {
1639 // Skip the preheader.
1640 if (Pred == PH)
1641 continue;
1642
1643 // Because the loop was in simplified form, the only non-loop predecessor
1644 // is the preheader.
1645 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1646 "than the preheader that is not part of the "
1647 "loop!");
1648
1649 // Insert this block into the loop set and on the first visit and, if it
1650 // isn't the header we're currently walking, put it into the worklist to
1651 // recurse through.
1652 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1653 Worklist.push_back(Pred);
1654 }
1655
1656 // If no backedges were found, we're done.
1657 if (LoopBlockSet.empty())
1658 return LoopBlockSet;
1659
1660 // We found backedges, recurse through them to identify the loop blocks.
1661 while (!Worklist.empty()) {
1662 BasicBlock *BB = Worklist.pop_back_val();
1663 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1664
1665 // No need to walk past the header.
1666 if (BB == Header)
1667 continue;
1668
1669 // Because we know the inner loop structure remains valid we can use the
1670 // loop structure to jump immediately across the entire nested loop.
1671 // Further, because it is in loop simplified form, we can directly jump
1672 // to its preheader afterward.
1673 if (Loop *InnerL = LI.getLoopFor(BB))
1674 if (InnerL != &L) {
1675 assert(L.contains(InnerL) &&
1676 "Should not reach a loop *outside* this loop!");
1677 // The preheader is the only possible predecessor of the loop so
1678 // insert it into the set and check whether it was already handled.
1679 auto *InnerPH = InnerL->getLoopPreheader();
1680 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1681 "but not contain the inner loop "
1682 "preheader!");
1683 if (!LoopBlockSet.insert(InnerPH).second)
1684 // The only way to reach the preheader is through the loop body
1685 // itself so if it has been visited the loop is already handled.
1686 continue;
1687
1688 // Insert all of the blocks (other than those already present) into
1689 // the loop set. We expect at least the block that led us to find the
1690 // inner loop to be in the block set, but we may also have other loop
1691 // blocks if they were already enqueued as predecessors of some other
1692 // outer loop block.
1693 for (auto *InnerBB : InnerL->blocks()) {
1694 if (InnerBB == BB) {
1695 assert(LoopBlockSet.count(InnerBB) &&
1696 "Block should already be in the set!");
1697 continue;
1698 }
1699
1700 LoopBlockSet.insert(InnerBB);
1701 }
1702
1703 // Add the preheader to the worklist so we will continue past the
1704 // loop body.
1705 Worklist.push_back(InnerPH);
1706 continue;
1707 }
1708
1709 // Insert any predecessors that were in the original loop into the new
1710 // set, and if the insert is successful, add them to the worklist.
1711 for (auto *Pred : predecessors(BB))
1712 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1713 Worklist.push_back(Pred);
1714 }
1715
1716 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1717
1718 // We've found all the blocks participating in the loop, return our completed
1719 // set.
1720 return LoopBlockSet;
1721 }
1722
1723 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1724 ///
1725 /// The removal may have removed some child loops entirely but cannot have
1726 /// disturbed any remaining child loops. However, they may need to be hoisted
1727 /// to the parent loop (or to be top-level loops). The original loop may be
1728 /// completely removed.
1729 ///
1730 /// The sibling loops resulting from this update are returned. If the original
1731 /// loop remains a valid loop, it will be the first entry in this list with all
1732 /// of the newly sibling loops following it.
1733 ///
1734 /// Returns true if the loop remains a loop after unswitching, and false if it
1735 /// is no longer a loop after unswitching (and should not continue to be
1736 /// referenced).
rebuildLoopAfterUnswitch(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,LoopInfo & LI,SmallVectorImpl<Loop * > & HoistedLoops)1737 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1738 LoopInfo &LI,
1739 SmallVectorImpl<Loop *> &HoistedLoops) {
1740 auto *PH = L.getLoopPreheader();
1741
1742 // Compute the actual parent loop from the exit blocks. Because we may have
1743 // pruned some exits the loop may be different from the original parent.
1744 Loop *ParentL = nullptr;
1745 SmallVector<Loop *, 4> ExitLoops;
1746 SmallVector<BasicBlock *, 4> ExitsInLoops;
1747 ExitsInLoops.reserve(ExitBlocks.size());
1748 for (auto *ExitBB : ExitBlocks)
1749 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1750 ExitLoops.push_back(ExitL);
1751 ExitsInLoops.push_back(ExitBB);
1752 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1753 ParentL = ExitL;
1754 }
1755
1756 // Recompute the blocks participating in this loop. This may be empty if it
1757 // is no longer a loop.
1758 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1759
1760 // If we still have a loop, we need to re-set the loop's parent as the exit
1761 // block set changing may have moved it within the loop nest. Note that this
1762 // can only happen when this loop has a parent as it can only hoist the loop
1763 // *up* the nest.
1764 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1765 // Remove this loop's (original) blocks from all of the intervening loops.
1766 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1767 IL = IL->getParentLoop()) {
1768 IL->getBlocksSet().erase(PH);
1769 for (auto *BB : L.blocks())
1770 IL->getBlocksSet().erase(BB);
1771 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1772 return BB == PH || L.contains(BB);
1773 });
1774 }
1775
1776 LI.changeLoopFor(PH, ParentL);
1777 L.getParentLoop()->removeChildLoop(&L);
1778 if (ParentL)
1779 ParentL->addChildLoop(&L);
1780 else
1781 LI.addTopLevelLoop(&L);
1782 }
1783
1784 // Now we update all the blocks which are no longer within the loop.
1785 auto &Blocks = L.getBlocksVector();
1786 auto BlocksSplitI =
1787 LoopBlockSet.empty()
1788 ? Blocks.begin()
1789 : std::stable_partition(
1790 Blocks.begin(), Blocks.end(),
1791 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1792
1793 // Before we erase the list of unlooped blocks, build a set of them.
1794 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1795 if (LoopBlockSet.empty())
1796 UnloopedBlocks.insert(PH);
1797
1798 // Now erase these blocks from the loop.
1799 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1800 L.getBlocksSet().erase(BB);
1801 Blocks.erase(BlocksSplitI, Blocks.end());
1802
1803 // Sort the exits in ascending loop depth, we'll work backwards across these
1804 // to process them inside out.
1805 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1806 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1807 });
1808
1809 // We'll build up a set for each exit loop.
1810 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1811 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1812
1813 auto RemoveUnloopedBlocksFromLoop =
1814 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1815 for (auto *BB : UnloopedBlocks)
1816 L.getBlocksSet().erase(BB);
1817 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1818 return UnloopedBlocks.count(BB);
1819 });
1820 };
1821
1822 SmallVector<BasicBlock *, 16> Worklist;
1823 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1824 assert(Worklist.empty() && "Didn't clear worklist!");
1825 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1826
1827 // Grab the next exit block, in decreasing loop depth order.
1828 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1829 Loop &ExitL = *LI.getLoopFor(ExitBB);
1830 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1831
1832 // Erase all of the unlooped blocks from the loops between the previous
1833 // exit loop and this exit loop. This works because the ExitInLoops list is
1834 // sorted in increasing order of loop depth and thus we visit loops in
1835 // decreasing order of loop depth.
1836 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1837 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1838
1839 // Walk the CFG back until we hit the cloned PH adding everything reachable
1840 // and in the unlooped set to this exit block's loop.
1841 Worklist.push_back(ExitBB);
1842 do {
1843 BasicBlock *BB = Worklist.pop_back_val();
1844 // We can stop recursing at the cloned preheader (if we get there).
1845 if (BB == PH)
1846 continue;
1847
1848 for (BasicBlock *PredBB : predecessors(BB)) {
1849 // If this pred has already been moved to our set or is part of some
1850 // (inner) loop, no update needed.
1851 if (!UnloopedBlocks.erase(PredBB)) {
1852 assert((NewExitLoopBlocks.count(PredBB) ||
1853 ExitL.contains(LI.getLoopFor(PredBB))) &&
1854 "Predecessor not in a nested loop (or already visited)!");
1855 continue;
1856 }
1857
1858 // We just insert into the loop set here. We'll add these blocks to the
1859 // exit loop after we build up the set in a deterministic order rather
1860 // than the predecessor-influenced visit order.
1861 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1862 (void)Inserted;
1863 assert(Inserted && "Should only visit an unlooped block once!");
1864
1865 // And recurse through to its predecessors.
1866 Worklist.push_back(PredBB);
1867 }
1868 } while (!Worklist.empty());
1869
1870 // If blocks in this exit loop were directly part of the original loop (as
1871 // opposed to a child loop) update the map to point to this exit loop. This
1872 // just updates a map and so the fact that the order is unstable is fine.
1873 for (auto *BB : NewExitLoopBlocks)
1874 if (Loop *BBL = LI.getLoopFor(BB))
1875 if (BBL == &L || !L.contains(BBL))
1876 LI.changeLoopFor(BB, &ExitL);
1877
1878 // We will remove the remaining unlooped blocks from this loop in the next
1879 // iteration or below.
1880 NewExitLoopBlocks.clear();
1881 }
1882
1883 // Any remaining unlooped blocks are no longer part of any loop unless they
1884 // are part of some child loop.
1885 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1886 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1887 for (auto *BB : UnloopedBlocks)
1888 if (Loop *BBL = LI.getLoopFor(BB))
1889 if (BBL == &L || !L.contains(BBL))
1890 LI.changeLoopFor(BB, nullptr);
1891
1892 // Sink all the child loops whose headers are no longer in the loop set to
1893 // the parent (or to be top level loops). We reach into the loop and directly
1894 // update its subloop vector to make this batch update efficient.
1895 auto &SubLoops = L.getSubLoopsVector();
1896 auto SubLoopsSplitI =
1897 LoopBlockSet.empty()
1898 ? SubLoops.begin()
1899 : std::stable_partition(
1900 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1901 return LoopBlockSet.count(SubL->getHeader());
1902 });
1903 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1904 HoistedLoops.push_back(HoistedL);
1905 HoistedL->setParentLoop(nullptr);
1906
1907 // To compute the new parent of this hoisted loop we look at where we
1908 // placed the preheader above. We can't lookup the header itself because we
1909 // retained the mapping from the header to the hoisted loop. But the
1910 // preheader and header should have the exact same new parent computed
1911 // based on the set of exit blocks from the original loop as the preheader
1912 // is a predecessor of the header and so reached in the reverse walk. And
1913 // because the loops were all in simplified form the preheader of the
1914 // hoisted loop can't be part of some *other* loop.
1915 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1916 NewParentL->addChildLoop(HoistedL);
1917 else
1918 LI.addTopLevelLoop(HoistedL);
1919 }
1920 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1921
1922 // Actually delete the loop if nothing remained within it.
1923 if (Blocks.empty()) {
1924 assert(SubLoops.empty() &&
1925 "Failed to remove all subloops from the original loop!");
1926 if (Loop *ParentL = L.getParentLoop())
1927 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1928 else
1929 LI.removeLoop(llvm::find(LI, &L));
1930 LI.destroy(&L);
1931 return false;
1932 }
1933
1934 return true;
1935 }
1936
1937 /// Helper to visit a dominator subtree, invoking a callable on each node.
1938 ///
1939 /// Returning false at any point will stop walking past that node of the tree.
1940 template <typename CallableT>
visitDomSubTree(DominatorTree & DT,BasicBlock * BB,CallableT Callable)1941 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1942 SmallVector<DomTreeNode *, 4> DomWorklist;
1943 DomWorklist.push_back(DT[BB]);
1944 #ifndef NDEBUG
1945 SmallPtrSet<DomTreeNode *, 4> Visited;
1946 Visited.insert(DT[BB]);
1947 #endif
1948 do {
1949 DomTreeNode *N = DomWorklist.pop_back_val();
1950
1951 // Visit this node.
1952 if (!Callable(N->getBlock()))
1953 continue;
1954
1955 // Accumulate the child nodes.
1956 for (DomTreeNode *ChildN : *N) {
1957 assert(Visited.insert(ChildN).second &&
1958 "Cannot visit a node twice when walking a tree!");
1959 DomWorklist.push_back(ChildN);
1960 }
1961 } while (!DomWorklist.empty());
1962 }
1963
unswitchNontrivialInvariants(Loop & L,Instruction & TI,ArrayRef<Value * > Invariants,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,function_ref<void (bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)1964 static void unswitchNontrivialInvariants(
1965 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1966 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1967 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1968 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1969 auto *ParentBB = TI.getParent();
1970 BranchInst *BI = dyn_cast<BranchInst>(&TI);
1971 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1972
1973 // We can only unswitch switches, conditional branches with an invariant
1974 // condition, or combining invariant conditions with an instruction.
1975 assert((SI || (BI && BI->isConditional())) &&
1976 "Can only unswitch switches and conditional branch!");
1977 bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1978 if (FullUnswitch)
1979 assert(Invariants.size() == 1 &&
1980 "Cannot have other invariants with full unswitching!");
1981 else
1982 assert(isa<Instruction>(BI->getCondition()) &&
1983 "Partial unswitching requires an instruction as the condition!");
1984
1985 if (MSSAU && VerifyMemorySSA)
1986 MSSAU->getMemorySSA()->verifyMemorySSA();
1987
1988 // Constant and BBs tracking the cloned and continuing successor. When we are
1989 // unswitching the entire condition, this can just be trivially chosen to
1990 // unswitch towards `true`. However, when we are unswitching a set of
1991 // invariants combined with `and` or `or`, the combining operation determines
1992 // the best direction to unswitch: we want to unswitch the direction that will
1993 // collapse the branch.
1994 bool Direction = true;
1995 int ClonedSucc = 0;
1996 if (!FullUnswitch) {
1997 Value *Cond = BI->getCondition();
1998 (void)Cond;
1999 assert((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) &&
2000 "Only `or`, `and`, an `select` instructions can combine "
2001 "invariants being unswitched.");
2002 if (!match(BI->getCondition(), m_LogicalOr())) {
2003 Direction = false;
2004 ClonedSucc = 1;
2005 }
2006 }
2007
2008 BasicBlock *RetainedSuccBB =
2009 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2010 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2011 if (BI)
2012 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2013 else
2014 for (auto Case : SI->cases())
2015 if (Case.getCaseSuccessor() != RetainedSuccBB)
2016 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2017
2018 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2019 "Should not unswitch the same successor we are retaining!");
2020
2021 // The branch should be in this exact loop. Any inner loop's invariant branch
2022 // should be handled by unswitching that inner loop. The caller of this
2023 // routine should filter out any candidates that remain (but were skipped for
2024 // whatever reason).
2025 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2026
2027 // Compute the parent loop now before we start hacking on things.
2028 Loop *ParentL = L.getParentLoop();
2029 // Get blocks in RPO order for MSSA update, before changing the CFG.
2030 LoopBlocksRPO LBRPO(&L);
2031 if (MSSAU)
2032 LBRPO.perform(&LI);
2033
2034 // Compute the outer-most loop containing one of our exit blocks. This is the
2035 // furthest up our loopnest which can be mutated, which we will use below to
2036 // update things.
2037 Loop *OuterExitL = &L;
2038 for (auto *ExitBB : ExitBlocks) {
2039 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2040 if (!NewOuterExitL) {
2041 // We exited the entire nest with this block, so we're done.
2042 OuterExitL = nullptr;
2043 break;
2044 }
2045 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2046 OuterExitL = NewOuterExitL;
2047 }
2048
2049 // At this point, we're definitely going to unswitch something so invalidate
2050 // any cached information in ScalarEvolution for the outer most loop
2051 // containing an exit block and all nested loops.
2052 if (SE) {
2053 if (OuterExitL)
2054 SE->forgetLoop(OuterExitL);
2055 else
2056 SE->forgetTopmostLoop(&L);
2057 }
2058
2059 // If the edge from this terminator to a successor dominates that successor,
2060 // store a map from each block in its dominator subtree to it. This lets us
2061 // tell when cloning for a particular successor if a block is dominated by
2062 // some *other* successor with a single data structure. We use this to
2063 // significantly reduce cloning.
2064 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2065 for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2066 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2067 if (SuccBB->getUniquePredecessor() ||
2068 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2069 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2070 }))
2071 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2072 DominatingSucc[BB] = SuccBB;
2073 return true;
2074 });
2075
2076 // Split the preheader, so that we know that there is a safe place to insert
2077 // the conditional branch. We will change the preheader to have a conditional
2078 // branch on LoopCond. The original preheader will become the split point
2079 // between the unswitched versions, and we will have a new preheader for the
2080 // original loop.
2081 BasicBlock *SplitBB = L.getLoopPreheader();
2082 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2083
2084 // Keep track of the dominator tree updates needed.
2085 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2086
2087 // Clone the loop for each unswitched successor.
2088 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2089 VMaps.reserve(UnswitchedSuccBBs.size());
2090 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2091 for (auto *SuccBB : UnswitchedSuccBBs) {
2092 VMaps.emplace_back(new ValueToValueMapTy());
2093 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2094 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2095 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2096 }
2097
2098 // Drop metadata if we may break its semantics by moving this instr into the
2099 // split block.
2100 if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2101 if (DropNonTrivialImplicitNullChecks)
2102 // Do not spend time trying to understand if we can keep it, just drop it
2103 // to save compile time.
2104 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2105 else {
2106 // It is only legal to preserve make.implicit metadata if we are
2107 // guaranteed no reach implicit null check after following this branch.
2108 ICFLoopSafetyInfo SafetyInfo;
2109 SafetyInfo.computeLoopSafetyInfo(&L);
2110 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2111 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2112 }
2113 }
2114
2115 // The stitching of the branched code back together depends on whether we're
2116 // doing full unswitching or not with the exception that we always want to
2117 // nuke the initial terminator placed in the split block.
2118 SplitBB->getTerminator()->eraseFromParent();
2119 if (FullUnswitch) {
2120 // Splice the terminator from the original loop and rewrite its
2121 // successors.
2122 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2123
2124 // Keep a clone of the terminator for MSSA updates.
2125 Instruction *NewTI = TI.clone();
2126 ParentBB->getInstList().push_back(NewTI);
2127
2128 // First wire up the moved terminator to the preheaders.
2129 if (BI) {
2130 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2131 BI->setSuccessor(ClonedSucc, ClonedPH);
2132 BI->setSuccessor(1 - ClonedSucc, LoopPH);
2133 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2134 } else {
2135 assert(SI && "Must either be a branch or switch!");
2136
2137 // Walk the cases and directly update their successors.
2138 assert(SI->getDefaultDest() == RetainedSuccBB &&
2139 "Not retaining default successor!");
2140 SI->setDefaultDest(LoopPH);
2141 for (auto &Case : SI->cases())
2142 if (Case.getCaseSuccessor() == RetainedSuccBB)
2143 Case.setSuccessor(LoopPH);
2144 else
2145 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2146
2147 // We need to use the set to populate domtree updates as even when there
2148 // are multiple cases pointing at the same successor we only want to
2149 // remove and insert one edge in the domtree.
2150 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2151 DTUpdates.push_back(
2152 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2153 }
2154
2155 if (MSSAU) {
2156 DT.applyUpdates(DTUpdates);
2157 DTUpdates.clear();
2158
2159 // Remove all but one edge to the retained block and all unswitched
2160 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2161 // when we know we only keep a single edge for each case.
2162 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2163 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2164 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2165
2166 for (auto &VMap : VMaps)
2167 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2168 /*IgnoreIncomingWithNoClones=*/true);
2169 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2170
2171 // Remove all edges to unswitched blocks.
2172 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2173 MSSAU->removeEdge(ParentBB, SuccBB);
2174 }
2175
2176 // Now unhook the successor relationship as we'll be replacing
2177 // the terminator with a direct branch. This is much simpler for branches
2178 // than switches so we handle those first.
2179 if (BI) {
2180 // Remove the parent as a predecessor of the unswitched successor.
2181 assert(UnswitchedSuccBBs.size() == 1 &&
2182 "Only one possible unswitched block for a branch!");
2183 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2184 UnswitchedSuccBB->removePredecessor(ParentBB,
2185 /*KeepOneInputPHIs*/ true);
2186 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2187 } else {
2188 // Note that we actually want to remove the parent block as a predecessor
2189 // of *every* case successor. The case successor is either unswitched,
2190 // completely eliminating an edge from the parent to that successor, or it
2191 // is a duplicate edge to the retained successor as the retained successor
2192 // is always the default successor and as we'll replace this with a direct
2193 // branch we no longer need the duplicate entries in the PHI nodes.
2194 SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2195 assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2196 "Not retaining default successor!");
2197 for (auto &Case : NewSI->cases())
2198 Case.getCaseSuccessor()->removePredecessor(
2199 ParentBB,
2200 /*KeepOneInputPHIs*/ true);
2201
2202 // We need to use the set to populate domtree updates as even when there
2203 // are multiple cases pointing at the same successor we only want to
2204 // remove and insert one edge in the domtree.
2205 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2206 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2207 }
2208
2209 // After MSSAU update, remove the cloned terminator instruction NewTI.
2210 ParentBB->getTerminator()->eraseFromParent();
2211
2212 // Create a new unconditional branch to the continuing block (as opposed to
2213 // the one cloned).
2214 BranchInst::Create(RetainedSuccBB, ParentBB);
2215 } else {
2216 assert(BI && "Only branches have partial unswitching.");
2217 assert(UnswitchedSuccBBs.size() == 1 &&
2218 "Only one possible unswitched block for a branch!");
2219 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2220 // When doing a partial unswitch, we have to do a bit more work to build up
2221 // the branch in the split block.
2222 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2223 *ClonedPH, *LoopPH);
2224 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2225
2226 if (MSSAU) {
2227 DT.applyUpdates(DTUpdates);
2228 DTUpdates.clear();
2229
2230 // Perform MSSA cloning updates.
2231 for (auto &VMap : VMaps)
2232 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2233 /*IgnoreIncomingWithNoClones=*/true);
2234 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2235 }
2236 }
2237
2238 // Apply the updates accumulated above to get an up-to-date dominator tree.
2239 DT.applyUpdates(DTUpdates);
2240
2241 // Now that we have an accurate dominator tree, first delete the dead cloned
2242 // blocks so that we can accurately build any cloned loops. It is important to
2243 // not delete the blocks from the original loop yet because we still want to
2244 // reference the original loop to understand the cloned loop's structure.
2245 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2246
2247 // Build the cloned loop structure itself. This may be substantially
2248 // different from the original structure due to the simplified CFG. This also
2249 // handles inserting all the cloned blocks into the correct loops.
2250 SmallVector<Loop *, 4> NonChildClonedLoops;
2251 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2252 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2253
2254 // Now that our cloned loops have been built, we can update the original loop.
2255 // First we delete the dead blocks from it and then we rebuild the loop
2256 // structure taking these deletions into account.
2257 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2258
2259 if (MSSAU && VerifyMemorySSA)
2260 MSSAU->getMemorySSA()->verifyMemorySSA();
2261
2262 SmallVector<Loop *, 4> HoistedLoops;
2263 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2264
2265 if (MSSAU && VerifyMemorySSA)
2266 MSSAU->getMemorySSA()->verifyMemorySSA();
2267
2268 // This transformation has a high risk of corrupting the dominator tree, and
2269 // the below steps to rebuild loop structures will result in hard to debug
2270 // errors in that case so verify that the dominator tree is sane first.
2271 // FIXME: Remove this when the bugs stop showing up and rely on existing
2272 // verification steps.
2273 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2274
2275 if (BI) {
2276 // If we unswitched a branch which collapses the condition to a known
2277 // constant we want to replace all the uses of the invariants within both
2278 // the original and cloned blocks. We do this here so that we can use the
2279 // now updated dominator tree to identify which side the users are on.
2280 assert(UnswitchedSuccBBs.size() == 1 &&
2281 "Only one possible unswitched block for a branch!");
2282 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2283
2284 // When considering multiple partially-unswitched invariants
2285 // we cant just go replace them with constants in both branches.
2286 //
2287 // For 'AND' we infer that true branch ("continue") means true
2288 // for each invariant operand.
2289 // For 'OR' we can infer that false branch ("continue") means false
2290 // for each invariant operand.
2291 // So it happens that for multiple-partial case we dont replace
2292 // in the unswitched branch.
2293 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2294
2295 ConstantInt *UnswitchedReplacement =
2296 Direction ? ConstantInt::getTrue(BI->getContext())
2297 : ConstantInt::getFalse(BI->getContext());
2298 ConstantInt *ContinueReplacement =
2299 Direction ? ConstantInt::getFalse(BI->getContext())
2300 : ConstantInt::getTrue(BI->getContext());
2301 for (Value *Invariant : Invariants)
2302 // Use make_early_inc_range here as set invalidates the iterator.
2303 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2304 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2305 if (!UserI)
2306 continue;
2307
2308 // Replace it with the 'continue' side if in the main loop body, and the
2309 // unswitched if in the cloned blocks.
2310 if (DT.dominates(LoopPH, UserI->getParent()))
2311 U.set(ContinueReplacement);
2312 else if (ReplaceUnswitched &&
2313 DT.dominates(ClonedPH, UserI->getParent()))
2314 U.set(UnswitchedReplacement);
2315 }
2316 }
2317
2318 // We can change which blocks are exit blocks of all the cloned sibling
2319 // loops, the current loop, and any parent loops which shared exit blocks
2320 // with the current loop. As a consequence, we need to re-form LCSSA for
2321 // them. But we shouldn't need to re-form LCSSA for any child loops.
2322 // FIXME: This could be made more efficient by tracking which exit blocks are
2323 // new, and focusing on them, but that isn't likely to be necessary.
2324 //
2325 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2326 // loop nest and update every loop that could have had its exits changed. We
2327 // also need to cover any intervening loops. We add all of these loops to
2328 // a list and sort them by loop depth to achieve this without updating
2329 // unnecessary loops.
2330 auto UpdateLoop = [&](Loop &UpdateL) {
2331 #ifndef NDEBUG
2332 UpdateL.verifyLoop();
2333 for (Loop *ChildL : UpdateL) {
2334 ChildL->verifyLoop();
2335 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2336 "Perturbed a child loop's LCSSA form!");
2337 }
2338 #endif
2339 // First build LCSSA for this loop so that we can preserve it when
2340 // forming dedicated exits. We don't want to perturb some other loop's
2341 // LCSSA while doing that CFG edit.
2342 formLCSSA(UpdateL, DT, &LI, SE);
2343
2344 // For loops reached by this loop's original exit blocks we may
2345 // introduced new, non-dedicated exits. At least try to re-form dedicated
2346 // exits for these loops. This may fail if they couldn't have dedicated
2347 // exits to start with.
2348 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2349 };
2350
2351 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2352 // and we can do it in any order as they don't nest relative to each other.
2353 //
2354 // Also check if any of the loops we have updated have become top-level loops
2355 // as that will necessitate widening the outer loop scope.
2356 for (Loop *UpdatedL :
2357 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2358 UpdateLoop(*UpdatedL);
2359 if (UpdatedL->isOutermost())
2360 OuterExitL = nullptr;
2361 }
2362 if (IsStillLoop) {
2363 UpdateLoop(L);
2364 if (L.isOutermost())
2365 OuterExitL = nullptr;
2366 }
2367
2368 // If the original loop had exit blocks, walk up through the outer most loop
2369 // of those exit blocks to update LCSSA and form updated dedicated exits.
2370 if (OuterExitL != &L)
2371 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2372 OuterL = OuterL->getParentLoop())
2373 UpdateLoop(*OuterL);
2374
2375 #ifndef NDEBUG
2376 // Verify the entire loop structure to catch any incorrect updates before we
2377 // progress in the pass pipeline.
2378 LI.verify(DT);
2379 #endif
2380
2381 // Now that we've unswitched something, make callbacks to report the changes.
2382 // For that we need to merge together the updated loops and the cloned loops
2383 // and check whether the original loop survived.
2384 SmallVector<Loop *, 4> SibLoops;
2385 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2386 if (UpdatedL->getParentLoop() == ParentL)
2387 SibLoops.push_back(UpdatedL);
2388 UnswitchCB(IsStillLoop, SibLoops);
2389
2390 if (MSSAU && VerifyMemorySSA)
2391 MSSAU->getMemorySSA()->verifyMemorySSA();
2392
2393 if (BI)
2394 ++NumBranches;
2395 else
2396 ++NumSwitches;
2397 }
2398
2399 /// Recursively compute the cost of a dominator subtree based on the per-block
2400 /// cost map provided.
2401 ///
2402 /// The recursive computation is memozied into the provided DT-indexed cost map
2403 /// to allow querying it for most nodes in the domtree without it becoming
2404 /// quadratic.
computeDomSubtreeCost(DomTreeNode & N,const SmallDenseMap<BasicBlock *,InstructionCost,4> & BBCostMap,SmallDenseMap<DomTreeNode *,InstructionCost,4> & DTCostMap)2405 static InstructionCost computeDomSubtreeCost(
2406 DomTreeNode &N,
2407 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2408 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2409 // Don't accumulate cost (or recurse through) blocks not in our block cost
2410 // map and thus not part of the duplication cost being considered.
2411 auto BBCostIt = BBCostMap.find(N.getBlock());
2412 if (BBCostIt == BBCostMap.end())
2413 return 0;
2414
2415 // Lookup this node to see if we already computed its cost.
2416 auto DTCostIt = DTCostMap.find(&N);
2417 if (DTCostIt != DTCostMap.end())
2418 return DTCostIt->second;
2419
2420 // If not, we have to compute it. We can't use insert above and update
2421 // because computing the cost may insert more things into the map.
2422 InstructionCost Cost = std::accumulate(
2423 N.begin(), N.end(), BBCostIt->second,
2424 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2425 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2426 });
2427 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2428 (void)Inserted;
2429 assert(Inserted && "Should not insert a node while visiting children!");
2430 return Cost;
2431 }
2432
2433 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2434 /// making the following replacement:
2435 ///
2436 /// --code before guard--
2437 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2438 /// --code after guard--
2439 ///
2440 /// into
2441 ///
2442 /// --code before guard--
2443 /// br i1 %cond, label %guarded, label %deopt
2444 ///
2445 /// guarded:
2446 /// --code after guard--
2447 ///
2448 /// deopt:
2449 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2450 /// unreachable
2451 ///
2452 /// It also makes all relevant DT and LI updates, so that all structures are in
2453 /// valid state after this transform.
2454 static BranchInst *
turnGuardIntoBranch(IntrinsicInst * GI,Loop & L,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)2455 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2456 SmallVectorImpl<BasicBlock *> &ExitBlocks,
2457 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2458 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2459 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2460 BasicBlock *CheckBB = GI->getParent();
2461
2462 if (MSSAU && VerifyMemorySSA)
2463 MSSAU->getMemorySSA()->verifyMemorySSA();
2464
2465 // Remove all CheckBB's successors from DomTree. A block can be seen among
2466 // successors more than once, but for DomTree it should be added only once.
2467 SmallPtrSet<BasicBlock *, 4> Successors;
2468 for (auto *Succ : successors(CheckBB))
2469 if (Successors.insert(Succ).second)
2470 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2471
2472 Instruction *DeoptBlockTerm =
2473 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2474 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2475 // SplitBlockAndInsertIfThen inserts control flow that branches to
2476 // DeoptBlockTerm if the condition is true. We want the opposite.
2477 CheckBI->swapSuccessors();
2478
2479 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2480 GuardedBlock->setName("guarded");
2481 CheckBI->getSuccessor(1)->setName("deopt");
2482 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2483
2484 // We now have a new exit block.
2485 ExitBlocks.push_back(CheckBI->getSuccessor(1));
2486
2487 if (MSSAU)
2488 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2489
2490 GI->moveBefore(DeoptBlockTerm);
2491 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2492
2493 // Add new successors of CheckBB into DomTree.
2494 for (auto *Succ : successors(CheckBB))
2495 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2496
2497 // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2498 // successors.
2499 for (auto *Succ : Successors)
2500 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2501
2502 // Make proper changes to DT.
2503 DT.applyUpdates(DTUpdates);
2504 // Inform LI of a new loop block.
2505 L.addBasicBlockToLoop(GuardedBlock, LI);
2506
2507 if (MSSAU) {
2508 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2509 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2510 if (VerifyMemorySSA)
2511 MSSAU->getMemorySSA()->verifyMemorySSA();
2512 }
2513
2514 ++NumGuards;
2515 return CheckBI;
2516 }
2517
2518 /// Cost multiplier is a way to limit potentially exponential behavior
2519 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2520 /// candidates available. Also accounting for the number of "sibling" loops with
2521 /// the idea to account for previous unswitches that already happened on this
2522 /// cluster of loops. There was an attempt to keep this formula simple,
2523 /// just enough to limit the worst case behavior. Even if it is not that simple
2524 /// now it is still not an attempt to provide a detailed heuristic size
2525 /// prediction.
2526 ///
2527 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2528 /// unswitch candidates, making adequate predictions instead of wild guesses.
2529 /// That requires knowing not just the number of "remaining" candidates but
2530 /// also costs of unswitching for each of these candidates.
CalculateUnswitchCostMultiplier(Instruction & TI,Loop & L,LoopInfo & LI,DominatorTree & DT,ArrayRef<std::pair<Instruction *,TinyPtrVector<Value * >>> UnswitchCandidates)2531 static int CalculateUnswitchCostMultiplier(
2532 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2533 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2534 UnswitchCandidates) {
2535
2536 // Guards and other exiting conditions do not contribute to exponential
2537 // explosion as soon as they dominate the latch (otherwise there might be
2538 // another path to the latch remaining that does not allow to eliminate the
2539 // loop copy on unswitch).
2540 BasicBlock *Latch = L.getLoopLatch();
2541 BasicBlock *CondBlock = TI.getParent();
2542 if (DT.dominates(CondBlock, Latch) &&
2543 (isGuard(&TI) ||
2544 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2545 return L.contains(SuccBB);
2546 }) <= 1)) {
2547 NumCostMultiplierSkipped++;
2548 return 1;
2549 }
2550
2551 auto *ParentL = L.getParentLoop();
2552 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2553 : std::distance(LI.begin(), LI.end()));
2554 // Count amount of clones that all the candidates might cause during
2555 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2556 int UnswitchedClones = 0;
2557 for (auto Candidate : UnswitchCandidates) {
2558 Instruction *CI = Candidate.first;
2559 BasicBlock *CondBlock = CI->getParent();
2560 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2561 if (isGuard(CI)) {
2562 if (!SkipExitingSuccessors)
2563 UnswitchedClones++;
2564 continue;
2565 }
2566 int NonExitingSuccessors = llvm::count_if(
2567 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2568 return !SkipExitingSuccessors || L.contains(SuccBB);
2569 });
2570 UnswitchedClones += Log2_32(NonExitingSuccessors);
2571 }
2572
2573 // Ignore up to the "unscaled candidates" number of unswitch candidates
2574 // when calculating the power-of-two scaling of the cost. The main idea
2575 // with this control is to allow a small number of unswitches to happen
2576 // and rely more on siblings multiplier (see below) when the number
2577 // of candidates is small.
2578 unsigned ClonesPower =
2579 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2580
2581 // Allowing top-level loops to spread a bit more than nested ones.
2582 int SiblingsMultiplier =
2583 std::max((ParentL ? SiblingsCount
2584 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2585 1);
2586 // Compute the cost multiplier in a way that won't overflow by saturating
2587 // at an upper bound.
2588 int CostMultiplier;
2589 if (ClonesPower > Log2_32(UnswitchThreshold) ||
2590 SiblingsMultiplier > UnswitchThreshold)
2591 CostMultiplier = UnswitchThreshold;
2592 else
2593 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2594 (int)UnswitchThreshold);
2595
2596 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2597 << " (siblings " << SiblingsMultiplier << " * clones "
2598 << (1 << ClonesPower) << ")"
2599 << " for unswitch candidate: " << TI << "\n");
2600 return CostMultiplier;
2601 }
2602
2603 static bool
unswitchBestCondition(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,TargetTransformInfo & TTI,function_ref<void (bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)2604 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2605 AssumptionCache &AC, TargetTransformInfo &TTI,
2606 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2607 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2608 // Collect all invariant conditions within this loop (as opposed to an inner
2609 // loop which would be handled when visiting that inner loop).
2610 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2611 UnswitchCandidates;
2612
2613 // Whether or not we should also collect guards in the loop.
2614 bool CollectGuards = false;
2615 if (UnswitchGuards) {
2616 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2617 Intrinsic::getName(Intrinsic::experimental_guard));
2618 if (GuardDecl && !GuardDecl->use_empty())
2619 CollectGuards = true;
2620 }
2621
2622 for (auto *BB : L.blocks()) {
2623 if (LI.getLoopFor(BB) != &L)
2624 continue;
2625
2626 if (CollectGuards)
2627 for (auto &I : *BB)
2628 if (isGuard(&I)) {
2629 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2630 // TODO: Support AND, OR conditions and partial unswitching.
2631 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2632 UnswitchCandidates.push_back({&I, {Cond}});
2633 }
2634
2635 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2636 // We can only consider fully loop-invariant switch conditions as we need
2637 // to completely eliminate the switch after unswitching.
2638 if (!isa<Constant>(SI->getCondition()) &&
2639 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2640 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2641 continue;
2642 }
2643
2644 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2645 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2646 BI->getSuccessor(0) == BI->getSuccessor(1))
2647 continue;
2648
2649 // If BI's condition is 'select _, true, false', simplify it to confuse
2650 // matchers
2651 Value *Cond = BI->getCondition(), *CondNext;
2652 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
2653 Cond = CondNext;
2654 BI->setCondition(Cond);
2655
2656 if (L.isLoopInvariant(BI->getCondition())) {
2657 UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2658 continue;
2659 }
2660
2661 Instruction &CondI = *cast<Instruction>(BI->getCondition());
2662 if (!match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())))
2663 continue;
2664
2665 TinyPtrVector<Value *> Invariants =
2666 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2667 if (Invariants.empty())
2668 continue;
2669
2670 UnswitchCandidates.push_back({BI, std::move(Invariants)});
2671 }
2672
2673 // If we didn't find any candidates, we're done.
2674 if (UnswitchCandidates.empty())
2675 return false;
2676
2677 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2678 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2679 // irreducible control flow into reducible control flow and introduce new
2680 // loops "out of thin air". If we ever discover important use cases for doing
2681 // this, we can add support to loop unswitch, but it is a lot of complexity
2682 // for what seems little or no real world benefit.
2683 LoopBlocksRPO RPOT(&L);
2684 RPOT.perform(&LI);
2685 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2686 return false;
2687
2688 SmallVector<BasicBlock *, 4> ExitBlocks;
2689 L.getUniqueExitBlocks(ExitBlocks);
2690
2691 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2692 // don't know how to split those exit blocks.
2693 // FIXME: We should teach SplitBlock to handle this and remove this
2694 // restriction.
2695 for (auto *ExitBB : ExitBlocks) {
2696 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2697 LLVM_DEBUG(
2698 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n");
2699 return false;
2700 }
2701 }
2702
2703 LLVM_DEBUG(
2704 dbgs() << "Considering " << UnswitchCandidates.size()
2705 << " non-trivial loop invariant conditions for unswitching.\n");
2706
2707 // Given that unswitching these terminators will require duplicating parts of
2708 // the loop, so we need to be able to model that cost. Compute the ephemeral
2709 // values and set up a data structure to hold per-BB costs. We cache each
2710 // block's cost so that we don't recompute this when considering different
2711 // subsets of the loop for duplication during unswitching.
2712 SmallPtrSet<const Value *, 4> EphValues;
2713 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2714 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2715
2716 // Compute the cost of each block, as well as the total loop cost. Also, bail
2717 // out if we see instructions which are incompatible with loop unswitching
2718 // (convergent, noduplicate, or cross-basic-block tokens).
2719 // FIXME: We might be able to safely handle some of these in non-duplicated
2720 // regions.
2721 TargetTransformInfo::TargetCostKind CostKind =
2722 L.getHeader()->getParent()->hasMinSize()
2723 ? TargetTransformInfo::TCK_CodeSize
2724 : TargetTransformInfo::TCK_SizeAndLatency;
2725 InstructionCost LoopCost = 0;
2726 for (auto *BB : L.blocks()) {
2727 InstructionCost Cost = 0;
2728 for (auto &I : *BB) {
2729 if (EphValues.count(&I))
2730 continue;
2731
2732 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2733 return false;
2734 if (auto *CB = dyn_cast<CallBase>(&I))
2735 if (CB->isConvergent() || CB->cannotDuplicate())
2736 return false;
2737
2738 Cost += TTI.getUserCost(&I, CostKind);
2739 }
2740 assert(Cost >= 0 && "Must not have negative costs!");
2741 LoopCost += Cost;
2742 assert(LoopCost >= 0 && "Must not have negative loop costs!");
2743 BBCostMap[BB] = Cost;
2744 }
2745 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
2746
2747 // Now we find the best candidate by searching for the one with the following
2748 // properties in order:
2749 //
2750 // 1) An unswitching cost below the threshold
2751 // 2) The smallest number of duplicated unswitch candidates (to avoid
2752 // creating redundant subsequent unswitching)
2753 // 3) The smallest cost after unswitching.
2754 //
2755 // We prioritize reducing fanout of unswitch candidates provided the cost
2756 // remains below the threshold because this has a multiplicative effect.
2757 //
2758 // This requires memoizing each dominator subtree to avoid redundant work.
2759 //
2760 // FIXME: Need to actually do the number of candidates part above.
2761 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2762 // Given a terminator which might be unswitched, computes the non-duplicated
2763 // cost for that terminator.
2764 auto ComputeUnswitchedCost = [&](Instruction &TI,
2765 bool FullUnswitch) -> InstructionCost {
2766 BasicBlock &BB = *TI.getParent();
2767 SmallPtrSet<BasicBlock *, 4> Visited;
2768
2769 InstructionCost Cost = 0;
2770 for (BasicBlock *SuccBB : successors(&BB)) {
2771 // Don't count successors more than once.
2772 if (!Visited.insert(SuccBB).second)
2773 continue;
2774
2775 // If this is a partial unswitch candidate, then it must be a conditional
2776 // branch with a condition of either `or`, `and`, or their corresponding
2777 // select forms. In that case, one of the successors is necessarily
2778 // duplicated, so don't even try to remove its cost.
2779 if (!FullUnswitch) {
2780 auto &BI = cast<BranchInst>(TI);
2781 if (match(BI.getCondition(), m_LogicalAnd())) {
2782 if (SuccBB == BI.getSuccessor(1))
2783 continue;
2784 } else {
2785 assert(match(BI.getCondition(), m_LogicalOr()) &&
2786 "Only `and` and `or` conditions can result in a partial "
2787 "unswitch!");
2788 if (SuccBB == BI.getSuccessor(0))
2789 continue;
2790 }
2791 }
2792
2793 // This successor's domtree will not need to be duplicated after
2794 // unswitching if the edge to the successor dominates it (and thus the
2795 // entire tree). This essentially means there is no other path into this
2796 // subtree and so it will end up live in only one clone of the loop.
2797 if (SuccBB->getUniquePredecessor() ||
2798 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2799 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2800 })) {
2801 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2802 assert(Cost <= LoopCost &&
2803 "Non-duplicated cost should never exceed total loop cost!");
2804 }
2805 }
2806
2807 // Now scale the cost by the number of unique successors minus one. We
2808 // subtract one because there is already at least one copy of the entire
2809 // loop. This is computing the new cost of unswitching a condition.
2810 // Note that guards always have 2 unique successors that are implicit and
2811 // will be materialized if we decide to unswitch it.
2812 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2813 assert(SuccessorsCount > 1 &&
2814 "Cannot unswitch a condition without multiple distinct successors!");
2815 return (LoopCost - Cost) * (SuccessorsCount - 1);
2816 };
2817 Instruction *BestUnswitchTI = nullptr;
2818 InstructionCost BestUnswitchCost = 0;
2819 ArrayRef<Value *> BestUnswitchInvariants;
2820 for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2821 Instruction &TI = *TerminatorAndInvariants.first;
2822 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2823 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2824 InstructionCost CandidateCost = ComputeUnswitchedCost(
2825 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2826 Invariants[0] == BI->getCondition()));
2827 // Calculate cost multiplier which is a tool to limit potentially
2828 // exponential behavior of loop-unswitch.
2829 if (EnableUnswitchCostMultiplier) {
2830 int CostMultiplier =
2831 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2832 assert(
2833 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2834 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2835 CandidateCost *= CostMultiplier;
2836 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2837 << " (multiplier: " << CostMultiplier << ")"
2838 << " for unswitch candidate: " << TI << "\n");
2839 } else {
2840 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2841 << " for unswitch candidate: " << TI << "\n");
2842 }
2843
2844 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2845 BestUnswitchTI = &TI;
2846 BestUnswitchCost = CandidateCost;
2847 BestUnswitchInvariants = Invariants;
2848 }
2849 }
2850 assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2851
2852 if (BestUnswitchCost >= UnswitchThreshold) {
2853 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2854 << BestUnswitchCost << "\n");
2855 return false;
2856 }
2857
2858 // If the best candidate is a guard, turn it into a branch.
2859 if (isGuard(BestUnswitchTI))
2860 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2861 ExitBlocks, DT, LI, MSSAU);
2862
2863 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = "
2864 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2865 << "\n");
2866 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2867 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2868 return true;
2869 }
2870
2871 /// Unswitch control flow predicated on loop invariant conditions.
2872 ///
2873 /// This first hoists all branches or switches which are trivial (IE, do not
2874 /// require duplicating any part of the loop) out of the loop body. It then
2875 /// looks at other loop invariant control flows and tries to unswitch those as
2876 /// well by cloning the loop if the result is small enough.
2877 ///
2878 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2879 /// updated based on the unswitch.
2880 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2881 ///
2882 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2883 /// true, we will attempt to do non-trivial unswitching as well as trivial
2884 /// unswitching.
2885 ///
2886 /// The `UnswitchCB` callback provided will be run after unswitching is
2887 /// complete, with the first parameter set to `true` if the provided loop
2888 /// remains a loop, and a list of new sibling loops created.
2889 ///
2890 /// If `SE` is non-null, we will update that analysis based on the unswitching
2891 /// done.
unswitchLoop(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,TargetTransformInfo & TTI,bool NonTrivial,function_ref<void (bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)2892 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2893 AssumptionCache &AC, TargetTransformInfo &TTI,
2894 bool NonTrivial,
2895 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2896 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2897 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2898 "Loops must be in LCSSA form before unswitching.");
2899
2900 // Must be in loop simplified form: we need a preheader and dedicated exits.
2901 if (!L.isLoopSimplifyForm())
2902 return false;
2903
2904 // Try trivial unswitch first before loop over other basic blocks in the loop.
2905 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2906 // If we unswitched successfully we will want to clean up the loop before
2907 // processing it further so just mark it as unswitched and return.
2908 UnswitchCB(/*CurrentLoopValid*/ true, {});
2909 return true;
2910 }
2911
2912 // Check whether we should continue with non-trivial conditions.
2913 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
2914 // unswitching for testing and debugging.
2915 // NonTrivial: Parameter that enables non-trivial unswitching for this
2916 // invocation of the transform. But this should be allowed only
2917 // for targets without branch divergence.
2918 //
2919 // FIXME: If divergence analysis becomes available to a loop
2920 // transform, we should allow unswitching for non-trivial uniform
2921 // branches even on targets that have divergence.
2922 // https://bugs.llvm.org/show_bug.cgi?id=48819
2923 bool ContinueWithNonTrivial =
2924 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
2925 if (!ContinueWithNonTrivial)
2926 return false;
2927
2928 // Skip non-trivial unswitching for optsize functions.
2929 if (L.getHeader()->getParent()->hasOptSize())
2930 return false;
2931
2932 // Skip non-trivial unswitching for loops that cannot be cloned.
2933 if (!L.isSafeToClone())
2934 return false;
2935
2936 // For non-trivial unswitching, because it often creates new loops, we rely on
2937 // the pass manager to iterate on the loops rather than trying to immediately
2938 // reach a fixed point. There is no substantial advantage to iterating
2939 // internally, and if any of the new loops are simplified enough to contain
2940 // trivial unswitching we want to prefer those.
2941
2942 // Try to unswitch the best invariant condition. We prefer this full unswitch to
2943 // a partial unswitch when possible below the threshold.
2944 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2945 return true;
2946
2947 // No other opportunities to unswitch.
2948 return false;
2949 }
2950
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)2951 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2952 LoopStandardAnalysisResults &AR,
2953 LPMUpdater &U) {
2954 Function &F = *L.getHeader()->getParent();
2955 (void)F;
2956
2957 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2958 << "\n");
2959
2960 // Save the current loop name in a variable so that we can report it even
2961 // after it has been deleted.
2962 std::string LoopName = std::string(L.getName());
2963
2964 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2965 ArrayRef<Loop *> NewLoops) {
2966 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2967 if (!NewLoops.empty())
2968 U.addSiblingLoops(NewLoops);
2969
2970 // If the current loop remains valid, we should revisit it to catch any
2971 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2972 if (CurrentLoopValid)
2973 U.revisitCurrentLoop();
2974 else
2975 U.markLoopAsDeleted(L, LoopName);
2976 };
2977
2978 Optional<MemorySSAUpdater> MSSAU;
2979 if (AR.MSSA) {
2980 MSSAU = MemorySSAUpdater(AR.MSSA);
2981 if (VerifyMemorySSA)
2982 AR.MSSA->verifyMemorySSA();
2983 }
2984 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2985 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2986 return PreservedAnalyses::all();
2987
2988 if (AR.MSSA && VerifyMemorySSA)
2989 AR.MSSA->verifyMemorySSA();
2990
2991 // Historically this pass has had issues with the dominator tree so verify it
2992 // in asserts builds.
2993 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2994
2995 auto PA = getLoopPassPreservedAnalyses();
2996 if (AR.MSSA)
2997 PA.preserve<MemorySSAAnalysis>();
2998 return PA;
2999 }
3000
3001 namespace {
3002
3003 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3004 bool NonTrivial;
3005
3006 public:
3007 static char ID; // Pass ID, replacement for typeid
3008
SimpleLoopUnswitchLegacyPass(bool NonTrivial=false)3009 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3010 : LoopPass(ID), NonTrivial(NonTrivial) {
3011 initializeSimpleLoopUnswitchLegacyPassPass(
3012 *PassRegistry::getPassRegistry());
3013 }
3014
3015 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3016
getAnalysisUsage(AnalysisUsage & AU) const3017 void getAnalysisUsage(AnalysisUsage &AU) const override {
3018 AU.addRequired<AssumptionCacheTracker>();
3019 AU.addRequired<TargetTransformInfoWrapperPass>();
3020 if (EnableMSSALoopDependency) {
3021 AU.addRequired<MemorySSAWrapperPass>();
3022 AU.addPreserved<MemorySSAWrapperPass>();
3023 }
3024 getLoopAnalysisUsage(AU);
3025 }
3026 };
3027
3028 } // end anonymous namespace
3029
runOnLoop(Loop * L,LPPassManager & LPM)3030 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3031 if (skipLoop(L))
3032 return false;
3033
3034 Function &F = *L->getHeader()->getParent();
3035
3036 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3037 << "\n");
3038
3039 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3040 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3041 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3042 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3043 MemorySSA *MSSA = nullptr;
3044 Optional<MemorySSAUpdater> MSSAU;
3045 if (EnableMSSALoopDependency) {
3046 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3047 MSSAU = MemorySSAUpdater(MSSA);
3048 }
3049
3050 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3051 auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3052
3053 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
3054 ArrayRef<Loop *> NewLoops) {
3055 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3056 for (auto *NewL : NewLoops)
3057 LPM.addLoop(*NewL);
3058
3059 // If the current loop remains valid, re-add it to the queue. This is
3060 // a little wasteful as we'll finish processing the current loop as well,
3061 // but it is the best we can do in the old PM.
3062 if (CurrentLoopValid)
3063 LPM.addLoop(*L);
3064 else
3065 LPM.markLoopAsDeleted(*L);
3066 };
3067
3068 if (MSSA && VerifyMemorySSA)
3069 MSSA->verifyMemorySSA();
3070
3071 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
3072 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
3073
3074 if (MSSA && VerifyMemorySSA)
3075 MSSA->verifyMemorySSA();
3076
3077 // Historically this pass has had issues with the dominator tree so verify it
3078 // in asserts builds.
3079 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3080
3081 return Changed;
3082 }
3083
3084 char SimpleLoopUnswitchLegacyPass::ID = 0;
3085 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3086 "Simple unswitch loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)3087 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3088 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3089 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3090 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3091 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3092 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3093 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3094 "Simple unswitch loops", false, false)
3095
3096 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3097 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3098 }
3099