1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten.
17 ///
18 /// * Exception handling
19 /// This pass lowers invokes and landingpads into library functions in JS glue
20 /// code. Invokes are lowered into function wrappers called invoke wrappers that
21 /// exist in JS side, which wraps the original function call with JS try-catch.
22 /// If an exception occurred, cxa_throw() function in JS side sets some
23 /// variables (see below) so we can check whether an exception occurred from
24 /// wasm code and handle it appropriately.
25 ///
26 /// * Setjmp-longjmp handling
27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
28 /// The idea is that each block with a setjmp is broken up into two parts: the
29 /// part containing setjmp and the part right after the setjmp. The latter part
30 /// is either reached from the setjmp, or later from a longjmp. To handle the
31 /// longjmp, all calls that might longjmp are also called using invoke wrappers
32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
33 /// we can check / whether a longjmp occurred from wasm code. Each block with a
34 /// function call that might longjmp is also split up after the longjmp call.
35 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
36 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
37 /// We assume setjmp-longjmp handling always run after EH handling, which means
38 /// we don't expect any exception-related instructions when SjLj runs.
39 /// FIXME Currently this scheme does not support indirect call of setjmp,
40 /// because of the limitation of the scheme itself. fastcomp does not support it
41 /// either.
42 ///
43 /// In detail, this pass does following things:
44 ///
45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
46 /// __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
47 /// These variables are used for both exceptions and setjmp/longjmps.
48 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
49 /// means nothing occurred, 1 means an exception occurred, and other numbers
50 /// mean a longjmp occurred. In the case of longjmp, __THREW__ variable
51 /// indicates the corresponding setjmp buffer the longjmp corresponds to.
52 ///
53 /// * Exception handling
54 ///
55 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
56 /// at link time. setThrew exists in Emscripten's compiler-rt:
57 ///
58 /// void setThrew(uintptr_t threw, int value) {
59 /// if (__THREW__ == 0) {
60 /// __THREW__ = threw;
61 /// __threwValue = value;
62 /// }
63 /// }
64 //
65 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
66 /// In exception handling, getTempRet0 indicates the type of an exception
67 /// caught, and in setjmp/longjmp, it means the second argument to longjmp
68 /// function.
69 ///
70 /// 3) Lower
71 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
72 /// into
73 /// __THREW__ = 0;
74 /// call @__invoke_SIG(func, arg1, arg2)
75 /// %__THREW__.val = __THREW__;
76 /// __THREW__ = 0;
77 /// if (%__THREW__.val == 1)
78 /// goto %lpad
79 /// else
80 /// goto %invoke.cont
81 /// SIG is a mangled string generated based on the LLVM IR-level function
82 /// signature. After LLVM IR types are lowered to the target wasm types,
83 /// the names for these wrappers will change based on wasm types as well,
84 /// as in invoke_vi (function takes an int and returns void). The bodies of
85 /// these wrappers will be generated in JS glue code, and inside those
86 /// wrappers we use JS try-catch to generate actual exception effects. It
87 /// also calls the original callee function. An example wrapper in JS code
88 /// would look like this:
89 /// function invoke_vi(index,a1) {
90 /// try {
91 /// Module["dynCall_vi"](index,a1); // This calls original callee
92 /// } catch(e) {
93 /// if (typeof e !== 'number' && e !== 'longjmp') throw e;
94 /// _setThrew(1, 0); // setThrew is called here
95 /// }
96 /// }
97 /// If an exception is thrown, __THREW__ will be set to true in a wrapper,
98 /// so we can jump to the right BB based on this value.
99 ///
100 /// 4) Lower
101 /// %val = landingpad catch c1 catch c2 catch c3 ...
102 /// ... use %val ...
103 /// into
104 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
105 /// %val = {%fmc, getTempRet0()}
106 /// ... use %val ...
107 /// Here N is a number calculated based on the number of clauses.
108 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
109 ///
110 /// 5) Lower
111 /// resume {%a, %b}
112 /// into
113 /// call @__resumeException(%a)
114 /// where __resumeException() is a function in JS glue code.
115 ///
116 /// 6) Lower
117 /// call @llvm.eh.typeid.for(type) (intrinsic)
118 /// into
119 /// call @llvm_eh_typeid_for(type)
120 /// llvm_eh_typeid_for function will be generated in JS glue code.
121 ///
122 /// * Setjmp / Longjmp handling
123 ///
124 /// In case calls to longjmp() exists
125 ///
126 /// 1) Lower
127 /// longjmp(buf, value)
128 /// into
129 /// emscripten_longjmp(buf, value)
130 ///
131 /// In case calls to setjmp() exists
132 ///
133 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
134 /// sejmpTableSize as follows:
135 /// setjmpTableSize = 4;
136 /// setjmpTable = (int *) malloc(40);
137 /// setjmpTable[0] = 0;
138 /// setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
139 /// Emscripten compiler-rt.
140 ///
141 /// 3) Lower
142 /// setjmp(buf)
143 /// into
144 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
145 /// setjmpTableSize = getTempRet0();
146 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which
147 /// is incrementally assigned from 0) and its label (a unique number that
148 /// represents each callsite of setjmp). When we need more entries in
149 /// setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
150 /// compiler-rt and it will return the new table address, and assign the new
151 /// table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
152 /// the buffer buf. A BB with setjmp is split into two after setjmp call in
153 /// order to make the post-setjmp BB the possible destination of longjmp BB.
154 ///
155 ///
156 /// 4) Lower every call that might longjmp into
157 /// __THREW__ = 0;
158 /// call @__invoke_SIG(func, arg1, arg2)
159 /// %__THREW__.val = __THREW__;
160 /// __THREW__ = 0;
161 /// if (%__THREW__.val != 0 & __threwValue != 0) {
162 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
163 /// setjmpTableSize);
164 /// if (%label == 0)
165 /// emscripten_longjmp(%__THREW__.val, __threwValue);
166 /// setTempRet0(__threwValue);
167 /// } else {
168 /// %label = -1;
169 /// }
170 /// longjmp_result = getTempRet0();
171 /// switch label {
172 /// label 1: goto post-setjmp BB 1
173 /// label 2: goto post-setjmp BB 2
174 /// ...
175 /// default: goto splitted next BB
176 /// }
177 /// testSetjmp examines setjmpTable to see if there is a matching setjmp
178 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
179 /// will be the address of matching jmp_buf buffer and __threwValue be the
180 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
181 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
182 /// each setjmp callsite. Label 0 means this longjmp buffer does not
183 /// correspond to one of the setjmp callsites in this function, so in this
184 /// case we just chain the longjmp to the caller. Label -1 means no longjmp
185 /// occurred. Otherwise we jump to the right post-setjmp BB based on the
186 /// label.
187 ///
188 ///===----------------------------------------------------------------------===//
189
190 #include "WebAssembly.h"
191 #include "WebAssemblyTargetMachine.h"
192 #include "llvm/ADT/StringExtras.h"
193 #include "llvm/CodeGen/TargetPassConfig.h"
194 #include "llvm/IR/DebugInfoMetadata.h"
195 #include "llvm/IR/Dominators.h"
196 #include "llvm/IR/IRBuilder.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
199 #include "llvm/Transforms/Utils/SSAUpdater.h"
200
201 using namespace llvm;
202
203 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
204
205 static cl::list<std::string>
206 EHAllowlist("emscripten-cxx-exceptions-allowed",
207 cl::desc("The list of function names in which Emscripten-style "
208 "exception handling is enabled (see emscripten "
209 "EMSCRIPTEN_CATCHING_ALLOWED options)"),
210 cl::CommaSeparated);
211
212 namespace {
213 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
214 bool EnableEH; // Enable exception handling
215 bool EnableSjLj; // Enable setjmp/longjmp handling
216
217 GlobalVariable *ThrewGV = nullptr;
218 GlobalVariable *ThrewValueGV = nullptr;
219 Function *GetTempRet0Func = nullptr;
220 Function *SetTempRet0Func = nullptr;
221 Function *ResumeF = nullptr;
222 Function *EHTypeIDF = nullptr;
223 Function *EmLongjmpF = nullptr;
224 Function *SaveSetjmpF = nullptr;
225 Function *TestSetjmpF = nullptr;
226
227 // __cxa_find_matching_catch_N functions.
228 // Indexed by the number of clauses in an original landingpad instruction.
229 DenseMap<int, Function *> FindMatchingCatches;
230 // Map of <function signature string, invoke_ wrappers>
231 StringMap<Function *> InvokeWrappers;
232 // Set of allowed function names for exception handling
233 std::set<std::string> EHAllowlistSet;
234
getPassName() const235 StringRef getPassName() const override {
236 return "WebAssembly Lower Emscripten Exceptions";
237 }
238
239 bool runEHOnFunction(Function &F);
240 bool runSjLjOnFunction(Function &F);
241 Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
242
243 Value *wrapInvoke(CallBase *CI);
244 void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
245 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
246 Value *&LongjmpResult, BasicBlock *&EndBB);
247 Function *getInvokeWrapper(CallBase *CI);
248
areAllExceptionsAllowed() const249 bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
250 bool canLongjmp(Module &M, const Value *Callee) const;
251 bool isEmAsmCall(Module &M, const Value *Callee) const;
252
253 void rebuildSSA(Function &F);
254
255 public:
256 static char ID;
257
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH=true,bool EnableSjLj=true)258 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
259 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
260 EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
261 }
262 bool runOnModule(Module &M) override;
263
getAnalysisUsage(AnalysisUsage & AU) const264 void getAnalysisUsage(AnalysisUsage &AU) const override {
265 AU.addRequired<DominatorTreeWrapperPass>();
266 }
267 };
268 } // End anonymous namespace
269
270 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
271 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
272 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
273 false, false)
274
createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,bool EnableSjLj)275 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
276 bool EnableSjLj) {
277 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
278 }
279
canThrow(const Value * V)280 static bool canThrow(const Value *V) {
281 if (const auto *F = dyn_cast<const Function>(V)) {
282 // Intrinsics cannot throw
283 if (F->isIntrinsic())
284 return false;
285 StringRef Name = F->getName();
286 // leave setjmp and longjmp (mostly) alone, we process them properly later
287 if (Name == "setjmp" || Name == "longjmp")
288 return false;
289 return !F->doesNotThrow();
290 }
291 // not a function, so an indirect call - can throw, we can't tell
292 return true;
293 }
294
295 // Get a global variable with the given name. If it doesn't exist declare it,
296 // which will generate an import and assume that it will exist at link time.
getGlobalVariable(Module & M,Type * Ty,WebAssemblyTargetMachine & TM,const char * Name)297 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
298 WebAssemblyTargetMachine &TM,
299 const char *Name) {
300 auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
301 if (!GV)
302 report_fatal_error(Twine("unable to create global: ") + Name);
303
304 // If the target supports TLS, make this variable thread-local. We can't just
305 // unconditionally make it thread-local and depend on
306 // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
307 // the side effect of disallowing the object from being linked into a
308 // shared-memory module, which we don't want to be responsible for.
309 auto *Subtarget = TM.getSubtargetImpl();
310 auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
311 ? GlobalValue::LocalExecTLSModel
312 : GlobalValue::NotThreadLocal;
313 GV->setThreadLocalMode(TLS);
314 return GV;
315 }
316
317 // Simple function name mangler.
318 // This function simply takes LLVM's string representation of parameter types
319 // and concatenate them with '_'. There are non-alphanumeric characters but llc
320 // is ok with it, and we need to postprocess these names after the lowering
321 // phase anyway.
getSignature(FunctionType * FTy)322 static std::string getSignature(FunctionType *FTy) {
323 std::string Sig;
324 raw_string_ostream OS(Sig);
325 OS << *FTy->getReturnType();
326 for (Type *ParamTy : FTy->params())
327 OS << "_" << *ParamTy;
328 if (FTy->isVarArg())
329 OS << "_...";
330 Sig = OS.str();
331 erase_if(Sig, isSpace);
332 // When s2wasm parses .s file, a comma means the end of an argument. So a
333 // mangled function name can contain any character but a comma.
334 std::replace(Sig.begin(), Sig.end(), ',', '.');
335 return Sig;
336 }
337
getEmscriptenFunction(FunctionType * Ty,const Twine & Name,Module * M)338 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
339 Module *M) {
340 Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
341 // Tell the linker that this function is expected to be imported from the
342 // 'env' module.
343 if (!F->hasFnAttribute("wasm-import-module")) {
344 llvm::AttrBuilder B;
345 B.addAttribute("wasm-import-module", "env");
346 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
347 }
348 if (!F->hasFnAttribute("wasm-import-name")) {
349 llvm::AttrBuilder B;
350 B.addAttribute("wasm-import-name", F->getName());
351 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
352 }
353 return F;
354 }
355
356 // Returns an integer type for the target architecture's address space.
357 // i32 for wasm32 and i64 for wasm64.
getAddrIntType(Module * M)358 static Type *getAddrIntType(Module *M) {
359 IRBuilder<> IRB(M->getContext());
360 return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
361 }
362
363 // Returns an integer pointer type for the target architecture's address space.
364 // i32* for wasm32 and i64* for wasm64.
getAddrPtrType(Module * M)365 static Type *getAddrPtrType(Module *M) {
366 return Type::getIntNPtrTy(M->getContext(),
367 M->getDataLayout().getPointerSizeInBits());
368 }
369
370 // Returns an integer whose type is the integer type for the target's address
371 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
372 // integer.
getAddrSizeInt(Module * M,uint64_t C)373 static Value *getAddrSizeInt(Module *M, uint64_t C) {
374 IRBuilder<> IRB(M->getContext());
375 return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
376 }
377
378 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
379 // This is because a landingpad instruction contains two more arguments, a
380 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
381 // functions are named after the number of arguments in the original landingpad
382 // instruction.
383 Function *
getFindMatchingCatch(Module & M,unsigned NumClauses)384 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
385 unsigned NumClauses) {
386 if (FindMatchingCatches.count(NumClauses))
387 return FindMatchingCatches[NumClauses];
388 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
389 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
390 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
391 Function *F = getEmscriptenFunction(
392 FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
393 FindMatchingCatches[NumClauses] = F;
394 return F;
395 }
396
397 // Generate invoke wrapper seqence with preamble and postamble
398 // Preamble:
399 // __THREW__ = 0;
400 // Postamble:
401 // %__THREW__.val = __THREW__; __THREW__ = 0;
402 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
403 // whether longjmp occurred), for future use.
wrapInvoke(CallBase * CI)404 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
405 Module *M = CI->getModule();
406 LLVMContext &C = M->getContext();
407
408 // If we are calling a function that is noreturn, we must remove that
409 // attribute. The code we insert here does expect it to return, after we
410 // catch the exception.
411 if (CI->doesNotReturn()) {
412 if (auto *F = CI->getCalledFunction())
413 F->removeFnAttr(Attribute::NoReturn);
414 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
415 }
416
417 IRBuilder<> IRB(C);
418 IRB.SetInsertPoint(CI);
419
420 // Pre-invoke
421 // __THREW__ = 0;
422 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
423
424 // Invoke function wrapper in JavaScript
425 SmallVector<Value *, 16> Args;
426 // Put the pointer to the callee as first argument, so it can be called
427 // within the invoke wrapper later
428 Args.push_back(CI->getCalledOperand());
429 Args.append(CI->arg_begin(), CI->arg_end());
430 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
431 NewCall->takeName(CI);
432 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
433 NewCall->setDebugLoc(CI->getDebugLoc());
434
435 // Because we added the pointer to the callee as first argument, all
436 // argument attribute indices have to be incremented by one.
437 SmallVector<AttributeSet, 8> ArgAttributes;
438 const AttributeList &InvokeAL = CI->getAttributes();
439
440 // No attributes for the callee pointer.
441 ArgAttributes.push_back(AttributeSet());
442 // Copy the argument attributes from the original
443 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
444 ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
445
446 AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
447 if (FnAttrs.contains(Attribute::AllocSize)) {
448 // The allocsize attribute (if any) referes to parameters by index and needs
449 // to be adjusted.
450 unsigned SizeArg;
451 Optional<unsigned> NEltArg;
452 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
453 SizeArg += 1;
454 if (NEltArg.hasValue())
455 NEltArg = NEltArg.getValue() + 1;
456 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
457 }
458
459 // Reconstruct the AttributesList based on the vector we constructed.
460 AttributeList NewCallAL =
461 AttributeList::get(C, AttributeSet::get(C, FnAttrs),
462 InvokeAL.getRetAttributes(), ArgAttributes);
463 NewCall->setAttributes(NewCallAL);
464
465 CI->replaceAllUsesWith(NewCall);
466
467 // Post-invoke
468 // %__THREW__.val = __THREW__; __THREW__ = 0;
469 Value *Threw =
470 IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
471 IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
472 return Threw;
473 }
474
475 // Get matching invoke wrapper based on callee signature
getInvokeWrapper(CallBase * CI)476 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
477 Module *M = CI->getModule();
478 SmallVector<Type *, 16> ArgTys;
479 FunctionType *CalleeFTy = CI->getFunctionType();
480
481 std::string Sig = getSignature(CalleeFTy);
482 if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
483 return InvokeWrappers[Sig];
484
485 // Put the pointer to the callee as first argument
486 ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
487 // Add argument types
488 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
489
490 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
491 CalleeFTy->isVarArg());
492 Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
493 InvokeWrappers[Sig] = F;
494 return F;
495 }
496
canLongjmp(Module & M,const Value * Callee) const497 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
498 const Value *Callee) const {
499 if (auto *CalleeF = dyn_cast<Function>(Callee))
500 if (CalleeF->isIntrinsic())
501 return false;
502
503 // Attempting to transform inline assembly will result in something like:
504 // call void @__invoke_void(void ()* asm ...)
505 // which is invalid because inline assembly blocks do not have addresses
506 // and can't be passed by pointer. The result is a crash with illegal IR.
507 if (isa<InlineAsm>(Callee))
508 return false;
509 StringRef CalleeName = Callee->getName();
510
511 // The reason we include malloc/free here is to exclude the malloc/free
512 // calls generated in setjmp prep / cleanup routines.
513 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
514 return false;
515
516 // There are functions in Emscripten's JS glue code or compiler-rt
517 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
518 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
519 CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
520 return false;
521
522 // __cxa_find_matching_catch_N functions cannot longjmp
523 if (Callee->getName().startswith("__cxa_find_matching_catch_"))
524 return false;
525
526 // Exception-catching related functions
527 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
528 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
529 CalleeName == "__clang_call_terminate")
530 return false;
531
532 // Otherwise we don't know
533 return true;
534 }
535
isEmAsmCall(Module & M,const Value * Callee) const536 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
537 const Value *Callee) const {
538 StringRef CalleeName = Callee->getName();
539 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
540 return CalleeName == "emscripten_asm_const_int" ||
541 CalleeName == "emscripten_asm_const_double" ||
542 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
543 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
544 CalleeName == "emscripten_asm_const_async_on_main_thread";
545 }
546
547 // Generate testSetjmp function call seqence with preamble and postamble.
548 // The code this generates is equivalent to the following JavaScript code:
549 // if (%__THREW__.val != 0 & threwValue != 0) {
550 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
551 // if (%label == 0)
552 // emscripten_longjmp(%__THREW__.val, threwValue);
553 // setTempRet0(threwValue);
554 // } else {
555 // %label = -1;
556 // }
557 // %longjmp_result = getTempRet0();
558 //
559 // As output parameters. returns %label, %longjmp_result, and the BB the last
560 // instruction (%longjmp_result = ...) is in.
wrapTestSetjmp(BasicBlock * BB,DebugLoc DL,Value * Threw,Value * SetjmpTable,Value * SetjmpTableSize,Value * & Label,Value * & LongjmpResult,BasicBlock * & EndBB)561 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
562 BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
563 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
564 BasicBlock *&EndBB) {
565 Function *F = BB->getParent();
566 Module *M = F->getParent();
567 LLVMContext &C = M->getContext();
568 IRBuilder<> IRB(C);
569 IRB.SetCurrentDebugLocation(DL);
570
571 // if (%__THREW__.val != 0 & threwValue != 0)
572 IRB.SetInsertPoint(BB);
573 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
574 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
575 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
576 Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
577 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
578 ThrewValueGV->getName() + ".val");
579 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
580 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
581 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
582
583 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
584 // if (%label == 0)
585 IRB.SetInsertPoint(ThenBB1);
586 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
587 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
588 Value *ThrewPtr =
589 IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
590 Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
591 ThrewPtr->getName() + ".loaded");
592 Value *ThenLabel = IRB.CreateCall(
593 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
594 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
595 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
596
597 // emscripten_longjmp(%__THREW__.val, threwValue);
598 IRB.SetInsertPoint(ThenBB2);
599 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
600 IRB.CreateUnreachable();
601
602 // setTempRet0(threwValue);
603 IRB.SetInsertPoint(EndBB2);
604 IRB.CreateCall(SetTempRet0Func, ThrewValue);
605 IRB.CreateBr(EndBB1);
606
607 IRB.SetInsertPoint(ElseBB1);
608 IRB.CreateBr(EndBB1);
609
610 // longjmp_result = getTempRet0();
611 IRB.SetInsertPoint(EndBB1);
612 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
613 LabelPHI->addIncoming(ThenLabel, EndBB2);
614
615 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
616
617 // Output parameter assignment
618 Label = LabelPHI;
619 EndBB = EndBB1;
620 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
621 }
622
rebuildSSA(Function & F)623 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
624 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
625 DT.recalculate(F); // CFG has been changed
626 SSAUpdater SSA;
627 for (BasicBlock &BB : F) {
628 for (Instruction &I : BB) {
629 SSA.Initialize(I.getType(), I.getName());
630 SSA.AddAvailableValue(&BB, &I);
631 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
632 Use &U = *UI;
633 ++UI;
634 auto *User = cast<Instruction>(U.getUser());
635 if (auto *UserPN = dyn_cast<PHINode>(User))
636 if (UserPN->getIncomingBlock(U) == &BB)
637 continue;
638
639 if (DT.dominates(&I, User))
640 continue;
641 SSA.RewriteUseAfterInsertions(U);
642 }
643 }
644 }
645 }
646
647 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes
648 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes
649 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type
650 // match. jmp_buf* will eventually be lowered to i32 in the wasm backend.
replaceLongjmpWithEmscriptenLongjmp(Function * LongjmpF,Function * EmLongjmpF)651 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF,
652 Function *EmLongjmpF) {
653 Module *M = LongjmpF->getParent();
654 SmallVector<CallInst *, 8> ToErase;
655 LLVMContext &C = LongjmpF->getParent()->getContext();
656 IRBuilder<> IRB(C);
657
658 // For calls to longjmp, replace it with emscripten_longjmp and cast its first
659 // argument (jmp_buf*) to int
660 for (User *U : LongjmpF->users()) {
661 auto *CI = dyn_cast<CallInst>(U);
662 if (CI && CI->getCalledFunction() == LongjmpF) {
663 IRB.SetInsertPoint(CI);
664 Value *Jmpbuf =
665 IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "jmpbuf");
666 IRB.CreateCall(EmLongjmpF, {Jmpbuf, CI->getArgOperand(1)});
667 ToErase.push_back(CI);
668 }
669 }
670 for (auto *I : ToErase)
671 I->eraseFromParent();
672
673 // If we have any remaining uses of longjmp's function pointer, replace it
674 // with (int(*)(jmp_buf*, int))emscripten_longjmp.
675 if (!LongjmpF->uses().empty()) {
676 Value *EmLongjmp =
677 IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp");
678 LongjmpF->replaceAllUsesWith(EmLongjmp);
679 }
680 }
681
runOnModule(Module & M)682 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
683 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
684
685 LLVMContext &C = M.getContext();
686 IRBuilder<> IRB(C);
687
688 Function *SetjmpF = M.getFunction("setjmp");
689 Function *LongjmpF = M.getFunction("longjmp");
690 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
691 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
692 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
693
694 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
695 assert(TPC && "Expected a TargetPassConfig");
696 auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
697
698 if (EnableEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm)
699 report_fatal_error("-exception-model=wasm not allowed with "
700 "-enable-emscripten-cxx-exceptions");
701
702 // Declare (or get) global variables __THREW__, __threwValue, and
703 // getTempRet0/setTempRet0 function which are used in common for both
704 // exception handling and setjmp/longjmp handling
705 ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
706 ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
707 GetTempRet0Func = getEmscriptenFunction(
708 FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
709 SetTempRet0Func = getEmscriptenFunction(
710 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
711 "setTempRet0", &M);
712 GetTempRet0Func->setDoesNotThrow();
713 SetTempRet0Func->setDoesNotThrow();
714
715 bool Changed = false;
716
717 // Exception handling
718 if (EnableEH) {
719 // Register __resumeException function
720 FunctionType *ResumeFTy =
721 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
722 ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
723
724 // Register llvm_eh_typeid_for function
725 FunctionType *EHTypeIDTy =
726 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
727 EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
728
729 for (Function &F : M) {
730 if (F.isDeclaration())
731 continue;
732 Changed |= runEHOnFunction(F);
733 }
734 }
735
736 // Setjmp/longjmp handling
737 if (DoSjLj) {
738 Changed = true; // We have setjmp or longjmp somewhere
739
740 // Register emscripten_longjmp function
741 FunctionType *FTy = FunctionType::get(
742 IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
743 EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
744
745 if (LongjmpF)
746 replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF);
747
748 if (SetjmpF) {
749 // Register saveSetjmp function
750 FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
751 FTy = FunctionType::get(Type::getInt32PtrTy(C),
752 {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
753 Type::getInt32PtrTy(C), IRB.getInt32Ty()},
754 false);
755 SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
756
757 // Register testSetjmp function
758 FTy = FunctionType::get(
759 IRB.getInt32Ty(),
760 {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
761 false);
762 TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
763
764 // Only traverse functions that uses setjmp in order not to insert
765 // unnecessary prep / cleanup code in every function
766 SmallPtrSet<Function *, 8> SetjmpUsers;
767 for (User *U : SetjmpF->users()) {
768 auto *UI = cast<Instruction>(U);
769 SetjmpUsers.insert(UI->getFunction());
770 }
771 for (Function *F : SetjmpUsers)
772 runSjLjOnFunction(*F);
773 }
774 }
775
776 if (!Changed) {
777 // Delete unused global variables and functions
778 if (ResumeF)
779 ResumeF->eraseFromParent();
780 if (EHTypeIDF)
781 EHTypeIDF->eraseFromParent();
782 if (EmLongjmpF)
783 EmLongjmpF->eraseFromParent();
784 if (SaveSetjmpF)
785 SaveSetjmpF->eraseFromParent();
786 if (TestSetjmpF)
787 TestSetjmpF->eraseFromParent();
788 return false;
789 }
790
791 return true;
792 }
793
runEHOnFunction(Function & F)794 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
795 Module &M = *F.getParent();
796 LLVMContext &C = F.getContext();
797 IRBuilder<> IRB(C);
798 bool Changed = false;
799 SmallVector<Instruction *, 64> ToErase;
800 SmallPtrSet<LandingPadInst *, 32> LandingPads;
801 bool AllowExceptions = areAllExceptionsAllowed() ||
802 EHAllowlistSet.count(std::string(F.getName()));
803
804 for (BasicBlock &BB : F) {
805 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
806 if (!II)
807 continue;
808 Changed = true;
809 LandingPads.insert(II->getLandingPadInst());
810 IRB.SetInsertPoint(II);
811
812 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledOperand());
813 if (NeedInvoke) {
814 // Wrap invoke with invoke wrapper and generate preamble/postamble
815 Value *Threw = wrapInvoke(II);
816 ToErase.push_back(II);
817
818 // Insert a branch based on __THREW__ variable
819 Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
820 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
821
822 } else {
823 // This can't throw, and we don't need this invoke, just replace it with a
824 // call+branch
825 SmallVector<Value *, 16> Args(II->args());
826 CallInst *NewCall =
827 IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
828 NewCall->takeName(II);
829 NewCall->setCallingConv(II->getCallingConv());
830 NewCall->setDebugLoc(II->getDebugLoc());
831 NewCall->setAttributes(II->getAttributes());
832 II->replaceAllUsesWith(NewCall);
833 ToErase.push_back(II);
834
835 IRB.CreateBr(II->getNormalDest());
836
837 // Remove any PHI node entries from the exception destination
838 II->getUnwindDest()->removePredecessor(&BB);
839 }
840 }
841
842 // Process resume instructions
843 for (BasicBlock &BB : F) {
844 // Scan the body of the basic block for resumes
845 for (Instruction &I : BB) {
846 auto *RI = dyn_cast<ResumeInst>(&I);
847 if (!RI)
848 continue;
849 Changed = true;
850
851 // Split the input into legal values
852 Value *Input = RI->getValue();
853 IRB.SetInsertPoint(RI);
854 Value *Low = IRB.CreateExtractValue(Input, 0, "low");
855 // Create a call to __resumeException function
856 IRB.CreateCall(ResumeF, {Low});
857 // Add a terminator to the block
858 IRB.CreateUnreachable();
859 ToErase.push_back(RI);
860 }
861 }
862
863 // Process llvm.eh.typeid.for intrinsics
864 for (BasicBlock &BB : F) {
865 for (Instruction &I : BB) {
866 auto *CI = dyn_cast<CallInst>(&I);
867 if (!CI)
868 continue;
869 const Function *Callee = CI->getCalledFunction();
870 if (!Callee)
871 continue;
872 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
873 continue;
874 Changed = true;
875
876 IRB.SetInsertPoint(CI);
877 CallInst *NewCI =
878 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
879 CI->replaceAllUsesWith(NewCI);
880 ToErase.push_back(CI);
881 }
882 }
883
884 // Look for orphan landingpads, can occur in blocks with no predecessors
885 for (BasicBlock &BB : F) {
886 Instruction *I = BB.getFirstNonPHI();
887 if (auto *LPI = dyn_cast<LandingPadInst>(I))
888 LandingPads.insert(LPI);
889 }
890 Changed |= !LandingPads.empty();
891
892 // Handle all the landingpad for this function together, as multiple invokes
893 // may share a single lp
894 for (LandingPadInst *LPI : LandingPads) {
895 IRB.SetInsertPoint(LPI);
896 SmallVector<Value *, 16> FMCArgs;
897 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
898 Constant *Clause = LPI->getClause(I);
899 // TODO Handle filters (= exception specifications).
900 // https://bugs.llvm.org/show_bug.cgi?id=50396
901 if (LPI->isCatch(I))
902 FMCArgs.push_back(Clause);
903 }
904
905 // Create a call to __cxa_find_matching_catch_N function
906 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
907 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
908 Value *Undef = UndefValue::get(LPI->getType());
909 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
910 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
911 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
912
913 LPI->replaceAllUsesWith(Pair1);
914 ToErase.push_back(LPI);
915 }
916
917 // Erase everything we no longer need in this function
918 for (Instruction *I : ToErase)
919 I->eraseFromParent();
920
921 return Changed;
922 }
923
924 // This tries to get debug info from the instruction before which a new
925 // instruction will be inserted, and if there's no debug info in that
926 // instruction, tries to get the info instead from the previous instruction (if
927 // any). If none of these has debug info and a DISubprogram is provided, it
928 // creates a dummy debug info with the first line of the function, because IR
929 // verifier requires all inlinable callsites should have debug info when both a
930 // caller and callee have DISubprogram. If none of these conditions are met,
931 // returns empty info.
getOrCreateDebugLoc(const Instruction * InsertBefore,DISubprogram * SP)932 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
933 DISubprogram *SP) {
934 assert(InsertBefore);
935 if (InsertBefore->getDebugLoc())
936 return InsertBefore->getDebugLoc();
937 const Instruction *Prev = InsertBefore->getPrevNode();
938 if (Prev && Prev->getDebugLoc())
939 return Prev->getDebugLoc();
940 if (SP)
941 return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
942 return DebugLoc();
943 }
944
runSjLjOnFunction(Function & F)945 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
946 Module &M = *F.getParent();
947 LLVMContext &C = F.getContext();
948 IRBuilder<> IRB(C);
949 SmallVector<Instruction *, 64> ToErase;
950 // Vector of %setjmpTable values
951 std::vector<Instruction *> SetjmpTableInsts;
952 // Vector of %setjmpTableSize values
953 std::vector<Instruction *> SetjmpTableSizeInsts;
954
955 // Setjmp preparation
956
957 // This instruction effectively means %setjmpTableSize = 4.
958 // We create this as an instruction intentionally, and we don't want to fold
959 // this instruction to a constant 4, because this value will be used in
960 // SSAUpdater.AddAvailableValue(...) later.
961 BasicBlock &EntryBB = F.getEntryBlock();
962 DebugLoc FirstDL = getOrCreateDebugLoc(&*EntryBB.begin(), F.getSubprogram());
963 BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
964 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
965 &*EntryBB.getFirstInsertionPt());
966 SetjmpTableSize->setDebugLoc(FirstDL);
967 // setjmpTable = (int *) malloc(40);
968 Instruction *SetjmpTable = CallInst::CreateMalloc(
969 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
970 nullptr, nullptr, "setjmpTable");
971 SetjmpTable->setDebugLoc(FirstDL);
972 // CallInst::CreateMalloc may return a bitcast instruction if the result types
973 // mismatch. We need to set the debug loc for the original call too.
974 auto *MallocCall = SetjmpTable->stripPointerCasts();
975 if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
976 MallocCallI->setDebugLoc(FirstDL);
977 }
978 // setjmpTable[0] = 0;
979 IRB.SetInsertPoint(SetjmpTableSize);
980 IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
981 SetjmpTableInsts.push_back(SetjmpTable);
982 SetjmpTableSizeInsts.push_back(SetjmpTableSize);
983
984 // Setjmp transformation
985 std::vector<PHINode *> SetjmpRetPHIs;
986 Function *SetjmpF = M.getFunction("setjmp");
987 for (User *U : SetjmpF->users()) {
988 auto *CI = dyn_cast<CallInst>(U);
989 if (!CI)
990 report_fatal_error("Does not support indirect calls to setjmp");
991
992 BasicBlock *BB = CI->getParent();
993 if (BB->getParent() != &F) // in other function
994 continue;
995
996 // The tail is everything right after the call, and will be reached once
997 // when setjmp is called, and later when longjmp returns to the setjmp
998 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
999 // Add a phi to the tail, which will be the output of setjmp, which
1000 // indicates if this is the first call or a longjmp back. The phi directly
1001 // uses the right value based on where we arrive from
1002 IRB.SetInsertPoint(Tail->getFirstNonPHI());
1003 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1004
1005 // setjmp initial call returns 0
1006 SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1007 // The proper output is now this, not the setjmp call itself
1008 CI->replaceAllUsesWith(SetjmpRet);
1009 // longjmp returns to the setjmp will add themselves to this phi
1010 SetjmpRetPHIs.push_back(SetjmpRet);
1011
1012 // Fix call target
1013 // Our index in the function is our place in the array + 1 to avoid index
1014 // 0, because index 0 means the longjmp is not ours to handle.
1015 IRB.SetInsertPoint(CI);
1016 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1017 SetjmpTable, SetjmpTableSize};
1018 Instruction *NewSetjmpTable =
1019 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1020 Instruction *NewSetjmpTableSize =
1021 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
1022 SetjmpTableInsts.push_back(NewSetjmpTable);
1023 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1024 ToErase.push_back(CI);
1025 }
1026
1027 // Update each call that can longjmp so it can return to a setjmp where
1028 // relevant.
1029
1030 // Because we are creating new BBs while processing and don't want to make
1031 // all these newly created BBs candidates again for longjmp processing, we
1032 // first make the vector of candidate BBs.
1033 std::vector<BasicBlock *> BBs;
1034 for (BasicBlock &BB : F)
1035 BBs.push_back(&BB);
1036
1037 // BBs.size() will change within the loop, so we query it every time
1038 for (unsigned I = 0; I < BBs.size(); I++) {
1039 BasicBlock *BB = BBs[I];
1040 for (Instruction &I : *BB) {
1041 assert(!isa<InvokeInst>(&I));
1042 auto *CI = dyn_cast<CallInst>(&I);
1043 if (!CI)
1044 continue;
1045
1046 const Value *Callee = CI->getCalledOperand();
1047 if (!canLongjmp(M, Callee))
1048 continue;
1049 if (isEmAsmCall(M, Callee))
1050 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1051 F.getName() +
1052 ". Please consider using EM_JS, or move the "
1053 "EM_ASM into another function.",
1054 false);
1055
1056 Value *Threw = nullptr;
1057 BasicBlock *Tail;
1058 if (Callee->getName().startswith("__invoke_")) {
1059 // If invoke wrapper has already been generated for this call in
1060 // previous EH phase, search for the load instruction
1061 // %__THREW__.val = __THREW__;
1062 // in postamble after the invoke wrapper call
1063 LoadInst *ThrewLI = nullptr;
1064 StoreInst *ThrewResetSI = nullptr;
1065 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1066 I != IE; ++I) {
1067 if (auto *LI = dyn_cast<LoadInst>(I))
1068 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1069 if (GV == ThrewGV) {
1070 Threw = ThrewLI = LI;
1071 break;
1072 }
1073 }
1074 // Search for the store instruction after the load above
1075 // __THREW__ = 0;
1076 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1077 I != IE; ++I) {
1078 if (auto *SI = dyn_cast<StoreInst>(I)) {
1079 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1080 if (GV == ThrewGV &&
1081 SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1082 ThrewResetSI = SI;
1083 break;
1084 }
1085 }
1086 }
1087 }
1088 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1089 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1090 Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1091
1092 } else {
1093 // Wrap call with invoke wrapper and generate preamble/postamble
1094 Threw = wrapInvoke(CI);
1095 ToErase.push_back(CI);
1096 Tail = SplitBlock(BB, CI->getNextNode());
1097 }
1098
1099 // We need to replace the terminator in Tail - SplitBlock makes BB go
1100 // straight to Tail, we need to check if a longjmp occurred, and go to the
1101 // right setjmp-tail if so
1102 ToErase.push_back(BB->getTerminator());
1103
1104 // Generate a function call to testSetjmp function and preamble/postamble
1105 // code to figure out (1) whether longjmp occurred (2) if longjmp
1106 // occurred, which setjmp it corresponds to
1107 Value *Label = nullptr;
1108 Value *LongjmpResult = nullptr;
1109 BasicBlock *EndBB = nullptr;
1110 wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1111 Label, LongjmpResult, EndBB);
1112 assert(Label && LongjmpResult && EndBB);
1113
1114 // Create switch instruction
1115 IRB.SetInsertPoint(EndBB);
1116 IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1117 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1118 // -1 means no longjmp happened, continue normally (will hit the default
1119 // switch case). 0 means a longjmp that is not ours to handle, needs a
1120 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1121 // 0).
1122 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1123 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1124 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1125 }
1126
1127 // We are splitting the block here, and must continue to find other calls
1128 // in the block - which is now split. so continue to traverse in the Tail
1129 BBs.push_back(Tail);
1130 }
1131 }
1132
1133 // Erase everything we no longer need in this function
1134 for (Instruction *I : ToErase)
1135 I->eraseFromParent();
1136
1137 // Free setjmpTable buffer before each return instruction
1138 for (BasicBlock &BB : F) {
1139 Instruction *TI = BB.getTerminator();
1140 if (isa<ReturnInst>(TI)) {
1141 DebugLoc DL = getOrCreateDebugLoc(TI, F.getSubprogram());
1142 auto *Free = CallInst::CreateFree(SetjmpTable, TI);
1143 Free->setDebugLoc(DL);
1144 // CallInst::CreateFree may create a bitcast instruction if its argument
1145 // types mismatch. We need to set the debug loc for the bitcast too.
1146 if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1147 if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1148 BitCastI->setDebugLoc(DL);
1149 }
1150 }
1151 }
1152
1153 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1154 // (when buffer reallocation occurs)
1155 // entry:
1156 // setjmpTableSize = 4;
1157 // setjmpTable = (int *) malloc(40);
1158 // setjmpTable[0] = 0;
1159 // ...
1160 // somebb:
1161 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1162 // setjmpTableSize = getTempRet0();
1163 // So we need to make sure the SSA for these variables is valid so that every
1164 // saveSetjmp and testSetjmp calls have the correct arguments.
1165 SSAUpdater SetjmpTableSSA;
1166 SSAUpdater SetjmpTableSizeSSA;
1167 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1168 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1169 for (Instruction *I : SetjmpTableInsts)
1170 SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1171 for (Instruction *I : SetjmpTableSizeInsts)
1172 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1173
1174 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1175 UI != UE;) {
1176 // Grab the use before incrementing the iterator.
1177 Use &U = *UI;
1178 // Increment the iterator before removing the use from the list.
1179 ++UI;
1180 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1181 if (I->getParent() != &EntryBB)
1182 SetjmpTableSSA.RewriteUse(U);
1183 }
1184 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1185 UI != UE;) {
1186 Use &U = *UI;
1187 ++UI;
1188 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1189 if (I->getParent() != &EntryBB)
1190 SetjmpTableSizeSSA.RewriteUse(U);
1191 }
1192
1193 // Finally, our modifications to the cfg can break dominance of SSA variables.
1194 // For example, in this code,
1195 // if (x()) { .. setjmp() .. }
1196 // if (y()) { .. longjmp() .. }
1197 // We must split the longjmp block, and it can jump into the block splitted
1198 // from setjmp one. But that means that when we split the setjmp block, it's
1199 // first part no longer dominates its second part - there is a theoretically
1200 // possible control flow path where x() is false, then y() is true and we
1201 // reach the second part of the setjmp block, without ever reaching the first
1202 // part. So, we rebuild SSA form here.
1203 rebuildSSA(F);
1204 return true;
1205 }
1206