1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. 17 /// 18 /// * Exception handling 19 /// This pass lowers invokes and landingpads into library functions in JS glue 20 /// code. Invokes are lowered into function wrappers called invoke wrappers that 21 /// exist in JS side, which wraps the original function call with JS try-catch. 22 /// If an exception occurred, cxa_throw() function in JS side sets some 23 /// variables (see below) so we can check whether an exception occurred from 24 /// wasm code and handle it appropriately. 25 /// 26 /// * Setjmp-longjmp handling 27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 28 /// The idea is that each block with a setjmp is broken up into two parts: the 29 /// part containing setjmp and the part right after the setjmp. The latter part 30 /// is either reached from the setjmp, or later from a longjmp. To handle the 31 /// longjmp, all calls that might longjmp are also called using invoke wrappers 32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 33 /// we can check / whether a longjmp occurred from wasm code. Each block with a 34 /// function call that might longjmp is also split up after the longjmp call. 35 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 36 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 37 /// We assume setjmp-longjmp handling always run after EH handling, which means 38 /// we don't expect any exception-related instructions when SjLj runs. 39 /// FIXME Currently this scheme does not support indirect call of setjmp, 40 /// because of the limitation of the scheme itself. fastcomp does not support it 41 /// either. 42 /// 43 /// In detail, this pass does following things: 44 /// 45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 46 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten. 47 /// These variables are used for both exceptions and setjmp/longjmps. 48 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 49 /// means nothing occurred, 1 means an exception occurred, and other numbers 50 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable 51 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 52 /// 53 /// * Exception handling 54 /// 55 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 56 /// at link time. setThrew exists in Emscripten's compiler-rt: 57 /// 58 /// void setThrew(uintptr_t threw, int value) { 59 /// if (__THREW__ == 0) { 60 /// __THREW__ = threw; 61 /// __threwValue = value; 62 /// } 63 /// } 64 // 65 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 66 /// In exception handling, getTempRet0 indicates the type of an exception 67 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 68 /// function. 69 /// 70 /// 3) Lower 71 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 72 /// into 73 /// __THREW__ = 0; 74 /// call @__invoke_SIG(func, arg1, arg2) 75 /// %__THREW__.val = __THREW__; 76 /// __THREW__ = 0; 77 /// if (%__THREW__.val == 1) 78 /// goto %lpad 79 /// else 80 /// goto %invoke.cont 81 /// SIG is a mangled string generated based on the LLVM IR-level function 82 /// signature. After LLVM IR types are lowered to the target wasm types, 83 /// the names for these wrappers will change based on wasm types as well, 84 /// as in invoke_vi (function takes an int and returns void). The bodies of 85 /// these wrappers will be generated in JS glue code, and inside those 86 /// wrappers we use JS try-catch to generate actual exception effects. It 87 /// also calls the original callee function. An example wrapper in JS code 88 /// would look like this: 89 /// function invoke_vi(index,a1) { 90 /// try { 91 /// Module["dynCall_vi"](index,a1); // This calls original callee 92 /// } catch(e) { 93 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 94 /// _setThrew(1, 0); // setThrew is called here 95 /// } 96 /// } 97 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 98 /// so we can jump to the right BB based on this value. 99 /// 100 /// 4) Lower 101 /// %val = landingpad catch c1 catch c2 catch c3 ... 102 /// ... use %val ... 103 /// into 104 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 105 /// %val = {%fmc, getTempRet0()} 106 /// ... use %val ... 107 /// Here N is a number calculated based on the number of clauses. 108 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 109 /// 110 /// 5) Lower 111 /// resume {%a, %b} 112 /// into 113 /// call @__resumeException(%a) 114 /// where __resumeException() is a function in JS glue code. 115 /// 116 /// 6) Lower 117 /// call @llvm.eh.typeid.for(type) (intrinsic) 118 /// into 119 /// call @llvm_eh_typeid_for(type) 120 /// llvm_eh_typeid_for function will be generated in JS glue code. 121 /// 122 /// * Setjmp / Longjmp handling 123 /// 124 /// In case calls to longjmp() exists 125 /// 126 /// 1) Lower 127 /// longjmp(buf, value) 128 /// into 129 /// emscripten_longjmp(buf, value) 130 /// 131 /// In case calls to setjmp() exists 132 /// 133 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 134 /// sejmpTableSize as follows: 135 /// setjmpTableSize = 4; 136 /// setjmpTable = (int *) malloc(40); 137 /// setjmpTable[0] = 0; 138 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in 139 /// Emscripten compiler-rt. 140 /// 141 /// 3) Lower 142 /// setjmp(buf) 143 /// into 144 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 145 /// setjmpTableSize = getTempRet0(); 146 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 147 /// is incrementally assigned from 0) and its label (a unique number that 148 /// represents each callsite of setjmp). When we need more entries in 149 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's 150 /// compiler-rt and it will return the new table address, and assign the new 151 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into 152 /// the buffer buf. A BB with setjmp is split into two after setjmp call in 153 /// order to make the post-setjmp BB the possible destination of longjmp BB. 154 /// 155 /// 156 /// 4) Lower every call that might longjmp into 157 /// __THREW__ = 0; 158 /// call @__invoke_SIG(func, arg1, arg2) 159 /// %__THREW__.val = __THREW__; 160 /// __THREW__ = 0; 161 /// if (%__THREW__.val != 0 & __threwValue != 0) { 162 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 163 /// setjmpTableSize); 164 /// if (%label == 0) 165 /// emscripten_longjmp(%__THREW__.val, __threwValue); 166 /// setTempRet0(__threwValue); 167 /// } else { 168 /// %label = -1; 169 /// } 170 /// longjmp_result = getTempRet0(); 171 /// switch label { 172 /// label 1: goto post-setjmp BB 1 173 /// label 2: goto post-setjmp BB 2 174 /// ... 175 /// default: goto splitted next BB 176 /// } 177 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 178 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 179 /// will be the address of matching jmp_buf buffer and __threwValue be the 180 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 181 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 182 /// each setjmp callsite. Label 0 means this longjmp buffer does not 183 /// correspond to one of the setjmp callsites in this function, so in this 184 /// case we just chain the longjmp to the caller. Label -1 means no longjmp 185 /// occurred. Otherwise we jump to the right post-setjmp BB based on the 186 /// label. 187 /// 188 ///===----------------------------------------------------------------------===// 189 190 #include "WebAssembly.h" 191 #include "WebAssemblyTargetMachine.h" 192 #include "llvm/ADT/StringExtras.h" 193 #include "llvm/CodeGen/TargetPassConfig.h" 194 #include "llvm/IR/DebugInfoMetadata.h" 195 #include "llvm/IR/Dominators.h" 196 #include "llvm/IR/IRBuilder.h" 197 #include "llvm/Support/CommandLine.h" 198 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 199 #include "llvm/Transforms/Utils/SSAUpdater.h" 200 201 using namespace llvm; 202 203 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 204 205 static cl::list<std::string> 206 EHAllowlist("emscripten-cxx-exceptions-allowed", 207 cl::desc("The list of function names in which Emscripten-style " 208 "exception handling is enabled (see emscripten " 209 "EMSCRIPTEN_CATCHING_ALLOWED options)"), 210 cl::CommaSeparated); 211 212 namespace { 213 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 214 bool EnableEH; // Enable exception handling 215 bool EnableSjLj; // Enable setjmp/longjmp handling 216 217 GlobalVariable *ThrewGV = nullptr; 218 GlobalVariable *ThrewValueGV = nullptr; 219 Function *GetTempRet0Func = nullptr; 220 Function *SetTempRet0Func = nullptr; 221 Function *ResumeF = nullptr; 222 Function *EHTypeIDF = nullptr; 223 Function *EmLongjmpF = nullptr; 224 Function *SaveSetjmpF = nullptr; 225 Function *TestSetjmpF = nullptr; 226 227 // __cxa_find_matching_catch_N functions. 228 // Indexed by the number of clauses in an original landingpad instruction. 229 DenseMap<int, Function *> FindMatchingCatches; 230 // Map of <function signature string, invoke_ wrappers> 231 StringMap<Function *> InvokeWrappers; 232 // Set of allowed function names for exception handling 233 std::set<std::string> EHAllowlistSet; 234 235 StringRef getPassName() const override { 236 return "WebAssembly Lower Emscripten Exceptions"; 237 } 238 239 bool runEHOnFunction(Function &F); 240 bool runSjLjOnFunction(Function &F); 241 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 242 243 Value *wrapInvoke(CallBase *CI); 244 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw, 245 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 246 Value *&LongjmpResult, BasicBlock *&EndBB); 247 Function *getInvokeWrapper(CallBase *CI); 248 249 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); } 250 bool canLongjmp(Module &M, const Value *Callee) const; 251 bool isEmAsmCall(Module &M, const Value *Callee) const; 252 253 void rebuildSSA(Function &F); 254 255 public: 256 static char ID; 257 258 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 259 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) { 260 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end()); 261 } 262 bool runOnModule(Module &M) override; 263 264 void getAnalysisUsage(AnalysisUsage &AU) const override { 265 AU.addRequired<DominatorTreeWrapperPass>(); 266 } 267 }; 268 } // End anonymous namespace 269 270 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 271 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 272 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 273 false, false) 274 275 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 276 bool EnableSjLj) { 277 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 278 } 279 280 static bool canThrow(const Value *V) { 281 if (const auto *F = dyn_cast<const Function>(V)) { 282 // Intrinsics cannot throw 283 if (F->isIntrinsic()) 284 return false; 285 StringRef Name = F->getName(); 286 // leave setjmp and longjmp (mostly) alone, we process them properly later 287 if (Name == "setjmp" || Name == "longjmp") 288 return false; 289 return !F->doesNotThrow(); 290 } 291 // not a function, so an indirect call - can throw, we can't tell 292 return true; 293 } 294 295 // Get a global variable with the given name. If it doesn't exist declare it, 296 // which will generate an import and assume that it will exist at link time. 297 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty, 298 WebAssemblyTargetMachine &TM, 299 const char *Name) { 300 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty)); 301 if (!GV) 302 report_fatal_error(Twine("unable to create global: ") + Name); 303 304 // If the target supports TLS, make this variable thread-local. We can't just 305 // unconditionally make it thread-local and depend on 306 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has 307 // the side effect of disallowing the object from being linked into a 308 // shared-memory module, which we don't want to be responsible for. 309 auto *Subtarget = TM.getSubtargetImpl(); 310 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory() 311 ? GlobalValue::LocalExecTLSModel 312 : GlobalValue::NotThreadLocal; 313 GV->setThreadLocalMode(TLS); 314 return GV; 315 } 316 317 // Simple function name mangler. 318 // This function simply takes LLVM's string representation of parameter types 319 // and concatenate them with '_'. There are non-alphanumeric characters but llc 320 // is ok with it, and we need to postprocess these names after the lowering 321 // phase anyway. 322 static std::string getSignature(FunctionType *FTy) { 323 std::string Sig; 324 raw_string_ostream OS(Sig); 325 OS << *FTy->getReturnType(); 326 for (Type *ParamTy : FTy->params()) 327 OS << "_" << *ParamTy; 328 if (FTy->isVarArg()) 329 OS << "_..."; 330 Sig = OS.str(); 331 erase_if(Sig, isSpace); 332 // When s2wasm parses .s file, a comma means the end of an argument. So a 333 // mangled function name can contain any character but a comma. 334 std::replace(Sig.begin(), Sig.end(), ',', '.'); 335 return Sig; 336 } 337 338 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name, 339 Module *M) { 340 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M); 341 // Tell the linker that this function is expected to be imported from the 342 // 'env' module. 343 if (!F->hasFnAttribute("wasm-import-module")) { 344 llvm::AttrBuilder B; 345 B.addAttribute("wasm-import-module", "env"); 346 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 347 } 348 if (!F->hasFnAttribute("wasm-import-name")) { 349 llvm::AttrBuilder B; 350 B.addAttribute("wasm-import-name", F->getName()); 351 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 352 } 353 return F; 354 } 355 356 // Returns an integer type for the target architecture's address space. 357 // i32 for wasm32 and i64 for wasm64. 358 static Type *getAddrIntType(Module *M) { 359 IRBuilder<> IRB(M->getContext()); 360 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits()); 361 } 362 363 // Returns an integer pointer type for the target architecture's address space. 364 // i32* for wasm32 and i64* for wasm64. 365 static Type *getAddrPtrType(Module *M) { 366 return Type::getIntNPtrTy(M->getContext(), 367 M->getDataLayout().getPointerSizeInBits()); 368 } 369 370 // Returns an integer whose type is the integer type for the target's address 371 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the 372 // integer. 373 static Value *getAddrSizeInt(Module *M, uint64_t C) { 374 IRBuilder<> IRB(M->getContext()); 375 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C); 376 } 377 378 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 379 // This is because a landingpad instruction contains two more arguments, a 380 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 381 // functions are named after the number of arguments in the original landingpad 382 // instruction. 383 Function * 384 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 385 unsigned NumClauses) { 386 if (FindMatchingCatches.count(NumClauses)) 387 return FindMatchingCatches[NumClauses]; 388 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 389 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 390 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 391 Function *F = getEmscriptenFunction( 392 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 393 FindMatchingCatches[NumClauses] = F; 394 return F; 395 } 396 397 // Generate invoke wrapper seqence with preamble and postamble 398 // Preamble: 399 // __THREW__ = 0; 400 // Postamble: 401 // %__THREW__.val = __THREW__; __THREW__ = 0; 402 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 403 // whether longjmp occurred), for future use. 404 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) { 405 Module *M = CI->getModule(); 406 LLVMContext &C = M->getContext(); 407 408 // If we are calling a function that is noreturn, we must remove that 409 // attribute. The code we insert here does expect it to return, after we 410 // catch the exception. 411 if (CI->doesNotReturn()) { 412 if (auto *F = CI->getCalledFunction()) 413 F->removeFnAttr(Attribute::NoReturn); 414 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 415 } 416 417 IRBuilder<> IRB(C); 418 IRB.SetInsertPoint(CI); 419 420 // Pre-invoke 421 // __THREW__ = 0; 422 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 423 424 // Invoke function wrapper in JavaScript 425 SmallVector<Value *, 16> Args; 426 // Put the pointer to the callee as first argument, so it can be called 427 // within the invoke wrapper later 428 Args.push_back(CI->getCalledOperand()); 429 Args.append(CI->arg_begin(), CI->arg_end()); 430 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 431 NewCall->takeName(CI); 432 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 433 NewCall->setDebugLoc(CI->getDebugLoc()); 434 435 // Because we added the pointer to the callee as first argument, all 436 // argument attribute indices have to be incremented by one. 437 SmallVector<AttributeSet, 8> ArgAttributes; 438 const AttributeList &InvokeAL = CI->getAttributes(); 439 440 // No attributes for the callee pointer. 441 ArgAttributes.push_back(AttributeSet()); 442 // Copy the argument attributes from the original 443 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 444 ArgAttributes.push_back(InvokeAL.getParamAttributes(I)); 445 446 AttrBuilder FnAttrs(InvokeAL.getFnAttributes()); 447 if (FnAttrs.contains(Attribute::AllocSize)) { 448 // The allocsize attribute (if any) referes to parameters by index and needs 449 // to be adjusted. 450 unsigned SizeArg; 451 Optional<unsigned> NEltArg; 452 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 453 SizeArg += 1; 454 if (NEltArg.hasValue()) 455 NEltArg = NEltArg.getValue() + 1; 456 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 457 } 458 459 // Reconstruct the AttributesList based on the vector we constructed. 460 AttributeList NewCallAL = 461 AttributeList::get(C, AttributeSet::get(C, FnAttrs), 462 InvokeAL.getRetAttributes(), ArgAttributes); 463 NewCall->setAttributes(NewCallAL); 464 465 CI->replaceAllUsesWith(NewCall); 466 467 // Post-invoke 468 // %__THREW__.val = __THREW__; __THREW__ = 0; 469 Value *Threw = 470 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val"); 471 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV); 472 return Threw; 473 } 474 475 // Get matching invoke wrapper based on callee signature 476 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) { 477 Module *M = CI->getModule(); 478 SmallVector<Type *, 16> ArgTys; 479 FunctionType *CalleeFTy = CI->getFunctionType(); 480 481 std::string Sig = getSignature(CalleeFTy); 482 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 483 return InvokeWrappers[Sig]; 484 485 // Put the pointer to the callee as first argument 486 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 487 // Add argument types 488 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 489 490 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 491 CalleeFTy->isVarArg()); 492 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M); 493 InvokeWrappers[Sig] = F; 494 return F; 495 } 496 497 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 498 const Value *Callee) const { 499 if (auto *CalleeF = dyn_cast<Function>(Callee)) 500 if (CalleeF->isIntrinsic()) 501 return false; 502 503 // Attempting to transform inline assembly will result in something like: 504 // call void @__invoke_void(void ()* asm ...) 505 // which is invalid because inline assembly blocks do not have addresses 506 // and can't be passed by pointer. The result is a crash with illegal IR. 507 if (isa<InlineAsm>(Callee)) 508 return false; 509 StringRef CalleeName = Callee->getName(); 510 511 // The reason we include malloc/free here is to exclude the malloc/free 512 // calls generated in setjmp prep / cleanup routines. 513 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 514 return false; 515 516 // There are functions in Emscripten's JS glue code or compiler-rt 517 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 518 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 519 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 520 return false; 521 522 // __cxa_find_matching_catch_N functions cannot longjmp 523 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 524 return false; 525 526 // Exception-catching related functions 527 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || 528 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 529 CalleeName == "__clang_call_terminate") 530 return false; 531 532 // Otherwise we don't know 533 return true; 534 } 535 536 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M, 537 const Value *Callee) const { 538 StringRef CalleeName = Callee->getName(); 539 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 540 return CalleeName == "emscripten_asm_const_int" || 541 CalleeName == "emscripten_asm_const_double" || 542 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 543 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 544 CalleeName == "emscripten_asm_const_async_on_main_thread"; 545 } 546 547 // Generate testSetjmp function call seqence with preamble and postamble. 548 // The code this generates is equivalent to the following JavaScript code: 549 // if (%__THREW__.val != 0 & threwValue != 0) { 550 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 551 // if (%label == 0) 552 // emscripten_longjmp(%__THREW__.val, threwValue); 553 // setTempRet0(threwValue); 554 // } else { 555 // %label = -1; 556 // } 557 // %longjmp_result = getTempRet0(); 558 // 559 // As output parameters. returns %label, %longjmp_result, and the BB the last 560 // instruction (%longjmp_result = ...) is in. 561 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 562 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable, 563 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 564 BasicBlock *&EndBB) { 565 Function *F = BB->getParent(); 566 Module *M = F->getParent(); 567 LLVMContext &C = M->getContext(); 568 IRBuilder<> IRB(C); 569 IRB.SetCurrentDebugLocation(DL); 570 571 // if (%__THREW__.val != 0 & threwValue != 0) 572 IRB.SetInsertPoint(BB); 573 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 574 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 575 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 576 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0)); 577 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 578 ThrewValueGV->getName() + ".val"); 579 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 580 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 581 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 582 583 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 584 // if (%label == 0) 585 IRB.SetInsertPoint(ThenBB1); 586 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 587 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 588 Value *ThrewPtr = 589 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p"); 590 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr, 591 ThrewPtr->getName() + ".loaded"); 592 Value *ThenLabel = IRB.CreateCall( 593 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 594 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 595 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 596 597 // emscripten_longjmp(%__THREW__.val, threwValue); 598 IRB.SetInsertPoint(ThenBB2); 599 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 600 IRB.CreateUnreachable(); 601 602 // setTempRet0(threwValue); 603 IRB.SetInsertPoint(EndBB2); 604 IRB.CreateCall(SetTempRet0Func, ThrewValue); 605 IRB.CreateBr(EndBB1); 606 607 IRB.SetInsertPoint(ElseBB1); 608 IRB.CreateBr(EndBB1); 609 610 // longjmp_result = getTempRet0(); 611 IRB.SetInsertPoint(EndBB1); 612 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 613 LabelPHI->addIncoming(ThenLabel, EndBB2); 614 615 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 616 617 // Output parameter assignment 618 Label = LabelPHI; 619 EndBB = EndBB1; 620 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 621 } 622 623 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 624 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 625 DT.recalculate(F); // CFG has been changed 626 SSAUpdater SSA; 627 for (BasicBlock &BB : F) { 628 for (Instruction &I : BB) { 629 SSA.Initialize(I.getType(), I.getName()); 630 SSA.AddAvailableValue(&BB, &I); 631 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 632 Use &U = *UI; 633 ++UI; 634 auto *User = cast<Instruction>(U.getUser()); 635 if (auto *UserPN = dyn_cast<PHINode>(User)) 636 if (UserPN->getIncomingBlock(U) == &BB) 637 continue; 638 639 if (DT.dominates(&I, User)) 640 continue; 641 SSA.RewriteUseAfterInsertions(U); 642 } 643 } 644 } 645 } 646 647 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes 648 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes 649 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type 650 // match. jmp_buf* will eventually be lowered to i32 in the wasm backend. 651 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF, 652 Function *EmLongjmpF) { 653 Module *M = LongjmpF->getParent(); 654 SmallVector<CallInst *, 8> ToErase; 655 LLVMContext &C = LongjmpF->getParent()->getContext(); 656 IRBuilder<> IRB(C); 657 658 // For calls to longjmp, replace it with emscripten_longjmp and cast its first 659 // argument (jmp_buf*) to int 660 for (User *U : LongjmpF->users()) { 661 auto *CI = dyn_cast<CallInst>(U); 662 if (CI && CI->getCalledFunction() == LongjmpF) { 663 IRB.SetInsertPoint(CI); 664 Value *Jmpbuf = 665 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "jmpbuf"); 666 IRB.CreateCall(EmLongjmpF, {Jmpbuf, CI->getArgOperand(1)}); 667 ToErase.push_back(CI); 668 } 669 } 670 for (auto *I : ToErase) 671 I->eraseFromParent(); 672 673 // If we have any remaining uses of longjmp's function pointer, replace it 674 // with (int(*)(jmp_buf*, int))emscripten_longjmp. 675 if (!LongjmpF->uses().empty()) { 676 Value *EmLongjmp = 677 IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp"); 678 LongjmpF->replaceAllUsesWith(EmLongjmp); 679 } 680 } 681 682 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 683 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 684 685 LLVMContext &C = M.getContext(); 686 IRBuilder<> IRB(C); 687 688 Function *SetjmpF = M.getFunction("setjmp"); 689 Function *LongjmpF = M.getFunction("longjmp"); 690 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 691 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 692 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 693 694 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 695 assert(TPC && "Expected a TargetPassConfig"); 696 auto &TM = TPC->getTM<WebAssemblyTargetMachine>(); 697 698 if (EnableEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm) 699 report_fatal_error("-exception-model=wasm not allowed with " 700 "-enable-emscripten-cxx-exceptions"); 701 702 // Declare (or get) global variables __THREW__, __threwValue, and 703 // getTempRet0/setTempRet0 function which are used in common for both 704 // exception handling and setjmp/longjmp handling 705 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__"); 706 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue"); 707 GetTempRet0Func = getEmscriptenFunction( 708 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M); 709 SetTempRet0Func = getEmscriptenFunction( 710 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 711 "setTempRet0", &M); 712 GetTempRet0Func->setDoesNotThrow(); 713 SetTempRet0Func->setDoesNotThrow(); 714 715 bool Changed = false; 716 717 // Exception handling 718 if (EnableEH) { 719 // Register __resumeException function 720 FunctionType *ResumeFTy = 721 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 722 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M); 723 724 // Register llvm_eh_typeid_for function 725 FunctionType *EHTypeIDTy = 726 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 727 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M); 728 729 for (Function &F : M) { 730 if (F.isDeclaration()) 731 continue; 732 Changed |= runEHOnFunction(F); 733 } 734 } 735 736 // Setjmp/longjmp handling 737 if (DoSjLj) { 738 Changed = true; // We have setjmp or longjmp somewhere 739 740 // Register emscripten_longjmp function 741 FunctionType *FTy = FunctionType::get( 742 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false); 743 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M); 744 745 if (LongjmpF) 746 replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF); 747 748 if (SetjmpF) { 749 // Register saveSetjmp function 750 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 751 FTy = FunctionType::get(Type::getInt32PtrTy(C), 752 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(), 753 Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 754 false); 755 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M); 756 757 // Register testSetjmp function 758 FTy = FunctionType::get( 759 IRB.getInt32Ty(), 760 {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()}, 761 false); 762 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M); 763 764 // Only traverse functions that uses setjmp in order not to insert 765 // unnecessary prep / cleanup code in every function 766 SmallPtrSet<Function *, 8> SetjmpUsers; 767 for (User *U : SetjmpF->users()) { 768 auto *UI = cast<Instruction>(U); 769 SetjmpUsers.insert(UI->getFunction()); 770 } 771 for (Function *F : SetjmpUsers) 772 runSjLjOnFunction(*F); 773 } 774 } 775 776 if (!Changed) { 777 // Delete unused global variables and functions 778 if (ResumeF) 779 ResumeF->eraseFromParent(); 780 if (EHTypeIDF) 781 EHTypeIDF->eraseFromParent(); 782 if (EmLongjmpF) 783 EmLongjmpF->eraseFromParent(); 784 if (SaveSetjmpF) 785 SaveSetjmpF->eraseFromParent(); 786 if (TestSetjmpF) 787 TestSetjmpF->eraseFromParent(); 788 return false; 789 } 790 791 return true; 792 } 793 794 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 795 Module &M = *F.getParent(); 796 LLVMContext &C = F.getContext(); 797 IRBuilder<> IRB(C); 798 bool Changed = false; 799 SmallVector<Instruction *, 64> ToErase; 800 SmallPtrSet<LandingPadInst *, 32> LandingPads; 801 bool AllowExceptions = areAllExceptionsAllowed() || 802 EHAllowlistSet.count(std::string(F.getName())); 803 804 for (BasicBlock &BB : F) { 805 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 806 if (!II) 807 continue; 808 Changed = true; 809 LandingPads.insert(II->getLandingPadInst()); 810 IRB.SetInsertPoint(II); 811 812 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledOperand()); 813 if (NeedInvoke) { 814 // Wrap invoke with invoke wrapper and generate preamble/postamble 815 Value *Threw = wrapInvoke(II); 816 ToErase.push_back(II); 817 818 // Insert a branch based on __THREW__ variable 819 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp"); 820 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 821 822 } else { 823 // This can't throw, and we don't need this invoke, just replace it with a 824 // call+branch 825 SmallVector<Value *, 16> Args(II->args()); 826 CallInst *NewCall = 827 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args); 828 NewCall->takeName(II); 829 NewCall->setCallingConv(II->getCallingConv()); 830 NewCall->setDebugLoc(II->getDebugLoc()); 831 NewCall->setAttributes(II->getAttributes()); 832 II->replaceAllUsesWith(NewCall); 833 ToErase.push_back(II); 834 835 IRB.CreateBr(II->getNormalDest()); 836 837 // Remove any PHI node entries from the exception destination 838 II->getUnwindDest()->removePredecessor(&BB); 839 } 840 } 841 842 // Process resume instructions 843 for (BasicBlock &BB : F) { 844 // Scan the body of the basic block for resumes 845 for (Instruction &I : BB) { 846 auto *RI = dyn_cast<ResumeInst>(&I); 847 if (!RI) 848 continue; 849 Changed = true; 850 851 // Split the input into legal values 852 Value *Input = RI->getValue(); 853 IRB.SetInsertPoint(RI); 854 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 855 // Create a call to __resumeException function 856 IRB.CreateCall(ResumeF, {Low}); 857 // Add a terminator to the block 858 IRB.CreateUnreachable(); 859 ToErase.push_back(RI); 860 } 861 } 862 863 // Process llvm.eh.typeid.for intrinsics 864 for (BasicBlock &BB : F) { 865 for (Instruction &I : BB) { 866 auto *CI = dyn_cast<CallInst>(&I); 867 if (!CI) 868 continue; 869 const Function *Callee = CI->getCalledFunction(); 870 if (!Callee) 871 continue; 872 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 873 continue; 874 Changed = true; 875 876 IRB.SetInsertPoint(CI); 877 CallInst *NewCI = 878 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 879 CI->replaceAllUsesWith(NewCI); 880 ToErase.push_back(CI); 881 } 882 } 883 884 // Look for orphan landingpads, can occur in blocks with no predecessors 885 for (BasicBlock &BB : F) { 886 Instruction *I = BB.getFirstNonPHI(); 887 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 888 LandingPads.insert(LPI); 889 } 890 Changed |= !LandingPads.empty(); 891 892 // Handle all the landingpad for this function together, as multiple invokes 893 // may share a single lp 894 for (LandingPadInst *LPI : LandingPads) { 895 IRB.SetInsertPoint(LPI); 896 SmallVector<Value *, 16> FMCArgs; 897 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 898 Constant *Clause = LPI->getClause(I); 899 // TODO Handle filters (= exception specifications). 900 // https://bugs.llvm.org/show_bug.cgi?id=50396 901 if (LPI->isCatch(I)) 902 FMCArgs.push_back(Clause); 903 } 904 905 // Create a call to __cxa_find_matching_catch_N function 906 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 907 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 908 Value *Undef = UndefValue::get(LPI->getType()); 909 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 910 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 911 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 912 913 LPI->replaceAllUsesWith(Pair1); 914 ToErase.push_back(LPI); 915 } 916 917 // Erase everything we no longer need in this function 918 for (Instruction *I : ToErase) 919 I->eraseFromParent(); 920 921 return Changed; 922 } 923 924 // This tries to get debug info from the instruction before which a new 925 // instruction will be inserted, and if there's no debug info in that 926 // instruction, tries to get the info instead from the previous instruction (if 927 // any). If none of these has debug info and a DISubprogram is provided, it 928 // creates a dummy debug info with the first line of the function, because IR 929 // verifier requires all inlinable callsites should have debug info when both a 930 // caller and callee have DISubprogram. If none of these conditions are met, 931 // returns empty info. 932 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore, 933 DISubprogram *SP) { 934 assert(InsertBefore); 935 if (InsertBefore->getDebugLoc()) 936 return InsertBefore->getDebugLoc(); 937 const Instruction *Prev = InsertBefore->getPrevNode(); 938 if (Prev && Prev->getDebugLoc()) 939 return Prev->getDebugLoc(); 940 if (SP) 941 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 942 return DebugLoc(); 943 } 944 945 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 946 Module &M = *F.getParent(); 947 LLVMContext &C = F.getContext(); 948 IRBuilder<> IRB(C); 949 SmallVector<Instruction *, 64> ToErase; 950 // Vector of %setjmpTable values 951 std::vector<Instruction *> SetjmpTableInsts; 952 // Vector of %setjmpTableSize values 953 std::vector<Instruction *> SetjmpTableSizeInsts; 954 955 // Setjmp preparation 956 957 // This instruction effectively means %setjmpTableSize = 4. 958 // We create this as an instruction intentionally, and we don't want to fold 959 // this instruction to a constant 4, because this value will be used in 960 // SSAUpdater.AddAvailableValue(...) later. 961 BasicBlock &EntryBB = F.getEntryBlock(); 962 DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram()); 963 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 964 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 965 &*EntryBB.getFirstInsertionPt()); 966 SetjmpTableSize->setDebugLoc(FirstDL); 967 // setjmpTable = (int *) malloc(40); 968 Instruction *SetjmpTable = CallInst::CreateMalloc( 969 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 970 nullptr, nullptr, "setjmpTable"); 971 SetjmpTable->setDebugLoc(FirstDL); 972 // CallInst::CreateMalloc may return a bitcast instruction if the result types 973 // mismatch. We need to set the debug loc for the original call too. 974 auto *MallocCall = SetjmpTable->stripPointerCasts(); 975 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) { 976 MallocCallI->setDebugLoc(FirstDL); 977 } 978 // setjmpTable[0] = 0; 979 IRB.SetInsertPoint(SetjmpTableSize); 980 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 981 SetjmpTableInsts.push_back(SetjmpTable); 982 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 983 984 // Setjmp transformation 985 std::vector<PHINode *> SetjmpRetPHIs; 986 Function *SetjmpF = M.getFunction("setjmp"); 987 for (User *U : SetjmpF->users()) { 988 auto *CI = dyn_cast<CallInst>(U); 989 if (!CI) 990 report_fatal_error("Does not support indirect calls to setjmp"); 991 992 BasicBlock *BB = CI->getParent(); 993 if (BB->getParent() != &F) // in other function 994 continue; 995 996 // The tail is everything right after the call, and will be reached once 997 // when setjmp is called, and later when longjmp returns to the setjmp 998 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 999 // Add a phi to the tail, which will be the output of setjmp, which 1000 // indicates if this is the first call or a longjmp back. The phi directly 1001 // uses the right value based on where we arrive from 1002 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 1003 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 1004 1005 // setjmp initial call returns 0 1006 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1007 // The proper output is now this, not the setjmp call itself 1008 CI->replaceAllUsesWith(SetjmpRet); 1009 // longjmp returns to the setjmp will add themselves to this phi 1010 SetjmpRetPHIs.push_back(SetjmpRet); 1011 1012 // Fix call target 1013 // Our index in the function is our place in the array + 1 to avoid index 1014 // 0, because index 0 means the longjmp is not ours to handle. 1015 IRB.SetInsertPoint(CI); 1016 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1017 SetjmpTable, SetjmpTableSize}; 1018 Instruction *NewSetjmpTable = 1019 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1020 Instruction *NewSetjmpTableSize = 1021 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 1022 SetjmpTableInsts.push_back(NewSetjmpTable); 1023 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1024 ToErase.push_back(CI); 1025 } 1026 1027 // Update each call that can longjmp so it can return to a setjmp where 1028 // relevant. 1029 1030 // Because we are creating new BBs while processing and don't want to make 1031 // all these newly created BBs candidates again for longjmp processing, we 1032 // first make the vector of candidate BBs. 1033 std::vector<BasicBlock *> BBs; 1034 for (BasicBlock &BB : F) 1035 BBs.push_back(&BB); 1036 1037 // BBs.size() will change within the loop, so we query it every time 1038 for (unsigned I = 0; I < BBs.size(); I++) { 1039 BasicBlock *BB = BBs[I]; 1040 for (Instruction &I : *BB) { 1041 assert(!isa<InvokeInst>(&I)); 1042 auto *CI = dyn_cast<CallInst>(&I); 1043 if (!CI) 1044 continue; 1045 1046 const Value *Callee = CI->getCalledOperand(); 1047 if (!canLongjmp(M, Callee)) 1048 continue; 1049 if (isEmAsmCall(M, Callee)) 1050 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 1051 F.getName() + 1052 ". Please consider using EM_JS, or move the " 1053 "EM_ASM into another function.", 1054 false); 1055 1056 Value *Threw = nullptr; 1057 BasicBlock *Tail; 1058 if (Callee->getName().startswith("__invoke_")) { 1059 // If invoke wrapper has already been generated for this call in 1060 // previous EH phase, search for the load instruction 1061 // %__THREW__.val = __THREW__; 1062 // in postamble after the invoke wrapper call 1063 LoadInst *ThrewLI = nullptr; 1064 StoreInst *ThrewResetSI = nullptr; 1065 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1066 I != IE; ++I) { 1067 if (auto *LI = dyn_cast<LoadInst>(I)) 1068 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1069 if (GV == ThrewGV) { 1070 Threw = ThrewLI = LI; 1071 break; 1072 } 1073 } 1074 // Search for the store instruction after the load above 1075 // __THREW__ = 0; 1076 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1077 I != IE; ++I) { 1078 if (auto *SI = dyn_cast<StoreInst>(I)) { 1079 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) { 1080 if (GV == ThrewGV && 1081 SI->getValueOperand() == getAddrSizeInt(&M, 0)) { 1082 ThrewResetSI = SI; 1083 break; 1084 } 1085 } 1086 } 1087 } 1088 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1089 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1090 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1091 1092 } else { 1093 // Wrap call with invoke wrapper and generate preamble/postamble 1094 Threw = wrapInvoke(CI); 1095 ToErase.push_back(CI); 1096 Tail = SplitBlock(BB, CI->getNextNode()); 1097 } 1098 1099 // We need to replace the terminator in Tail - SplitBlock makes BB go 1100 // straight to Tail, we need to check if a longjmp occurred, and go to the 1101 // right setjmp-tail if so 1102 ToErase.push_back(BB->getTerminator()); 1103 1104 // Generate a function call to testSetjmp function and preamble/postamble 1105 // code to figure out (1) whether longjmp occurred (2) if longjmp 1106 // occurred, which setjmp it corresponds to 1107 Value *Label = nullptr; 1108 Value *LongjmpResult = nullptr; 1109 BasicBlock *EndBB = nullptr; 1110 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize, 1111 Label, LongjmpResult, EndBB); 1112 assert(Label && LongjmpResult && EndBB); 1113 1114 // Create switch instruction 1115 IRB.SetInsertPoint(EndBB); 1116 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc()); 1117 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1118 // -1 means no longjmp happened, continue normally (will hit the default 1119 // switch case). 0 means a longjmp that is not ours to handle, needs a 1120 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1121 // 0). 1122 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1123 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1124 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1125 } 1126 1127 // We are splitting the block here, and must continue to find other calls 1128 // in the block - which is now split. so continue to traverse in the Tail 1129 BBs.push_back(Tail); 1130 } 1131 } 1132 1133 // Erase everything we no longer need in this function 1134 for (Instruction *I : ToErase) 1135 I->eraseFromParent(); 1136 1137 // Free setjmpTable buffer before each return instruction 1138 for (BasicBlock &BB : F) { 1139 Instruction *TI = BB.getTerminator(); 1140 if (isa<ReturnInst>(TI)) { 1141 DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram()); 1142 auto *Free = CallInst::CreateFree(SetjmpTable, TI); 1143 Free->setDebugLoc(DL); 1144 // CallInst::CreateFree may create a bitcast instruction if its argument 1145 // types mismatch. We need to set the debug loc for the bitcast too. 1146 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) { 1147 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0))) 1148 BitCastI->setDebugLoc(DL); 1149 } 1150 } 1151 } 1152 1153 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1154 // (when buffer reallocation occurs) 1155 // entry: 1156 // setjmpTableSize = 4; 1157 // setjmpTable = (int *) malloc(40); 1158 // setjmpTable[0] = 0; 1159 // ... 1160 // somebb: 1161 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1162 // setjmpTableSize = getTempRet0(); 1163 // So we need to make sure the SSA for these variables is valid so that every 1164 // saveSetjmp and testSetjmp calls have the correct arguments. 1165 SSAUpdater SetjmpTableSSA; 1166 SSAUpdater SetjmpTableSizeSSA; 1167 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1168 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1169 for (Instruction *I : SetjmpTableInsts) 1170 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1171 for (Instruction *I : SetjmpTableSizeInsts) 1172 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1173 1174 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1175 UI != UE;) { 1176 // Grab the use before incrementing the iterator. 1177 Use &U = *UI; 1178 // Increment the iterator before removing the use from the list. 1179 ++UI; 1180 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1181 if (I->getParent() != &EntryBB) 1182 SetjmpTableSSA.RewriteUse(U); 1183 } 1184 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1185 UI != UE;) { 1186 Use &U = *UI; 1187 ++UI; 1188 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1189 if (I->getParent() != &EntryBB) 1190 SetjmpTableSizeSSA.RewriteUse(U); 1191 } 1192 1193 // Finally, our modifications to the cfg can break dominance of SSA variables. 1194 // For example, in this code, 1195 // if (x()) { .. setjmp() .. } 1196 // if (y()) { .. longjmp() .. } 1197 // We must split the longjmp block, and it can jump into the block splitted 1198 // from setjmp one. But that means that when we split the setjmp block, it's 1199 // first part no longer dominates its second part - there is a theoretically 1200 // possible control flow path where x() is false, then y() is true and we 1201 // reach the second part of the setjmp block, without ever reaching the first 1202 // part. So, we rebuild SSA form here. 1203 rebuildSSA(F); 1204 return true; 1205 } 1206