xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
addWithOverflow(APInt & Result,const APInt & In1,const APInt & In2,bool IsSigned=false)40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
subWithOverflow(APInt & Result,const APInt & In1,const APInt & In2,bool IsSigned=false)53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
hasBranchUse(ICmpInst & I)66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
isSignTest(ICmpInst::Predicate & Pred,const APInt & C)77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78   if (!ICmpInst::isSigned(Pred))
79     return false;
80 
81   if (C.isNullValue())
82     return ICmpInst::isRelational(Pred);
83 
84   if (C.isOneValue()) {
85     if (Pred == ICmpInst::ICMP_SLT) {
86       Pred = ICmpInst::ICMP_SLE;
87       return true;
88     }
89   } else if (C.isAllOnesValue()) {
90     if (Pred == ICmpInst::ICMP_SGT) {
91       Pred = ICmpInst::ICMP_SGE;
92       return true;
93     }
94   }
95 
96   return false;
97 }
98 
99 /// This is called when we see this pattern:
100 ///   cmp pred (load (gep GV, ...)), cmpcst
101 /// where GV is a global variable with a constant initializer. Try to simplify
102 /// this into some simple computation that does not need the load. For example
103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
104 ///
105 /// If AndCst is non-null, then the loaded value is masked with that constant
106 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
107 Instruction *
foldCmpLoadFromIndexedGlobal(GetElementPtrInst * GEP,GlobalVariable * GV,CmpInst & ICI,ConstantInt * AndCst)108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
109                                                GlobalVariable *GV, CmpInst &ICI,
110                                                ConstantInt *AndCst) {
111   Constant *Init = GV->getInitializer();
112   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
113     return nullptr;
114 
115   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
116   // Don't blow up on huge arrays.
117   if (ArrayElementCount > MaxArraySizeForCombine)
118     return nullptr;
119 
120   // There are many forms of this optimization we can handle, for now, just do
121   // the simple index into a single-dimensional array.
122   //
123   // Require: GEP GV, 0, i {{, constant indices}}
124   if (GEP->getNumOperands() < 3 ||
125       !isa<ConstantInt>(GEP->getOperand(1)) ||
126       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
127       isa<Constant>(GEP->getOperand(2)))
128     return nullptr;
129 
130   // Check that indices after the variable are constants and in-range for the
131   // type they index.  Collect the indices.  This is typically for arrays of
132   // structs.
133   SmallVector<unsigned, 4> LaterIndices;
134 
135   Type *EltTy = Init->getType()->getArrayElementType();
136   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
137     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
138     if (!Idx) return nullptr;  // Variable index.
139 
140     uint64_t IdxVal = Idx->getZExtValue();
141     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
142 
143     if (StructType *STy = dyn_cast<StructType>(EltTy))
144       EltTy = STy->getElementType(IdxVal);
145     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
146       if (IdxVal >= ATy->getNumElements()) return nullptr;
147       EltTy = ATy->getElementType();
148     } else {
149       return nullptr; // Unknown type.
150     }
151 
152     LaterIndices.push_back(IdxVal);
153   }
154 
155   enum { Overdefined = -3, Undefined = -2 };
156 
157   // Variables for our state machines.
158 
159   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
160   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
161   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
162   // undefined, otherwise set to the first true element.  SecondTrueElement is
163   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
164   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
165 
166   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
167   // form "i != 47 & i != 87".  Same state transitions as for true elements.
168   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
169 
170   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
171   /// define a state machine that triggers for ranges of values that the index
172   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
173   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
174   /// index in the range (inclusive).  We use -2 for undefined here because we
175   /// use relative comparisons and don't want 0-1 to match -1.
176   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
177 
178   // MagicBitvector - This is a magic bitvector where we set a bit if the
179   // comparison is true for element 'i'.  If there are 64 elements or less in
180   // the array, this will fully represent all the comparison results.
181   uint64_t MagicBitvector = 0;
182 
183   // Scan the array and see if one of our patterns matches.
184   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
185   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
186     Constant *Elt = Init->getAggregateElement(i);
187     if (!Elt) return nullptr;
188 
189     // If this is indexing an array of structures, get the structure element.
190     if (!LaterIndices.empty())
191       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
192 
193     // If the element is masked, handle it.
194     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
195 
196     // Find out if the comparison would be true or false for the i'th element.
197     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
198                                                   CompareRHS, DL, &TLI);
199     // If the result is undef for this element, ignore it.
200     if (isa<UndefValue>(C)) {
201       // Extend range state machines to cover this element in case there is an
202       // undef in the middle of the range.
203       if (TrueRangeEnd == (int)i-1)
204         TrueRangeEnd = i;
205       if (FalseRangeEnd == (int)i-1)
206         FalseRangeEnd = i;
207       continue;
208     }
209 
210     // If we can't compute the result for any of the elements, we have to give
211     // up evaluating the entire conditional.
212     if (!isa<ConstantInt>(C)) return nullptr;
213 
214     // Otherwise, we know if the comparison is true or false for this element,
215     // update our state machines.
216     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
217 
218     // State machine for single/double/range index comparison.
219     if (IsTrueForElt) {
220       // Update the TrueElement state machine.
221       if (FirstTrueElement == Undefined)
222         FirstTrueElement = TrueRangeEnd = i;  // First true element.
223       else {
224         // Update double-compare state machine.
225         if (SecondTrueElement == Undefined)
226           SecondTrueElement = i;
227         else
228           SecondTrueElement = Overdefined;
229 
230         // Update range state machine.
231         if (TrueRangeEnd == (int)i-1)
232           TrueRangeEnd = i;
233         else
234           TrueRangeEnd = Overdefined;
235       }
236     } else {
237       // Update the FalseElement state machine.
238       if (FirstFalseElement == Undefined)
239         FirstFalseElement = FalseRangeEnd = i; // First false element.
240       else {
241         // Update double-compare state machine.
242         if (SecondFalseElement == Undefined)
243           SecondFalseElement = i;
244         else
245           SecondFalseElement = Overdefined;
246 
247         // Update range state machine.
248         if (FalseRangeEnd == (int)i-1)
249           FalseRangeEnd = i;
250         else
251           FalseRangeEnd = Overdefined;
252       }
253     }
254 
255     // If this element is in range, update our magic bitvector.
256     if (i < 64 && IsTrueForElt)
257       MagicBitvector |= 1ULL << i;
258 
259     // If all of our states become overdefined, bail out early.  Since the
260     // predicate is expensive, only check it every 8 elements.  This is only
261     // really useful for really huge arrays.
262     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
263         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
264         FalseRangeEnd == Overdefined)
265       return nullptr;
266   }
267 
268   // Now that we've scanned the entire array, emit our new comparison(s).  We
269   // order the state machines in complexity of the generated code.
270   Value *Idx = GEP->getOperand(2);
271 
272   // If the index is larger than the pointer size of the target, truncate the
273   // index down like the GEP would do implicitly.  We don't have to do this for
274   // an inbounds GEP because the index can't be out of range.
275   if (!GEP->isInBounds()) {
276     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
277     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
278     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
279       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
280   }
281 
282   // If the comparison is only true for one or two elements, emit direct
283   // comparisons.
284   if (SecondTrueElement != Overdefined) {
285     // None true -> false.
286     if (FirstTrueElement == Undefined)
287       return replaceInstUsesWith(ICI, Builder.getFalse());
288 
289     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
290 
291     // True for one element -> 'i == 47'.
292     if (SecondTrueElement == Undefined)
293       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
294 
295     // True for two elements -> 'i == 47 | i == 72'.
296     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
297     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
298     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
299     return BinaryOperator::CreateOr(C1, C2);
300   }
301 
302   // If the comparison is only false for one or two elements, emit direct
303   // comparisons.
304   if (SecondFalseElement != Overdefined) {
305     // None false -> true.
306     if (FirstFalseElement == Undefined)
307       return replaceInstUsesWith(ICI, Builder.getTrue());
308 
309     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
310 
311     // False for one element -> 'i != 47'.
312     if (SecondFalseElement == Undefined)
313       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
314 
315     // False for two elements -> 'i != 47 & i != 72'.
316     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
317     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
318     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
319     return BinaryOperator::CreateAnd(C1, C2);
320   }
321 
322   // If the comparison can be replaced with a range comparison for the elements
323   // where it is true, emit the range check.
324   if (TrueRangeEnd != Overdefined) {
325     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
326 
327     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
328     if (FirstTrueElement) {
329       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
330       Idx = Builder.CreateAdd(Idx, Offs);
331     }
332 
333     Value *End = ConstantInt::get(Idx->getType(),
334                                   TrueRangeEnd-FirstTrueElement+1);
335     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
336   }
337 
338   // False range check.
339   if (FalseRangeEnd != Overdefined) {
340     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
341     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
342     if (FirstFalseElement) {
343       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
344       Idx = Builder.CreateAdd(Idx, Offs);
345     }
346 
347     Value *End = ConstantInt::get(Idx->getType(),
348                                   FalseRangeEnd-FirstFalseElement);
349     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
350   }
351 
352   // If a magic bitvector captures the entire comparison state
353   // of this load, replace it with computation that does:
354   //   ((magic_cst >> i) & 1) != 0
355   {
356     Type *Ty = nullptr;
357 
358     // Look for an appropriate type:
359     // - The type of Idx if the magic fits
360     // - The smallest fitting legal type
361     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
362       Ty = Idx->getType();
363     else
364       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
365 
366     if (Ty) {
367       Value *V = Builder.CreateIntCast(Idx, Ty, false);
368       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
369       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
370       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
371     }
372   }
373 
374   return nullptr;
375 }
376 
377 /// Return a value that can be used to compare the *offset* implied by a GEP to
378 /// zero. For example, if we have &A[i], we want to return 'i' for
379 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
380 /// are involved. The above expression would also be legal to codegen as
381 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
382 /// This latter form is less amenable to optimization though, and we are allowed
383 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
384 ///
385 /// If we can't emit an optimized form for this expression, this returns null.
386 ///
evaluateGEPOffsetExpression(User * GEP,InstCombinerImpl & IC,const DataLayout & DL)387 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
388                                           const DataLayout &DL) {
389   gep_type_iterator GTI = gep_type_begin(GEP);
390 
391   // Check to see if this gep only has a single variable index.  If so, and if
392   // any constant indices are a multiple of its scale, then we can compute this
393   // in terms of the scale of the variable index.  For example, if the GEP
394   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
395   // because the expression will cross zero at the same point.
396   unsigned i, e = GEP->getNumOperands();
397   int64_t Offset = 0;
398   for (i = 1; i != e; ++i, ++GTI) {
399     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
400       // Compute the aggregate offset of constant indices.
401       if (CI->isZero()) continue;
402 
403       // Handle a struct index, which adds its field offset to the pointer.
404       if (StructType *STy = GTI.getStructTypeOrNull()) {
405         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
406       } else {
407         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
408         Offset += Size*CI->getSExtValue();
409       }
410     } else {
411       // Found our variable index.
412       break;
413     }
414   }
415 
416   // If there are no variable indices, we must have a constant offset, just
417   // evaluate it the general way.
418   if (i == e) return nullptr;
419 
420   Value *VariableIdx = GEP->getOperand(i);
421   // Determine the scale factor of the variable element.  For example, this is
422   // 4 if the variable index is into an array of i32.
423   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
424 
425   // Verify that there are no other variable indices.  If so, emit the hard way.
426   for (++i, ++GTI; i != e; ++i, ++GTI) {
427     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
428     if (!CI) return nullptr;
429 
430     // Compute the aggregate offset of constant indices.
431     if (CI->isZero()) continue;
432 
433     // Handle a struct index, which adds its field offset to the pointer.
434     if (StructType *STy = GTI.getStructTypeOrNull()) {
435       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
436     } else {
437       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
438       Offset += Size*CI->getSExtValue();
439     }
440   }
441 
442   // Okay, we know we have a single variable index, which must be a
443   // pointer/array/vector index.  If there is no offset, life is simple, return
444   // the index.
445   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
446   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
447   if (Offset == 0) {
448     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
449     // we don't need to bother extending: the extension won't affect where the
450     // computation crosses zero.
451     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
452         IntPtrWidth) {
453       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
454     }
455     return VariableIdx;
456   }
457 
458   // Otherwise, there is an index.  The computation we will do will be modulo
459   // the pointer size.
460   Offset = SignExtend64(Offset, IntPtrWidth);
461   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
462 
463   // To do this transformation, any constant index must be a multiple of the
464   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
465   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
466   // multiple of the variable scale.
467   int64_t NewOffs = Offset / (int64_t)VariableScale;
468   if (Offset != NewOffs*(int64_t)VariableScale)
469     return nullptr;
470 
471   // Okay, we can do this evaluation.  Start by converting the index to intptr.
472   if (VariableIdx->getType() != IntPtrTy)
473     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
474                                             true /*Signed*/);
475   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
476   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
477 }
478 
479 /// Returns true if we can rewrite Start as a GEP with pointer Base
480 /// and some integer offset. The nodes that need to be re-written
481 /// for this transformation will be added to Explored.
canRewriteGEPAsOffset(Value * Start,Value * Base,const DataLayout & DL,SetVector<Value * > & Explored)482 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
483                                   const DataLayout &DL,
484                                   SetVector<Value *> &Explored) {
485   SmallVector<Value *, 16> WorkList(1, Start);
486   Explored.insert(Base);
487 
488   // The following traversal gives us an order which can be used
489   // when doing the final transformation. Since in the final
490   // transformation we create the PHI replacement instructions first,
491   // we don't have to get them in any particular order.
492   //
493   // However, for other instructions we will have to traverse the
494   // operands of an instruction first, which means that we have to
495   // do a post-order traversal.
496   while (!WorkList.empty()) {
497     SetVector<PHINode *> PHIs;
498 
499     while (!WorkList.empty()) {
500       if (Explored.size() >= 100)
501         return false;
502 
503       Value *V = WorkList.back();
504 
505       if (Explored.contains(V)) {
506         WorkList.pop_back();
507         continue;
508       }
509 
510       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
511           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
512         // We've found some value that we can't explore which is different from
513         // the base. Therefore we can't do this transformation.
514         return false;
515 
516       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
517         auto *CI = cast<CastInst>(V);
518         if (!CI->isNoopCast(DL))
519           return false;
520 
521         if (Explored.count(CI->getOperand(0)) == 0)
522           WorkList.push_back(CI->getOperand(0));
523       }
524 
525       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
526         // We're limiting the GEP to having one index. This will preserve
527         // the original pointer type. We could handle more cases in the
528         // future.
529         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
530             GEP->getType() != Start->getType())
531           return false;
532 
533         if (Explored.count(GEP->getOperand(0)) == 0)
534           WorkList.push_back(GEP->getOperand(0));
535       }
536 
537       if (WorkList.back() == V) {
538         WorkList.pop_back();
539         // We've finished visiting this node, mark it as such.
540         Explored.insert(V);
541       }
542 
543       if (auto *PN = dyn_cast<PHINode>(V)) {
544         // We cannot transform PHIs on unsplittable basic blocks.
545         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
546           return false;
547         Explored.insert(PN);
548         PHIs.insert(PN);
549       }
550     }
551 
552     // Explore the PHI nodes further.
553     for (auto *PN : PHIs)
554       for (Value *Op : PN->incoming_values())
555         if (Explored.count(Op) == 0)
556           WorkList.push_back(Op);
557   }
558 
559   // Make sure that we can do this. Since we can't insert GEPs in a basic
560   // block before a PHI node, we can't easily do this transformation if
561   // we have PHI node users of transformed instructions.
562   for (Value *Val : Explored) {
563     for (Value *Use : Val->uses()) {
564 
565       auto *PHI = dyn_cast<PHINode>(Use);
566       auto *Inst = dyn_cast<Instruction>(Val);
567 
568       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
569           Explored.count(PHI) == 0)
570         continue;
571 
572       if (PHI->getParent() == Inst->getParent())
573         return false;
574     }
575   }
576   return true;
577 }
578 
579 // Sets the appropriate insert point on Builder where we can add
580 // a replacement Instruction for V (if that is possible).
setInsertionPoint(IRBuilder<> & Builder,Value * V,bool Before=true)581 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
582                               bool Before = true) {
583   if (auto *PHI = dyn_cast<PHINode>(V)) {
584     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
585     return;
586   }
587   if (auto *I = dyn_cast<Instruction>(V)) {
588     if (!Before)
589       I = &*std::next(I->getIterator());
590     Builder.SetInsertPoint(I);
591     return;
592   }
593   if (auto *A = dyn_cast<Argument>(V)) {
594     // Set the insertion point in the entry block.
595     BasicBlock &Entry = A->getParent()->getEntryBlock();
596     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
597     return;
598   }
599   // Otherwise, this is a constant and we don't need to set a new
600   // insertion point.
601   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
602 }
603 
604 /// Returns a re-written value of Start as an indexed GEP using Base as a
605 /// pointer.
rewriteGEPAsOffset(Value * Start,Value * Base,const DataLayout & DL,SetVector<Value * > & Explored)606 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
607                                  const DataLayout &DL,
608                                  SetVector<Value *> &Explored) {
609   // Perform all the substitutions. This is a bit tricky because we can
610   // have cycles in our use-def chains.
611   // 1. Create the PHI nodes without any incoming values.
612   // 2. Create all the other values.
613   // 3. Add the edges for the PHI nodes.
614   // 4. Emit GEPs to get the original pointers.
615   // 5. Remove the original instructions.
616   Type *IndexType = IntegerType::get(
617       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
618 
619   DenseMap<Value *, Value *> NewInsts;
620   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
621 
622   // Create the new PHI nodes, without adding any incoming values.
623   for (Value *Val : Explored) {
624     if (Val == Base)
625       continue;
626     // Create empty phi nodes. This avoids cyclic dependencies when creating
627     // the remaining instructions.
628     if (auto *PHI = dyn_cast<PHINode>(Val))
629       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
630                                       PHI->getName() + ".idx", PHI);
631   }
632   IRBuilder<> Builder(Base->getContext());
633 
634   // Create all the other instructions.
635   for (Value *Val : Explored) {
636 
637     if (NewInsts.find(Val) != NewInsts.end())
638       continue;
639 
640     if (auto *CI = dyn_cast<CastInst>(Val)) {
641       // Don't get rid of the intermediate variable here; the store can grow
642       // the map which will invalidate the reference to the input value.
643       Value *V = NewInsts[CI->getOperand(0)];
644       NewInsts[CI] = V;
645       continue;
646     }
647     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
648       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
649                                                   : GEP->getOperand(1);
650       setInsertionPoint(Builder, GEP);
651       // Indices might need to be sign extended. GEPs will magically do
652       // this, but we need to do it ourselves here.
653       if (Index->getType()->getScalarSizeInBits() !=
654           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
655         Index = Builder.CreateSExtOrTrunc(
656             Index, NewInsts[GEP->getOperand(0)]->getType(),
657             GEP->getOperand(0)->getName() + ".sext");
658       }
659 
660       auto *Op = NewInsts[GEP->getOperand(0)];
661       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
662         NewInsts[GEP] = Index;
663       else
664         NewInsts[GEP] = Builder.CreateNSWAdd(
665             Op, Index, GEP->getOperand(0)->getName() + ".add");
666       continue;
667     }
668     if (isa<PHINode>(Val))
669       continue;
670 
671     llvm_unreachable("Unexpected instruction type");
672   }
673 
674   // Add the incoming values to the PHI nodes.
675   for (Value *Val : Explored) {
676     if (Val == Base)
677       continue;
678     // All the instructions have been created, we can now add edges to the
679     // phi nodes.
680     if (auto *PHI = dyn_cast<PHINode>(Val)) {
681       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
682       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
683         Value *NewIncoming = PHI->getIncomingValue(I);
684 
685         if (NewInsts.find(NewIncoming) != NewInsts.end())
686           NewIncoming = NewInsts[NewIncoming];
687 
688         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
689       }
690     }
691   }
692 
693   for (Value *Val : Explored) {
694     if (Val == Base)
695       continue;
696 
697     // Depending on the type, for external users we have to emit
698     // a GEP or a GEP + ptrtoint.
699     setInsertionPoint(Builder, Val, false);
700 
701     // If required, create an inttoptr instruction for Base.
702     Value *NewBase = Base;
703     if (!Base->getType()->isPointerTy())
704       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
705                                                Start->getName() + "to.ptr");
706 
707     Value *GEP = Builder.CreateInBoundsGEP(
708         Start->getType()->getPointerElementType(), NewBase,
709         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
710 
711     if (!Val->getType()->isPointerTy()) {
712       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
713                                               Val->getName() + ".conv");
714       GEP = Cast;
715     }
716     Val->replaceAllUsesWith(GEP);
717   }
718 
719   return NewInsts[Start];
720 }
721 
722 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
723 /// the input Value as a constant indexed GEP. Returns a pair containing
724 /// the GEPs Pointer and Index.
725 static std::pair<Value *, Value *>
getAsConstantIndexedAddress(Value * V,const DataLayout & DL)726 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
727   Type *IndexType = IntegerType::get(V->getContext(),
728                                      DL.getIndexTypeSizeInBits(V->getType()));
729 
730   Constant *Index = ConstantInt::getNullValue(IndexType);
731   while (true) {
732     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
733       // We accept only inbouds GEPs here to exclude the possibility of
734       // overflow.
735       if (!GEP->isInBounds())
736         break;
737       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
738           GEP->getType() == V->getType()) {
739         V = GEP->getOperand(0);
740         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
741         Index = ConstantExpr::getAdd(
742             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
743         continue;
744       }
745       break;
746     }
747     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
748       if (!CI->isNoopCast(DL))
749         break;
750       V = CI->getOperand(0);
751       continue;
752     }
753     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
754       if (!CI->isNoopCast(DL))
755         break;
756       V = CI->getOperand(0);
757       continue;
758     }
759     break;
760   }
761   return {V, Index};
762 }
763 
764 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
765 /// We can look through PHIs, GEPs and casts in order to determine a common base
766 /// between GEPLHS and RHS.
transformToIndexedCompare(GEPOperator * GEPLHS,Value * RHS,ICmpInst::Predicate Cond,const DataLayout & DL)767 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
768                                               ICmpInst::Predicate Cond,
769                                               const DataLayout &DL) {
770   // FIXME: Support vector of pointers.
771   if (GEPLHS->getType()->isVectorTy())
772     return nullptr;
773 
774   if (!GEPLHS->hasAllConstantIndices())
775     return nullptr;
776 
777   // Make sure the pointers have the same type.
778   if (GEPLHS->getType() != RHS->getType())
779     return nullptr;
780 
781   Value *PtrBase, *Index;
782   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
783 
784   // The set of nodes that will take part in this transformation.
785   SetVector<Value *> Nodes;
786 
787   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
788     return nullptr;
789 
790   // We know we can re-write this as
791   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
792   // Since we've only looked through inbouds GEPs we know that we
793   // can't have overflow on either side. We can therefore re-write
794   // this as:
795   //   OFFSET1 cmp OFFSET2
796   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
797 
798   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
799   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
800   // offset. Since Index is the offset of LHS to the base pointer, we will now
801   // compare the offsets instead of comparing the pointers.
802   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
803 }
804 
805 /// Fold comparisons between a GEP instruction and something else. At this point
806 /// we know that the GEP is on the LHS of the comparison.
foldGEPICmp(GEPOperator * GEPLHS,Value * RHS,ICmpInst::Predicate Cond,Instruction & I)807 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
808                                            ICmpInst::Predicate Cond,
809                                            Instruction &I) {
810   // Don't transform signed compares of GEPs into index compares. Even if the
811   // GEP is inbounds, the final add of the base pointer can have signed overflow
812   // and would change the result of the icmp.
813   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
814   // the maximum signed value for the pointer type.
815   if (ICmpInst::isSigned(Cond))
816     return nullptr;
817 
818   // Look through bitcasts and addrspacecasts. We do not however want to remove
819   // 0 GEPs.
820   if (!isa<GetElementPtrInst>(RHS))
821     RHS = RHS->stripPointerCasts();
822 
823   Value *PtrBase = GEPLHS->getOperand(0);
824   // FIXME: Support vector pointer GEPs.
825   if (PtrBase == RHS && GEPLHS->isInBounds() &&
826       !GEPLHS->getType()->isVectorTy()) {
827     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
828     // This transformation (ignoring the base and scales) is valid because we
829     // know pointers can't overflow since the gep is inbounds.  See if we can
830     // output an optimized form.
831     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
832 
833     // If not, synthesize the offset the hard way.
834     if (!Offset)
835       Offset = EmitGEPOffset(GEPLHS);
836     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
837                         Constant::getNullValue(Offset->getType()));
838   }
839 
840   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
841       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
842       !NullPointerIsDefined(I.getFunction(),
843                             RHS->getType()->getPointerAddressSpace())) {
844     // For most address spaces, an allocation can't be placed at null, but null
845     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
846     // the only valid inbounds address derived from null, is null itself.
847     // Thus, we have four cases to consider:
848     // 1) Base == nullptr, Offset == 0 -> inbounds, null
849     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
850     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
851     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
852     //
853     // (Note if we're indexing a type of size 0, that simply collapses into one
854     //  of the buckets above.)
855     //
856     // In general, we're allowed to make values less poison (i.e. remove
857     //   sources of full UB), so in this case, we just select between the two
858     //   non-poison cases (1 and 4 above).
859     //
860     // For vectors, we apply the same reasoning on a per-lane basis.
861     auto *Base = GEPLHS->getPointerOperand();
862     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
863       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
864       Base = Builder.CreateVectorSplat(EC, Base);
865     }
866     return new ICmpInst(Cond, Base,
867                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
868                             cast<Constant>(RHS), Base->getType()));
869   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
870     // If the base pointers are different, but the indices are the same, just
871     // compare the base pointer.
872     if (PtrBase != GEPRHS->getOperand(0)) {
873       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
874       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
875                         GEPRHS->getOperand(0)->getType();
876       if (IndicesTheSame)
877         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
878           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
879             IndicesTheSame = false;
880             break;
881           }
882 
883       // If all indices are the same, just compare the base pointers.
884       Type *BaseType = GEPLHS->getOperand(0)->getType();
885       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
886         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
887 
888       // If we're comparing GEPs with two base pointers that only differ in type
889       // and both GEPs have only constant indices or just one use, then fold
890       // the compare with the adjusted indices.
891       // FIXME: Support vector of pointers.
892       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
893           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
894           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
895           PtrBase->stripPointerCasts() ==
896               GEPRHS->getOperand(0)->stripPointerCasts() &&
897           !GEPLHS->getType()->isVectorTy()) {
898         Value *LOffset = EmitGEPOffset(GEPLHS);
899         Value *ROffset = EmitGEPOffset(GEPRHS);
900 
901         // If we looked through an addrspacecast between different sized address
902         // spaces, the LHS and RHS pointers are different sized
903         // integers. Truncate to the smaller one.
904         Type *LHSIndexTy = LOffset->getType();
905         Type *RHSIndexTy = ROffset->getType();
906         if (LHSIndexTy != RHSIndexTy) {
907           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
908               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
909             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
910           } else
911             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
912         }
913 
914         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
915                                         LOffset, ROffset);
916         return replaceInstUsesWith(I, Cmp);
917       }
918 
919       // Otherwise, the base pointers are different and the indices are
920       // different. Try convert this to an indexed compare by looking through
921       // PHIs/casts.
922       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
923     }
924 
925     // If one of the GEPs has all zero indices, recurse.
926     // FIXME: Handle vector of pointers.
927     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
928       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
929                          ICmpInst::getSwappedPredicate(Cond), I);
930 
931     // If the other GEP has all zero indices, recurse.
932     // FIXME: Handle vector of pointers.
933     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
934       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
935 
936     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
937     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
938       // If the GEPs only differ by one index, compare it.
939       unsigned NumDifferences = 0;  // Keep track of # differences.
940       unsigned DiffOperand = 0;     // The operand that differs.
941       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
942         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
943           Type *LHSType = GEPLHS->getOperand(i)->getType();
944           Type *RHSType = GEPRHS->getOperand(i)->getType();
945           // FIXME: Better support for vector of pointers.
946           if (LHSType->getPrimitiveSizeInBits() !=
947                    RHSType->getPrimitiveSizeInBits() ||
948               (GEPLHS->getType()->isVectorTy() &&
949                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
950             // Irreconcilable differences.
951             NumDifferences = 2;
952             break;
953           }
954 
955           if (NumDifferences++) break;
956           DiffOperand = i;
957         }
958 
959       if (NumDifferences == 0)   // SAME GEP?
960         return replaceInstUsesWith(I, // No comparison is needed here.
961           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
962 
963       else if (NumDifferences == 1 && GEPsInBounds) {
964         Value *LHSV = GEPLHS->getOperand(DiffOperand);
965         Value *RHSV = GEPRHS->getOperand(DiffOperand);
966         // Make sure we do a signed comparison here.
967         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
968       }
969     }
970 
971     // Only lower this if the icmp is the only user of the GEP or if we expect
972     // the result to fold to a constant!
973     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
974         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
975       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
976       Value *L = EmitGEPOffset(GEPLHS);
977       Value *R = EmitGEPOffset(GEPRHS);
978       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
979     }
980   }
981 
982   // Try convert this to an indexed compare by looking through PHIs/casts as a
983   // last resort.
984   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
985 }
986 
foldAllocaCmp(ICmpInst & ICI,const AllocaInst * Alloca,const Value * Other)987 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
988                                              const AllocaInst *Alloca,
989                                              const Value *Other) {
990   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
991 
992   // It would be tempting to fold away comparisons between allocas and any
993   // pointer not based on that alloca (e.g. an argument). However, even
994   // though such pointers cannot alias, they can still compare equal.
995   //
996   // But LLVM doesn't specify where allocas get their memory, so if the alloca
997   // doesn't escape we can argue that it's impossible to guess its value, and we
998   // can therefore act as if any such guesses are wrong.
999   //
1000   // The code below checks that the alloca doesn't escape, and that it's only
1001   // used in a comparison once (the current instruction). The
1002   // single-comparison-use condition ensures that we're trivially folding all
1003   // comparisons against the alloca consistently, and avoids the risk of
1004   // erroneously folding a comparison of the pointer with itself.
1005 
1006   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1007 
1008   SmallVector<const Use *, 32> Worklist;
1009   for (const Use &U : Alloca->uses()) {
1010     if (Worklist.size() >= MaxIter)
1011       return nullptr;
1012     Worklist.push_back(&U);
1013   }
1014 
1015   unsigned NumCmps = 0;
1016   while (!Worklist.empty()) {
1017     assert(Worklist.size() <= MaxIter);
1018     const Use *U = Worklist.pop_back_val();
1019     const Value *V = U->getUser();
1020     --MaxIter;
1021 
1022     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1023         isa<SelectInst>(V)) {
1024       // Track the uses.
1025     } else if (isa<LoadInst>(V)) {
1026       // Loading from the pointer doesn't escape it.
1027       continue;
1028     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1029       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1030       if (SI->getValueOperand() == U->get())
1031         return nullptr;
1032       continue;
1033     } else if (isa<ICmpInst>(V)) {
1034       if (NumCmps++)
1035         return nullptr; // Found more than one cmp.
1036       continue;
1037     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1038       switch (Intrin->getIntrinsicID()) {
1039         // These intrinsics don't escape or compare the pointer. Memset is safe
1040         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1041         // we don't allow stores, so src cannot point to V.
1042         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1043         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1044           continue;
1045         default:
1046           return nullptr;
1047       }
1048     } else {
1049       return nullptr;
1050     }
1051     for (const Use &U : V->uses()) {
1052       if (Worklist.size() >= MaxIter)
1053         return nullptr;
1054       Worklist.push_back(&U);
1055     }
1056   }
1057 
1058   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1059   return replaceInstUsesWith(
1060       ICI,
1061       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1062 }
1063 
1064 /// Fold "icmp pred (X+C), X".
foldICmpAddOpConst(Value * X,const APInt & C,ICmpInst::Predicate Pred)1065 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1066                                                   ICmpInst::Predicate Pred) {
1067   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1068   // so the values can never be equal.  Similarly for all other "or equals"
1069   // operators.
1070   assert(!!C && "C should not be zero!");
1071 
1072   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1073   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1074   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1075   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1076     Constant *R = ConstantInt::get(X->getType(),
1077                                    APInt::getMaxValue(C.getBitWidth()) - C);
1078     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1079   }
1080 
1081   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1082   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1083   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1084   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1085     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1086                         ConstantInt::get(X->getType(), -C));
1087 
1088   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1089 
1090   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1091   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1092   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1093   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1094   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1095   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1096   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1097     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1098                         ConstantInt::get(X->getType(), SMax - C));
1099 
1100   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1101   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1102   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1103   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1104   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1105   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1106 
1107   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1108   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1109                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1110 }
1111 
1112 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1113 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1114 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
foldICmpShrConstConst(ICmpInst & I,Value * A,const APInt & AP1,const APInt & AP2)1115 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1116                                                      const APInt &AP1,
1117                                                      const APInt &AP2) {
1118   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1119 
1120   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1121     if (I.getPredicate() == I.ICMP_NE)
1122       Pred = CmpInst::getInversePredicate(Pred);
1123     return new ICmpInst(Pred, LHS, RHS);
1124   };
1125 
1126   // Don't bother doing any work for cases which InstSimplify handles.
1127   if (AP2.isNullValue())
1128     return nullptr;
1129 
1130   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1131   if (IsAShr) {
1132     if (AP2.isAllOnesValue())
1133       return nullptr;
1134     if (AP2.isNegative() != AP1.isNegative())
1135       return nullptr;
1136     if (AP2.sgt(AP1))
1137       return nullptr;
1138   }
1139 
1140   if (!AP1)
1141     // 'A' must be large enough to shift out the highest set bit.
1142     return getICmp(I.ICMP_UGT, A,
1143                    ConstantInt::get(A->getType(), AP2.logBase2()));
1144 
1145   if (AP1 == AP2)
1146     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1147 
1148   int Shift;
1149   if (IsAShr && AP1.isNegative())
1150     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1151   else
1152     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1153 
1154   if (Shift > 0) {
1155     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1156       // There are multiple solutions if we are comparing against -1 and the LHS
1157       // of the ashr is not a power of two.
1158       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1159         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1160       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1161     } else if (AP1 == AP2.lshr(Shift)) {
1162       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1163     }
1164   }
1165 
1166   // Shifting const2 will never be equal to const1.
1167   // FIXME: This should always be handled by InstSimplify?
1168   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1169   return replaceInstUsesWith(I, TorF);
1170 }
1171 
1172 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1173 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
foldICmpShlConstConst(ICmpInst & I,Value * A,const APInt & AP1,const APInt & AP2)1174 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1175                                                      const APInt &AP1,
1176                                                      const APInt &AP2) {
1177   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1178 
1179   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1180     if (I.getPredicate() == I.ICMP_NE)
1181       Pred = CmpInst::getInversePredicate(Pred);
1182     return new ICmpInst(Pred, LHS, RHS);
1183   };
1184 
1185   // Don't bother doing any work for cases which InstSimplify handles.
1186   if (AP2.isNullValue())
1187     return nullptr;
1188 
1189   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1190 
1191   if (!AP1 && AP2TrailingZeros != 0)
1192     return getICmp(
1193         I.ICMP_UGE, A,
1194         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1195 
1196   if (AP1 == AP2)
1197     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1198 
1199   // Get the distance between the lowest bits that are set.
1200   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1201 
1202   if (Shift > 0 && AP2.shl(Shift) == AP1)
1203     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1204 
1205   // Shifting const2 will never be equal to const1.
1206   // FIXME: This should always be handled by InstSimplify?
1207   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1208   return replaceInstUsesWith(I, TorF);
1209 }
1210 
1211 /// The caller has matched a pattern of the form:
1212 ///   I = icmp ugt (add (add A, B), CI2), CI1
1213 /// If this is of the form:
1214 ///   sum = a + b
1215 ///   if (sum+128 >u 255)
1216 /// Then replace it with llvm.sadd.with.overflow.i8.
1217 ///
processUGT_ADDCST_ADD(ICmpInst & I,Value * A,Value * B,ConstantInt * CI2,ConstantInt * CI1,InstCombinerImpl & IC)1218 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1219                                           ConstantInt *CI2, ConstantInt *CI1,
1220                                           InstCombinerImpl &IC) {
1221   // The transformation we're trying to do here is to transform this into an
1222   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1223   // with a narrower add, and discard the add-with-constant that is part of the
1224   // range check (if we can't eliminate it, this isn't profitable).
1225 
1226   // In order to eliminate the add-with-constant, the compare can be its only
1227   // use.
1228   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1229   if (!AddWithCst->hasOneUse())
1230     return nullptr;
1231 
1232   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1233   if (!CI2->getValue().isPowerOf2())
1234     return nullptr;
1235   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1236   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1237     return nullptr;
1238 
1239   // The width of the new add formed is 1 more than the bias.
1240   ++NewWidth;
1241 
1242   // Check to see that CI1 is an all-ones value with NewWidth bits.
1243   if (CI1->getBitWidth() == NewWidth ||
1244       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1245     return nullptr;
1246 
1247   // This is only really a signed overflow check if the inputs have been
1248   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1249   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1250   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1251   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1252       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1253     return nullptr;
1254 
1255   // In order to replace the original add with a narrower
1256   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1257   // and truncates that discard the high bits of the add.  Verify that this is
1258   // the case.
1259   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1260   for (User *U : OrigAdd->users()) {
1261     if (U == AddWithCst)
1262       continue;
1263 
1264     // Only accept truncates for now.  We would really like a nice recursive
1265     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1266     // chain to see which bits of a value are actually demanded.  If the
1267     // original add had another add which was then immediately truncated, we
1268     // could still do the transformation.
1269     TruncInst *TI = dyn_cast<TruncInst>(U);
1270     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1271       return nullptr;
1272   }
1273 
1274   // If the pattern matches, truncate the inputs to the narrower type and
1275   // use the sadd_with_overflow intrinsic to efficiently compute both the
1276   // result and the overflow bit.
1277   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1278   Function *F = Intrinsic::getDeclaration(
1279       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1280 
1281   InstCombiner::BuilderTy &Builder = IC.Builder;
1282 
1283   // Put the new code above the original add, in case there are any uses of the
1284   // add between the add and the compare.
1285   Builder.SetInsertPoint(OrigAdd);
1286 
1287   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1288   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1289   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1290   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1291   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1292 
1293   // The inner add was the result of the narrow add, zero extended to the
1294   // wider type.  Replace it with the result computed by the intrinsic.
1295   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1296   IC.eraseInstFromFunction(*OrigAdd);
1297 
1298   // The original icmp gets replaced with the overflow value.
1299   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1300 }
1301 
1302 /// If we have:
1303 ///   icmp eq/ne (urem/srem %x, %y), 0
1304 /// iff %y is a power-of-two, we can replace this with a bit test:
1305 ///   icmp eq/ne (and %x, (add %y, -1)), 0
foldIRemByPowerOfTwoToBitTest(ICmpInst & I)1306 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1307   // This fold is only valid for equality predicates.
1308   if (!I.isEquality())
1309     return nullptr;
1310   ICmpInst::Predicate Pred;
1311   Value *X, *Y, *Zero;
1312   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1313                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1314     return nullptr;
1315   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1316     return nullptr;
1317   // This may increase instruction count, we don't enforce that Y is a constant.
1318   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1319   Value *Masked = Builder.CreateAnd(X, Mask);
1320   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1321 }
1322 
1323 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1324 /// by one-less-than-bitwidth into a sign test on the original value.
foldSignBitTest(ICmpInst & I)1325 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1326   Instruction *Val;
1327   ICmpInst::Predicate Pred;
1328   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1329     return nullptr;
1330 
1331   Value *X;
1332   Type *XTy;
1333 
1334   Constant *C;
1335   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1336     XTy = X->getType();
1337     unsigned XBitWidth = XTy->getScalarSizeInBits();
1338     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1339                                      APInt(XBitWidth, XBitWidth - 1))))
1340       return nullptr;
1341   } else if (isa<BinaryOperator>(Val) &&
1342              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1343                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1344                   /*AnalyzeForSignBitExtraction=*/true))) {
1345     XTy = X->getType();
1346   } else
1347     return nullptr;
1348 
1349   return ICmpInst::Create(Instruction::ICmp,
1350                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1351                                                     : ICmpInst::ICMP_SLT,
1352                           X, ConstantInt::getNullValue(XTy));
1353 }
1354 
1355 // Handle  icmp pred X, 0
foldICmpWithZero(ICmpInst & Cmp)1356 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1357   CmpInst::Predicate Pred = Cmp.getPredicate();
1358   if (!match(Cmp.getOperand(1), m_Zero()))
1359     return nullptr;
1360 
1361   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1362   if (Pred == ICmpInst::ICMP_SGT) {
1363     Value *A, *B;
1364     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1365     if (SPR.Flavor == SPF_SMIN) {
1366       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1367         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1368       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1369         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1370     }
1371   }
1372 
1373   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1374     return New;
1375 
1376   // Given:
1377   //   icmp eq/ne (urem %x, %y), 0
1378   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1379   //   icmp eq/ne %x, 0
1380   Value *X, *Y;
1381   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1382       ICmpInst::isEquality(Pred)) {
1383     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1384     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1385     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1386       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1387   }
1388 
1389   return nullptr;
1390 }
1391 
1392 /// Fold icmp Pred X, C.
1393 /// TODO: This code structure does not make sense. The saturating add fold
1394 /// should be moved to some other helper and extended as noted below (it is also
1395 /// possible that code has been made unnecessary - do we canonicalize IR to
1396 /// overflow/saturating intrinsics or not?).
foldICmpWithConstant(ICmpInst & Cmp)1397 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1398   // Match the following pattern, which is a common idiom when writing
1399   // overflow-safe integer arithmetic functions. The source performs an addition
1400   // in wider type and explicitly checks for overflow using comparisons against
1401   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1402   //
1403   // TODO: This could probably be generalized to handle other overflow-safe
1404   // operations if we worked out the formulas to compute the appropriate magic
1405   // constants.
1406   //
1407   // sum = a + b
1408   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1409   CmpInst::Predicate Pred = Cmp.getPredicate();
1410   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1411   Value *A, *B;
1412   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1413   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1414       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1415     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1416       return Res;
1417 
1418   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1419   Constant *C = dyn_cast<Constant>(Op1);
1420   if (!C)
1421     return nullptr;
1422 
1423   if (auto *Phi = dyn_cast<PHINode>(Op0))
1424     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1425       Type *Ty = Cmp.getType();
1426       Builder.SetInsertPoint(Phi);
1427       PHINode *NewPhi =
1428           Builder.CreatePHI(Ty, Phi->getNumOperands());
1429       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1430         auto *Input =
1431             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1432         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1433         NewPhi->addIncoming(BoolInput, Predecessor);
1434       }
1435       NewPhi->takeName(&Cmp);
1436       return replaceInstUsesWith(Cmp, NewPhi);
1437     }
1438 
1439   return nullptr;
1440 }
1441 
1442 /// Canonicalize icmp instructions based on dominating conditions.
foldICmpWithDominatingICmp(ICmpInst & Cmp)1443 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1444   // This is a cheap/incomplete check for dominance - just match a single
1445   // predecessor with a conditional branch.
1446   BasicBlock *CmpBB = Cmp.getParent();
1447   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1448   if (!DomBB)
1449     return nullptr;
1450 
1451   Value *DomCond;
1452   BasicBlock *TrueBB, *FalseBB;
1453   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1454     return nullptr;
1455 
1456   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1457          "Predecessor block does not point to successor?");
1458 
1459   // The branch should get simplified. Don't bother simplifying this condition.
1460   if (TrueBB == FalseBB)
1461     return nullptr;
1462 
1463   // Try to simplify this compare to T/F based on the dominating condition.
1464   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1465   if (Imp)
1466     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1467 
1468   CmpInst::Predicate Pred = Cmp.getPredicate();
1469   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1470   ICmpInst::Predicate DomPred;
1471   const APInt *C, *DomC;
1472   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1473       match(Y, m_APInt(C))) {
1474     // We have 2 compares of a variable with constants. Calculate the constant
1475     // ranges of those compares to see if we can transform the 2nd compare:
1476     // DomBB:
1477     //   DomCond = icmp DomPred X, DomC
1478     //   br DomCond, CmpBB, FalseBB
1479     // CmpBB:
1480     //   Cmp = icmp Pred X, C
1481     ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1482     ConstantRange DominatingCR =
1483         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1484                           : ConstantRange::makeExactICmpRegion(
1485                                 CmpInst::getInversePredicate(DomPred), *DomC);
1486     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1487     ConstantRange Difference = DominatingCR.difference(CR);
1488     if (Intersection.isEmptySet())
1489       return replaceInstUsesWith(Cmp, Builder.getFalse());
1490     if (Difference.isEmptySet())
1491       return replaceInstUsesWith(Cmp, Builder.getTrue());
1492 
1493     // Canonicalizing a sign bit comparison that gets used in a branch,
1494     // pessimizes codegen by generating branch on zero instruction instead
1495     // of a test and branch. So we avoid canonicalizing in such situations
1496     // because test and branch instruction has better branch displacement
1497     // than compare and branch instruction.
1498     bool UnusedBit;
1499     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1500     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1501       return nullptr;
1502 
1503     // Avoid an infinite loop with min/max canonicalization.
1504     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1505     if (Cmp.hasOneUse() &&
1506         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1507       return nullptr;
1508 
1509     if (const APInt *EqC = Intersection.getSingleElement())
1510       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1511     if (const APInt *NeC = Difference.getSingleElement())
1512       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1513   }
1514 
1515   return nullptr;
1516 }
1517 
1518 /// Fold icmp (trunc X, Y), C.
foldICmpTruncConstant(ICmpInst & Cmp,TruncInst * Trunc,const APInt & C)1519 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1520                                                      TruncInst *Trunc,
1521                                                      const APInt &C) {
1522   ICmpInst::Predicate Pred = Cmp.getPredicate();
1523   Value *X = Trunc->getOperand(0);
1524   if (C.isOneValue() && C.getBitWidth() > 1) {
1525     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1526     Value *V = nullptr;
1527     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1528       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1529                           ConstantInt::get(V->getType(), 1));
1530   }
1531 
1532   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1533            SrcBits = X->getType()->getScalarSizeInBits();
1534   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1535     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1536     // of the high bits truncated out of x are known.
1537     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1538 
1539     // If all the high bits are known, we can do this xform.
1540     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1541       // Pull in the high bits from known-ones set.
1542       APInt NewRHS = C.zext(SrcBits);
1543       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1544       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1545     }
1546   }
1547 
1548   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1549   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1550   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1551   Value *ShOp;
1552   const APInt *ShAmtC;
1553   bool TrueIfSigned;
1554   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1555       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1556       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1557     return TrueIfSigned
1558                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1559                               ConstantInt::getNullValue(X->getType()))
1560                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1561                               ConstantInt::getAllOnesValue(X->getType()));
1562   }
1563 
1564   return nullptr;
1565 }
1566 
1567 /// Fold icmp (xor X, Y), C.
foldICmpXorConstant(ICmpInst & Cmp,BinaryOperator * Xor,const APInt & C)1568 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1569                                                    BinaryOperator *Xor,
1570                                                    const APInt &C) {
1571   Value *X = Xor->getOperand(0);
1572   Value *Y = Xor->getOperand(1);
1573   const APInt *XorC;
1574   if (!match(Y, m_APInt(XorC)))
1575     return nullptr;
1576 
1577   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1578   // fold the xor.
1579   ICmpInst::Predicate Pred = Cmp.getPredicate();
1580   bool TrueIfSigned = false;
1581   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1582 
1583     // If the sign bit of the XorCst is not set, there is no change to
1584     // the operation, just stop using the Xor.
1585     if (!XorC->isNegative())
1586       return replaceOperand(Cmp, 0, X);
1587 
1588     // Emit the opposite comparison.
1589     if (TrueIfSigned)
1590       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1591                           ConstantInt::getAllOnesValue(X->getType()));
1592     else
1593       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1594                           ConstantInt::getNullValue(X->getType()));
1595   }
1596 
1597   if (Xor->hasOneUse()) {
1598     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1599     if (!Cmp.isEquality() && XorC->isSignMask()) {
1600       Pred = Cmp.getFlippedSignednessPredicate();
1601       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1602     }
1603 
1604     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1605     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1606       Pred = Cmp.getFlippedSignednessPredicate();
1607       Pred = Cmp.getSwappedPredicate(Pred);
1608       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1609     }
1610   }
1611 
1612   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1613   if (Pred == ICmpInst::ICMP_UGT) {
1614     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1615     if (*XorC == ~C && (C + 1).isPowerOf2())
1616       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1617     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1618     if (*XorC == C && (C + 1).isPowerOf2())
1619       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1620   }
1621   if (Pred == ICmpInst::ICMP_ULT) {
1622     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1623     if (*XorC == -C && C.isPowerOf2())
1624       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1625                           ConstantInt::get(X->getType(), ~C));
1626     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1627     if (*XorC == C && (-C).isPowerOf2())
1628       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1629                           ConstantInt::get(X->getType(), ~C));
1630   }
1631   return nullptr;
1632 }
1633 
1634 /// Fold icmp (and (sh X, Y), C2), C1.
foldICmpAndShift(ICmpInst & Cmp,BinaryOperator * And,const APInt & C1,const APInt & C2)1635 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1636                                                 BinaryOperator *And,
1637                                                 const APInt &C1,
1638                                                 const APInt &C2) {
1639   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1640   if (!Shift || !Shift->isShift())
1641     return nullptr;
1642 
1643   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1644   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1645   // code produced by the clang front-end, for bitfield access.
1646   // This seemingly simple opportunity to fold away a shift turns out to be
1647   // rather complicated. See PR17827 for details.
1648   unsigned ShiftOpcode = Shift->getOpcode();
1649   bool IsShl = ShiftOpcode == Instruction::Shl;
1650   const APInt *C3;
1651   if (match(Shift->getOperand(1), m_APInt(C3))) {
1652     APInt NewAndCst, NewCmpCst;
1653     bool AnyCmpCstBitsShiftedOut;
1654     if (ShiftOpcode == Instruction::Shl) {
1655       // For a left shift, we can fold if the comparison is not signed. We can
1656       // also fold a signed comparison if the mask value and comparison value
1657       // are not negative. These constraints may not be obvious, but we can
1658       // prove that they are correct using an SMT solver.
1659       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1660         return nullptr;
1661 
1662       NewCmpCst = C1.lshr(*C3);
1663       NewAndCst = C2.lshr(*C3);
1664       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1665     } else if (ShiftOpcode == Instruction::LShr) {
1666       // For a logical right shift, we can fold if the comparison is not signed.
1667       // We can also fold a signed comparison if the shifted mask value and the
1668       // shifted comparison value are not negative. These constraints may not be
1669       // obvious, but we can prove that they are correct using an SMT solver.
1670       NewCmpCst = C1.shl(*C3);
1671       NewAndCst = C2.shl(*C3);
1672       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1673       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1674         return nullptr;
1675     } else {
1676       // For an arithmetic shift, check that both constants don't use (in a
1677       // signed sense) the top bits being shifted out.
1678       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1679       NewCmpCst = C1.shl(*C3);
1680       NewAndCst = C2.shl(*C3);
1681       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1682       if (NewAndCst.ashr(*C3) != C2)
1683         return nullptr;
1684     }
1685 
1686     if (AnyCmpCstBitsShiftedOut) {
1687       // If we shifted bits out, the fold is not going to work out. As a
1688       // special case, check to see if this means that the result is always
1689       // true or false now.
1690       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1691         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1692       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1693         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1694     } else {
1695       Value *NewAnd = Builder.CreateAnd(
1696           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1697       return new ICmpInst(Cmp.getPredicate(),
1698           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1699     }
1700   }
1701 
1702   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1703   // preferable because it allows the C2 << Y expression to be hoisted out of a
1704   // loop if Y is invariant and X is not.
1705   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1706       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1707     // Compute C2 << Y.
1708     Value *NewShift =
1709         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1710               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1711 
1712     // Compute X & (C2 << Y).
1713     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1714     return replaceOperand(Cmp, 0, NewAnd);
1715   }
1716 
1717   return nullptr;
1718 }
1719 
1720 /// Fold icmp (and X, C2), C1.
foldICmpAndConstConst(ICmpInst & Cmp,BinaryOperator * And,const APInt & C1)1721 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1722                                                      BinaryOperator *And,
1723                                                      const APInt &C1) {
1724   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1725 
1726   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1727   // TODO: We canonicalize to the longer form for scalars because we have
1728   // better analysis/folds for icmp, and codegen may be better with icmp.
1729   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1730       match(And->getOperand(1), m_One()))
1731     return new TruncInst(And->getOperand(0), Cmp.getType());
1732 
1733   const APInt *C2;
1734   Value *X;
1735   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1736     return nullptr;
1737 
1738   // Don't perform the following transforms if the AND has multiple uses
1739   if (!And->hasOneUse())
1740     return nullptr;
1741 
1742   if (Cmp.isEquality() && C1.isNullValue()) {
1743     // Restrict this fold to single-use 'and' (PR10267).
1744     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1745     if (C2->isSignMask()) {
1746       Constant *Zero = Constant::getNullValue(X->getType());
1747       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1748       return new ICmpInst(NewPred, X, Zero);
1749     }
1750 
1751     // Restrict this fold only for single-use 'and' (PR10267).
1752     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1753     if ((~(*C2) + 1).isPowerOf2()) {
1754       Constant *NegBOC =
1755           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1756       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1757       return new ICmpInst(NewPred, X, NegBOC);
1758     }
1759   }
1760 
1761   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1762   // the input width without changing the value produced, eliminate the cast:
1763   //
1764   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1765   //
1766   // We can do this transformation if the constants do not have their sign bits
1767   // set or if it is an equality comparison. Extending a relational comparison
1768   // when we're checking the sign bit would not work.
1769   Value *W;
1770   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1771       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1772     // TODO: Is this a good transform for vectors? Wider types may reduce
1773     // throughput. Should this transform be limited (even for scalars) by using
1774     // shouldChangeType()?
1775     if (!Cmp.getType()->isVectorTy()) {
1776       Type *WideType = W->getType();
1777       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1778       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1779       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1780       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1781       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1782     }
1783   }
1784 
1785   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1786     return I;
1787 
1788   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1789   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1790   //
1791   // iff pred isn't signed
1792   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1793       match(And->getOperand(1), m_One())) {
1794     Constant *One = cast<Constant>(And->getOperand(1));
1795     Value *Or = And->getOperand(0);
1796     Value *A, *B, *LShr;
1797     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1798         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1799       unsigned UsesRemoved = 0;
1800       if (And->hasOneUse())
1801         ++UsesRemoved;
1802       if (Or->hasOneUse())
1803         ++UsesRemoved;
1804       if (LShr->hasOneUse())
1805         ++UsesRemoved;
1806 
1807       // Compute A & ((1 << B) | 1)
1808       Value *NewOr = nullptr;
1809       if (auto *C = dyn_cast<Constant>(B)) {
1810         if (UsesRemoved >= 1)
1811           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1812       } else {
1813         if (UsesRemoved >= 3)
1814           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1815                                                      /*HasNUW=*/true),
1816                                    One, Or->getName());
1817       }
1818       if (NewOr) {
1819         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1820         return replaceOperand(Cmp, 0, NewAnd);
1821       }
1822     }
1823   }
1824 
1825   return nullptr;
1826 }
1827 
1828 /// Fold icmp (and X, Y), C.
foldICmpAndConstant(ICmpInst & Cmp,BinaryOperator * And,const APInt & C)1829 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1830                                                    BinaryOperator *And,
1831                                                    const APInt &C) {
1832   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1833     return I;
1834 
1835   // TODO: These all require that Y is constant too, so refactor with the above.
1836 
1837   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1838   Value *X = And->getOperand(0);
1839   Value *Y = And->getOperand(1);
1840   if (auto *LI = dyn_cast<LoadInst>(X))
1841     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1842       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1843         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1844             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1845           ConstantInt *C2 = cast<ConstantInt>(Y);
1846           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1847             return Res;
1848         }
1849 
1850   if (!Cmp.isEquality())
1851     return nullptr;
1852 
1853   // X & -C == -C -> X >  u ~C
1854   // X & -C != -C -> X <= u ~C
1855   //   iff C is a power of 2
1856   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1857     auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1858                                                           : CmpInst::ICMP_ULE;
1859     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1860   }
1861 
1862   // (X & C2) == 0 -> (trunc X) >= 0
1863   // (X & C2) != 0 -> (trunc X) <  0
1864   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1865   const APInt *C2;
1866   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1867     int32_t ExactLogBase2 = C2->exactLogBase2();
1868     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1869       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1870       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1871         NTy = VectorType::get(NTy, AndVTy->getElementCount());
1872       Value *Trunc = Builder.CreateTrunc(X, NTy);
1873       auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1874                                                             : CmpInst::ICMP_SLT;
1875       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1876     }
1877   }
1878 
1879   return nullptr;
1880 }
1881 
1882 /// Fold icmp (or X, Y), C.
foldICmpOrConstant(ICmpInst & Cmp,BinaryOperator * Or,const APInt & C)1883 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1884                                                   BinaryOperator *Or,
1885                                                   const APInt &C) {
1886   ICmpInst::Predicate Pred = Cmp.getPredicate();
1887   if (C.isOneValue()) {
1888     // icmp slt signum(V) 1 --> icmp slt V, 1
1889     Value *V = nullptr;
1890     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1891       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1892                           ConstantInt::get(V->getType(), 1));
1893   }
1894 
1895   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1896   const APInt *MaskC;
1897   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1898     if (*MaskC == C && (C + 1).isPowerOf2()) {
1899       // X | C == C --> X <=u C
1900       // X | C != C --> X  >u C
1901       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1902       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1903       return new ICmpInst(Pred, OrOp0, OrOp1);
1904     }
1905 
1906     // More general: canonicalize 'equality with set bits mask' to
1907     // 'equality with clear bits mask'.
1908     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1909     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1910     if (Or->hasOneUse()) {
1911       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1912       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1913       return new ICmpInst(Pred, And, NewC);
1914     }
1915   }
1916 
1917   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1918     return nullptr;
1919 
1920   Value *P, *Q;
1921   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1922     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1923     // -> and (icmp eq P, null), (icmp eq Q, null).
1924     Value *CmpP =
1925         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1926     Value *CmpQ =
1927         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1928     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1929     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1930   }
1931 
1932   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1933   // a shorter form that has more potential to be folded even further.
1934   Value *X1, *X2, *X3, *X4;
1935   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1936       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1937     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1938     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1939     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1940     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1941     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1942     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1943   }
1944 
1945   return nullptr;
1946 }
1947 
1948 /// Fold icmp (mul X, Y), C.
foldICmpMulConstant(ICmpInst & Cmp,BinaryOperator * Mul,const APInt & C)1949 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1950                                                    BinaryOperator *Mul,
1951                                                    const APInt &C) {
1952   const APInt *MulC;
1953   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1954     return nullptr;
1955 
1956   // If this is a test of the sign bit and the multiply is sign-preserving with
1957   // a constant operand, use the multiply LHS operand instead.
1958   ICmpInst::Predicate Pred = Cmp.getPredicate();
1959   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1960     if (MulC->isNegative())
1961       Pred = ICmpInst::getSwappedPredicate(Pred);
1962     return new ICmpInst(Pred, Mul->getOperand(0),
1963                         Constant::getNullValue(Mul->getType()));
1964   }
1965 
1966   // If the multiply does not wrap, try to divide the compare constant by the
1967   // multiplication factor.
1968   if (Cmp.isEquality() && !MulC->isNullValue()) {
1969     // (mul nsw X, MulC) == C --> X == C /s MulC
1970     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
1971       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1972       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1973     }
1974     // (mul nuw X, MulC) == C --> X == C /u MulC
1975     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
1976       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1977       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1978     }
1979   }
1980 
1981   return nullptr;
1982 }
1983 
1984 /// Fold icmp (shl 1, Y), C.
foldICmpShlOne(ICmpInst & Cmp,Instruction * Shl,const APInt & C)1985 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1986                                    const APInt &C) {
1987   Value *Y;
1988   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1989     return nullptr;
1990 
1991   Type *ShiftType = Shl->getType();
1992   unsigned TypeBits = C.getBitWidth();
1993   bool CIsPowerOf2 = C.isPowerOf2();
1994   ICmpInst::Predicate Pred = Cmp.getPredicate();
1995   if (Cmp.isUnsigned()) {
1996     // (1 << Y) pred C -> Y pred Log2(C)
1997     if (!CIsPowerOf2) {
1998       // (1 << Y) <  30 -> Y <= 4
1999       // (1 << Y) <= 30 -> Y <= 4
2000       // (1 << Y) >= 30 -> Y >  4
2001       // (1 << Y) >  30 -> Y >  4
2002       if (Pred == ICmpInst::ICMP_ULT)
2003         Pred = ICmpInst::ICMP_ULE;
2004       else if (Pred == ICmpInst::ICMP_UGE)
2005         Pred = ICmpInst::ICMP_UGT;
2006     }
2007 
2008     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2009     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2010     unsigned CLog2 = C.logBase2();
2011     if (CLog2 == TypeBits - 1) {
2012       if (Pred == ICmpInst::ICMP_UGE)
2013         Pred = ICmpInst::ICMP_EQ;
2014       else if (Pred == ICmpInst::ICMP_ULT)
2015         Pred = ICmpInst::ICMP_NE;
2016     }
2017     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2018   } else if (Cmp.isSigned()) {
2019     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2020     if (C.isAllOnesValue()) {
2021       // (1 << Y) <= -1 -> Y == 31
2022       if (Pred == ICmpInst::ICMP_SLE)
2023         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2024 
2025       // (1 << Y) >  -1 -> Y != 31
2026       if (Pred == ICmpInst::ICMP_SGT)
2027         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2028     } else if (!C) {
2029       // (1 << Y) <  0 -> Y == 31
2030       // (1 << Y) <= 0 -> Y == 31
2031       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2032         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2033 
2034       // (1 << Y) >= 0 -> Y != 31
2035       // (1 << Y) >  0 -> Y != 31
2036       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2037         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2038     }
2039   } else if (Cmp.isEquality() && CIsPowerOf2) {
2040     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2041   }
2042 
2043   return nullptr;
2044 }
2045 
2046 /// Fold icmp (shl X, Y), C.
foldICmpShlConstant(ICmpInst & Cmp,BinaryOperator * Shl,const APInt & C)2047 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2048                                                    BinaryOperator *Shl,
2049                                                    const APInt &C) {
2050   const APInt *ShiftVal;
2051   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2052     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2053 
2054   const APInt *ShiftAmt;
2055   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2056     return foldICmpShlOne(Cmp, Shl, C);
2057 
2058   // Check that the shift amount is in range. If not, don't perform undefined
2059   // shifts. When the shift is visited, it will be simplified.
2060   unsigned TypeBits = C.getBitWidth();
2061   if (ShiftAmt->uge(TypeBits))
2062     return nullptr;
2063 
2064   ICmpInst::Predicate Pred = Cmp.getPredicate();
2065   Value *X = Shl->getOperand(0);
2066   Type *ShType = Shl->getType();
2067 
2068   // NSW guarantees that we are only shifting out sign bits from the high bits,
2069   // so we can ASHR the compare constant without needing a mask and eliminate
2070   // the shift.
2071   if (Shl->hasNoSignedWrap()) {
2072     if (Pred == ICmpInst::ICMP_SGT) {
2073       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2074       APInt ShiftedC = C.ashr(*ShiftAmt);
2075       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2076     }
2077     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2078         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2079       APInt ShiftedC = C.ashr(*ShiftAmt);
2080       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2081     }
2082     if (Pred == ICmpInst::ICMP_SLT) {
2083       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2084       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2085       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2086       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2087       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2088       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2089       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2090     }
2091     // If this is a signed comparison to 0 and the shift is sign preserving,
2092     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2093     // do that if we're sure to not continue on in this function.
2094     if (isSignTest(Pred, C))
2095       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2096   }
2097 
2098   // NUW guarantees that we are only shifting out zero bits from the high bits,
2099   // so we can LSHR the compare constant without needing a mask and eliminate
2100   // the shift.
2101   if (Shl->hasNoUnsignedWrap()) {
2102     if (Pred == ICmpInst::ICMP_UGT) {
2103       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2104       APInt ShiftedC = C.lshr(*ShiftAmt);
2105       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2106     }
2107     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2108         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2109       APInt ShiftedC = C.lshr(*ShiftAmt);
2110       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2111     }
2112     if (Pred == ICmpInst::ICMP_ULT) {
2113       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2114       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2115       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2116       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2117       assert(C.ugt(0) && "ult 0 should have been eliminated");
2118       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2119       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2120     }
2121   }
2122 
2123   if (Cmp.isEquality() && Shl->hasOneUse()) {
2124     // Strength-reduce the shift into an 'and'.
2125     Constant *Mask = ConstantInt::get(
2126         ShType,
2127         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2128     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2129     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2130     return new ICmpInst(Pred, And, LShrC);
2131   }
2132 
2133   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2134   bool TrueIfSigned = false;
2135   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2136     // (X << 31) <s 0  --> (X & 1) != 0
2137     Constant *Mask = ConstantInt::get(
2138         ShType,
2139         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2140     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2141     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2142                         And, Constant::getNullValue(ShType));
2143   }
2144 
2145   // Simplify 'shl' inequality test into 'and' equality test.
2146   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2147     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2148     if ((C + 1).isPowerOf2() &&
2149         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2150       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2151       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2152                                                      : ICmpInst::ICMP_NE,
2153                           And, Constant::getNullValue(ShType));
2154     }
2155     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2156     if (C.isPowerOf2() &&
2157         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2158       Value *And =
2159           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2160       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2161                                                      : ICmpInst::ICMP_NE,
2162                           And, Constant::getNullValue(ShType));
2163     }
2164   }
2165 
2166   // Transform (icmp pred iM (shl iM %v, N), C)
2167   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2168   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2169   // This enables us to get rid of the shift in favor of a trunc that may be
2170   // free on the target. It has the additional benefit of comparing to a
2171   // smaller constant that may be more target-friendly.
2172   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2173   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2174       DL.isLegalInteger(TypeBits - Amt)) {
2175     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2176     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2177       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2178     Constant *NewC =
2179         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2180     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2181   }
2182 
2183   return nullptr;
2184 }
2185 
2186 /// Fold icmp ({al}shr X, Y), C.
foldICmpShrConstant(ICmpInst & Cmp,BinaryOperator * Shr,const APInt & C)2187 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2188                                                    BinaryOperator *Shr,
2189                                                    const APInt &C) {
2190   // An exact shr only shifts out zero bits, so:
2191   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2192   Value *X = Shr->getOperand(0);
2193   CmpInst::Predicate Pred = Cmp.getPredicate();
2194   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2195       C.isNullValue())
2196     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2197 
2198   const APInt *ShiftVal;
2199   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2200     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2201 
2202   const APInt *ShiftAmt;
2203   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2204     return nullptr;
2205 
2206   // Check that the shift amount is in range. If not, don't perform undefined
2207   // shifts. When the shift is visited it will be simplified.
2208   unsigned TypeBits = C.getBitWidth();
2209   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2210   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2211     return nullptr;
2212 
2213   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2214   bool IsExact = Shr->isExact();
2215   Type *ShrTy = Shr->getType();
2216   // TODO: If we could guarantee that InstSimplify would handle all of the
2217   // constant-value-based preconditions in the folds below, then we could assert
2218   // those conditions rather than checking them. This is difficult because of
2219   // undef/poison (PR34838).
2220   if (IsAShr) {
2221     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2222       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2223       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2224       APInt ShiftedC = C.shl(ShAmtVal);
2225       if (ShiftedC.ashr(ShAmtVal) == C)
2226         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2227     }
2228     if (Pred == CmpInst::ICMP_SGT) {
2229       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2230       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2231       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2232           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2233         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2234     }
2235 
2236     // If the compare constant has significant bits above the lowest sign-bit,
2237     // then convert an unsigned cmp to a test of the sign-bit:
2238     // (ashr X, ShiftC) u> C --> X s< 0
2239     // (ashr X, ShiftC) u< C --> X s> -1
2240     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2241       if (Pred == CmpInst::ICMP_UGT) {
2242         return new ICmpInst(CmpInst::ICMP_SLT, X,
2243                             ConstantInt::getNullValue(ShrTy));
2244       }
2245       if (Pred == CmpInst::ICMP_ULT) {
2246         return new ICmpInst(CmpInst::ICMP_SGT, X,
2247                             ConstantInt::getAllOnesValue(ShrTy));
2248       }
2249     }
2250   } else {
2251     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2252       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2253       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2254       APInt ShiftedC = C.shl(ShAmtVal);
2255       if (ShiftedC.lshr(ShAmtVal) == C)
2256         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2257     }
2258     if (Pred == CmpInst::ICMP_UGT) {
2259       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2260       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2261       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2262         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2263     }
2264   }
2265 
2266   if (!Cmp.isEquality())
2267     return nullptr;
2268 
2269   // Handle equality comparisons of shift-by-constant.
2270 
2271   // If the comparison constant changes with the shift, the comparison cannot
2272   // succeed (bits of the comparison constant cannot match the shifted value).
2273   // This should be known by InstSimplify and already be folded to true/false.
2274   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2275           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2276          "Expected icmp+shr simplify did not occur.");
2277 
2278   // If the bits shifted out are known zero, compare the unshifted value:
2279   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2280   if (Shr->isExact())
2281     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2282 
2283   if (C.isNullValue()) {
2284     // == 0 is u< 1.
2285     if (Pred == CmpInst::ICMP_EQ)
2286       return new ICmpInst(CmpInst::ICMP_ULT, X,
2287                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2288     else
2289       return new ICmpInst(CmpInst::ICMP_UGT, X,
2290                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2291   }
2292 
2293   if (Shr->hasOneUse()) {
2294     // Canonicalize the shift into an 'and':
2295     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2296     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2297     Constant *Mask = ConstantInt::get(ShrTy, Val);
2298     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2299     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2300   }
2301 
2302   return nullptr;
2303 }
2304 
foldICmpSRemConstant(ICmpInst & Cmp,BinaryOperator * SRem,const APInt & C)2305 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2306                                                     BinaryOperator *SRem,
2307                                                     const APInt &C) {
2308   // Match an 'is positive' or 'is negative' comparison of remainder by a
2309   // constant power-of-2 value:
2310   // (X % pow2C) sgt/slt 0
2311   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2312   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2313     return nullptr;
2314 
2315   // TODO: The one-use check is standard because we do not typically want to
2316   //       create longer instruction sequences, but this might be a special-case
2317   //       because srem is not good for analysis or codegen.
2318   if (!SRem->hasOneUse())
2319     return nullptr;
2320 
2321   const APInt *DivisorC;
2322   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2323     return nullptr;
2324 
2325   // Mask off the sign bit and the modulo bits (low-bits).
2326   Type *Ty = SRem->getType();
2327   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2328   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2329   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2330 
2331   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2332   // bit is set. Example:
2333   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2334   if (Pred == ICmpInst::ICMP_SGT)
2335     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2336 
2337   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2338   // bit is set. Example:
2339   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2340   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2341 }
2342 
2343 /// Fold icmp (udiv X, Y), C.
foldICmpUDivConstant(ICmpInst & Cmp,BinaryOperator * UDiv,const APInt & C)2344 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2345                                                     BinaryOperator *UDiv,
2346                                                     const APInt &C) {
2347   const APInt *C2;
2348   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2349     return nullptr;
2350 
2351   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2352 
2353   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2354   Value *Y = UDiv->getOperand(1);
2355   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2356     assert(!C.isMaxValue() &&
2357            "icmp ugt X, UINT_MAX should have been simplified already.");
2358     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2359                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2360   }
2361 
2362   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2363   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2364     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2365     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2366                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2367   }
2368 
2369   return nullptr;
2370 }
2371 
2372 /// Fold icmp ({su}div X, Y), C.
foldICmpDivConstant(ICmpInst & Cmp,BinaryOperator * Div,const APInt & C)2373 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2374                                                    BinaryOperator *Div,
2375                                                    const APInt &C) {
2376   // Fold: icmp pred ([us]div X, C2), C -> range test
2377   // Fold this div into the comparison, producing a range check.
2378   // Determine, based on the divide type, what the range is being
2379   // checked.  If there is an overflow on the low or high side, remember
2380   // it, otherwise compute the range [low, hi) bounding the new value.
2381   // See: InsertRangeTest above for the kinds of replacements possible.
2382   const APInt *C2;
2383   if (!match(Div->getOperand(1), m_APInt(C2)))
2384     return nullptr;
2385 
2386   // FIXME: If the operand types don't match the type of the divide
2387   // then don't attempt this transform. The code below doesn't have the
2388   // logic to deal with a signed divide and an unsigned compare (and
2389   // vice versa). This is because (x /s C2) <s C  produces different
2390   // results than (x /s C2) <u C or (x /u C2) <s C or even
2391   // (x /u C2) <u C.  Simply casting the operands and result won't
2392   // work. :(  The if statement below tests that condition and bails
2393   // if it finds it.
2394   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2395   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2396     return nullptr;
2397 
2398   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2399   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2400   // division-by-constant cases should be present, we can not assert that they
2401   // have happened before we reach this icmp instruction.
2402   if (C2->isNullValue() || C2->isOneValue() ||
2403       (DivIsSigned && C2->isAllOnesValue()))
2404     return nullptr;
2405 
2406   // Compute Prod = C * C2. We are essentially solving an equation of
2407   // form X / C2 = C. We solve for X by multiplying C2 and C.
2408   // By solving for X, we can turn this into a range check instead of computing
2409   // a divide.
2410   APInt Prod = C * *C2;
2411 
2412   // Determine if the product overflows by seeing if the product is not equal to
2413   // the divide. Make sure we do the same kind of divide as in the LHS
2414   // instruction that we're folding.
2415   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2416 
2417   ICmpInst::Predicate Pred = Cmp.getPredicate();
2418 
2419   // If the division is known to be exact, then there is no remainder from the
2420   // divide, so the covered range size is unit, otherwise it is the divisor.
2421   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2422 
2423   // Figure out the interval that is being checked.  For example, a comparison
2424   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2425   // Compute this interval based on the constants involved and the signedness of
2426   // the compare/divide.  This computes a half-open interval, keeping track of
2427   // whether either value in the interval overflows.  After analysis each
2428   // overflow variable is set to 0 if it's corresponding bound variable is valid
2429   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2430   int LoOverflow = 0, HiOverflow = 0;
2431   APInt LoBound, HiBound;
2432 
2433   if (!DivIsSigned) {  // udiv
2434     // e.g. X/5 op 3  --> [15, 20)
2435     LoBound = Prod;
2436     HiOverflow = LoOverflow = ProdOV;
2437     if (!HiOverflow) {
2438       // If this is not an exact divide, then many values in the range collapse
2439       // to the same result value.
2440       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2441     }
2442   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2443     if (C.isNullValue()) {       // (X / pos) op 0
2444       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2445       LoBound = -(RangeSize - 1);
2446       HiBound = RangeSize;
2447     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2448       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2449       HiOverflow = LoOverflow = ProdOV;
2450       if (!HiOverflow)
2451         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2452     } else {                       // (X / pos) op neg
2453       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2454       HiBound = Prod + 1;
2455       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2456       if (!LoOverflow) {
2457         APInt DivNeg = -RangeSize;
2458         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2459       }
2460     }
2461   } else if (C2->isNegative()) { // Divisor is < 0.
2462     if (Div->isExact())
2463       RangeSize.negate();
2464     if (C.isNullValue()) { // (X / neg) op 0
2465       // e.g. X/-5 op 0  --> [-4, 5)
2466       LoBound = RangeSize + 1;
2467       HiBound = -RangeSize;
2468       if (HiBound == *C2) {        // -INTMIN = INTMIN
2469         HiOverflow = 1;            // [INTMIN+1, overflow)
2470         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2471       }
2472     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2473       // e.g. X/-5 op 3  --> [-19, -14)
2474       HiBound = Prod + 1;
2475       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2476       if (!LoOverflow)
2477         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2478     } else {                       // (X / neg) op neg
2479       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2480       LoOverflow = HiOverflow = ProdOV;
2481       if (!HiOverflow)
2482         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2483     }
2484 
2485     // Dividing by a negative swaps the condition.  LT <-> GT
2486     Pred = ICmpInst::getSwappedPredicate(Pred);
2487   }
2488 
2489   Value *X = Div->getOperand(0);
2490   switch (Pred) {
2491     default: llvm_unreachable("Unhandled icmp opcode!");
2492     case ICmpInst::ICMP_EQ:
2493       if (LoOverflow && HiOverflow)
2494         return replaceInstUsesWith(Cmp, Builder.getFalse());
2495       if (HiOverflow)
2496         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2497                             ICmpInst::ICMP_UGE, X,
2498                             ConstantInt::get(Div->getType(), LoBound));
2499       if (LoOverflow)
2500         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2501                             ICmpInst::ICMP_ULT, X,
2502                             ConstantInt::get(Div->getType(), HiBound));
2503       return replaceInstUsesWith(
2504           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2505     case ICmpInst::ICMP_NE:
2506       if (LoOverflow && HiOverflow)
2507         return replaceInstUsesWith(Cmp, Builder.getTrue());
2508       if (HiOverflow)
2509         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2510                             ICmpInst::ICMP_ULT, X,
2511                             ConstantInt::get(Div->getType(), LoBound));
2512       if (LoOverflow)
2513         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2514                             ICmpInst::ICMP_UGE, X,
2515                             ConstantInt::get(Div->getType(), HiBound));
2516       return replaceInstUsesWith(Cmp,
2517                                  insertRangeTest(X, LoBound, HiBound,
2518                                                  DivIsSigned, false));
2519     case ICmpInst::ICMP_ULT:
2520     case ICmpInst::ICMP_SLT:
2521       if (LoOverflow == +1)   // Low bound is greater than input range.
2522         return replaceInstUsesWith(Cmp, Builder.getTrue());
2523       if (LoOverflow == -1)   // Low bound is less than input range.
2524         return replaceInstUsesWith(Cmp, Builder.getFalse());
2525       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2526     case ICmpInst::ICMP_UGT:
2527     case ICmpInst::ICMP_SGT:
2528       if (HiOverflow == +1)       // High bound greater than input range.
2529         return replaceInstUsesWith(Cmp, Builder.getFalse());
2530       if (HiOverflow == -1)       // High bound less than input range.
2531         return replaceInstUsesWith(Cmp, Builder.getTrue());
2532       if (Pred == ICmpInst::ICMP_UGT)
2533         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2534                             ConstantInt::get(Div->getType(), HiBound));
2535       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2536                           ConstantInt::get(Div->getType(), HiBound));
2537   }
2538 
2539   return nullptr;
2540 }
2541 
2542 /// Fold icmp (sub X, Y), C.
foldICmpSubConstant(ICmpInst & Cmp,BinaryOperator * Sub,const APInt & C)2543 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2544                                                    BinaryOperator *Sub,
2545                                                    const APInt &C) {
2546   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2547   ICmpInst::Predicate Pred = Cmp.getPredicate();
2548   const APInt *C2;
2549   APInt SubResult;
2550 
2551   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2552   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2553     return new ICmpInst(Cmp.getPredicate(), Y,
2554                         ConstantInt::get(Y->getType(), 0));
2555 
2556   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2557   if (match(X, m_APInt(C2)) &&
2558       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2559        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2560       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2561     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2562                         ConstantInt::get(Y->getType(), SubResult));
2563 
2564   // The following transforms are only worth it if the only user of the subtract
2565   // is the icmp.
2566   if (!Sub->hasOneUse())
2567     return nullptr;
2568 
2569   if (Sub->hasNoSignedWrap()) {
2570     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2571     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2572       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2573 
2574     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2575     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2576       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2577 
2578     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2579     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2580       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2581 
2582     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2583     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2584       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2585   }
2586 
2587   if (!match(X, m_APInt(C2)))
2588     return nullptr;
2589 
2590   // C2 - Y <u C -> (Y | (C - 1)) == C2
2591   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2592   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2593       (*C2 & (C - 1)) == (C - 1))
2594     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2595 
2596   // C2 - Y >u C -> (Y | C) != C2
2597   //   iff C2 & C == C and C + 1 is a power of 2
2598   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2599     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2600 
2601   return nullptr;
2602 }
2603 
2604 /// Fold icmp (add X, Y), C.
foldICmpAddConstant(ICmpInst & Cmp,BinaryOperator * Add,const APInt & C)2605 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2606                                                    BinaryOperator *Add,
2607                                                    const APInt &C) {
2608   Value *Y = Add->getOperand(1);
2609   const APInt *C2;
2610   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2611     return nullptr;
2612 
2613   // Fold icmp pred (add X, C2), C.
2614   Value *X = Add->getOperand(0);
2615   Type *Ty = Add->getType();
2616   CmpInst::Predicate Pred = Cmp.getPredicate();
2617 
2618   // If the add does not wrap, we can always adjust the compare by subtracting
2619   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2620   // are canonicalized to SGT/SLT/UGT/ULT.
2621   if ((Add->hasNoSignedWrap() &&
2622        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2623       (Add->hasNoUnsignedWrap() &&
2624        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2625     bool Overflow;
2626     APInt NewC =
2627         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2628     // If there is overflow, the result must be true or false.
2629     // TODO: Can we assert there is no overflow because InstSimplify always
2630     // handles those cases?
2631     if (!Overflow)
2632       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2633       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2634   }
2635 
2636   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2637   const APInt &Upper = CR.getUpper();
2638   const APInt &Lower = CR.getLower();
2639   if (Cmp.isSigned()) {
2640     if (Lower.isSignMask())
2641       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2642     if (Upper.isSignMask())
2643       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2644   } else {
2645     if (Lower.isMinValue())
2646       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2647     if (Upper.isMinValue())
2648       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2649   }
2650 
2651   if (!Add->hasOneUse())
2652     return nullptr;
2653 
2654   // X+C <u C2 -> (X & -C2) == C
2655   //   iff C & (C2-1) == 0
2656   //       C2 is a power of 2
2657   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2658     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2659                         ConstantExpr::getNeg(cast<Constant>(Y)));
2660 
2661   // X+C >u C2 -> (X & ~C2) != C
2662   //   iff C & C2 == 0
2663   //       C2+1 is a power of 2
2664   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2665     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2666                         ConstantExpr::getNeg(cast<Constant>(Y)));
2667 
2668   return nullptr;
2669 }
2670 
matchThreeWayIntCompare(SelectInst * SI,Value * & LHS,Value * & RHS,ConstantInt * & Less,ConstantInt * & Equal,ConstantInt * & Greater)2671 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2672                                                Value *&RHS, ConstantInt *&Less,
2673                                                ConstantInt *&Equal,
2674                                                ConstantInt *&Greater) {
2675   // TODO: Generalize this to work with other comparison idioms or ensure
2676   // they get canonicalized into this form.
2677 
2678   // select i1 (a == b),
2679   //        i32 Equal,
2680   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2681   // where Equal, Less and Greater are placeholders for any three constants.
2682   ICmpInst::Predicate PredA;
2683   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2684       !ICmpInst::isEquality(PredA))
2685     return false;
2686   Value *EqualVal = SI->getTrueValue();
2687   Value *UnequalVal = SI->getFalseValue();
2688   // We still can get non-canonical predicate here, so canonicalize.
2689   if (PredA == ICmpInst::ICMP_NE)
2690     std::swap(EqualVal, UnequalVal);
2691   if (!match(EqualVal, m_ConstantInt(Equal)))
2692     return false;
2693   ICmpInst::Predicate PredB;
2694   Value *LHS2, *RHS2;
2695   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2696                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2697     return false;
2698   // We can get predicate mismatch here, so canonicalize if possible:
2699   // First, ensure that 'LHS' match.
2700   if (LHS2 != LHS) {
2701     // x sgt y <--> y slt x
2702     std::swap(LHS2, RHS2);
2703     PredB = ICmpInst::getSwappedPredicate(PredB);
2704   }
2705   if (LHS2 != LHS)
2706     return false;
2707   // We also need to canonicalize 'RHS'.
2708   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2709     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2710     auto FlippedStrictness =
2711         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2712             PredB, cast<Constant>(RHS2));
2713     if (!FlippedStrictness)
2714       return false;
2715     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2716     RHS2 = FlippedStrictness->second;
2717     // And kind-of perform the result swap.
2718     std::swap(Less, Greater);
2719     PredB = ICmpInst::ICMP_SLT;
2720   }
2721   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2722 }
2723 
foldICmpSelectConstant(ICmpInst & Cmp,SelectInst * Select,ConstantInt * C)2724 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2725                                                       SelectInst *Select,
2726                                                       ConstantInt *C) {
2727 
2728   assert(C && "Cmp RHS should be a constant int!");
2729   // If we're testing a constant value against the result of a three way
2730   // comparison, the result can be expressed directly in terms of the
2731   // original values being compared.  Note: We could possibly be more
2732   // aggressive here and remove the hasOneUse test. The original select is
2733   // really likely to simplify or sink when we remove a test of the result.
2734   Value *OrigLHS, *OrigRHS;
2735   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2736   if (Cmp.hasOneUse() &&
2737       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2738                               C3GreaterThan)) {
2739     assert(C1LessThan && C2Equal && C3GreaterThan);
2740 
2741     bool TrueWhenLessThan =
2742         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2743             ->isAllOnesValue();
2744     bool TrueWhenEqual =
2745         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2746             ->isAllOnesValue();
2747     bool TrueWhenGreaterThan =
2748         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2749             ->isAllOnesValue();
2750 
2751     // This generates the new instruction that will replace the original Cmp
2752     // Instruction. Instead of enumerating the various combinations when
2753     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2754     // false, we rely on chaining of ORs and future passes of InstCombine to
2755     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2756 
2757     // When none of the three constants satisfy the predicate for the RHS (C),
2758     // the entire original Cmp can be simplified to a false.
2759     Value *Cond = Builder.getFalse();
2760     if (TrueWhenLessThan)
2761       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2762                                                        OrigLHS, OrigRHS));
2763     if (TrueWhenEqual)
2764       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2765                                                        OrigLHS, OrigRHS));
2766     if (TrueWhenGreaterThan)
2767       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2768                                                        OrigLHS, OrigRHS));
2769 
2770     return replaceInstUsesWith(Cmp, Cond);
2771   }
2772   return nullptr;
2773 }
2774 
foldICmpBitCast(ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)2775 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2776                                     InstCombiner::BuilderTy &Builder) {
2777   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2778   if (!Bitcast)
2779     return nullptr;
2780 
2781   ICmpInst::Predicate Pred = Cmp.getPredicate();
2782   Value *Op1 = Cmp.getOperand(1);
2783   Value *BCSrcOp = Bitcast->getOperand(0);
2784 
2785   // Make sure the bitcast doesn't change the number of vector elements.
2786   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2787           Bitcast->getDestTy()->getScalarSizeInBits()) {
2788     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2789     Value *X;
2790     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2791       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2792       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2793       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2794       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2795       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2796            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2797           match(Op1, m_Zero()))
2798         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2799 
2800       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2801       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2802         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2803 
2804       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2805       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2806         return new ICmpInst(Pred, X,
2807                             ConstantInt::getAllOnesValue(X->getType()));
2808     }
2809 
2810     // Zero-equality checks are preserved through unsigned floating-point casts:
2811     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2812     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2813     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2814       if (Cmp.isEquality() && match(Op1, m_Zero()))
2815         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2816 
2817     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2818     // the FP extend/truncate because that cast does not change the sign-bit.
2819     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2820     // The sign-bit is always the most significant bit in those types.
2821     const APInt *C;
2822     bool TrueIfSigned;
2823     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2824         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2825       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2826           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2827         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2828         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2829         Type *XType = X->getType();
2830 
2831         // We can't currently handle Power style floating point operations here.
2832         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2833 
2834           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2835           if (auto *XVTy = dyn_cast<VectorType>(XType))
2836             NewType = VectorType::get(NewType, XVTy->getElementCount());
2837           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2838           if (TrueIfSigned)
2839             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2840                                 ConstantInt::getNullValue(NewType));
2841           else
2842             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2843                                 ConstantInt::getAllOnesValue(NewType));
2844         }
2845       }
2846     }
2847   }
2848 
2849   // Test to see if the operands of the icmp are casted versions of other
2850   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2851   if (Bitcast->getType()->isPointerTy() &&
2852       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2853     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2854     // so eliminate it as well.
2855     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2856       Op1 = BC2->getOperand(0);
2857 
2858     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2859     return new ICmpInst(Pred, BCSrcOp, Op1);
2860   }
2861 
2862   // Folding: icmp <pred> iN X, C
2863   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2864   //    and C is a splat of a K-bit pattern
2865   //    and SC is a constant vector = <C', C', C', ..., C'>
2866   // Into:
2867   //   %E = extractelement <M x iK> %vec, i32 C'
2868   //   icmp <pred> iK %E, trunc(C)
2869   const APInt *C;
2870   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2871       !Bitcast->getType()->isIntegerTy() ||
2872       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2873     return nullptr;
2874 
2875   Value *Vec;
2876   ArrayRef<int> Mask;
2877   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2878     // Check whether every element of Mask is the same constant
2879     if (is_splat(Mask)) {
2880       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2881       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2882       if (C->isSplat(EltTy->getBitWidth())) {
2883         // Fold the icmp based on the value of C
2884         // If C is M copies of an iK sized bit pattern,
2885         // then:
2886         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2887         //       icmp <pred> iK %SplatVal, <pattern>
2888         Value *Elem = Builder.getInt32(Mask[0]);
2889         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2890         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2891         return new ICmpInst(Pred, Extract, NewC);
2892       }
2893     }
2894   }
2895   return nullptr;
2896 }
2897 
2898 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2899 /// where X is some kind of instruction.
foldICmpInstWithConstant(ICmpInst & Cmp)2900 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2901   const APInt *C;
2902   if (!match(Cmp.getOperand(1), m_APInt(C)))
2903     return nullptr;
2904 
2905   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2906     switch (BO->getOpcode()) {
2907     case Instruction::Xor:
2908       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2909         return I;
2910       break;
2911     case Instruction::And:
2912       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2913         return I;
2914       break;
2915     case Instruction::Or:
2916       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2917         return I;
2918       break;
2919     case Instruction::Mul:
2920       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2921         return I;
2922       break;
2923     case Instruction::Shl:
2924       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2925         return I;
2926       break;
2927     case Instruction::LShr:
2928     case Instruction::AShr:
2929       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2930         return I;
2931       break;
2932     case Instruction::SRem:
2933       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2934         return I;
2935       break;
2936     case Instruction::UDiv:
2937       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2938         return I;
2939       LLVM_FALLTHROUGH;
2940     case Instruction::SDiv:
2941       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2942         return I;
2943       break;
2944     case Instruction::Sub:
2945       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2946         return I;
2947       break;
2948     case Instruction::Add:
2949       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2950         return I;
2951       break;
2952     default:
2953       break;
2954     }
2955     // TODO: These folds could be refactored to be part of the above calls.
2956     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2957       return I;
2958   }
2959 
2960   // Match against CmpInst LHS being instructions other than binary operators.
2961 
2962   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2963     // For now, we only support constant integers while folding the
2964     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2965     // similar to the cases handled by binary ops above.
2966     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2967       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2968         return I;
2969   }
2970 
2971   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2972     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2973       return I;
2974   }
2975 
2976   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2977     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2978       return I;
2979 
2980   return nullptr;
2981 }
2982 
2983 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2984 /// icmp eq/ne BO, C.
foldICmpBinOpEqualityWithConstant(ICmpInst & Cmp,BinaryOperator * BO,const APInt & C)2985 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
2986     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
2987   // TODO: Some of these folds could work with arbitrary constants, but this
2988   // function is limited to scalar and vector splat constants.
2989   if (!Cmp.isEquality())
2990     return nullptr;
2991 
2992   ICmpInst::Predicate Pred = Cmp.getPredicate();
2993   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2994   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2995   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2996 
2997   switch (BO->getOpcode()) {
2998   case Instruction::SRem:
2999     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3000     if (C.isNullValue() && BO->hasOneUse()) {
3001       const APInt *BOC;
3002       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3003         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3004         return new ICmpInst(Pred, NewRem,
3005                             Constant::getNullValue(BO->getType()));
3006       }
3007     }
3008     break;
3009   case Instruction::Add: {
3010     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3011     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3012       if (BO->hasOneUse())
3013         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3014     } else if (C.isNullValue()) {
3015       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3016       // efficiently invertible, or if the add has just this one use.
3017       if (Value *NegVal = dyn_castNegVal(BOp1))
3018         return new ICmpInst(Pred, BOp0, NegVal);
3019       if (Value *NegVal = dyn_castNegVal(BOp0))
3020         return new ICmpInst(Pred, NegVal, BOp1);
3021       if (BO->hasOneUse()) {
3022         Value *Neg = Builder.CreateNeg(BOp1);
3023         Neg->takeName(BO);
3024         return new ICmpInst(Pred, BOp0, Neg);
3025       }
3026     }
3027     break;
3028   }
3029   case Instruction::Xor:
3030     if (BO->hasOneUse()) {
3031       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3032         // For the xor case, we can xor two constants together, eliminating
3033         // the explicit xor.
3034         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3035       } else if (C.isNullValue()) {
3036         // Replace ((xor A, B) != 0) with (A != B)
3037         return new ICmpInst(Pred, BOp0, BOp1);
3038       }
3039     }
3040     break;
3041   case Instruction::Sub:
3042     if (BO->hasOneUse()) {
3043       // Only check for constant LHS here, as constant RHS will be canonicalized
3044       // to add and use the fold above.
3045       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3046         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3047         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3048       } else if (C.isNullValue()) {
3049         // Replace ((sub A, B) != 0) with (A != B).
3050         return new ICmpInst(Pred, BOp0, BOp1);
3051       }
3052     }
3053     break;
3054   case Instruction::Or: {
3055     const APInt *BOC;
3056     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3057       // Comparing if all bits outside of a constant mask are set?
3058       // Replace (X | C) == -1 with (X & ~C) == ~C.
3059       // This removes the -1 constant.
3060       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3061       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3062       return new ICmpInst(Pred, And, NotBOC);
3063     }
3064     break;
3065   }
3066   case Instruction::And: {
3067     const APInt *BOC;
3068     if (match(BOp1, m_APInt(BOC))) {
3069       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3070       if (C == *BOC && C.isPowerOf2())
3071         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3072                             BO, Constant::getNullValue(RHS->getType()));
3073     }
3074     break;
3075   }
3076   case Instruction::UDiv:
3077     if (C.isNullValue()) {
3078       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3079       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3080       return new ICmpInst(NewPred, BOp1, BOp0);
3081     }
3082     break;
3083   default:
3084     break;
3085   }
3086   return nullptr;
3087 }
3088 
3089 /// Fold an equality icmp with LLVM intrinsic and constant operand.
foldICmpEqIntrinsicWithConstant(ICmpInst & Cmp,IntrinsicInst * II,const APInt & C)3090 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3091     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3092   Type *Ty = II->getType();
3093   unsigned BitWidth = C.getBitWidth();
3094   switch (II->getIntrinsicID()) {
3095   case Intrinsic::abs:
3096     // abs(A) == 0  ->  A == 0
3097     // abs(A) == INT_MIN  ->  A == INT_MIN
3098     if (C.isNullValue() || C.isMinSignedValue())
3099       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3100                           ConstantInt::get(Ty, C));
3101     break;
3102 
3103   case Intrinsic::bswap:
3104     // bswap(A) == C  ->  A == bswap(C)
3105     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3106                         ConstantInt::get(Ty, C.byteSwap()));
3107 
3108   case Intrinsic::ctlz:
3109   case Intrinsic::cttz: {
3110     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3111     if (C == BitWidth)
3112       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3113                           ConstantInt::getNullValue(Ty));
3114 
3115     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3116     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3117     // Limit to one use to ensure we don't increase instruction count.
3118     unsigned Num = C.getLimitedValue(BitWidth);
3119     if (Num != BitWidth && II->hasOneUse()) {
3120       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3121       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3122                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3123       APInt Mask2 = IsTrailing
3124         ? APInt::getOneBitSet(BitWidth, Num)
3125         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3126       return new ICmpInst(Cmp.getPredicate(),
3127           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3128           ConstantInt::get(Ty, Mask2));
3129     }
3130     break;
3131   }
3132 
3133   case Intrinsic::ctpop: {
3134     // popcount(A) == 0  ->  A == 0 and likewise for !=
3135     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3136     bool IsZero = C.isNullValue();
3137     if (IsZero || C == BitWidth)
3138       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3139           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3140 
3141     break;
3142   }
3143 
3144   case Intrinsic::uadd_sat: {
3145     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3146     if (C.isNullValue()) {
3147       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3148       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3149     }
3150     break;
3151   }
3152 
3153   case Intrinsic::usub_sat: {
3154     // usub.sat(a, b) == 0  ->  a <= b
3155     if (C.isNullValue()) {
3156       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3157           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3158       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3159     }
3160     break;
3161   }
3162   default:
3163     break;
3164   }
3165 
3166   return nullptr;
3167 }
3168 
3169 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
foldICmpIntrinsicWithConstant(ICmpInst & Cmp,IntrinsicInst * II,const APInt & C)3170 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3171                                                              IntrinsicInst *II,
3172                                                              const APInt &C) {
3173   if (Cmp.isEquality())
3174     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3175 
3176   Type *Ty = II->getType();
3177   unsigned BitWidth = C.getBitWidth();
3178   ICmpInst::Predicate Pred = Cmp.getPredicate();
3179   switch (II->getIntrinsicID()) {
3180   case Intrinsic::ctpop: {
3181     // (ctpop X > BitWidth - 1) --> X == -1
3182     Value *X = II->getArgOperand(0);
3183     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3184       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3185                              ConstantInt::getAllOnesValue(Ty));
3186     // (ctpop X < BitWidth) --> X != -1
3187     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3188       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3189                              ConstantInt::getAllOnesValue(Ty));
3190     break;
3191   }
3192   case Intrinsic::ctlz: {
3193     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3194     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3195       unsigned Num = C.getLimitedValue();
3196       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3197       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3198                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3199     }
3200 
3201     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3202     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3203       unsigned Num = C.getLimitedValue();
3204       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3205       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3206                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3207     }
3208     break;
3209   }
3210   case Intrinsic::cttz: {
3211     // Limit to one use to ensure we don't increase instruction count.
3212     if (!II->hasOneUse())
3213       return nullptr;
3214 
3215     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3216     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3217       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3218       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3219                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3220                              ConstantInt::getNullValue(Ty));
3221     }
3222 
3223     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3224     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3225       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3226       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3227                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3228                              ConstantInt::getNullValue(Ty));
3229     }
3230     break;
3231   }
3232   default:
3233     break;
3234   }
3235 
3236   return nullptr;
3237 }
3238 
3239 /// Handle icmp with constant (but not simple integer constant) RHS.
foldICmpInstWithConstantNotInt(ICmpInst & I)3240 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3241   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3242   Constant *RHSC = dyn_cast<Constant>(Op1);
3243   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3244   if (!RHSC || !LHSI)
3245     return nullptr;
3246 
3247   switch (LHSI->getOpcode()) {
3248   case Instruction::GetElementPtr:
3249     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3250     if (RHSC->isNullValue() &&
3251         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3252       return new ICmpInst(
3253           I.getPredicate(), LHSI->getOperand(0),
3254           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3255     break;
3256   case Instruction::PHI:
3257     // Only fold icmp into the PHI if the phi and icmp are in the same
3258     // block.  If in the same block, we're encouraging jump threading.  If
3259     // not, we are just pessimizing the code by making an i1 phi.
3260     if (LHSI->getParent() == I.getParent())
3261       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3262         return NV;
3263     break;
3264   case Instruction::Select: {
3265     // If either operand of the select is a constant, we can fold the
3266     // comparison into the select arms, which will cause one to be
3267     // constant folded and the select turned into a bitwise or.
3268     Value *Op1 = nullptr, *Op2 = nullptr;
3269     ConstantInt *CI = nullptr;
3270     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3271       Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3272       CI = dyn_cast<ConstantInt>(Op1);
3273     }
3274     if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3275       Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3276       CI = dyn_cast<ConstantInt>(Op2);
3277     }
3278 
3279     // We only want to perform this transformation if it will not lead to
3280     // additional code. This is true if either both sides of the select
3281     // fold to a constant (in which case the icmp is replaced with a select
3282     // which will usually simplify) or this is the only user of the
3283     // select (in which case we are trading a select+icmp for a simpler
3284     // select+icmp) or all uses of the select can be replaced based on
3285     // dominance information ("Global cases").
3286     bool Transform = false;
3287     if (Op1 && Op2)
3288       Transform = true;
3289     else if (Op1 || Op2) {
3290       // Local case
3291       if (LHSI->hasOneUse())
3292         Transform = true;
3293       // Global cases
3294       else if (CI && !CI->isZero())
3295         // When Op1 is constant try replacing select with second operand.
3296         // Otherwise Op2 is constant and try replacing select with first
3297         // operand.
3298         Transform =
3299             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3300     }
3301     if (Transform) {
3302       if (!Op1)
3303         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3304                                  I.getName());
3305       if (!Op2)
3306         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3307                                  I.getName());
3308       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3309     }
3310     break;
3311   }
3312   case Instruction::IntToPtr:
3313     // icmp pred inttoptr(X), null -> icmp pred X, 0
3314     if (RHSC->isNullValue() &&
3315         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3316       return new ICmpInst(
3317           I.getPredicate(), LHSI->getOperand(0),
3318           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3319     break;
3320 
3321   case Instruction::Load:
3322     // Try to optimize things like "A[i] > 4" to index computations.
3323     if (GetElementPtrInst *GEP =
3324             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3325       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3326         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3327             !cast<LoadInst>(LHSI)->isVolatile())
3328           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3329             return Res;
3330     }
3331     break;
3332   }
3333 
3334   return nullptr;
3335 }
3336 
3337 /// Some comparisons can be simplified.
3338 /// In this case, we are looking for comparisons that look like
3339 /// a check for a lossy truncation.
3340 /// Folds:
3341 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3342 /// Where Mask is some pattern that produces all-ones in low bits:
3343 ///    (-1 >> y)
3344 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3345 ///   ~(-1 << y)
3346 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3347 /// The Mask can be a constant, too.
3348 /// For some predicates, the operands are commutative.
3349 /// For others, x can only be on a specific side.
foldICmpWithLowBitMaskedVal(ICmpInst & I,InstCombiner::BuilderTy & Builder)3350 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3351                                           InstCombiner::BuilderTy &Builder) {
3352   ICmpInst::Predicate SrcPred;
3353   Value *X, *M, *Y;
3354   auto m_VariableMask = m_CombineOr(
3355       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3356                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3357       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3358                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3359   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3360   if (!match(&I, m_c_ICmp(SrcPred,
3361                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3362                           m_Deferred(X))))
3363     return nullptr;
3364 
3365   ICmpInst::Predicate DstPred;
3366   switch (SrcPred) {
3367   case ICmpInst::Predicate::ICMP_EQ:
3368     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3369     DstPred = ICmpInst::Predicate::ICMP_ULE;
3370     break;
3371   case ICmpInst::Predicate::ICMP_NE:
3372     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3373     DstPred = ICmpInst::Predicate::ICMP_UGT;
3374     break;
3375   case ICmpInst::Predicate::ICMP_ULT:
3376     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3377     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3378     DstPred = ICmpInst::Predicate::ICMP_UGT;
3379     break;
3380   case ICmpInst::Predicate::ICMP_UGE:
3381     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3382     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3383     DstPred = ICmpInst::Predicate::ICMP_ULE;
3384     break;
3385   case ICmpInst::Predicate::ICMP_SLT:
3386     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3387     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3388     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3389       return nullptr;
3390     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3391       return nullptr;
3392     DstPred = ICmpInst::Predicate::ICMP_SGT;
3393     break;
3394   case ICmpInst::Predicate::ICMP_SGE:
3395     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3396     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3397     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3398       return nullptr;
3399     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3400       return nullptr;
3401     DstPred = ICmpInst::Predicate::ICMP_SLE;
3402     break;
3403   case ICmpInst::Predicate::ICMP_SGT:
3404   case ICmpInst::Predicate::ICMP_SLE:
3405     return nullptr;
3406   case ICmpInst::Predicate::ICMP_UGT:
3407   case ICmpInst::Predicate::ICMP_ULE:
3408     llvm_unreachable("Instsimplify took care of commut. variant");
3409     break;
3410   default:
3411     llvm_unreachable("All possible folds are handled.");
3412   }
3413 
3414   // The mask value may be a vector constant that has undefined elements. But it
3415   // may not be safe to propagate those undefs into the new compare, so replace
3416   // those elements by copying an existing, defined, and safe scalar constant.
3417   Type *OpTy = M->getType();
3418   auto *VecC = dyn_cast<Constant>(M);
3419   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3420   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3421     Constant *SafeReplacementConstant = nullptr;
3422     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3423       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3424         SafeReplacementConstant = VecC->getAggregateElement(i);
3425         break;
3426       }
3427     }
3428     assert(SafeReplacementConstant && "Failed to find undef replacement");
3429     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3430   }
3431 
3432   return Builder.CreateICmp(DstPred, X, M);
3433 }
3434 
3435 /// Some comparisons can be simplified.
3436 /// In this case, we are looking for comparisons that look like
3437 /// a check for a lossy signed truncation.
3438 /// Folds:   (MaskedBits is a constant.)
3439 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3440 /// Into:
3441 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3442 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3443 static Value *
foldICmpWithTruncSignExtendedVal(ICmpInst & I,InstCombiner::BuilderTy & Builder)3444 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3445                                  InstCombiner::BuilderTy &Builder) {
3446   ICmpInst::Predicate SrcPred;
3447   Value *X;
3448   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3449   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3450   if (!match(&I, m_c_ICmp(SrcPred,
3451                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3452                                           m_APInt(C1))),
3453                           m_Deferred(X))))
3454     return nullptr;
3455 
3456   // Potential handling of non-splats: for each element:
3457   //  * if both are undef, replace with constant 0.
3458   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3459   //  * if both are not undef, and are different, bailout.
3460   //  * else, only one is undef, then pick the non-undef one.
3461 
3462   // The shift amount must be equal.
3463   if (*C0 != *C1)
3464     return nullptr;
3465   const APInt &MaskedBits = *C0;
3466   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3467 
3468   ICmpInst::Predicate DstPred;
3469   switch (SrcPred) {
3470   case ICmpInst::Predicate::ICMP_EQ:
3471     // ((%x << MaskedBits) a>> MaskedBits) == %x
3472     //   =>
3473     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3474     DstPred = ICmpInst::Predicate::ICMP_ULT;
3475     break;
3476   case ICmpInst::Predicate::ICMP_NE:
3477     // ((%x << MaskedBits) a>> MaskedBits) != %x
3478     //   =>
3479     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3480     DstPred = ICmpInst::Predicate::ICMP_UGE;
3481     break;
3482   // FIXME: are more folds possible?
3483   default:
3484     return nullptr;
3485   }
3486 
3487   auto *XType = X->getType();
3488   const unsigned XBitWidth = XType->getScalarSizeInBits();
3489   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3490   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3491 
3492   // KeptBits = bitwidth(%x) - MaskedBits
3493   const APInt KeptBits = BitWidth - MaskedBits;
3494   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3495   // ICmpCst = (1 << KeptBits)
3496   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3497   assert(ICmpCst.isPowerOf2());
3498   // AddCst = (1 << (KeptBits-1))
3499   const APInt AddCst = ICmpCst.lshr(1);
3500   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3501 
3502   // T0 = add %x, AddCst
3503   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3504   // T1 = T0 DstPred ICmpCst
3505   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3506 
3507   return T1;
3508 }
3509 
3510 // Given pattern:
3511 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3512 // we should move shifts to the same hand of 'and', i.e. rewrite as
3513 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3514 // We are only interested in opposite logical shifts here.
3515 // One of the shifts can be truncated.
3516 // If we can, we want to end up creating 'lshr' shift.
3517 static Value *
foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst & I,const SimplifyQuery SQ,InstCombiner::BuilderTy & Builder)3518 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3519                                            InstCombiner::BuilderTy &Builder) {
3520   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3521       !I.getOperand(0)->hasOneUse())
3522     return nullptr;
3523 
3524   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3525 
3526   // Look for an 'and' of two logical shifts, one of which may be truncated.
3527   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3528   Instruction *XShift, *MaybeTruncation, *YShift;
3529   if (!match(
3530           I.getOperand(0),
3531           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3532                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3533                                    m_AnyLogicalShift, m_Instruction(YShift))),
3534                                m_Instruction(MaybeTruncation)))))
3535     return nullptr;
3536 
3537   // We potentially looked past 'trunc', but only when matching YShift,
3538   // therefore YShift must have the widest type.
3539   Instruction *WidestShift = YShift;
3540   // Therefore XShift must have the shallowest type.
3541   // Or they both have identical types if there was no truncation.
3542   Instruction *NarrowestShift = XShift;
3543 
3544   Type *WidestTy = WidestShift->getType();
3545   Type *NarrowestTy = NarrowestShift->getType();
3546   assert(NarrowestTy == I.getOperand(0)->getType() &&
3547          "We did not look past any shifts while matching XShift though.");
3548   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3549 
3550   // If YShift is a 'lshr', swap the shifts around.
3551   if (match(YShift, m_LShr(m_Value(), m_Value())))
3552     std::swap(XShift, YShift);
3553 
3554   // The shifts must be in opposite directions.
3555   auto XShiftOpcode = XShift->getOpcode();
3556   if (XShiftOpcode == YShift->getOpcode())
3557     return nullptr; // Do not care about same-direction shifts here.
3558 
3559   Value *X, *XShAmt, *Y, *YShAmt;
3560   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3561   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3562 
3563   // If one of the values being shifted is a constant, then we will end with
3564   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3565   // however, we will need to ensure that we won't increase instruction count.
3566   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3567     // At least one of the hands of the 'and' should be one-use shift.
3568     if (!match(I.getOperand(0),
3569                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3570       return nullptr;
3571     if (HadTrunc) {
3572       // Due to the 'trunc', we will need to widen X. For that either the old
3573       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3574       if (!MaybeTruncation->hasOneUse() &&
3575           !NarrowestShift->getOperand(1)->hasOneUse())
3576         return nullptr;
3577     }
3578   }
3579 
3580   // We have two shift amounts from two different shifts. The types of those
3581   // shift amounts may not match. If that's the case let's bailout now.
3582   if (XShAmt->getType() != YShAmt->getType())
3583     return nullptr;
3584 
3585   // As input, we have the following pattern:
3586   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3587   // We want to rewrite that as:
3588   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3589   // While we know that originally (Q+K) would not overflow
3590   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3591   // shift amounts. so it may now overflow in smaller bitwidth.
3592   // To ensure that does not happen, we need to ensure that the total maximal
3593   // shift amount is still representable in that smaller bit width.
3594   unsigned MaximalPossibleTotalShiftAmount =
3595       (WidestTy->getScalarSizeInBits() - 1) +
3596       (NarrowestTy->getScalarSizeInBits() - 1);
3597   APInt MaximalRepresentableShiftAmount =
3598       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3599   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3600     return nullptr;
3601 
3602   // Can we fold (XShAmt+YShAmt) ?
3603   auto *NewShAmt = dyn_cast_or_null<Constant>(
3604       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3605                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3606   if (!NewShAmt)
3607     return nullptr;
3608   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3609   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3610 
3611   // Is the new shift amount smaller than the bit width?
3612   // FIXME: could also rely on ConstantRange.
3613   if (!match(NewShAmt,
3614              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3615                                 APInt(WidestBitWidth, WidestBitWidth))))
3616     return nullptr;
3617 
3618   // An extra legality check is needed if we had trunc-of-lshr.
3619   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3620     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3621                     WidestShift]() {
3622       // It isn't obvious whether it's worth it to analyze non-constants here.
3623       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3624       // If *any* of these preconditions matches we can perform the fold.
3625       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3626                                     ? NewShAmt->getSplatValue()
3627                                     : NewShAmt;
3628       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3629       if (NewShAmtSplat &&
3630           (NewShAmtSplat->isNullValue() ||
3631            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3632         return true;
3633       // We consider *min* leading zeros so a single outlier
3634       // blocks the transform as opposed to allowing it.
3635       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3636         KnownBits Known = computeKnownBits(C, SQ.DL);
3637         unsigned MinLeadZero = Known.countMinLeadingZeros();
3638         // If the value being shifted has at most lowest bit set we can fold.
3639         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3640         if (MaxActiveBits <= 1)
3641           return true;
3642         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3643         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3644           return true;
3645       }
3646       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3647         KnownBits Known = computeKnownBits(C, SQ.DL);
3648         unsigned MinLeadZero = Known.countMinLeadingZeros();
3649         // If the value being shifted has at most lowest bit set we can fold.
3650         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3651         if (MaxActiveBits <= 1)
3652           return true;
3653         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3654         if (NewShAmtSplat) {
3655           APInt AdjNewShAmt =
3656               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3657           if (AdjNewShAmt.ule(MinLeadZero))
3658             return true;
3659         }
3660       }
3661       return false; // Can't tell if it's ok.
3662     };
3663     if (!CanFold())
3664       return nullptr;
3665   }
3666 
3667   // All good, we can do this fold.
3668   X = Builder.CreateZExt(X, WidestTy);
3669   Y = Builder.CreateZExt(Y, WidestTy);
3670   // The shift is the same that was for X.
3671   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3672                   ? Builder.CreateLShr(X, NewShAmt)
3673                   : Builder.CreateShl(X, NewShAmt);
3674   Value *T1 = Builder.CreateAnd(T0, Y);
3675   return Builder.CreateICmp(I.getPredicate(), T1,
3676                             Constant::getNullValue(WidestTy));
3677 }
3678 
3679 /// Fold
3680 ///   (-1 u/ x) u< y
3681 ///   ((x * y) u/ x) != y
3682 /// to
3683 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3684 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3685 /// will mean that we are looking for the opposite answer.
foldUnsignedMultiplicationOverflowCheck(ICmpInst & I)3686 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3687   ICmpInst::Predicate Pred;
3688   Value *X, *Y;
3689   Instruction *Mul;
3690   bool NeedNegation;
3691   // Look for: (-1 u/ x) u</u>= y
3692   if (!I.isEquality() &&
3693       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3694                          m_Value(Y)))) {
3695     Mul = nullptr;
3696 
3697     // Are we checking that overflow does not happen, or does happen?
3698     switch (Pred) {
3699     case ICmpInst::Predicate::ICMP_ULT:
3700       NeedNegation = false;
3701       break; // OK
3702     case ICmpInst::Predicate::ICMP_UGE:
3703       NeedNegation = true;
3704       break; // OK
3705     default:
3706       return nullptr; // Wrong predicate.
3707     }
3708   } else // Look for: ((x * y) u/ x) !=/== y
3709       if (I.isEquality() &&
3710           match(&I, m_c_ICmp(Pred, m_Value(Y),
3711                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3712                                                                   m_Value(X)),
3713                                                           m_Instruction(Mul)),
3714                                              m_Deferred(X)))))) {
3715     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3716   } else
3717     return nullptr;
3718 
3719   BuilderTy::InsertPointGuard Guard(Builder);
3720   // If the pattern included (x * y), we'll want to insert new instructions
3721   // right before that original multiplication so that we can replace it.
3722   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3723   if (MulHadOtherUses)
3724     Builder.SetInsertPoint(Mul);
3725 
3726   Function *F = Intrinsic::getDeclaration(
3727       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3728   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3729 
3730   // If the multiplication was used elsewhere, to ensure that we don't leave
3731   // "duplicate" instructions, replace uses of that original multiplication
3732   // with the multiplication result from the with.overflow intrinsic.
3733   if (MulHadOtherUses)
3734     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3735 
3736   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3737   if (NeedNegation) // This technically increases instruction count.
3738     Res = Builder.CreateNot(Res, "umul.not.ov");
3739 
3740   // If we replaced the mul, erase it. Do this after all uses of Builder,
3741   // as the mul is used as insertion point.
3742   if (MulHadOtherUses)
3743     eraseInstFromFunction(*Mul);
3744 
3745   return Res;
3746 }
3747 
foldICmpXNegX(ICmpInst & I)3748 static Instruction *foldICmpXNegX(ICmpInst &I) {
3749   CmpInst::Predicate Pred;
3750   Value *X;
3751   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3752     return nullptr;
3753 
3754   if (ICmpInst::isSigned(Pred))
3755     Pred = ICmpInst::getSwappedPredicate(Pred);
3756   else if (ICmpInst::isUnsigned(Pred))
3757     Pred = ICmpInst::getSignedPredicate(Pred);
3758   // else for equality-comparisons just keep the predicate.
3759 
3760   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3761                           Constant::getNullValue(X->getType()), I.getName());
3762 }
3763 
3764 /// Try to fold icmp (binop), X or icmp X, (binop).
3765 /// TODO: A large part of this logic is duplicated in InstSimplify's
3766 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3767 /// duplication.
foldICmpBinOp(ICmpInst & I,const SimplifyQuery & SQ)3768 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3769                                              const SimplifyQuery &SQ) {
3770   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3771   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3772 
3773   // Special logic for binary operators.
3774   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3775   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3776   if (!BO0 && !BO1)
3777     return nullptr;
3778 
3779   if (Instruction *NewICmp = foldICmpXNegX(I))
3780     return NewICmp;
3781 
3782   const CmpInst::Predicate Pred = I.getPredicate();
3783   Value *X;
3784 
3785   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3786   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3787   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3788       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3789     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3790   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3791   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3792       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3793     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3794 
3795   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3796   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3797     NoOp0WrapProblem =
3798         ICmpInst::isEquality(Pred) ||
3799         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3800         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3801   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3802     NoOp1WrapProblem =
3803         ICmpInst::isEquality(Pred) ||
3804         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3805         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3806 
3807   // Analyze the case when either Op0 or Op1 is an add instruction.
3808   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3809   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3810   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3811     A = BO0->getOperand(0);
3812     B = BO0->getOperand(1);
3813   }
3814   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3815     C = BO1->getOperand(0);
3816     D = BO1->getOperand(1);
3817   }
3818 
3819   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3820   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3821   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3822     return new ICmpInst(Pred, A == Op1 ? B : A,
3823                         Constant::getNullValue(Op1->getType()));
3824 
3825   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3826   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3827   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3828     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3829                         C == Op0 ? D : C);
3830 
3831   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3832   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3833       NoOp1WrapProblem) {
3834     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3835     Value *Y, *Z;
3836     if (A == C) {
3837       // C + B == C + D  ->  B == D
3838       Y = B;
3839       Z = D;
3840     } else if (A == D) {
3841       // D + B == C + D  ->  B == C
3842       Y = B;
3843       Z = C;
3844     } else if (B == C) {
3845       // A + C == C + D  ->  A == D
3846       Y = A;
3847       Z = D;
3848     } else {
3849       assert(B == D);
3850       // A + D == C + D  ->  A == C
3851       Y = A;
3852       Z = C;
3853     }
3854     return new ICmpInst(Pred, Y, Z);
3855   }
3856 
3857   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3858   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3859       match(B, m_AllOnes()))
3860     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3861 
3862   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3863   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3864       match(B, m_AllOnes()))
3865     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3866 
3867   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3868   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3869     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3870 
3871   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3872   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3873     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3874 
3875   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3876   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3877       match(D, m_AllOnes()))
3878     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3879 
3880   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3881   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3882       match(D, m_AllOnes()))
3883     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3884 
3885   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3886   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3887     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3888 
3889   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3890   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3891     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3892 
3893   // TODO: The subtraction-related identities shown below also hold, but
3894   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3895   // wouldn't happen even if they were implemented.
3896   //
3897   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3898   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3899   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3900   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3901 
3902   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3903   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3904     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3905 
3906   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3907   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3908     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3909 
3910   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3911   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3912     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3913 
3914   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3915   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3916     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3917 
3918   // if C1 has greater magnitude than C2:
3919   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3920   //  s.t. C3 = C1 - C2
3921   //
3922   // if C2 has greater magnitude than C1:
3923   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3924   //  s.t. C3 = C2 - C1
3925   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3926       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3927     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3928       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3929         const APInt &AP1 = C1->getValue();
3930         const APInt &AP2 = C2->getValue();
3931         if (AP1.isNegative() == AP2.isNegative()) {
3932           APInt AP1Abs = C1->getValue().abs();
3933           APInt AP2Abs = C2->getValue().abs();
3934           if (AP1Abs.uge(AP2Abs)) {
3935             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3936             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
3937             bool HasNSW = BO0->hasNoSignedWrap();
3938             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
3939             return new ICmpInst(Pred, NewAdd, C);
3940           } else {
3941             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3942             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
3943             bool HasNSW = BO1->hasNoSignedWrap();
3944             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
3945             return new ICmpInst(Pred, A, NewAdd);
3946           }
3947         }
3948       }
3949 
3950   // Analyze the case when either Op0 or Op1 is a sub instruction.
3951   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3952   A = nullptr;
3953   B = nullptr;
3954   C = nullptr;
3955   D = nullptr;
3956   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3957     A = BO0->getOperand(0);
3958     B = BO0->getOperand(1);
3959   }
3960   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3961     C = BO1->getOperand(0);
3962     D = BO1->getOperand(1);
3963   }
3964 
3965   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3966   if (A == Op1 && NoOp0WrapProblem)
3967     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3968   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3969   if (C == Op0 && NoOp1WrapProblem)
3970     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3971 
3972   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3973   // (A - B) u>/u<= A --> B u>/u<= A
3974   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3975     return new ICmpInst(Pred, B, A);
3976   // C u</u>= (C - D) --> C u</u>= D
3977   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3978     return new ICmpInst(Pred, C, D);
3979   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3980   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3981       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3982     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3983   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3984   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3985       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3986     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3987 
3988   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3989   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3990     return new ICmpInst(Pred, A, C);
3991 
3992   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3993   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3994     return new ICmpInst(Pred, D, B);
3995 
3996   // icmp (0-X) < cst --> x > -cst
3997   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3998     Value *X;
3999     if (match(BO0, m_Neg(m_Value(X))))
4000       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4001         if (RHSC->isNotMinSignedValue())
4002           return new ICmpInst(I.getSwappedPredicate(), X,
4003                               ConstantExpr::getNeg(RHSC));
4004   }
4005 
4006   {
4007     // Try to remove shared constant multiplier from equality comparison:
4008     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4009     Value *X, *Y;
4010     const APInt *C;
4011     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4012         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4013       if (!C->countTrailingZeros() ||
4014           (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4015           (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4016       return new ICmpInst(Pred, X, Y);
4017   }
4018 
4019   BinaryOperator *SRem = nullptr;
4020   // icmp (srem X, Y), Y
4021   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4022     SRem = BO0;
4023   // icmp Y, (srem X, Y)
4024   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4025            Op0 == BO1->getOperand(1))
4026     SRem = BO1;
4027   if (SRem) {
4028     // We don't check hasOneUse to avoid increasing register pressure because
4029     // the value we use is the same value this instruction was already using.
4030     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4031     default:
4032       break;
4033     case ICmpInst::ICMP_EQ:
4034       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4035     case ICmpInst::ICMP_NE:
4036       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4037     case ICmpInst::ICMP_SGT:
4038     case ICmpInst::ICMP_SGE:
4039       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4040                           Constant::getAllOnesValue(SRem->getType()));
4041     case ICmpInst::ICMP_SLT:
4042     case ICmpInst::ICMP_SLE:
4043       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4044                           Constant::getNullValue(SRem->getType()));
4045     }
4046   }
4047 
4048   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4049       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4050     switch (BO0->getOpcode()) {
4051     default:
4052       break;
4053     case Instruction::Add:
4054     case Instruction::Sub:
4055     case Instruction::Xor: {
4056       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4057         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4058 
4059       const APInt *C;
4060       if (match(BO0->getOperand(1), m_APInt(C))) {
4061         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4062         if (C->isSignMask()) {
4063           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4064           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4065         }
4066 
4067         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4068         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4069           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4070           NewPred = I.getSwappedPredicate(NewPred);
4071           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4072         }
4073       }
4074       break;
4075     }
4076     case Instruction::Mul: {
4077       if (!I.isEquality())
4078         break;
4079 
4080       const APInt *C;
4081       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4082           !C->isOneValue()) {
4083         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4084         // Mask = -1 >> count-trailing-zeros(C).
4085         if (unsigned TZs = C->countTrailingZeros()) {
4086           Constant *Mask = ConstantInt::get(
4087               BO0->getType(),
4088               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4089           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4090           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4091           return new ICmpInst(Pred, And1, And2);
4092         }
4093       }
4094       break;
4095     }
4096     case Instruction::UDiv:
4097     case Instruction::LShr:
4098       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4099         break;
4100       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4101 
4102     case Instruction::SDiv:
4103       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4104         break;
4105       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4106 
4107     case Instruction::AShr:
4108       if (!BO0->isExact() || !BO1->isExact())
4109         break;
4110       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4111 
4112     case Instruction::Shl: {
4113       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4114       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4115       if (!NUW && !NSW)
4116         break;
4117       if (!NSW && I.isSigned())
4118         break;
4119       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4120     }
4121     }
4122   }
4123 
4124   if (BO0) {
4125     // Transform  A & (L - 1) `ult` L --> L != 0
4126     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4127     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4128 
4129     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4130       auto *Zero = Constant::getNullValue(BO0->getType());
4131       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4132     }
4133   }
4134 
4135   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4136     return replaceInstUsesWith(I, V);
4137 
4138   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4139     return replaceInstUsesWith(I, V);
4140 
4141   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4142     return replaceInstUsesWith(I, V);
4143 
4144   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4145     return replaceInstUsesWith(I, V);
4146 
4147   return nullptr;
4148 }
4149 
4150 /// Fold icmp Pred min|max(X, Y), X.
foldICmpWithMinMax(ICmpInst & Cmp)4151 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4152   ICmpInst::Predicate Pred = Cmp.getPredicate();
4153   Value *Op0 = Cmp.getOperand(0);
4154   Value *X = Cmp.getOperand(1);
4155 
4156   // Canonicalize minimum or maximum operand to LHS of the icmp.
4157   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4158       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4159       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4160       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4161     std::swap(Op0, X);
4162     Pred = Cmp.getSwappedPredicate();
4163   }
4164 
4165   Value *Y;
4166   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4167     // smin(X, Y)  == X --> X s<= Y
4168     // smin(X, Y) s>= X --> X s<= Y
4169     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4170       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4171 
4172     // smin(X, Y) != X --> X s> Y
4173     // smin(X, Y) s< X --> X s> Y
4174     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4175       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4176 
4177     // These cases should be handled in InstSimplify:
4178     // smin(X, Y) s<= X --> true
4179     // smin(X, Y) s> X --> false
4180     return nullptr;
4181   }
4182 
4183   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4184     // smax(X, Y)  == X --> X s>= Y
4185     // smax(X, Y) s<= X --> X s>= Y
4186     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4187       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4188 
4189     // smax(X, Y) != X --> X s< Y
4190     // smax(X, Y) s> X --> X s< Y
4191     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4192       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4193 
4194     // These cases should be handled in InstSimplify:
4195     // smax(X, Y) s>= X --> true
4196     // smax(X, Y) s< X --> false
4197     return nullptr;
4198   }
4199 
4200   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4201     // umin(X, Y)  == X --> X u<= Y
4202     // umin(X, Y) u>= X --> X u<= Y
4203     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4204       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4205 
4206     // umin(X, Y) != X --> X u> Y
4207     // umin(X, Y) u< X --> X u> Y
4208     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4209       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4210 
4211     // These cases should be handled in InstSimplify:
4212     // umin(X, Y) u<= X --> true
4213     // umin(X, Y) u> X --> false
4214     return nullptr;
4215   }
4216 
4217   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4218     // umax(X, Y)  == X --> X u>= Y
4219     // umax(X, Y) u<= X --> X u>= Y
4220     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4221       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4222 
4223     // umax(X, Y) != X --> X u< Y
4224     // umax(X, Y) u> X --> X u< Y
4225     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4226       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4227 
4228     // These cases should be handled in InstSimplify:
4229     // umax(X, Y) u>= X --> true
4230     // umax(X, Y) u< X --> false
4231     return nullptr;
4232   }
4233 
4234   return nullptr;
4235 }
4236 
foldICmpEquality(ICmpInst & I)4237 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4238   if (!I.isEquality())
4239     return nullptr;
4240 
4241   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4242   const CmpInst::Predicate Pred = I.getPredicate();
4243   Value *A, *B, *C, *D;
4244   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4245     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4246       Value *OtherVal = A == Op1 ? B : A;
4247       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4248     }
4249 
4250     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4251       // A^c1 == C^c2 --> A == C^(c1^c2)
4252       ConstantInt *C1, *C2;
4253       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4254           Op1->hasOneUse()) {
4255         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4256         Value *Xor = Builder.CreateXor(C, NC);
4257         return new ICmpInst(Pred, A, Xor);
4258       }
4259 
4260       // A^B == A^D -> B == D
4261       if (A == C)
4262         return new ICmpInst(Pred, B, D);
4263       if (A == D)
4264         return new ICmpInst(Pred, B, C);
4265       if (B == C)
4266         return new ICmpInst(Pred, A, D);
4267       if (B == D)
4268         return new ICmpInst(Pred, A, C);
4269     }
4270   }
4271 
4272   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4273     // A == (A^B)  ->  B == 0
4274     Value *OtherVal = A == Op0 ? B : A;
4275     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4276   }
4277 
4278   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4279   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4280       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4281     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4282 
4283     if (A == C) {
4284       X = B;
4285       Y = D;
4286       Z = A;
4287     } else if (A == D) {
4288       X = B;
4289       Y = C;
4290       Z = A;
4291     } else if (B == C) {
4292       X = A;
4293       Y = D;
4294       Z = B;
4295     } else if (B == D) {
4296       X = A;
4297       Y = C;
4298       Z = B;
4299     }
4300 
4301     if (X) { // Build (X^Y) & Z
4302       Op1 = Builder.CreateXor(X, Y);
4303       Op1 = Builder.CreateAnd(Op1, Z);
4304       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4305     }
4306   }
4307 
4308   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4309   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4310   ConstantInt *Cst1;
4311   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4312        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4313       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4314        match(Op1, m_ZExt(m_Value(A))))) {
4315     APInt Pow2 = Cst1->getValue() + 1;
4316     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4317         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4318       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4319   }
4320 
4321   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4322   // For lshr and ashr pairs.
4323   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4324        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4325       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4326        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4327     unsigned TypeBits = Cst1->getBitWidth();
4328     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4329     if (ShAmt < TypeBits && ShAmt != 0) {
4330       ICmpInst::Predicate NewPred =
4331           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4332       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4333       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4334       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4335     }
4336   }
4337 
4338   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4339   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4340       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4341     unsigned TypeBits = Cst1->getBitWidth();
4342     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4343     if (ShAmt < TypeBits && ShAmt != 0) {
4344       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4345       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4346       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4347                                       I.getName() + ".mask");
4348       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4349     }
4350   }
4351 
4352   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4353   // "icmp (and X, mask), cst"
4354   uint64_t ShAmt = 0;
4355   if (Op0->hasOneUse() &&
4356       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4357       match(Op1, m_ConstantInt(Cst1)) &&
4358       // Only do this when A has multiple uses.  This is most important to do
4359       // when it exposes other optimizations.
4360       !A->hasOneUse()) {
4361     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4362 
4363     if (ShAmt < ASize) {
4364       APInt MaskV =
4365           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4366       MaskV <<= ShAmt;
4367 
4368       APInt CmpV = Cst1->getValue().zext(ASize);
4369       CmpV <<= ShAmt;
4370 
4371       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4372       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4373     }
4374   }
4375 
4376   // If both operands are byte-swapped or bit-reversed, just compare the
4377   // original values.
4378   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4379   // and handle more intrinsics.
4380   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4381       (match(Op0, m_BitReverse(m_Value(A))) &&
4382        match(Op1, m_BitReverse(m_Value(B)))))
4383     return new ICmpInst(Pred, A, B);
4384 
4385   // Canonicalize checking for a power-of-2-or-zero value:
4386   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4387   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4388   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4389                                    m_Deferred(A)))) ||
4390       !match(Op1, m_ZeroInt()))
4391     A = nullptr;
4392 
4393   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4394   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4395   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4396     A = Op1;
4397   else if (match(Op1,
4398                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4399     A = Op0;
4400 
4401   if (A) {
4402     Type *Ty = A->getType();
4403     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4404     return Pred == ICmpInst::ICMP_EQ
4405         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4406         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4407   }
4408 
4409   return nullptr;
4410 }
4411 
foldICmpWithZextOrSext(ICmpInst & ICmp,InstCombiner::BuilderTy & Builder)4412 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4413                                            InstCombiner::BuilderTy &Builder) {
4414   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4415   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4416   Value *X;
4417   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4418     return nullptr;
4419 
4420   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4421   bool IsSignedCmp = ICmp.isSigned();
4422   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4423     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4424     // and the other is a zext), then we can't handle this.
4425     // TODO: This is too strict. We can handle some predicates (equality?).
4426     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4427       return nullptr;
4428 
4429     // Not an extension from the same type?
4430     Value *Y = CastOp1->getOperand(0);
4431     Type *XTy = X->getType(), *YTy = Y->getType();
4432     if (XTy != YTy) {
4433       // One of the casts must have one use because we are creating a new cast.
4434       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4435         return nullptr;
4436       // Extend the narrower operand to the type of the wider operand.
4437       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4438         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4439       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4440         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4441       else
4442         return nullptr;
4443     }
4444 
4445     // (zext X) == (zext Y) --> X == Y
4446     // (sext X) == (sext Y) --> X == Y
4447     if (ICmp.isEquality())
4448       return new ICmpInst(ICmp.getPredicate(), X, Y);
4449 
4450     // A signed comparison of sign extended values simplifies into a
4451     // signed comparison.
4452     if (IsSignedCmp && IsSignedExt)
4453       return new ICmpInst(ICmp.getPredicate(), X, Y);
4454 
4455     // The other three cases all fold into an unsigned comparison.
4456     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4457   }
4458 
4459   // Below here, we are only folding a compare with constant.
4460   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4461   if (!C)
4462     return nullptr;
4463 
4464   // Compute the constant that would happen if we truncated to SrcTy then
4465   // re-extended to DestTy.
4466   Type *SrcTy = CastOp0->getSrcTy();
4467   Type *DestTy = CastOp0->getDestTy();
4468   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4469   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4470 
4471   // If the re-extended constant didn't change...
4472   if (Res2 == C) {
4473     if (ICmp.isEquality())
4474       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4475 
4476     // A signed comparison of sign extended values simplifies into a
4477     // signed comparison.
4478     if (IsSignedExt && IsSignedCmp)
4479       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4480 
4481     // The other three cases all fold into an unsigned comparison.
4482     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4483   }
4484 
4485   // The re-extended constant changed, partly changed (in the case of a vector),
4486   // or could not be determined to be equal (in the case of a constant
4487   // expression), so the constant cannot be represented in the shorter type.
4488   // All the cases that fold to true or false will have already been handled
4489   // by SimplifyICmpInst, so only deal with the tricky case.
4490   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4491     return nullptr;
4492 
4493   // Is source op positive?
4494   // icmp ult (sext X), C --> icmp sgt X, -1
4495   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4496     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4497 
4498   // Is source op negative?
4499   // icmp ugt (sext X), C --> icmp slt X, 0
4500   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4501   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4502 }
4503 
4504 /// Handle icmp (cast x), (cast or constant).
foldICmpWithCastOp(ICmpInst & ICmp)4505 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4506   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4507   if (!CastOp0)
4508     return nullptr;
4509   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4510     return nullptr;
4511 
4512   Value *Op0Src = CastOp0->getOperand(0);
4513   Type *SrcTy = CastOp0->getSrcTy();
4514   Type *DestTy = CastOp0->getDestTy();
4515 
4516   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4517   // integer type is the same size as the pointer type.
4518   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4519     if (isa<VectorType>(SrcTy)) {
4520       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4521       DestTy = cast<VectorType>(DestTy)->getElementType();
4522     }
4523     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4524   };
4525   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4526       CompatibleSizes(SrcTy, DestTy)) {
4527     Value *NewOp1 = nullptr;
4528     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4529       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4530       if (PtrSrc->getType()->getPointerAddressSpace() ==
4531           Op0Src->getType()->getPointerAddressSpace()) {
4532         NewOp1 = PtrToIntOp1->getOperand(0);
4533         // If the pointer types don't match, insert a bitcast.
4534         if (Op0Src->getType() != NewOp1->getType())
4535           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4536       }
4537     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4538       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4539     }
4540 
4541     if (NewOp1)
4542       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4543   }
4544 
4545   return foldICmpWithZextOrSext(ICmp, Builder);
4546 }
4547 
isNeutralValue(Instruction::BinaryOps BinaryOp,Value * RHS)4548 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4549   switch (BinaryOp) {
4550     default:
4551       llvm_unreachable("Unsupported binary op");
4552     case Instruction::Add:
4553     case Instruction::Sub:
4554       return match(RHS, m_Zero());
4555     case Instruction::Mul:
4556       return match(RHS, m_One());
4557   }
4558 }
4559 
4560 OverflowResult
computeOverflow(Instruction::BinaryOps BinaryOp,bool IsSigned,Value * LHS,Value * RHS,Instruction * CxtI) const4561 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4562                                   bool IsSigned, Value *LHS, Value *RHS,
4563                                   Instruction *CxtI) const {
4564   switch (BinaryOp) {
4565     default:
4566       llvm_unreachable("Unsupported binary op");
4567     case Instruction::Add:
4568       if (IsSigned)
4569         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4570       else
4571         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4572     case Instruction::Sub:
4573       if (IsSigned)
4574         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4575       else
4576         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4577     case Instruction::Mul:
4578       if (IsSigned)
4579         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4580       else
4581         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4582   }
4583 }
4584 
OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,bool IsSigned,Value * LHS,Value * RHS,Instruction & OrigI,Value * & Result,Constant * & Overflow)4585 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4586                                              bool IsSigned, Value *LHS,
4587                                              Value *RHS, Instruction &OrigI,
4588                                              Value *&Result,
4589                                              Constant *&Overflow) {
4590   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4591     std::swap(LHS, RHS);
4592 
4593   // If the overflow check was an add followed by a compare, the insertion point
4594   // may be pointing to the compare.  We want to insert the new instructions
4595   // before the add in case there are uses of the add between the add and the
4596   // compare.
4597   Builder.SetInsertPoint(&OrigI);
4598 
4599   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4600   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4601     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4602 
4603   if (isNeutralValue(BinaryOp, RHS)) {
4604     Result = LHS;
4605     Overflow = ConstantInt::getFalse(OverflowTy);
4606     return true;
4607   }
4608 
4609   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4610     case OverflowResult::MayOverflow:
4611       return false;
4612     case OverflowResult::AlwaysOverflowsLow:
4613     case OverflowResult::AlwaysOverflowsHigh:
4614       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4615       Result->takeName(&OrigI);
4616       Overflow = ConstantInt::getTrue(OverflowTy);
4617       return true;
4618     case OverflowResult::NeverOverflows:
4619       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4620       Result->takeName(&OrigI);
4621       Overflow = ConstantInt::getFalse(OverflowTy);
4622       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4623         if (IsSigned)
4624           Inst->setHasNoSignedWrap();
4625         else
4626           Inst->setHasNoUnsignedWrap();
4627       }
4628       return true;
4629   }
4630 
4631   llvm_unreachable("Unexpected overflow result");
4632 }
4633 
4634 /// Recognize and process idiom involving test for multiplication
4635 /// overflow.
4636 ///
4637 /// The caller has matched a pattern of the form:
4638 ///   I = cmp u (mul(zext A, zext B), V
4639 /// The function checks if this is a test for overflow and if so replaces
4640 /// multiplication with call to 'mul.with.overflow' intrinsic.
4641 ///
4642 /// \param I Compare instruction.
4643 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4644 ///               the compare instruction.  Must be of integer type.
4645 /// \param OtherVal The other argument of compare instruction.
4646 /// \returns Instruction which must replace the compare instruction, NULL if no
4647 ///          replacement required.
processUMulZExtIdiom(ICmpInst & I,Value * MulVal,Value * OtherVal,InstCombinerImpl & IC)4648 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4649                                          Value *OtherVal,
4650                                          InstCombinerImpl &IC) {
4651   // Don't bother doing this transformation for pointers, don't do it for
4652   // vectors.
4653   if (!isa<IntegerType>(MulVal->getType()))
4654     return nullptr;
4655 
4656   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4657   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4658   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4659   if (!MulInstr)
4660     return nullptr;
4661   assert(MulInstr->getOpcode() == Instruction::Mul);
4662 
4663   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4664        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4665   assert(LHS->getOpcode() == Instruction::ZExt);
4666   assert(RHS->getOpcode() == Instruction::ZExt);
4667   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4668 
4669   // Calculate type and width of the result produced by mul.with.overflow.
4670   Type *TyA = A->getType(), *TyB = B->getType();
4671   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4672            WidthB = TyB->getPrimitiveSizeInBits();
4673   unsigned MulWidth;
4674   Type *MulType;
4675   if (WidthB > WidthA) {
4676     MulWidth = WidthB;
4677     MulType = TyB;
4678   } else {
4679     MulWidth = WidthA;
4680     MulType = TyA;
4681   }
4682 
4683   // In order to replace the original mul with a narrower mul.with.overflow,
4684   // all uses must ignore upper bits of the product.  The number of used low
4685   // bits must be not greater than the width of mul.with.overflow.
4686   if (MulVal->hasNUsesOrMore(2))
4687     for (User *U : MulVal->users()) {
4688       if (U == &I)
4689         continue;
4690       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4691         // Check if truncation ignores bits above MulWidth.
4692         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4693         if (TruncWidth > MulWidth)
4694           return nullptr;
4695       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4696         // Check if AND ignores bits above MulWidth.
4697         if (BO->getOpcode() != Instruction::And)
4698           return nullptr;
4699         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4700           const APInt &CVal = CI->getValue();
4701           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4702             return nullptr;
4703         } else {
4704           // In this case we could have the operand of the binary operation
4705           // being defined in another block, and performing the replacement
4706           // could break the dominance relation.
4707           return nullptr;
4708         }
4709       } else {
4710         // Other uses prohibit this transformation.
4711         return nullptr;
4712       }
4713     }
4714 
4715   // Recognize patterns
4716   switch (I.getPredicate()) {
4717   case ICmpInst::ICMP_EQ:
4718   case ICmpInst::ICMP_NE:
4719     // Recognize pattern:
4720     //   mulval = mul(zext A, zext B)
4721     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4722     ConstantInt *CI;
4723     Value *ValToMask;
4724     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4725       if (ValToMask != MulVal)
4726         return nullptr;
4727       const APInt &CVal = CI->getValue() + 1;
4728       if (CVal.isPowerOf2()) {
4729         unsigned MaskWidth = CVal.logBase2();
4730         if (MaskWidth == MulWidth)
4731           break; // Recognized
4732       }
4733     }
4734     return nullptr;
4735 
4736   case ICmpInst::ICMP_UGT:
4737     // Recognize pattern:
4738     //   mulval = mul(zext A, zext B)
4739     //   cmp ugt mulval, max
4740     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4741       APInt MaxVal = APInt::getMaxValue(MulWidth);
4742       MaxVal = MaxVal.zext(CI->getBitWidth());
4743       if (MaxVal.eq(CI->getValue()))
4744         break; // Recognized
4745     }
4746     return nullptr;
4747 
4748   case ICmpInst::ICMP_UGE:
4749     // Recognize pattern:
4750     //   mulval = mul(zext A, zext B)
4751     //   cmp uge mulval, max+1
4752     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4753       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4754       if (MaxVal.eq(CI->getValue()))
4755         break; // Recognized
4756     }
4757     return nullptr;
4758 
4759   case ICmpInst::ICMP_ULE:
4760     // Recognize pattern:
4761     //   mulval = mul(zext A, zext B)
4762     //   cmp ule mulval, max
4763     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4764       APInt MaxVal = APInt::getMaxValue(MulWidth);
4765       MaxVal = MaxVal.zext(CI->getBitWidth());
4766       if (MaxVal.eq(CI->getValue()))
4767         break; // Recognized
4768     }
4769     return nullptr;
4770 
4771   case ICmpInst::ICMP_ULT:
4772     // Recognize pattern:
4773     //   mulval = mul(zext A, zext B)
4774     //   cmp ule mulval, max + 1
4775     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4776       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4777       if (MaxVal.eq(CI->getValue()))
4778         break; // Recognized
4779     }
4780     return nullptr;
4781 
4782   default:
4783     return nullptr;
4784   }
4785 
4786   InstCombiner::BuilderTy &Builder = IC.Builder;
4787   Builder.SetInsertPoint(MulInstr);
4788 
4789   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4790   Value *MulA = A, *MulB = B;
4791   if (WidthA < MulWidth)
4792     MulA = Builder.CreateZExt(A, MulType);
4793   if (WidthB < MulWidth)
4794     MulB = Builder.CreateZExt(B, MulType);
4795   Function *F = Intrinsic::getDeclaration(
4796       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4797   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4798   IC.addToWorklist(MulInstr);
4799 
4800   // If there are uses of mul result other than the comparison, we know that
4801   // they are truncation or binary AND. Change them to use result of
4802   // mul.with.overflow and adjust properly mask/size.
4803   if (MulVal->hasNUsesOrMore(2)) {
4804     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4805     for (User *U : make_early_inc_range(MulVal->users())) {
4806       if (U == &I || U == OtherVal)
4807         continue;
4808       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4809         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4810           IC.replaceInstUsesWith(*TI, Mul);
4811         else
4812           TI->setOperand(0, Mul);
4813       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4814         assert(BO->getOpcode() == Instruction::And);
4815         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4816         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4817         APInt ShortMask = CI->getValue().trunc(MulWidth);
4818         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4819         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4820         IC.replaceInstUsesWith(*BO, Zext);
4821       } else {
4822         llvm_unreachable("Unexpected Binary operation");
4823       }
4824       IC.addToWorklist(cast<Instruction>(U));
4825     }
4826   }
4827   if (isa<Instruction>(OtherVal))
4828     IC.addToWorklist(cast<Instruction>(OtherVal));
4829 
4830   // The original icmp gets replaced with the overflow value, maybe inverted
4831   // depending on predicate.
4832   bool Inverse = false;
4833   switch (I.getPredicate()) {
4834   case ICmpInst::ICMP_NE:
4835     break;
4836   case ICmpInst::ICMP_EQ:
4837     Inverse = true;
4838     break;
4839   case ICmpInst::ICMP_UGT:
4840   case ICmpInst::ICMP_UGE:
4841     if (I.getOperand(0) == MulVal)
4842       break;
4843     Inverse = true;
4844     break;
4845   case ICmpInst::ICMP_ULT:
4846   case ICmpInst::ICMP_ULE:
4847     if (I.getOperand(1) == MulVal)
4848       break;
4849     Inverse = true;
4850     break;
4851   default:
4852     llvm_unreachable("Unexpected predicate");
4853   }
4854   if (Inverse) {
4855     Value *Res = Builder.CreateExtractValue(Call, 1);
4856     return BinaryOperator::CreateNot(Res);
4857   }
4858 
4859   return ExtractValueInst::Create(Call, 1);
4860 }
4861 
4862 /// When performing a comparison against a constant, it is possible that not all
4863 /// the bits in the LHS are demanded. This helper method computes the mask that
4864 /// IS demanded.
getDemandedBitsLHSMask(ICmpInst & I,unsigned BitWidth)4865 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4866   const APInt *RHS;
4867   if (!match(I.getOperand(1), m_APInt(RHS)))
4868     return APInt::getAllOnesValue(BitWidth);
4869 
4870   // If this is a normal comparison, it demands all bits. If it is a sign bit
4871   // comparison, it only demands the sign bit.
4872   bool UnusedBit;
4873   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4874     return APInt::getSignMask(BitWidth);
4875 
4876   switch (I.getPredicate()) {
4877   // For a UGT comparison, we don't care about any bits that
4878   // correspond to the trailing ones of the comparand.  The value of these
4879   // bits doesn't impact the outcome of the comparison, because any value
4880   // greater than the RHS must differ in a bit higher than these due to carry.
4881   case ICmpInst::ICMP_UGT:
4882     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4883 
4884   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4885   // Any value less than the RHS must differ in a higher bit because of carries.
4886   case ICmpInst::ICMP_ULT:
4887     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4888 
4889   default:
4890     return APInt::getAllOnesValue(BitWidth);
4891   }
4892 }
4893 
4894 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4895 /// should be swapped.
4896 /// The decision is based on how many times these two operands are reused
4897 /// as subtract operands and their positions in those instructions.
4898 /// The rationale is that several architectures use the same instruction for
4899 /// both subtract and cmp. Thus, it is better if the order of those operands
4900 /// match.
4901 /// \return true if Op0 and Op1 should be swapped.
swapMayExposeCSEOpportunities(const Value * Op0,const Value * Op1)4902 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4903   // Filter out pointer values as those cannot appear directly in subtract.
4904   // FIXME: we may want to go through inttoptrs or bitcasts.
4905   if (Op0->getType()->isPointerTy())
4906     return false;
4907   // If a subtract already has the same operands as a compare, swapping would be
4908   // bad. If a subtract has the same operands as a compare but in reverse order,
4909   // then swapping is good.
4910   int GoodToSwap = 0;
4911   for (const User *U : Op0->users()) {
4912     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4913       GoodToSwap++;
4914     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4915       GoodToSwap--;
4916   }
4917   return GoodToSwap > 0;
4918 }
4919 
4920 /// Check that one use is in the same block as the definition and all
4921 /// other uses are in blocks dominated by a given block.
4922 ///
4923 /// \param DI Definition
4924 /// \param UI Use
4925 /// \param DB Block that must dominate all uses of \p DI outside
4926 ///           the parent block
4927 /// \return true when \p UI is the only use of \p DI in the parent block
4928 /// and all other uses of \p DI are in blocks dominated by \p DB.
4929 ///
dominatesAllUses(const Instruction * DI,const Instruction * UI,const BasicBlock * DB) const4930 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
4931                                         const Instruction *UI,
4932                                         const BasicBlock *DB) const {
4933   assert(DI && UI && "Instruction not defined\n");
4934   // Ignore incomplete definitions.
4935   if (!DI->getParent())
4936     return false;
4937   // DI and UI must be in the same block.
4938   if (DI->getParent() != UI->getParent())
4939     return false;
4940   // Protect from self-referencing blocks.
4941   if (DI->getParent() == DB)
4942     return false;
4943   for (const User *U : DI->users()) {
4944     auto *Usr = cast<Instruction>(U);
4945     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4946       return false;
4947   }
4948   return true;
4949 }
4950 
4951 /// Return true when the instruction sequence within a block is select-cmp-br.
isChainSelectCmpBranch(const SelectInst * SI)4952 static bool isChainSelectCmpBranch(const SelectInst *SI) {
4953   const BasicBlock *BB = SI->getParent();
4954   if (!BB)
4955     return false;
4956   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4957   if (!BI || BI->getNumSuccessors() != 2)
4958     return false;
4959   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4960   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4961     return false;
4962   return true;
4963 }
4964 
4965 /// True when a select result is replaced by one of its operands
4966 /// in select-icmp sequence. This will eventually result in the elimination
4967 /// of the select.
4968 ///
4969 /// \param SI    Select instruction
4970 /// \param Icmp  Compare instruction
4971 /// \param SIOpd Operand that replaces the select
4972 ///
4973 /// Notes:
4974 /// - The replacement is global and requires dominator information
4975 /// - The caller is responsible for the actual replacement
4976 ///
4977 /// Example:
4978 ///
4979 /// entry:
4980 ///  %4 = select i1 %3, %C* %0, %C* null
4981 ///  %5 = icmp eq %C* %4, null
4982 ///  br i1 %5, label %9, label %7
4983 ///  ...
4984 ///  ; <label>:7                                       ; preds = %entry
4985 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4986 ///  ...
4987 ///
4988 /// can be transformed to
4989 ///
4990 ///  %5 = icmp eq %C* %0, null
4991 ///  %6 = select i1 %3, i1 %5, i1 true
4992 ///  br i1 %6, label %9, label %7
4993 ///  ...
4994 ///  ; <label>:7                                       ; preds = %entry
4995 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4996 ///
4997 /// Similar when the first operand of the select is a constant or/and
4998 /// the compare is for not equal rather than equal.
4999 ///
5000 /// NOTE: The function is only called when the select and compare constants
5001 /// are equal, the optimization can work only for EQ predicates. This is not a
5002 /// major restriction since a NE compare should be 'normalized' to an equal
5003 /// compare, which usually happens in the combiner and test case
5004 /// select-cmp-br.ll checks for it.
replacedSelectWithOperand(SelectInst * SI,const ICmpInst * Icmp,const unsigned SIOpd)5005 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5006                                                  const ICmpInst *Icmp,
5007                                                  const unsigned SIOpd) {
5008   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5009   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5010     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5011     // The check for the single predecessor is not the best that can be
5012     // done. But it protects efficiently against cases like when SI's
5013     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5014     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5015     // replaced can be reached on either path. So the uniqueness check
5016     // guarantees that the path all uses of SI (outside SI's parent) are on
5017     // is disjoint from all other paths out of SI. But that information
5018     // is more expensive to compute, and the trade-off here is in favor
5019     // of compile-time. It should also be noticed that we check for a single
5020     // predecessor and not only uniqueness. This to handle the situation when
5021     // Succ and Succ1 points to the same basic block.
5022     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5023       NumSel++;
5024       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5025       return true;
5026     }
5027   }
5028   return false;
5029 }
5030 
5031 /// Try to fold the comparison based on range information we can get by checking
5032 /// whether bits are known to be zero or one in the inputs.
foldICmpUsingKnownBits(ICmpInst & I)5033 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5034   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5035   Type *Ty = Op0->getType();
5036   ICmpInst::Predicate Pred = I.getPredicate();
5037 
5038   // Get scalar or pointer size.
5039   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5040                           ? Ty->getScalarSizeInBits()
5041                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5042 
5043   if (!BitWidth)
5044     return nullptr;
5045 
5046   KnownBits Op0Known(BitWidth);
5047   KnownBits Op1Known(BitWidth);
5048 
5049   if (SimplifyDemandedBits(&I, 0,
5050                            getDemandedBitsLHSMask(I, BitWidth),
5051                            Op0Known, 0))
5052     return &I;
5053 
5054   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5055                            Op1Known, 0))
5056     return &I;
5057 
5058   // Given the known and unknown bits, compute a range that the LHS could be
5059   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5060   // EQ and NE we use unsigned values.
5061   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5062   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5063   if (I.isSigned()) {
5064     Op0Min = Op0Known.getSignedMinValue();
5065     Op0Max = Op0Known.getSignedMaxValue();
5066     Op1Min = Op1Known.getSignedMinValue();
5067     Op1Max = Op1Known.getSignedMaxValue();
5068   } else {
5069     Op0Min = Op0Known.getMinValue();
5070     Op0Max = Op0Known.getMaxValue();
5071     Op1Min = Op1Known.getMinValue();
5072     Op1Max = Op1Known.getMaxValue();
5073   }
5074 
5075   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5076   // out that the LHS or RHS is a constant. Constant fold this now, so that
5077   // code below can assume that Min != Max.
5078   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5079     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5080   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5081     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5082 
5083   // Based on the range information we know about the LHS, see if we can
5084   // simplify this comparison.  For example, (x&4) < 8 is always true.
5085   switch (Pred) {
5086   default:
5087     llvm_unreachable("Unknown icmp opcode!");
5088   case ICmpInst::ICMP_EQ:
5089   case ICmpInst::ICMP_NE: {
5090     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5091       return replaceInstUsesWith(
5092           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5093 
5094     // If all bits are known zero except for one, then we know at most one bit
5095     // is set. If the comparison is against zero, then this is a check to see if
5096     // *that* bit is set.
5097     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5098     if (Op1Known.isZero()) {
5099       // If the LHS is an AND with the same constant, look through it.
5100       Value *LHS = nullptr;
5101       const APInt *LHSC;
5102       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5103           *LHSC != Op0KnownZeroInverted)
5104         LHS = Op0;
5105 
5106       Value *X;
5107       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5108         APInt ValToCheck = Op0KnownZeroInverted;
5109         Type *XTy = X->getType();
5110         if (ValToCheck.isPowerOf2()) {
5111           // ((1 << X) & 8) == 0 -> X != 3
5112           // ((1 << X) & 8) != 0 -> X == 3
5113           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5114           auto NewPred = ICmpInst::getInversePredicate(Pred);
5115           return new ICmpInst(NewPred, X, CmpC);
5116         } else if ((++ValToCheck).isPowerOf2()) {
5117           // ((1 << X) & 7) == 0 -> X >= 3
5118           // ((1 << X) & 7) != 0 -> X  < 3
5119           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5120           auto NewPred =
5121               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5122           return new ICmpInst(NewPred, X, CmpC);
5123         }
5124       }
5125 
5126       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5127       const APInt *CI;
5128       if (Op0KnownZeroInverted.isOneValue() &&
5129           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5130         // ((8 >>u X) & 1) == 0 -> X != 3
5131         // ((8 >>u X) & 1) != 0 -> X == 3
5132         unsigned CmpVal = CI->countTrailingZeros();
5133         auto NewPred = ICmpInst::getInversePredicate(Pred);
5134         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5135       }
5136     }
5137     break;
5138   }
5139   case ICmpInst::ICMP_ULT: {
5140     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5141       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5142     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5143       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5144     if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5145       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5146 
5147     const APInt *CmpC;
5148     if (match(Op1, m_APInt(CmpC))) {
5149       // A <u C -> A == C-1 if min(A)+1 == C
5150       if (*CmpC == Op0Min + 1)
5151         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5152                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5153       // X <u C --> X == 0, if the number of zero bits in the bottom of X
5154       // exceeds the log2 of C.
5155       if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5156         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5157                             Constant::getNullValue(Op1->getType()));
5158     }
5159     break;
5160   }
5161   case ICmpInst::ICMP_UGT: {
5162     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5163       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5164     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5165       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5166     if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5167       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5168 
5169     const APInt *CmpC;
5170     if (match(Op1, m_APInt(CmpC))) {
5171       // A >u C -> A == C+1 if max(a)-1 == C
5172       if (*CmpC == Op0Max - 1)
5173         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5174                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5175       // X >u C --> X != 0, if the number of zero bits in the bottom of X
5176       // exceeds the log2 of C.
5177       if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5178         return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5179                             Constant::getNullValue(Op1->getType()));
5180     }
5181     break;
5182   }
5183   case ICmpInst::ICMP_SLT: {
5184     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5185       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5186     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5187       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5188     if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5189       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5190     const APInt *CmpC;
5191     if (match(Op1, m_APInt(CmpC))) {
5192       if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5193         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5194                             ConstantInt::get(Op1->getType(), *CmpC - 1));
5195     }
5196     break;
5197   }
5198   case ICmpInst::ICMP_SGT: {
5199     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5200       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5201     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5202       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5203     if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5204       return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5205     const APInt *CmpC;
5206     if (match(Op1, m_APInt(CmpC))) {
5207       if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5208         return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5209                             ConstantInt::get(Op1->getType(), *CmpC + 1));
5210     }
5211     break;
5212   }
5213   case ICmpInst::ICMP_SGE:
5214     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5215     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5216       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5217     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5218       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5219     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5220       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5221     break;
5222   case ICmpInst::ICMP_SLE:
5223     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5224     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5225       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5226     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5227       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5228     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5229       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5230     break;
5231   case ICmpInst::ICMP_UGE:
5232     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5233     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5234       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5235     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5236       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5237     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5238       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5239     break;
5240   case ICmpInst::ICMP_ULE:
5241     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5242     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5243       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5244     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5245       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5246     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5247       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5248     break;
5249   }
5250 
5251   // Turn a signed comparison into an unsigned one if both operands are known to
5252   // have the same sign.
5253   if (I.isSigned() &&
5254       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5255        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5256     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5257 
5258   return nullptr;
5259 }
5260 
5261 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,Constant * C)5262 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5263                                                        Constant *C) {
5264   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5265          "Only for relational integer predicates.");
5266 
5267   Type *Type = C->getType();
5268   bool IsSigned = ICmpInst::isSigned(Pred);
5269 
5270   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5271   bool WillIncrement =
5272       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5273 
5274   // Check if the constant operand can be safely incremented/decremented
5275   // without overflowing/underflowing.
5276   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5277     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5278   };
5279 
5280   Constant *SafeReplacementConstant = nullptr;
5281   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5282     // Bail out if the constant can't be safely incremented/decremented.
5283     if (!ConstantIsOk(CI))
5284       return llvm::None;
5285   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5286     unsigned NumElts = FVTy->getNumElements();
5287     for (unsigned i = 0; i != NumElts; ++i) {
5288       Constant *Elt = C->getAggregateElement(i);
5289       if (!Elt)
5290         return llvm::None;
5291 
5292       if (isa<UndefValue>(Elt))
5293         continue;
5294 
5295       // Bail out if we can't determine if this constant is min/max or if we
5296       // know that this constant is min/max.
5297       auto *CI = dyn_cast<ConstantInt>(Elt);
5298       if (!CI || !ConstantIsOk(CI))
5299         return llvm::None;
5300 
5301       if (!SafeReplacementConstant)
5302         SafeReplacementConstant = CI;
5303     }
5304   } else {
5305     // ConstantExpr?
5306     return llvm::None;
5307   }
5308 
5309   // It may not be safe to change a compare predicate in the presence of
5310   // undefined elements, so replace those elements with the first safe constant
5311   // that we found.
5312   // TODO: in case of poison, it is safe; let's replace undefs only.
5313   if (C->containsUndefOrPoisonElement()) {
5314     assert(SafeReplacementConstant && "Replacement constant not set");
5315     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5316   }
5317 
5318   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5319 
5320   // Increment or decrement the constant.
5321   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5322   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5323 
5324   return std::make_pair(NewPred, NewC);
5325 }
5326 
5327 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5328 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5329 /// allows them to be folded in visitICmpInst.
canonicalizeCmpWithConstant(ICmpInst & I)5330 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5331   ICmpInst::Predicate Pred = I.getPredicate();
5332   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5333       InstCombiner::isCanonicalPredicate(Pred))
5334     return nullptr;
5335 
5336   Value *Op0 = I.getOperand(0);
5337   Value *Op1 = I.getOperand(1);
5338   auto *Op1C = dyn_cast<Constant>(Op1);
5339   if (!Op1C)
5340     return nullptr;
5341 
5342   auto FlippedStrictness =
5343       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5344   if (!FlippedStrictness)
5345     return nullptr;
5346 
5347   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5348 }
5349 
5350 /// If we have a comparison with a non-canonical predicate, if we can update
5351 /// all the users, invert the predicate and adjust all the users.
canonicalizeICmpPredicate(CmpInst & I)5352 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5353   // Is the predicate already canonical?
5354   CmpInst::Predicate Pred = I.getPredicate();
5355   if (InstCombiner::isCanonicalPredicate(Pred))
5356     return nullptr;
5357 
5358   // Can all users be adjusted to predicate inversion?
5359   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5360     return nullptr;
5361 
5362   // Ok, we can canonicalize comparison!
5363   // Let's first invert the comparison's predicate.
5364   I.setPredicate(CmpInst::getInversePredicate(Pred));
5365   I.setName(I.getName() + ".not");
5366 
5367   // And, adapt users.
5368   freelyInvertAllUsersOf(&I);
5369 
5370   return &I;
5371 }
5372 
5373 /// Integer compare with boolean values can always be turned into bitwise ops.
canonicalizeICmpBool(ICmpInst & I,InstCombiner::BuilderTy & Builder)5374 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5375                                          InstCombiner::BuilderTy &Builder) {
5376   Value *A = I.getOperand(0), *B = I.getOperand(1);
5377   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5378 
5379   // A boolean compared to true/false can be simplified to Op0/true/false in
5380   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5381   // Cases not handled by InstSimplify are always 'not' of Op0.
5382   if (match(B, m_Zero())) {
5383     switch (I.getPredicate()) {
5384       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5385       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5386       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5387         return BinaryOperator::CreateNot(A);
5388       default:
5389         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5390     }
5391   } else if (match(B, m_One())) {
5392     switch (I.getPredicate()) {
5393       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5394       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5395       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5396         return BinaryOperator::CreateNot(A);
5397       default:
5398         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5399     }
5400   }
5401 
5402   switch (I.getPredicate()) {
5403   default:
5404     llvm_unreachable("Invalid icmp instruction!");
5405   case ICmpInst::ICMP_EQ:
5406     // icmp eq i1 A, B -> ~(A ^ B)
5407     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5408 
5409   case ICmpInst::ICMP_NE:
5410     // icmp ne i1 A, B -> A ^ B
5411     return BinaryOperator::CreateXor(A, B);
5412 
5413   case ICmpInst::ICMP_UGT:
5414     // icmp ugt -> icmp ult
5415     std::swap(A, B);
5416     LLVM_FALLTHROUGH;
5417   case ICmpInst::ICMP_ULT:
5418     // icmp ult i1 A, B -> ~A & B
5419     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5420 
5421   case ICmpInst::ICMP_SGT:
5422     // icmp sgt -> icmp slt
5423     std::swap(A, B);
5424     LLVM_FALLTHROUGH;
5425   case ICmpInst::ICMP_SLT:
5426     // icmp slt i1 A, B -> A & ~B
5427     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5428 
5429   case ICmpInst::ICMP_UGE:
5430     // icmp uge -> icmp ule
5431     std::swap(A, B);
5432     LLVM_FALLTHROUGH;
5433   case ICmpInst::ICMP_ULE:
5434     // icmp ule i1 A, B -> ~A | B
5435     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5436 
5437   case ICmpInst::ICMP_SGE:
5438     // icmp sge -> icmp sle
5439     std::swap(A, B);
5440     LLVM_FALLTHROUGH;
5441   case ICmpInst::ICMP_SLE:
5442     // icmp sle i1 A, B -> A | ~B
5443     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5444   }
5445 }
5446 
5447 // Transform pattern like:
5448 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5449 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5450 // Into:
5451 //   (X l>> Y) != 0
5452 //   (X l>> Y) == 0
foldICmpWithHighBitMask(ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)5453 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5454                                             InstCombiner::BuilderTy &Builder) {
5455   ICmpInst::Predicate Pred, NewPred;
5456   Value *X, *Y;
5457   if (match(&Cmp,
5458             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5459     switch (Pred) {
5460     case ICmpInst::ICMP_ULE:
5461       NewPred = ICmpInst::ICMP_NE;
5462       break;
5463     case ICmpInst::ICMP_UGT:
5464       NewPred = ICmpInst::ICMP_EQ;
5465       break;
5466     default:
5467       return nullptr;
5468     }
5469   } else if (match(&Cmp, m_c_ICmp(Pred,
5470                                   m_OneUse(m_CombineOr(
5471                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5472                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5473                                             m_AllOnes()))),
5474                                   m_Value(X)))) {
5475     // The variant with 'add' is not canonical, (the variant with 'not' is)
5476     // we only get it because it has extra uses, and can't be canonicalized,
5477 
5478     switch (Pred) {
5479     case ICmpInst::ICMP_ULT:
5480       NewPred = ICmpInst::ICMP_NE;
5481       break;
5482     case ICmpInst::ICMP_UGE:
5483       NewPred = ICmpInst::ICMP_EQ;
5484       break;
5485     default:
5486       return nullptr;
5487     }
5488   } else
5489     return nullptr;
5490 
5491   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5492   Constant *Zero = Constant::getNullValue(NewX->getType());
5493   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5494 }
5495 
foldVectorCmp(CmpInst & Cmp,InstCombiner::BuilderTy & Builder)5496 static Instruction *foldVectorCmp(CmpInst &Cmp,
5497                                   InstCombiner::BuilderTy &Builder) {
5498   const CmpInst::Predicate Pred = Cmp.getPredicate();
5499   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5500   Value *V1, *V2;
5501   ArrayRef<int> M;
5502   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5503     return nullptr;
5504 
5505   // If both arguments of the cmp are shuffles that use the same mask and
5506   // shuffle within a single vector, move the shuffle after the cmp:
5507   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5508   Type *V1Ty = V1->getType();
5509   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5510       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5511     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5512     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5513   }
5514 
5515   // Try to canonicalize compare with splatted operand and splat constant.
5516   // TODO: We could generalize this for more than splats. See/use the code in
5517   //       InstCombiner::foldVectorBinop().
5518   Constant *C;
5519   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5520     return nullptr;
5521 
5522   // Length-changing splats are ok, so adjust the constants as needed:
5523   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5524   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5525   int MaskSplatIndex;
5526   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5527     // We allow undefs in matching, but this transform removes those for safety.
5528     // Demanded elements analysis should be able to recover some/all of that.
5529     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5530                                  ScalarC);
5531     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5532     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5533     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5534                                  NewM);
5535   }
5536 
5537   return nullptr;
5538 }
5539 
5540 // extract(uadd.with.overflow(A, B), 0) ult A
5541 //  -> extract(uadd.with.overflow(A, B), 1)
foldICmpOfUAddOv(ICmpInst & I)5542 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5543   CmpInst::Predicate Pred = I.getPredicate();
5544   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5545 
5546   Value *UAddOv;
5547   Value *A, *B;
5548   auto UAddOvResultPat = m_ExtractValue<0>(
5549       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5550   if (match(Op0, UAddOvResultPat) &&
5551       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5552        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5553         (match(A, m_One()) || match(B, m_One()))) ||
5554        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5555         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5556     // extract(uadd.with.overflow(A, B), 0) < A
5557     // extract(uadd.with.overflow(A, 1), 0) == 0
5558     // extract(uadd.with.overflow(A, -1), 0) != -1
5559     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5560   else if (match(Op1, UAddOvResultPat) &&
5561            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5562     // A > extract(uadd.with.overflow(A, B), 0)
5563     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5564   else
5565     return nullptr;
5566 
5567   return ExtractValueInst::Create(UAddOv, 1);
5568 }
5569 
visitICmpInst(ICmpInst & I)5570 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5571   bool Changed = false;
5572   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5573   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5574   unsigned Op0Cplxity = getComplexity(Op0);
5575   unsigned Op1Cplxity = getComplexity(Op1);
5576 
5577   /// Orders the operands of the compare so that they are listed from most
5578   /// complex to least complex.  This puts constants before unary operators,
5579   /// before binary operators.
5580   if (Op0Cplxity < Op1Cplxity ||
5581       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5582     I.swapOperands();
5583     std::swap(Op0, Op1);
5584     Changed = true;
5585   }
5586 
5587   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5588     return replaceInstUsesWith(I, V);
5589 
5590   // Comparing -val or val with non-zero is the same as just comparing val
5591   // ie, abs(val) != 0 -> val != 0
5592   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5593     Value *Cond, *SelectTrue, *SelectFalse;
5594     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5595                             m_Value(SelectFalse)))) {
5596       if (Value *V = dyn_castNegVal(SelectTrue)) {
5597         if (V == SelectFalse)
5598           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5599       }
5600       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5601         if (V == SelectTrue)
5602           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5603       }
5604     }
5605   }
5606 
5607   if (Op0->getType()->isIntOrIntVectorTy(1))
5608     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5609       return Res;
5610 
5611   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5612     return Res;
5613 
5614   if (Instruction *Res = canonicalizeICmpPredicate(I))
5615     return Res;
5616 
5617   if (Instruction *Res = foldICmpWithConstant(I))
5618     return Res;
5619 
5620   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5621     return Res;
5622 
5623   if (Instruction *Res = foldICmpBinOp(I, Q))
5624     return Res;
5625 
5626   if (Instruction *Res = foldICmpUsingKnownBits(I))
5627     return Res;
5628 
5629   // Test if the ICmpInst instruction is used exclusively by a select as
5630   // part of a minimum or maximum operation. If so, refrain from doing
5631   // any other folding. This helps out other analyses which understand
5632   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5633   // and CodeGen. And in this case, at least one of the comparison
5634   // operands has at least one user besides the compare (the select),
5635   // which would often largely negate the benefit of folding anyway.
5636   //
5637   // Do the same for the other patterns recognized by matchSelectPattern.
5638   if (I.hasOneUse())
5639     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5640       Value *A, *B;
5641       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5642       if (SPR.Flavor != SPF_UNKNOWN)
5643         return nullptr;
5644     }
5645 
5646   // Do this after checking for min/max to prevent infinite looping.
5647   if (Instruction *Res = foldICmpWithZero(I))
5648     return Res;
5649 
5650   // FIXME: We only do this after checking for min/max to prevent infinite
5651   // looping caused by a reverse canonicalization of these patterns for min/max.
5652   // FIXME: The organization of folds is a mess. These would naturally go into
5653   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5654   // down here after the min/max restriction.
5655   ICmpInst::Predicate Pred = I.getPredicate();
5656   const APInt *C;
5657   if (match(Op1, m_APInt(C))) {
5658     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5659     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5660       Constant *Zero = Constant::getNullValue(Op0->getType());
5661       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5662     }
5663 
5664     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5665     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5666       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5667       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5668     }
5669   }
5670 
5671   if (Instruction *Res = foldICmpInstWithConstant(I))
5672     return Res;
5673 
5674   // Try to match comparison as a sign bit test. Intentionally do this after
5675   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5676   if (Instruction *New = foldSignBitTest(I))
5677     return New;
5678 
5679   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5680     return Res;
5681 
5682   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5683   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5684     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5685       return NI;
5686   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5687     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5688                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5689       return NI;
5690 
5691   // Try to optimize equality comparisons against alloca-based pointers.
5692   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5693     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5694     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5695       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5696         return New;
5697     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5698       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5699         return New;
5700   }
5701 
5702   if (Instruction *Res = foldICmpBitCast(I, Builder))
5703     return Res;
5704 
5705   // TODO: Hoist this above the min/max bailout.
5706   if (Instruction *R = foldICmpWithCastOp(I))
5707     return R;
5708 
5709   if (Instruction *Res = foldICmpWithMinMax(I))
5710     return Res;
5711 
5712   {
5713     Value *A, *B;
5714     // Transform (A & ~B) == 0 --> (A & B) != 0
5715     // and       (A & ~B) != 0 --> (A & B) == 0
5716     // if A is a power of 2.
5717     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5718         match(Op1, m_Zero()) &&
5719         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5720       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5721                           Op1);
5722 
5723     // ~X < ~Y --> Y < X
5724     // ~X < C -->  X > ~C
5725     if (match(Op0, m_Not(m_Value(A)))) {
5726       if (match(Op1, m_Not(m_Value(B))))
5727         return new ICmpInst(I.getPredicate(), B, A);
5728 
5729       const APInt *C;
5730       if (match(Op1, m_APInt(C)))
5731         return new ICmpInst(I.getSwappedPredicate(), A,
5732                             ConstantInt::get(Op1->getType(), ~(*C)));
5733     }
5734 
5735     Instruction *AddI = nullptr;
5736     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5737                                      m_Instruction(AddI))) &&
5738         isa<IntegerType>(A->getType())) {
5739       Value *Result;
5740       Constant *Overflow;
5741       // m_UAddWithOverflow can match patterns that do not include  an explicit
5742       // "add" instruction, so check the opcode of the matched op.
5743       if (AddI->getOpcode() == Instruction::Add &&
5744           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5745                                 Result, Overflow)) {
5746         replaceInstUsesWith(*AddI, Result);
5747         eraseInstFromFunction(*AddI);
5748         return replaceInstUsesWith(I, Overflow);
5749       }
5750     }
5751 
5752     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5753     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5754       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5755         return R;
5756     }
5757     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5758       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5759         return R;
5760     }
5761   }
5762 
5763   if (Instruction *Res = foldICmpEquality(I))
5764     return Res;
5765 
5766   if (Instruction *Res = foldICmpOfUAddOv(I))
5767     return Res;
5768 
5769   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5770   // an i1 which indicates whether or not we successfully did the swap.
5771   //
5772   // Replace comparisons between the old value and the expected value with the
5773   // indicator that 'cmpxchg' returns.
5774   //
5775   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5776   // spuriously fail.  In those cases, the old value may equal the expected
5777   // value but it is possible for the swap to not occur.
5778   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5779     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5780       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5781         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5782             !ACXI->isWeak())
5783           return ExtractValueInst::Create(ACXI, 1);
5784 
5785   {
5786     Value *X;
5787     const APInt *C;
5788     // icmp X+Cst, X
5789     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5790       return foldICmpAddOpConst(X, *C, I.getPredicate());
5791 
5792     // icmp X, X+Cst
5793     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5794       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5795   }
5796 
5797   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5798     return Res;
5799 
5800   if (I.getType()->isVectorTy())
5801     if (Instruction *Res = foldVectorCmp(I, Builder))
5802       return Res;
5803 
5804   return Changed ? &I : nullptr;
5805 }
5806 
5807 /// Fold fcmp ([us]itofp x, cst) if possible.
foldFCmpIntToFPConst(FCmpInst & I,Instruction * LHSI,Constant * RHSC)5808 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5809                                                     Instruction *LHSI,
5810                                                     Constant *RHSC) {
5811   if (!isa<ConstantFP>(RHSC)) return nullptr;
5812   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5813 
5814   // Get the width of the mantissa.  We don't want to hack on conversions that
5815   // might lose information from the integer, e.g. "i64 -> float"
5816   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5817   if (MantissaWidth == -1) return nullptr;  // Unknown.
5818 
5819   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5820 
5821   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5822 
5823   if (I.isEquality()) {
5824     FCmpInst::Predicate P = I.getPredicate();
5825     bool IsExact = false;
5826     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5827     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5828 
5829     // If the floating point constant isn't an integer value, we know if we will
5830     // ever compare equal / not equal to it.
5831     if (!IsExact) {
5832       // TODO: Can never be -0.0 and other non-representable values
5833       APFloat RHSRoundInt(RHS);
5834       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5835       if (RHS != RHSRoundInt) {
5836         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5837           return replaceInstUsesWith(I, Builder.getFalse());
5838 
5839         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5840         return replaceInstUsesWith(I, Builder.getTrue());
5841       }
5842     }
5843 
5844     // TODO: If the constant is exactly representable, is it always OK to do
5845     // equality compares as integer?
5846   }
5847 
5848   // Check to see that the input is converted from an integer type that is small
5849   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5850   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5851   unsigned InputSize = IntTy->getScalarSizeInBits();
5852 
5853   // Following test does NOT adjust InputSize downwards for signed inputs,
5854   // because the most negative value still requires all the mantissa bits
5855   // to distinguish it from one less than that value.
5856   if ((int)InputSize > MantissaWidth) {
5857     // Conversion would lose accuracy. Check if loss can impact comparison.
5858     int Exp = ilogb(RHS);
5859     if (Exp == APFloat::IEK_Inf) {
5860       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5861       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5862         // Conversion could create infinity.
5863         return nullptr;
5864     } else {
5865       // Note that if RHS is zero or NaN, then Exp is negative
5866       // and first condition is trivially false.
5867       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5868         // Conversion could affect comparison.
5869         return nullptr;
5870     }
5871   }
5872 
5873   // Otherwise, we can potentially simplify the comparison.  We know that it
5874   // will always come through as an integer value and we know the constant is
5875   // not a NAN (it would have been previously simplified).
5876   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5877 
5878   ICmpInst::Predicate Pred;
5879   switch (I.getPredicate()) {
5880   default: llvm_unreachable("Unexpected predicate!");
5881   case FCmpInst::FCMP_UEQ:
5882   case FCmpInst::FCMP_OEQ:
5883     Pred = ICmpInst::ICMP_EQ;
5884     break;
5885   case FCmpInst::FCMP_UGT:
5886   case FCmpInst::FCMP_OGT:
5887     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5888     break;
5889   case FCmpInst::FCMP_UGE:
5890   case FCmpInst::FCMP_OGE:
5891     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5892     break;
5893   case FCmpInst::FCMP_ULT:
5894   case FCmpInst::FCMP_OLT:
5895     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5896     break;
5897   case FCmpInst::FCMP_ULE:
5898   case FCmpInst::FCMP_OLE:
5899     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5900     break;
5901   case FCmpInst::FCMP_UNE:
5902   case FCmpInst::FCMP_ONE:
5903     Pred = ICmpInst::ICMP_NE;
5904     break;
5905   case FCmpInst::FCMP_ORD:
5906     return replaceInstUsesWith(I, Builder.getTrue());
5907   case FCmpInst::FCMP_UNO:
5908     return replaceInstUsesWith(I, Builder.getFalse());
5909   }
5910 
5911   // Now we know that the APFloat is a normal number, zero or inf.
5912 
5913   // See if the FP constant is too large for the integer.  For example,
5914   // comparing an i8 to 300.0.
5915   unsigned IntWidth = IntTy->getScalarSizeInBits();
5916 
5917   if (!LHSUnsigned) {
5918     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5919     // and large values.
5920     APFloat SMax(RHS.getSemantics());
5921     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5922                           APFloat::rmNearestTiesToEven);
5923     if (SMax < RHS) { // smax < 13123.0
5924       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5925           Pred == ICmpInst::ICMP_SLE)
5926         return replaceInstUsesWith(I, Builder.getTrue());
5927       return replaceInstUsesWith(I, Builder.getFalse());
5928     }
5929   } else {
5930     // If the RHS value is > UnsignedMax, fold the comparison. This handles
5931     // +INF and large values.
5932     APFloat UMax(RHS.getSemantics());
5933     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5934                           APFloat::rmNearestTiesToEven);
5935     if (UMax < RHS) { // umax < 13123.0
5936       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5937           Pred == ICmpInst::ICMP_ULE)
5938         return replaceInstUsesWith(I, Builder.getTrue());
5939       return replaceInstUsesWith(I, Builder.getFalse());
5940     }
5941   }
5942 
5943   if (!LHSUnsigned) {
5944     // See if the RHS value is < SignedMin.
5945     APFloat SMin(RHS.getSemantics());
5946     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5947                           APFloat::rmNearestTiesToEven);
5948     if (SMin > RHS) { // smin > 12312.0
5949       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5950           Pred == ICmpInst::ICMP_SGE)
5951         return replaceInstUsesWith(I, Builder.getTrue());
5952       return replaceInstUsesWith(I, Builder.getFalse());
5953     }
5954   } else {
5955     // See if the RHS value is < UnsignedMin.
5956     APFloat UMin(RHS.getSemantics());
5957     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5958                           APFloat::rmNearestTiesToEven);
5959     if (UMin > RHS) { // umin > 12312.0
5960       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5961           Pred == ICmpInst::ICMP_UGE)
5962         return replaceInstUsesWith(I, Builder.getTrue());
5963       return replaceInstUsesWith(I, Builder.getFalse());
5964     }
5965   }
5966 
5967   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5968   // [0, UMAX], but it may still be fractional.  See if it is fractional by
5969   // casting the FP value to the integer value and back, checking for equality.
5970   // Don't do this for zero, because -0.0 is not fractional.
5971   Constant *RHSInt = LHSUnsigned
5972     ? ConstantExpr::getFPToUI(RHSC, IntTy)
5973     : ConstantExpr::getFPToSI(RHSC, IntTy);
5974   if (!RHS.isZero()) {
5975     bool Equal = LHSUnsigned
5976       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5977       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5978     if (!Equal) {
5979       // If we had a comparison against a fractional value, we have to adjust
5980       // the compare predicate and sometimes the value.  RHSC is rounded towards
5981       // zero at this point.
5982       switch (Pred) {
5983       default: llvm_unreachable("Unexpected integer comparison!");
5984       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5985         return replaceInstUsesWith(I, Builder.getTrue());
5986       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5987         return replaceInstUsesWith(I, Builder.getFalse());
5988       case ICmpInst::ICMP_ULE:
5989         // (float)int <= 4.4   --> int <= 4
5990         // (float)int <= -4.4  --> false
5991         if (RHS.isNegative())
5992           return replaceInstUsesWith(I, Builder.getFalse());
5993         break;
5994       case ICmpInst::ICMP_SLE:
5995         // (float)int <= 4.4   --> int <= 4
5996         // (float)int <= -4.4  --> int < -4
5997         if (RHS.isNegative())
5998           Pred = ICmpInst::ICMP_SLT;
5999         break;
6000       case ICmpInst::ICMP_ULT:
6001         // (float)int < -4.4   --> false
6002         // (float)int < 4.4    --> int <= 4
6003         if (RHS.isNegative())
6004           return replaceInstUsesWith(I, Builder.getFalse());
6005         Pred = ICmpInst::ICMP_ULE;
6006         break;
6007       case ICmpInst::ICMP_SLT:
6008         // (float)int < -4.4   --> int < -4
6009         // (float)int < 4.4    --> int <= 4
6010         if (!RHS.isNegative())
6011           Pred = ICmpInst::ICMP_SLE;
6012         break;
6013       case ICmpInst::ICMP_UGT:
6014         // (float)int > 4.4    --> int > 4
6015         // (float)int > -4.4   --> true
6016         if (RHS.isNegative())
6017           return replaceInstUsesWith(I, Builder.getTrue());
6018         break;
6019       case ICmpInst::ICMP_SGT:
6020         // (float)int > 4.4    --> int > 4
6021         // (float)int > -4.4   --> int >= -4
6022         if (RHS.isNegative())
6023           Pred = ICmpInst::ICMP_SGE;
6024         break;
6025       case ICmpInst::ICMP_UGE:
6026         // (float)int >= -4.4   --> true
6027         // (float)int >= 4.4    --> int > 4
6028         if (RHS.isNegative())
6029           return replaceInstUsesWith(I, Builder.getTrue());
6030         Pred = ICmpInst::ICMP_UGT;
6031         break;
6032       case ICmpInst::ICMP_SGE:
6033         // (float)int >= -4.4   --> int >= -4
6034         // (float)int >= 4.4    --> int > 4
6035         if (!RHS.isNegative())
6036           Pred = ICmpInst::ICMP_SGT;
6037         break;
6038       }
6039     }
6040   }
6041 
6042   // Lower this FP comparison into an appropriate integer version of the
6043   // comparison.
6044   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6045 }
6046 
6047 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
foldFCmpReciprocalAndZero(FCmpInst & I,Instruction * LHSI,Constant * RHSC)6048 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6049                                               Constant *RHSC) {
6050   // When C is not 0.0 and infinities are not allowed:
6051   // (C / X) < 0.0 is a sign-bit test of X
6052   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6053   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6054   //
6055   // Proof:
6056   // Multiply (C / X) < 0.0 by X * X / C.
6057   // - X is non zero, if it is the flag 'ninf' is violated.
6058   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6059   //   the predicate. C is also non zero by definition.
6060   //
6061   // Thus X * X / C is non zero and the transformation is valid. [qed]
6062 
6063   FCmpInst::Predicate Pred = I.getPredicate();
6064 
6065   // Check that predicates are valid.
6066   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6067       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6068     return nullptr;
6069 
6070   // Check that RHS operand is zero.
6071   if (!match(RHSC, m_AnyZeroFP()))
6072     return nullptr;
6073 
6074   // Check fastmath flags ('ninf').
6075   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6076     return nullptr;
6077 
6078   // Check the properties of the dividend. It must not be zero to avoid a
6079   // division by zero (see Proof).
6080   const APFloat *C;
6081   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6082     return nullptr;
6083 
6084   if (C->isZero())
6085     return nullptr;
6086 
6087   // Get swapped predicate if necessary.
6088   if (C->isNegative())
6089     Pred = I.getSwappedPredicate();
6090 
6091   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6092 }
6093 
6094 /// Optimize fabs(X) compared with zero.
foldFabsWithFcmpZero(FCmpInst & I,InstCombinerImpl & IC)6095 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6096   Value *X;
6097   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6098       !match(I.getOperand(1), m_PosZeroFP()))
6099     return nullptr;
6100 
6101   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6102     I->setPredicate(P);
6103     return IC.replaceOperand(*I, 0, X);
6104   };
6105 
6106   switch (I.getPredicate()) {
6107   case FCmpInst::FCMP_UGE:
6108   case FCmpInst::FCMP_OLT:
6109     // fabs(X) >= 0.0 --> true
6110     // fabs(X) <  0.0 --> false
6111     llvm_unreachable("fcmp should have simplified");
6112 
6113   case FCmpInst::FCMP_OGT:
6114     // fabs(X) > 0.0 --> X != 0.0
6115     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6116 
6117   case FCmpInst::FCMP_UGT:
6118     // fabs(X) u> 0.0 --> X u!= 0.0
6119     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6120 
6121   case FCmpInst::FCMP_OLE:
6122     // fabs(X) <= 0.0 --> X == 0.0
6123     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6124 
6125   case FCmpInst::FCMP_ULE:
6126     // fabs(X) u<= 0.0 --> X u== 0.0
6127     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6128 
6129   case FCmpInst::FCMP_OGE:
6130     // fabs(X) >= 0.0 --> !isnan(X)
6131     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6132     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6133 
6134   case FCmpInst::FCMP_ULT:
6135     // fabs(X) u< 0.0 --> isnan(X)
6136     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6137     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6138 
6139   case FCmpInst::FCMP_OEQ:
6140   case FCmpInst::FCMP_UEQ:
6141   case FCmpInst::FCMP_ONE:
6142   case FCmpInst::FCMP_UNE:
6143   case FCmpInst::FCMP_ORD:
6144   case FCmpInst::FCMP_UNO:
6145     // Look through the fabs() because it doesn't change anything but the sign.
6146     // fabs(X) == 0.0 --> X == 0.0,
6147     // fabs(X) != 0.0 --> X != 0.0
6148     // isnan(fabs(X)) --> isnan(X)
6149     // !isnan(fabs(X) --> !isnan(X)
6150     return replacePredAndOp0(&I, I.getPredicate(), X);
6151 
6152   default:
6153     return nullptr;
6154   }
6155 }
6156 
visitFCmpInst(FCmpInst & I)6157 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6158   bool Changed = false;
6159 
6160   /// Orders the operands of the compare so that they are listed from most
6161   /// complex to least complex.  This puts constants before unary operators,
6162   /// before binary operators.
6163   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6164     I.swapOperands();
6165     Changed = true;
6166   }
6167 
6168   const CmpInst::Predicate Pred = I.getPredicate();
6169   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6170   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6171                                   SQ.getWithInstruction(&I)))
6172     return replaceInstUsesWith(I, V);
6173 
6174   // Simplify 'fcmp pred X, X'
6175   Type *OpType = Op0->getType();
6176   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6177   if (Op0 == Op1) {
6178     switch (Pred) {
6179       default: break;
6180     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6181     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6182     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6183     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6184       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6185       I.setPredicate(FCmpInst::FCMP_UNO);
6186       I.setOperand(1, Constant::getNullValue(OpType));
6187       return &I;
6188 
6189     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6190     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6191     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6192     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6193       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6194       I.setPredicate(FCmpInst::FCMP_ORD);
6195       I.setOperand(1, Constant::getNullValue(OpType));
6196       return &I;
6197     }
6198   }
6199 
6200   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6201   // then canonicalize the operand to 0.0.
6202   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6203     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6204       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6205 
6206     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6207       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6208   }
6209 
6210   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6211   Value *X, *Y;
6212   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6213     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6214 
6215   // Test if the FCmpInst instruction is used exclusively by a select as
6216   // part of a minimum or maximum operation. If so, refrain from doing
6217   // any other folding. This helps out other analyses which understand
6218   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6219   // and CodeGen. And in this case, at least one of the comparison
6220   // operands has at least one user besides the compare (the select),
6221   // which would often largely negate the benefit of folding anyway.
6222   if (I.hasOneUse())
6223     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6224       Value *A, *B;
6225       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6226       if (SPR.Flavor != SPF_UNKNOWN)
6227         return nullptr;
6228     }
6229 
6230   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6231   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6232   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6233     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6234 
6235   // Handle fcmp with instruction LHS and constant RHS.
6236   Instruction *LHSI;
6237   Constant *RHSC;
6238   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6239     switch (LHSI->getOpcode()) {
6240     case Instruction::PHI:
6241       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6242       // block.  If in the same block, we're encouraging jump threading.  If
6243       // not, we are just pessimizing the code by making an i1 phi.
6244       if (LHSI->getParent() == I.getParent())
6245         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6246           return NV;
6247       break;
6248     case Instruction::SIToFP:
6249     case Instruction::UIToFP:
6250       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6251         return NV;
6252       break;
6253     case Instruction::FDiv:
6254       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6255         return NV;
6256       break;
6257     case Instruction::Load:
6258       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6259         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6260           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6261               !cast<LoadInst>(LHSI)->isVolatile())
6262             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6263               return Res;
6264       break;
6265   }
6266   }
6267 
6268   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6269     return R;
6270 
6271   if (match(Op0, m_FNeg(m_Value(X)))) {
6272     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6273     Constant *C;
6274     if (match(Op1, m_Constant(C))) {
6275       Constant *NegC = ConstantExpr::getFNeg(C);
6276       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6277     }
6278   }
6279 
6280   if (match(Op0, m_FPExt(m_Value(X)))) {
6281     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6282     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6283       return new FCmpInst(Pred, X, Y, "", &I);
6284 
6285     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6286     const APFloat *C;
6287     if (match(Op1, m_APFloat(C))) {
6288       const fltSemantics &FPSem =
6289           X->getType()->getScalarType()->getFltSemantics();
6290       bool Lossy;
6291       APFloat TruncC = *C;
6292       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6293 
6294       // Avoid lossy conversions and denormals.
6295       // Zero is a special case that's OK to convert.
6296       APFloat Fabs = TruncC;
6297       Fabs.clearSign();
6298       if (!Lossy &&
6299           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6300         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6301         return new FCmpInst(Pred, X, NewC, "", &I);
6302       }
6303     }
6304   }
6305 
6306   // Convert a sign-bit test of an FP value into a cast and integer compare.
6307   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6308   // TODO: Handle non-zero compare constants.
6309   // TODO: Handle other predicates.
6310   const APFloat *C;
6311   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6312                                                            m_Value(X)))) &&
6313       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6314     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6315     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6316       IntType = VectorType::get(IntType, VecTy->getElementCount());
6317 
6318     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6319     if (Pred == FCmpInst::FCMP_OLT) {
6320       Value *IntX = Builder.CreateBitCast(X, IntType);
6321       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6322                           ConstantInt::getNullValue(IntType));
6323     }
6324   }
6325 
6326   if (I.getType()->isVectorTy())
6327     if (Instruction *Res = foldVectorCmp(I, Builder))
6328       return Res;
6329 
6330   return Changed ? &I : nullptr;
6331 }
6332