1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the interfaces that RISCV uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RISCVISelLowering.h" 15 #include "MCTargetDesc/RISCVMatInt.h" 16 #include "RISCV.h" 17 #include "RISCVMachineFunctionInfo.h" 18 #include "RISCVRegisterInfo.h" 19 #include "RISCVSubtarget.h" 20 #include "RISCVTargetMachine.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/CodeGen/ValueTypes.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/DiagnosticPrinter.h" 32 #include "llvm/IR/IntrinsicsRISCV.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "riscv-lower" 42 43 STATISTIC(NumTailCalls, "Number of tail calls"); 44 45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM, 46 const RISCVSubtarget &STI) 47 : TargetLowering(TM), Subtarget(STI) { 48 49 if (Subtarget.isRV32E()) 50 report_fatal_error("Codegen not yet implemented for RV32E"); 51 52 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI"); 54 55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) && 56 !Subtarget.hasStdExtF()) { 57 errs() << "Hard-float 'f' ABI can't be used for a target that " 58 "doesn't support the F instruction set extension (ignoring " 59 "target-abi)\n"; 60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) && 62 !Subtarget.hasStdExtD()) { 63 errs() << "Hard-float 'd' ABI can't be used for a target that " 64 "doesn't support the D instruction set extension (ignoring " 65 "target-abi)\n"; 66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32; 67 } 68 69 switch (ABI) { 70 default: 71 report_fatal_error("Don't know how to lower this ABI"); 72 case RISCVABI::ABI_ILP32: 73 case RISCVABI::ABI_ILP32F: 74 case RISCVABI::ABI_ILP32D: 75 case RISCVABI::ABI_LP64: 76 case RISCVABI::ABI_LP64F: 77 case RISCVABI::ABI_LP64D: 78 break; 79 } 80 81 MVT XLenVT = Subtarget.getXLenVT(); 82 83 // Set up the register classes. 84 addRegisterClass(XLenVT, &RISCV::GPRRegClass); 85 86 if (Subtarget.hasStdExtZfh()) 87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass); 88 if (Subtarget.hasStdExtF()) 89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass); 90 if (Subtarget.hasStdExtD()) 91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass); 92 93 static const MVT::SimpleValueType BoolVecVTs[] = { 94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1, 95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1}; 96 static const MVT::SimpleValueType IntVecVTs[] = { 97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8, 98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16, 99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32, 100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64, 101 MVT::nxv4i64, MVT::nxv8i64}; 102 static const MVT::SimpleValueType F16VecVTs[] = { 103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16, 104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16}; 105 static const MVT::SimpleValueType F32VecVTs[] = { 106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32}; 107 static const MVT::SimpleValueType F64VecVTs[] = { 108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64}; 109 110 if (Subtarget.hasStdExtV()) { 111 auto addRegClassForRVV = [this](MVT VT) { 112 unsigned Size = VT.getSizeInBits().getKnownMinValue(); 113 assert(Size <= 512 && isPowerOf2_32(Size)); 114 const TargetRegisterClass *RC; 115 if (Size <= 64) 116 RC = &RISCV::VRRegClass; 117 else if (Size == 128) 118 RC = &RISCV::VRM2RegClass; 119 else if (Size == 256) 120 RC = &RISCV::VRM4RegClass; 121 else 122 RC = &RISCV::VRM8RegClass; 123 124 addRegisterClass(VT, RC); 125 }; 126 127 for (MVT VT : BoolVecVTs) 128 addRegClassForRVV(VT); 129 for (MVT VT : IntVecVTs) 130 addRegClassForRVV(VT); 131 132 if (Subtarget.hasStdExtZfh()) 133 for (MVT VT : F16VecVTs) 134 addRegClassForRVV(VT); 135 136 if (Subtarget.hasStdExtF()) 137 for (MVT VT : F32VecVTs) 138 addRegClassForRVV(VT); 139 140 if (Subtarget.hasStdExtD()) 141 for (MVT VT : F64VecVTs) 142 addRegClassForRVV(VT); 143 144 if (Subtarget.useRVVForFixedLengthVectors()) { 145 auto addRegClassForFixedVectors = [this](MVT VT) { 146 MVT ContainerVT = getContainerForFixedLengthVector(VT); 147 unsigned RCID = getRegClassIDForVecVT(ContainerVT); 148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo(); 149 addRegisterClass(VT, TRI.getRegClass(RCID)); 150 }; 151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) 152 if (useRVVForFixedLengthVectorVT(VT)) 153 addRegClassForFixedVectors(VT); 154 155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) 156 if (useRVVForFixedLengthVectorVT(VT)) 157 addRegClassForFixedVectors(VT); 158 } 159 } 160 161 // Compute derived properties from the register classes. 162 computeRegisterProperties(STI.getRegisterInfo()); 163 164 setStackPointerRegisterToSaveRestore(RISCV::X2); 165 166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) 167 setLoadExtAction(N, XLenVT, MVT::i1, Promote); 168 169 // TODO: add all necessary setOperationAction calls. 170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand); 171 172 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 173 setOperationAction(ISD::BR_CC, XLenVT, Expand); 174 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand); 176 177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 179 180 setOperationAction(ISD::VASTART, MVT::Other, Custom); 181 setOperationAction(ISD::VAARG, MVT::Other, Expand); 182 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 183 setOperationAction(ISD::VAEND, MVT::Other, Expand); 184 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 186 if (!Subtarget.hasStdExtZbb()) { 187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 189 } 190 191 if (Subtarget.is64Bit()) { 192 setOperationAction(ISD::ADD, MVT::i32, Custom); 193 setOperationAction(ISD::SUB, MVT::i32, Custom); 194 setOperationAction(ISD::SHL, MVT::i32, Custom); 195 setOperationAction(ISD::SRA, MVT::i32, Custom); 196 setOperationAction(ISD::SRL, MVT::i32, Custom); 197 198 setOperationAction(ISD::UADDO, MVT::i32, Custom); 199 setOperationAction(ISD::USUBO, MVT::i32, Custom); 200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom); 201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom); 202 } 203 204 if (!Subtarget.hasStdExtM()) { 205 setOperationAction(ISD::MUL, XLenVT, Expand); 206 setOperationAction(ISD::MULHS, XLenVT, Expand); 207 setOperationAction(ISD::MULHU, XLenVT, Expand); 208 setOperationAction(ISD::SDIV, XLenVT, Expand); 209 setOperationAction(ISD::UDIV, XLenVT, Expand); 210 setOperationAction(ISD::SREM, XLenVT, Expand); 211 setOperationAction(ISD::UREM, XLenVT, Expand); 212 } else { 213 if (Subtarget.is64Bit()) { 214 setOperationAction(ISD::MUL, MVT::i32, Custom); 215 setOperationAction(ISD::MUL, MVT::i128, Custom); 216 217 setOperationAction(ISD::SDIV, MVT::i8, Custom); 218 setOperationAction(ISD::UDIV, MVT::i8, Custom); 219 setOperationAction(ISD::UREM, MVT::i8, Custom); 220 setOperationAction(ISD::SDIV, MVT::i16, Custom); 221 setOperationAction(ISD::UDIV, MVT::i16, Custom); 222 setOperationAction(ISD::UREM, MVT::i16, Custom); 223 setOperationAction(ISD::SDIV, MVT::i32, Custom); 224 setOperationAction(ISD::UDIV, MVT::i32, Custom); 225 setOperationAction(ISD::UREM, MVT::i32, Custom); 226 } else { 227 setOperationAction(ISD::MUL, MVT::i64, Custom); 228 } 229 } 230 231 setOperationAction(ISD::SDIVREM, XLenVT, Expand); 232 setOperationAction(ISD::UDIVREM, XLenVT, Expand); 233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand); 234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand); 235 236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom); 237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom); 238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom); 239 240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 241 if (Subtarget.is64Bit()) { 242 setOperationAction(ISD::ROTL, MVT::i32, Custom); 243 setOperationAction(ISD::ROTR, MVT::i32, Custom); 244 } 245 } else { 246 setOperationAction(ISD::ROTL, XLenVT, Expand); 247 setOperationAction(ISD::ROTR, XLenVT, Expand); 248 } 249 250 if (Subtarget.hasStdExtZbp()) { 251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable 252 // more combining. 253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom); 254 setOperationAction(ISD::BSWAP, XLenVT, Custom); 255 256 if (Subtarget.is64Bit()) { 257 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom); 258 setOperationAction(ISD::BSWAP, MVT::i32, Custom); 259 } 260 } else { 261 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll 262 // pattern match it directly in isel. 263 setOperationAction(ISD::BSWAP, XLenVT, 264 Subtarget.hasStdExtZbb() ? Legal : Expand); 265 } 266 267 if (Subtarget.hasStdExtZbb()) { 268 setOperationAction(ISD::SMIN, XLenVT, Legal); 269 setOperationAction(ISD::SMAX, XLenVT, Legal); 270 setOperationAction(ISD::UMIN, XLenVT, Legal); 271 setOperationAction(ISD::UMAX, XLenVT, Legal); 272 273 if (Subtarget.is64Bit()) { 274 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 275 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 276 setOperationAction(ISD::CTLZ, MVT::i32, Custom); 277 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 278 } 279 } else { 280 setOperationAction(ISD::CTTZ, XLenVT, Expand); 281 setOperationAction(ISD::CTLZ, XLenVT, Expand); 282 setOperationAction(ISD::CTPOP, XLenVT, Expand); 283 } 284 285 if (Subtarget.hasStdExtZbt()) { 286 setOperationAction(ISD::FSHL, XLenVT, Custom); 287 setOperationAction(ISD::FSHR, XLenVT, Custom); 288 setOperationAction(ISD::SELECT, XLenVT, Legal); 289 290 if (Subtarget.is64Bit()) { 291 setOperationAction(ISD::FSHL, MVT::i32, Custom); 292 setOperationAction(ISD::FSHR, MVT::i32, Custom); 293 } 294 } else { 295 setOperationAction(ISD::SELECT, XLenVT, Custom); 296 } 297 298 ISD::CondCode FPCCToExpand[] = { 299 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 300 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT, 301 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO}; 302 303 ISD::NodeType FPOpToExpand[] = { 304 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP, 305 ISD::FP_TO_FP16}; 306 307 if (Subtarget.hasStdExtZfh()) 308 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 309 310 if (Subtarget.hasStdExtZfh()) { 311 setOperationAction(ISD::FMINNUM, MVT::f16, Legal); 312 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); 313 for (auto CC : FPCCToExpand) 314 setCondCodeAction(CC, MVT::f16, Expand); 315 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); 316 setOperationAction(ISD::SELECT, MVT::f16, Custom); 317 setOperationAction(ISD::BR_CC, MVT::f16, Expand); 318 for (auto Op : FPOpToExpand) 319 setOperationAction(Op, MVT::f16, Expand); 320 } 321 322 if (Subtarget.hasStdExtF()) { 323 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 324 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 325 for (auto CC : FPCCToExpand) 326 setCondCodeAction(CC, MVT::f32, Expand); 327 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 328 setOperationAction(ISD::SELECT, MVT::f32, Custom); 329 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 330 for (auto Op : FPOpToExpand) 331 setOperationAction(Op, MVT::f32, Expand); 332 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 333 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 334 } 335 336 if (Subtarget.hasStdExtF() && Subtarget.is64Bit()) 337 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 338 339 if (Subtarget.hasStdExtD()) { 340 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 341 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 342 for (auto CC : FPCCToExpand) 343 setCondCodeAction(CC, MVT::f64, Expand); 344 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 345 setOperationAction(ISD::SELECT, MVT::f64, Custom); 346 setOperationAction(ISD::BR_CC, MVT::f64, Expand); 347 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 348 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 349 for (auto Op : FPOpToExpand) 350 setOperationAction(Op, MVT::f64, Expand); 351 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 352 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 353 } 354 355 if (Subtarget.is64Bit()) { 356 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 357 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 358 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 359 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 360 } 361 362 if (Subtarget.hasStdExtF()) { 363 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom); 364 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); 365 } 366 367 setOperationAction(ISD::GlobalAddress, XLenVT, Custom); 368 setOperationAction(ISD::BlockAddress, XLenVT, Custom); 369 setOperationAction(ISD::ConstantPool, XLenVT, Custom); 370 setOperationAction(ISD::JumpTable, XLenVT, Custom); 371 372 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom); 373 374 // TODO: On M-mode only targets, the cycle[h] CSR may not be present. 375 // Unfortunately this can't be determined just from the ISA naming string. 376 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, 377 Subtarget.is64Bit() ? Legal : Custom); 378 379 setOperationAction(ISD::TRAP, MVT::Other, Legal); 380 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); 381 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 382 if (Subtarget.is64Bit()) 383 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom); 384 385 if (Subtarget.hasStdExtA()) { 386 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen()); 387 setMinCmpXchgSizeInBits(32); 388 } else { 389 setMaxAtomicSizeInBitsSupported(0); 390 } 391 392 setBooleanContents(ZeroOrOneBooleanContent); 393 394 if (Subtarget.hasStdExtV()) { 395 setBooleanVectorContents(ZeroOrOneBooleanContent); 396 397 setOperationAction(ISD::VSCALE, XLenVT, Custom); 398 399 // RVV intrinsics may have illegal operands. 400 // We also need to custom legalize vmv.x.s. 401 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); 402 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); 403 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); 404 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom); 405 if (Subtarget.is64Bit()) { 406 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom); 407 } else { 408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 409 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 410 } 411 412 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 413 414 static unsigned IntegerVPOps[] = { 415 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV, 416 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, 417 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL}; 418 419 if (!Subtarget.is64Bit()) { 420 // We must custom-lower certain vXi64 operations on RV32 due to the vector 421 // element type being illegal. 422 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom); 423 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom); 424 425 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom); 426 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom); 427 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom); 428 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom); 429 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom); 430 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom); 431 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom); 432 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom); 433 } 434 435 for (MVT VT : BoolVecVTs) { 436 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 437 438 // Mask VTs are custom-expanded into a series of standard nodes 439 setOperationAction(ISD::TRUNCATE, VT, Custom); 440 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 441 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 442 443 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 444 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 445 446 setOperationAction(ISD::SELECT, VT, Expand); 447 setOperationAction(ISD::SELECT_CC, VT, Expand); 448 449 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 450 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 451 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 452 453 // Expand all extending loads to types larger than this, and truncating 454 // stores from types larger than this. 455 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 456 setTruncStoreAction(OtherVT, VT, Expand); 457 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 458 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 459 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 460 } 461 } 462 463 for (MVT VT : IntVecVTs) { 464 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 465 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 466 467 setOperationAction(ISD::SMIN, VT, Legal); 468 setOperationAction(ISD::SMAX, VT, Legal); 469 setOperationAction(ISD::UMIN, VT, Legal); 470 setOperationAction(ISD::UMAX, VT, Legal); 471 472 setOperationAction(ISD::ROTL, VT, Expand); 473 setOperationAction(ISD::ROTR, VT, Expand); 474 475 // Custom-lower extensions and truncations from/to mask types. 476 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 477 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 478 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 479 480 // RVV has native int->float & float->int conversions where the 481 // element type sizes are within one power-of-two of each other. Any 482 // wider distances between type sizes have to be lowered as sequences 483 // which progressively narrow the gap in stages. 484 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 485 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 486 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 487 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 488 489 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL" 490 // nodes which truncate by one power of two at a time. 491 setOperationAction(ISD::TRUNCATE, VT, Custom); 492 493 // Custom-lower insert/extract operations to simplify patterns. 494 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 496 497 // Custom-lower reduction operations to set up the corresponding custom 498 // nodes' operands. 499 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 500 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 501 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 502 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 503 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 504 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 505 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 506 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 507 508 for (unsigned VPOpc : IntegerVPOps) { 509 setOperationAction(VPOpc, VT, Custom); 510 // RV64 must custom-legalize the i32 EVL parameter. 511 if (Subtarget.is64Bit()) 512 setOperationAction(VPOpc, MVT::i32, Custom); 513 } 514 515 setOperationAction(ISD::MLOAD, VT, Custom); 516 setOperationAction(ISD::MSTORE, VT, Custom); 517 setOperationAction(ISD::MGATHER, VT, Custom); 518 setOperationAction(ISD::MSCATTER, VT, Custom); 519 520 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 521 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 522 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 523 524 setOperationAction(ISD::SELECT, VT, Expand); 525 setOperationAction(ISD::SELECT_CC, VT, Expand); 526 527 setOperationAction(ISD::STEP_VECTOR, VT, Custom); 528 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 529 530 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) { 531 setTruncStoreAction(VT, OtherVT, Expand); 532 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 533 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 534 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 535 } 536 } 537 538 // Expand various CCs to best match the RVV ISA, which natively supports UNE 539 // but no other unordered comparisons, and supports all ordered comparisons 540 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization 541 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE), 542 // and we pattern-match those back to the "original", swapping operands once 543 // more. This way we catch both operations and both "vf" and "fv" forms with 544 // fewer patterns. 545 ISD::CondCode VFPCCToExpand[] = { 546 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT, 547 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO, 548 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE, 549 }; 550 551 // Sets common operation actions on RVV floating-point vector types. 552 const auto SetCommonVFPActions = [&](MVT VT) { 553 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); 554 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type 555 // sizes are within one power-of-two of each other. Therefore conversions 556 // between vXf16 and vXf64 must be lowered as sequences which convert via 557 // vXf32. 558 setOperationAction(ISD::FP_ROUND, VT, Custom); 559 setOperationAction(ISD::FP_EXTEND, VT, Custom); 560 // Custom-lower insert/extract operations to simplify patterns. 561 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 562 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 563 // Expand various condition codes (explained above). 564 for (auto CC : VFPCCToExpand) 565 setCondCodeAction(CC, VT, Expand); 566 567 setOperationAction(ISD::FMINNUM, VT, Legal); 568 setOperationAction(ISD::FMAXNUM, VT, Legal); 569 570 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 571 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 572 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 573 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 574 setOperationAction(ISD::FCOPYSIGN, VT, Legal); 575 576 setOperationAction(ISD::MLOAD, VT, Custom); 577 setOperationAction(ISD::MSTORE, VT, Custom); 578 setOperationAction(ISD::MGATHER, VT, Custom); 579 setOperationAction(ISD::MSCATTER, VT, Custom); 580 581 setOperationAction(ISD::SELECT, VT, Expand); 582 setOperationAction(ISD::SELECT_CC, VT, Expand); 583 584 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 585 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 586 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 587 588 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom); 589 }; 590 591 // Sets common extload/truncstore actions on RVV floating-point vector 592 // types. 593 const auto SetCommonVFPExtLoadTruncStoreActions = 594 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) { 595 for (auto SmallVT : SmallerVTs) { 596 setTruncStoreAction(VT, SmallVT, Expand); 597 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand); 598 } 599 }; 600 601 if (Subtarget.hasStdExtZfh()) 602 for (MVT VT : F16VecVTs) 603 SetCommonVFPActions(VT); 604 605 for (MVT VT : F32VecVTs) { 606 if (Subtarget.hasStdExtF()) 607 SetCommonVFPActions(VT); 608 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 609 } 610 611 for (MVT VT : F64VecVTs) { 612 if (Subtarget.hasStdExtD()) 613 SetCommonVFPActions(VT); 614 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs); 615 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs); 616 } 617 618 if (Subtarget.useRVVForFixedLengthVectors()) { 619 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 620 if (!useRVVForFixedLengthVectorVT(VT)) 621 continue; 622 623 // By default everything must be expanded. 624 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 625 setOperationAction(Op, VT, Expand); 626 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) { 627 setTruncStoreAction(VT, OtherVT, Expand); 628 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 629 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand); 630 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand); 631 } 632 633 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 634 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 635 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 636 637 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 638 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); 639 640 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 641 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 642 643 setOperationAction(ISD::LOAD, VT, Custom); 644 setOperationAction(ISD::STORE, VT, Custom); 645 646 setOperationAction(ISD::SETCC, VT, Custom); 647 648 setOperationAction(ISD::TRUNCATE, VT, Custom); 649 650 setOperationAction(ISD::BITCAST, VT, Custom); 651 652 setOperationAction(ISD::VECREDUCE_AND, VT, Custom); 653 setOperationAction(ISD::VECREDUCE_OR, VT, Custom); 654 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); 655 656 // Operations below are different for between masks and other vectors. 657 if (VT.getVectorElementType() == MVT::i1) { 658 setOperationAction(ISD::AND, VT, Custom); 659 setOperationAction(ISD::OR, VT, Custom); 660 setOperationAction(ISD::XOR, VT, Custom); 661 continue; 662 } 663 664 // Use SPLAT_VECTOR to prevent type legalization from destroying the 665 // splats when type legalizing i64 scalar on RV32. 666 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs 667 // improvements first. 668 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) { 669 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); 670 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom); 671 } 672 673 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 674 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 675 676 setOperationAction(ISD::MLOAD, VT, Custom); 677 setOperationAction(ISD::MSTORE, VT, Custom); 678 setOperationAction(ISD::MGATHER, VT, Custom); 679 setOperationAction(ISD::MSCATTER, VT, Custom); 680 setOperationAction(ISD::ADD, VT, Custom); 681 setOperationAction(ISD::MUL, VT, Custom); 682 setOperationAction(ISD::SUB, VT, Custom); 683 setOperationAction(ISD::AND, VT, Custom); 684 setOperationAction(ISD::OR, VT, Custom); 685 setOperationAction(ISD::XOR, VT, Custom); 686 setOperationAction(ISD::SDIV, VT, Custom); 687 setOperationAction(ISD::SREM, VT, Custom); 688 setOperationAction(ISD::UDIV, VT, Custom); 689 setOperationAction(ISD::UREM, VT, Custom); 690 setOperationAction(ISD::SHL, VT, Custom); 691 setOperationAction(ISD::SRA, VT, Custom); 692 setOperationAction(ISD::SRL, VT, Custom); 693 694 setOperationAction(ISD::SMIN, VT, Custom); 695 setOperationAction(ISD::SMAX, VT, Custom); 696 setOperationAction(ISD::UMIN, VT, Custom); 697 setOperationAction(ISD::UMAX, VT, Custom); 698 setOperationAction(ISD::ABS, VT, Custom); 699 700 setOperationAction(ISD::MULHS, VT, Custom); 701 setOperationAction(ISD::MULHU, VT, Custom); 702 703 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 704 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 705 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 706 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 707 708 setOperationAction(ISD::VSELECT, VT, Custom); 709 setOperationAction(ISD::SELECT, VT, Expand); 710 setOperationAction(ISD::SELECT_CC, VT, Expand); 711 712 setOperationAction(ISD::ANY_EXTEND, VT, Custom); 713 setOperationAction(ISD::SIGN_EXTEND, VT, Custom); 714 setOperationAction(ISD::ZERO_EXTEND, VT, Custom); 715 716 // Custom-lower reduction operations to set up the corresponding custom 717 // nodes' operands. 718 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); 719 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); 720 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); 721 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); 722 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); 723 724 for (unsigned VPOpc : IntegerVPOps) { 725 setOperationAction(VPOpc, VT, Custom); 726 // RV64 must custom-legalize the i32 EVL parameter. 727 if (Subtarget.is64Bit()) 728 setOperationAction(VPOpc, MVT::i32, Custom); 729 } 730 } 731 732 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) { 733 if (!useRVVForFixedLengthVectorVT(VT)) 734 continue; 735 736 // By default everything must be expanded. 737 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) 738 setOperationAction(Op, VT, Expand); 739 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) { 740 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand); 741 setTruncStoreAction(VT, OtherVT, Expand); 742 } 743 744 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed. 745 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); 746 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); 747 748 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 749 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 750 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 751 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 752 753 setOperationAction(ISD::LOAD, VT, Custom); 754 setOperationAction(ISD::STORE, VT, Custom); 755 setOperationAction(ISD::MLOAD, VT, Custom); 756 setOperationAction(ISD::MSTORE, VT, Custom); 757 setOperationAction(ISD::MGATHER, VT, Custom); 758 setOperationAction(ISD::MSCATTER, VT, Custom); 759 setOperationAction(ISD::FADD, VT, Custom); 760 setOperationAction(ISD::FSUB, VT, Custom); 761 setOperationAction(ISD::FMUL, VT, Custom); 762 setOperationAction(ISD::FDIV, VT, Custom); 763 setOperationAction(ISD::FNEG, VT, Custom); 764 setOperationAction(ISD::FABS, VT, Custom); 765 setOperationAction(ISD::FCOPYSIGN, VT, Custom); 766 setOperationAction(ISD::FSQRT, VT, Custom); 767 setOperationAction(ISD::FMA, VT, Custom); 768 setOperationAction(ISD::FMINNUM, VT, Custom); 769 setOperationAction(ISD::FMAXNUM, VT, Custom); 770 771 setOperationAction(ISD::FP_ROUND, VT, Custom); 772 setOperationAction(ISD::FP_EXTEND, VT, Custom); 773 774 for (auto CC : VFPCCToExpand) 775 setCondCodeAction(CC, VT, Expand); 776 777 setOperationAction(ISD::VSELECT, VT, Custom); 778 setOperationAction(ISD::SELECT, VT, Expand); 779 setOperationAction(ISD::SELECT_CC, VT, Expand); 780 781 setOperationAction(ISD::BITCAST, VT, Custom); 782 783 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); 784 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); 785 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); 786 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); 787 } 788 789 // Custom-legalize bitcasts from fixed-length vectors to scalar types. 790 setOperationAction(ISD::BITCAST, MVT::i8, Custom); 791 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 792 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 793 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 794 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 795 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 796 setOperationAction(ISD::BITCAST, MVT::f64, Custom); 797 } 798 } 799 800 // Function alignments. 801 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4); 802 setMinFunctionAlignment(FunctionAlignment); 803 setPrefFunctionAlignment(FunctionAlignment); 804 805 setMinimumJumpTableEntries(5); 806 807 // Jumps are expensive, compared to logic 808 setJumpIsExpensive(); 809 810 // We can use any register for comparisons 811 setHasMultipleConditionRegisters(); 812 813 setTargetDAGCombine(ISD::AND); 814 setTargetDAGCombine(ISD::OR); 815 setTargetDAGCombine(ISD::XOR); 816 if (Subtarget.hasStdExtV()) { 817 setTargetDAGCombine(ISD::FCOPYSIGN); 818 setTargetDAGCombine(ISD::MGATHER); 819 setTargetDAGCombine(ISD::MSCATTER); 820 } 821 } 822 823 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, 824 LLVMContext &Context, 825 EVT VT) const { 826 if (!VT.isVector()) 827 return getPointerTy(DL); 828 if (Subtarget.hasStdExtV() && 829 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors())) 830 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount()); 831 return VT.changeVectorElementTypeToInteger(); 832 } 833 834 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 835 const CallInst &I, 836 MachineFunction &MF, 837 unsigned Intrinsic) const { 838 switch (Intrinsic) { 839 default: 840 return false; 841 case Intrinsic::riscv_masked_atomicrmw_xchg_i32: 842 case Intrinsic::riscv_masked_atomicrmw_add_i32: 843 case Intrinsic::riscv_masked_atomicrmw_sub_i32: 844 case Intrinsic::riscv_masked_atomicrmw_nand_i32: 845 case Intrinsic::riscv_masked_atomicrmw_max_i32: 846 case Intrinsic::riscv_masked_atomicrmw_min_i32: 847 case Intrinsic::riscv_masked_atomicrmw_umax_i32: 848 case Intrinsic::riscv_masked_atomicrmw_umin_i32: 849 case Intrinsic::riscv_masked_cmpxchg_i32: 850 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 851 Info.opc = ISD::INTRINSIC_W_CHAIN; 852 Info.memVT = MVT::getVT(PtrTy->getElementType()); 853 Info.ptrVal = I.getArgOperand(0); 854 Info.offset = 0; 855 Info.align = Align(4); 856 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 857 MachineMemOperand::MOVolatile; 858 return true; 859 } 860 } 861 862 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL, 863 const AddrMode &AM, Type *Ty, 864 unsigned AS, 865 Instruction *I) const { 866 // No global is ever allowed as a base. 867 if (AM.BaseGV) 868 return false; 869 870 // Require a 12-bit signed offset. 871 if (!isInt<12>(AM.BaseOffs)) 872 return false; 873 874 switch (AM.Scale) { 875 case 0: // "r+i" or just "i", depending on HasBaseReg. 876 break; 877 case 1: 878 if (!AM.HasBaseReg) // allow "r+i". 879 break; 880 return false; // disallow "r+r" or "r+r+i". 881 default: 882 return false; 883 } 884 885 return true; 886 } 887 888 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 889 return isInt<12>(Imm); 890 } 891 892 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const { 893 return isInt<12>(Imm); 894 } 895 896 // On RV32, 64-bit integers are split into their high and low parts and held 897 // in two different registers, so the trunc is free since the low register can 898 // just be used. 899 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const { 900 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy()) 901 return false; 902 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); 903 unsigned DestBits = DstTy->getPrimitiveSizeInBits(); 904 return (SrcBits == 64 && DestBits == 32); 905 } 906 907 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const { 908 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() || 909 !SrcVT.isInteger() || !DstVT.isInteger()) 910 return false; 911 unsigned SrcBits = SrcVT.getSizeInBits(); 912 unsigned DestBits = DstVT.getSizeInBits(); 913 return (SrcBits == 64 && DestBits == 32); 914 } 915 916 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 917 // Zexts are free if they can be combined with a load. 918 if (auto *LD = dyn_cast<LoadSDNode>(Val)) { 919 EVT MemVT = LD->getMemoryVT(); 920 if ((MemVT == MVT::i8 || MemVT == MVT::i16 || 921 (Subtarget.is64Bit() && MemVT == MVT::i32)) && 922 (LD->getExtensionType() == ISD::NON_EXTLOAD || 923 LD->getExtensionType() == ISD::ZEXTLOAD)) 924 return true; 925 } 926 927 return TargetLowering::isZExtFree(Val, VT2); 928 } 929 930 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const { 931 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; 932 } 933 934 bool RISCVTargetLowering::isCheapToSpeculateCttz() const { 935 return Subtarget.hasStdExtZbb(); 936 } 937 938 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const { 939 return Subtarget.hasStdExtZbb(); 940 } 941 942 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 943 bool ForCodeSize) const { 944 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh()) 945 return false; 946 if (VT == MVT::f32 && !Subtarget.hasStdExtF()) 947 return false; 948 if (VT == MVT::f64 && !Subtarget.hasStdExtD()) 949 return false; 950 if (Imm.isNegZero()) 951 return false; 952 return Imm.isZero(); 953 } 954 955 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 956 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) || 957 (VT == MVT::f32 && Subtarget.hasStdExtF()) || 958 (VT == MVT::f64 && Subtarget.hasStdExtD()); 959 } 960 961 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, 962 CallingConv::ID CC, 963 EVT VT) const { 964 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 965 // end up using a GPR but that will be decided based on ABI. 966 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 967 return MVT::f32; 968 969 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); 970 } 971 972 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, 973 CallingConv::ID CC, 974 EVT VT) const { 975 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still 976 // end up using a GPR but that will be decided based on ABI. 977 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh()) 978 return 1; 979 980 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); 981 } 982 983 // Changes the condition code and swaps operands if necessary, so the SetCC 984 // operation matches one of the comparisons supported directly by branches 985 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare 986 // with 1/-1. 987 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, 988 ISD::CondCode &CC, SelectionDAG &DAG) { 989 // Convert X > -1 to X >= 0. 990 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) { 991 RHS = DAG.getConstant(0, DL, RHS.getValueType()); 992 CC = ISD::SETGE; 993 return; 994 } 995 // Convert X < 1 to 0 >= X. 996 if (CC == ISD::SETLT && isOneConstant(RHS)) { 997 RHS = LHS; 998 LHS = DAG.getConstant(0, DL, RHS.getValueType()); 999 CC = ISD::SETGE; 1000 return; 1001 } 1002 1003 switch (CC) { 1004 default: 1005 break; 1006 case ISD::SETGT: 1007 case ISD::SETLE: 1008 case ISD::SETUGT: 1009 case ISD::SETULE: 1010 CC = ISD::getSetCCSwappedOperands(CC); 1011 std::swap(LHS, RHS); 1012 break; 1013 } 1014 } 1015 1016 // Return the RISC-V branch opcode that matches the given DAG integer 1017 // condition code. The CondCode must be one of those supported by the RISC-V 1018 // ISA (see translateSetCCForBranch). 1019 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) { 1020 switch (CC) { 1021 default: 1022 llvm_unreachable("Unsupported CondCode"); 1023 case ISD::SETEQ: 1024 return RISCV::BEQ; 1025 case ISD::SETNE: 1026 return RISCV::BNE; 1027 case ISD::SETLT: 1028 return RISCV::BLT; 1029 case ISD::SETGE: 1030 return RISCV::BGE; 1031 case ISD::SETULT: 1032 return RISCV::BLTU; 1033 case ISD::SETUGE: 1034 return RISCV::BGEU; 1035 } 1036 } 1037 1038 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) { 1039 assert(VT.isScalableVector() && "Expecting a scalable vector type"); 1040 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue(); 1041 if (VT.getVectorElementType() == MVT::i1) 1042 KnownSize *= 8; 1043 1044 switch (KnownSize) { 1045 default: 1046 llvm_unreachable("Invalid LMUL."); 1047 case 8: 1048 return RISCVII::VLMUL::LMUL_F8; 1049 case 16: 1050 return RISCVII::VLMUL::LMUL_F4; 1051 case 32: 1052 return RISCVII::VLMUL::LMUL_F2; 1053 case 64: 1054 return RISCVII::VLMUL::LMUL_1; 1055 case 128: 1056 return RISCVII::VLMUL::LMUL_2; 1057 case 256: 1058 return RISCVII::VLMUL::LMUL_4; 1059 case 512: 1060 return RISCVII::VLMUL::LMUL_8; 1061 } 1062 } 1063 1064 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) { 1065 switch (LMul) { 1066 default: 1067 llvm_unreachable("Invalid LMUL."); 1068 case RISCVII::VLMUL::LMUL_F8: 1069 case RISCVII::VLMUL::LMUL_F4: 1070 case RISCVII::VLMUL::LMUL_F2: 1071 case RISCVII::VLMUL::LMUL_1: 1072 return RISCV::VRRegClassID; 1073 case RISCVII::VLMUL::LMUL_2: 1074 return RISCV::VRM2RegClassID; 1075 case RISCVII::VLMUL::LMUL_4: 1076 return RISCV::VRM4RegClassID; 1077 case RISCVII::VLMUL::LMUL_8: 1078 return RISCV::VRM8RegClassID; 1079 } 1080 } 1081 1082 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) { 1083 RISCVII::VLMUL LMUL = getLMUL(VT); 1084 if (LMUL == RISCVII::VLMUL::LMUL_F8 || 1085 LMUL == RISCVII::VLMUL::LMUL_F4 || 1086 LMUL == RISCVII::VLMUL::LMUL_F2 || 1087 LMUL == RISCVII::VLMUL::LMUL_1) { 1088 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, 1089 "Unexpected subreg numbering"); 1090 return RISCV::sub_vrm1_0 + Index; 1091 } 1092 if (LMUL == RISCVII::VLMUL::LMUL_2) { 1093 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, 1094 "Unexpected subreg numbering"); 1095 return RISCV::sub_vrm2_0 + Index; 1096 } 1097 if (LMUL == RISCVII::VLMUL::LMUL_4) { 1098 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, 1099 "Unexpected subreg numbering"); 1100 return RISCV::sub_vrm4_0 + Index; 1101 } 1102 llvm_unreachable("Invalid vector type."); 1103 } 1104 1105 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) { 1106 if (VT.getVectorElementType() == MVT::i1) 1107 return RISCV::VRRegClassID; 1108 return getRegClassIDForLMUL(getLMUL(VT)); 1109 } 1110 1111 // Attempt to decompose a subvector insert/extract between VecVT and 1112 // SubVecVT via subregister indices. Returns the subregister index that 1113 // can perform the subvector insert/extract with the given element index, as 1114 // well as the index corresponding to any leftover subvectors that must be 1115 // further inserted/extracted within the register class for SubVecVT. 1116 std::pair<unsigned, unsigned> 1117 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 1118 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx, 1119 const RISCVRegisterInfo *TRI) { 1120 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID && 1121 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID && 1122 RISCV::VRM2RegClassID > RISCV::VRRegClassID), 1123 "Register classes not ordered"); 1124 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT); 1125 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT); 1126 // Try to compose a subregister index that takes us from the incoming 1127 // LMUL>1 register class down to the outgoing one. At each step we half 1128 // the LMUL: 1129 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0 1130 // Note that this is not guaranteed to find a subregister index, such as 1131 // when we are extracting from one VR type to another. 1132 unsigned SubRegIdx = RISCV::NoSubRegister; 1133 for (const unsigned RCID : 1134 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID}) 1135 if (VecRegClassID > RCID && SubRegClassID <= RCID) { 1136 VecVT = VecVT.getHalfNumVectorElementsVT(); 1137 bool IsHi = 1138 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue(); 1139 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx, 1140 getSubregIndexByMVT(VecVT, IsHi)); 1141 if (IsHi) 1142 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue(); 1143 } 1144 return {SubRegIdx, InsertExtractIdx}; 1145 } 1146 1147 static bool useRVVForFixedLengthVectorVT(MVT VT, 1148 const RISCVSubtarget &Subtarget) { 1149 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!"); 1150 if (!Subtarget.useRVVForFixedLengthVectors()) 1151 return false; 1152 1153 // We only support a set of vector types with an equivalent number of 1154 // elements to avoid legalization issues. Therefore -- since we don't have 1155 // v512i8/v512i16/etc -- the longest fixed-length vector type we support has 1156 // 256 elements. 1157 if (VT.getVectorNumElements() > 256) 1158 return false; 1159 1160 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1161 1162 // Don't use RVV for vectors we cannot scalarize if required. 1163 switch (VT.getVectorElementType().SimpleTy) { 1164 // i1 is supported but has different rules. 1165 default: 1166 return false; 1167 case MVT::i1: 1168 // Masks can only use a single register. 1169 if (VT.getVectorNumElements() > MinVLen) 1170 return false; 1171 MinVLen /= 8; 1172 break; 1173 case MVT::i8: 1174 case MVT::i16: 1175 case MVT::i32: 1176 case MVT::i64: 1177 break; 1178 case MVT::f16: 1179 if (!Subtarget.hasStdExtZfh()) 1180 return false; 1181 break; 1182 case MVT::f32: 1183 if (!Subtarget.hasStdExtF()) 1184 return false; 1185 break; 1186 case MVT::f64: 1187 if (!Subtarget.hasStdExtD()) 1188 return false; 1189 break; 1190 } 1191 1192 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen); 1193 // Don't use RVV for types that don't fit. 1194 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors()) 1195 return false; 1196 1197 // TODO: Perhaps an artificial restriction, but worth having whilst getting 1198 // the base fixed length RVV support in place. 1199 if (!VT.isPow2VectorType()) 1200 return false; 1201 1202 return true; 1203 } 1204 1205 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const { 1206 return ::useRVVForFixedLengthVectorVT(VT, Subtarget); 1207 } 1208 1209 // Return the largest legal scalable vector type that matches VT's element type. 1210 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT, 1211 const RISCVSubtarget &Subtarget) { 1212 // This may be called before legal types are setup. 1213 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) || 1214 useRVVForFixedLengthVectorVT(VT, Subtarget)) && 1215 "Expected legal fixed length vector!"); 1216 1217 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits(); 1218 1219 MVT EltVT = VT.getVectorElementType(); 1220 switch (EltVT.SimpleTy) { 1221 default: 1222 llvm_unreachable("unexpected element type for RVV container"); 1223 case MVT::i1: 1224 case MVT::i8: 1225 case MVT::i16: 1226 case MVT::i32: 1227 case MVT::i64: 1228 case MVT::f16: 1229 case MVT::f32: 1230 case MVT::f64: { 1231 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for 1232 // narrower types, but we can't have a fractional LMUL with demoninator less 1233 // than 64/SEW. 1234 unsigned NumElts = 1235 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock); 1236 return MVT::getScalableVectorVT(EltVT, NumElts); 1237 } 1238 } 1239 } 1240 1241 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT, 1242 const RISCVSubtarget &Subtarget) { 1243 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT, 1244 Subtarget); 1245 } 1246 1247 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const { 1248 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget()); 1249 } 1250 1251 // Grow V to consume an entire RVV register. 1252 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1253 const RISCVSubtarget &Subtarget) { 1254 assert(VT.isScalableVector() && 1255 "Expected to convert into a scalable vector!"); 1256 assert(V.getValueType().isFixedLengthVector() && 1257 "Expected a fixed length vector operand!"); 1258 SDLoc DL(V); 1259 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1260 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); 1261 } 1262 1263 // Shrink V so it's just big enough to maintain a VT's worth of data. 1264 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG, 1265 const RISCVSubtarget &Subtarget) { 1266 assert(VT.isFixedLengthVector() && 1267 "Expected to convert into a fixed length vector!"); 1268 assert(V.getValueType().isScalableVector() && 1269 "Expected a scalable vector operand!"); 1270 SDLoc DL(V); 1271 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 1272 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); 1273 } 1274 1275 // Gets the two common "VL" operands: an all-ones mask and the vector length. 1276 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is 1277 // the vector type that it is contained in. 1278 static std::pair<SDValue, SDValue> 1279 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG, 1280 const RISCVSubtarget &Subtarget) { 1281 assert(ContainerVT.isScalableVector() && "Expecting scalable container type"); 1282 MVT XLenVT = Subtarget.getXLenVT(); 1283 SDValue VL = VecVT.isFixedLengthVector() 1284 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT) 1285 : DAG.getRegister(RISCV::X0, XLenVT); 1286 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 1287 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 1288 return {Mask, VL}; 1289 } 1290 1291 // As above but assuming the given type is a scalable vector type. 1292 static std::pair<SDValue, SDValue> 1293 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG, 1294 const RISCVSubtarget &Subtarget) { 1295 assert(VecVT.isScalableVector() && "Expecting a scalable vector"); 1296 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget); 1297 } 1298 1299 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few 1300 // of either is (currently) supported. This can get us into an infinite loop 1301 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR 1302 // as a ..., etc. 1303 // Until either (or both) of these can reliably lower any node, reporting that 1304 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks 1305 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack, 1306 // which is not desirable. 1307 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles( 1308 EVT VT, unsigned DefinedValues) const { 1309 return false; 1310 } 1311 1312 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { 1313 // Only splats are currently supported. 1314 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT)) 1315 return true; 1316 1317 return false; 1318 } 1319 1320 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG, 1321 const RISCVSubtarget &Subtarget) { 1322 MVT VT = Op.getSimpleValueType(); 1323 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1324 1325 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1326 1327 SDLoc DL(Op); 1328 SDValue Mask, VL; 1329 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1330 1331 unsigned Opc = 1332 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1333 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL); 1334 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1335 } 1336 1337 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 1338 const RISCVSubtarget &Subtarget) { 1339 MVT VT = Op.getSimpleValueType(); 1340 assert(VT.isFixedLengthVector() && "Unexpected vector!"); 1341 1342 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1343 1344 SDLoc DL(Op); 1345 SDValue Mask, VL; 1346 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1347 1348 MVT XLenVT = Subtarget.getXLenVT(); 1349 unsigned NumElts = Op.getNumOperands(); 1350 1351 if (VT.getVectorElementType() == MVT::i1) { 1352 if (ISD::isBuildVectorAllZeros(Op.getNode())) { 1353 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL); 1354 return convertFromScalableVector(VT, VMClr, DAG, Subtarget); 1355 } 1356 1357 if (ISD::isBuildVectorAllOnes(Op.getNode())) { 1358 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL); 1359 return convertFromScalableVector(VT, VMSet, DAG, Subtarget); 1360 } 1361 1362 // Lower constant mask BUILD_VECTORs via an integer vector type, in 1363 // scalar integer chunks whose bit-width depends on the number of mask 1364 // bits and XLEN. 1365 // First, determine the most appropriate scalar integer type to use. This 1366 // is at most XLenVT, but may be shrunk to a smaller vector element type 1367 // according to the size of the final vector - use i8 chunks rather than 1368 // XLenVT if we're producing a v8i1. This results in more consistent 1369 // codegen across RV32 and RV64. 1370 unsigned NumViaIntegerBits = 1371 std::min(std::max(NumElts, 8u), Subtarget.getXLen()); 1372 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { 1373 // If we have to use more than one INSERT_VECTOR_ELT then this 1374 // optimization is likely to increase code size; avoid peforming it in 1375 // such a case. We can go through the stack as long as we're at least 1376 // byte-sized. 1377 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits) 1378 return SDValue(); 1379 // Now we can create our integer vector type. Note that it may be larger 1380 // than the resulting mask type: v4i1 would use v1i8 as its integer type. 1381 MVT IntegerViaVecVT = 1382 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits), 1383 divideCeil(NumElts, NumViaIntegerBits)); 1384 1385 uint64_t Bits = 0; 1386 unsigned BitPos = 0, IntegerEltIdx = 0; 1387 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT); 1388 1389 for (unsigned I = 0; I < NumElts; I++, BitPos++) { 1390 // Once we accumulate enough bits to fill our scalar type, insert into 1391 // our vector and clear our accumulated data. 1392 if (I != 0 && I % NumViaIntegerBits == 0) { 1393 if (NumViaIntegerBits <= 32) 1394 Bits = SignExtend64(Bits, 32); 1395 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1396 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, 1397 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1398 Bits = 0; 1399 BitPos = 0; 1400 IntegerEltIdx++; 1401 } 1402 SDValue V = Op.getOperand(I); 1403 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue(); 1404 Bits |= ((uint64_t)BitValue << BitPos); 1405 } 1406 1407 // Insert the (remaining) scalar value into position in our integer 1408 // vector type. 1409 if (NumViaIntegerBits <= 32) 1410 Bits = SignExtend64(Bits, 32); 1411 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT); 1412 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt, 1413 DAG.getConstant(IntegerEltIdx, DL, XLenVT)); 1414 1415 if (NumElts < NumViaIntegerBits) { 1416 // If we're producing a smaller vector than our minimum legal integer 1417 // type, bitcast to the equivalent (known-legal) mask type, and extract 1418 // our final mask. 1419 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type"); 1420 Vec = DAG.getBitcast(MVT::v8i1, Vec); 1421 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec, 1422 DAG.getConstant(0, DL, XLenVT)); 1423 } else { 1424 // Else we must have produced an integer type with the same size as the 1425 // mask type; bitcast for the final result. 1426 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits()); 1427 Vec = DAG.getBitcast(VT, Vec); 1428 } 1429 1430 return Vec; 1431 } 1432 1433 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask 1434 // vector type, we have a legal equivalently-sized i8 type, so we can use 1435 // that. 1436 MVT WideVecVT = VT.changeVectorElementType(MVT::i8); 1437 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT); 1438 1439 SDValue WideVec; 1440 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1441 // For a splat, perform a scalar truncate before creating the wider 1442 // vector. 1443 assert(Splat.getValueType() == XLenVT && 1444 "Unexpected type for i1 splat value"); 1445 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat, 1446 DAG.getConstant(1, DL, XLenVT)); 1447 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat); 1448 } else { 1449 SmallVector<SDValue, 8> Ops(Op->op_values()); 1450 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops); 1451 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT); 1452 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne); 1453 } 1454 1455 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE); 1456 } 1457 1458 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) { 1459 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL 1460 : RISCVISD::VMV_V_X_VL; 1461 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL); 1462 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1463 } 1464 1465 // Try and match an index sequence, which we can lower directly to the vid 1466 // instruction. An all-undef vector is matched by getSplatValue, above. 1467 if (VT.isInteger()) { 1468 bool IsVID = true; 1469 for (unsigned I = 0; I < NumElts && IsVID; I++) 1470 IsVID &= Op.getOperand(I).isUndef() || 1471 (isa<ConstantSDNode>(Op.getOperand(I)) && 1472 Op.getConstantOperandVal(I) == I); 1473 1474 if (IsVID) { 1475 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL); 1476 return convertFromScalableVector(VT, VID, DAG, Subtarget); 1477 } 1478 } 1479 1480 // Attempt to detect "hidden" splats, which only reveal themselves as splats 1481 // when re-interpreted as a vector with a larger element type. For example, 1482 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1 1483 // could be instead splat as 1484 // v2i32 = build_vector i32 0x00010000, i32 0x00010000 1485 // TODO: This optimization could also work on non-constant splats, but it 1486 // would require bit-manipulation instructions to construct the splat value. 1487 SmallVector<SDValue> Sequence; 1488 unsigned EltBitSize = VT.getScalarSizeInBits(); 1489 const auto *BV = cast<BuildVectorSDNode>(Op); 1490 if (VT.isInteger() && EltBitSize < 64 && 1491 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && 1492 BV->getRepeatedSequence(Sequence) && 1493 (Sequence.size() * EltBitSize) <= 64) { 1494 unsigned SeqLen = Sequence.size(); 1495 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen); 1496 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen); 1497 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 || 1498 ViaIntVT == MVT::i64) && 1499 "Unexpected sequence type"); 1500 1501 unsigned EltIdx = 0; 1502 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize); 1503 uint64_t SplatValue = 0; 1504 // Construct the amalgamated value which can be splatted as this larger 1505 // vector type. 1506 for (const auto &SeqV : Sequence) { 1507 if (!SeqV.isUndef()) 1508 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask) 1509 << (EltIdx * EltBitSize)); 1510 EltIdx++; 1511 } 1512 1513 // On RV64, sign-extend from 32 to 64 bits where possible in order to 1514 // achieve better constant materializion. 1515 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32) 1516 SplatValue = SignExtend64(SplatValue, 32); 1517 1518 // Since we can't introduce illegal i64 types at this stage, we can only 1519 // perform an i64 splat on RV32 if it is its own sign-extended value. That 1520 // way we can use RVV instructions to splat. 1521 assert((ViaIntVT.bitsLE(XLenVT) || 1522 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) && 1523 "Unexpected bitcast sequence"); 1524 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) { 1525 SDValue ViaVL = 1526 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT); 1527 MVT ViaContainerVT = 1528 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget); 1529 SDValue Splat = 1530 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT, 1531 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL); 1532 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget); 1533 return DAG.getBitcast(VT, Splat); 1534 } 1535 } 1536 1537 // Try and optimize BUILD_VECTORs with "dominant values" - these are values 1538 // which constitute a large proportion of the elements. In such cases we can 1539 // splat a vector with the dominant element and make up the shortfall with 1540 // INSERT_VECTOR_ELTs. 1541 // Note that this includes vectors of 2 elements by association. The 1542 // upper-most element is the "dominant" one, allowing us to use a splat to 1543 // "insert" the upper element, and an insert of the lower element at position 1544 // 0, which improves codegen. 1545 SDValue DominantValue; 1546 unsigned MostCommonCount = 0; 1547 DenseMap<SDValue, unsigned> ValueCounts; 1548 unsigned NumUndefElts = 1549 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); }); 1550 1551 for (SDValue V : Op->op_values()) { 1552 if (V.isUndef()) 1553 continue; 1554 1555 ValueCounts.insert(std::make_pair(V, 0)); 1556 unsigned &Count = ValueCounts[V]; 1557 1558 // Is this value dominant? In case of a tie, prefer the highest element as 1559 // it's cheaper to insert near the beginning of a vector than it is at the 1560 // end. 1561 if (++Count >= MostCommonCount) { 1562 DominantValue = V; 1563 MostCommonCount = Count; 1564 } 1565 } 1566 1567 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR"); 1568 unsigned NumDefElts = NumElts - NumUndefElts; 1569 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2; 1570 1571 // Don't perform this optimization when optimizing for size, since 1572 // materializing elements and inserting them tends to cause code bloat. 1573 if (!DAG.shouldOptForSize() && 1574 ((MostCommonCount > DominantValueCountThreshold) || 1575 (ValueCounts.size() <= Log2_32(NumDefElts)))) { 1576 // Start by splatting the most common element. 1577 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue); 1578 1579 DenseSet<SDValue> Processed{DominantValue}; 1580 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1); 1581 for (const auto &OpIdx : enumerate(Op->ops())) { 1582 const SDValue &V = OpIdx.value(); 1583 if (V.isUndef() || !Processed.insert(V).second) 1584 continue; 1585 if (ValueCounts[V] == 1) { 1586 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, 1587 DAG.getConstant(OpIdx.index(), DL, XLenVT)); 1588 } else { 1589 // Blend in all instances of this value using a VSELECT, using a 1590 // mask where each bit signals whether that element is the one 1591 // we're after. 1592 SmallVector<SDValue> Ops; 1593 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) { 1594 return DAG.getConstant(V == V1, DL, XLenVT); 1595 }); 1596 Vec = DAG.getNode(ISD::VSELECT, DL, VT, 1597 DAG.getBuildVector(SelMaskTy, DL, Ops), 1598 DAG.getSplatBuildVector(VT, DL, V), Vec); 1599 } 1600 } 1601 1602 return Vec; 1603 } 1604 1605 return SDValue(); 1606 } 1607 1608 // Use a stack slot to splat the two i32 values in Lo/Hi to the vector desired 1609 // vector nxvXi64 VT. 1610 static SDValue splatPartsI64ThroughStack(const SDLoc &DL, MVT VT, SDValue Lo, 1611 SDValue Hi, SDValue VL, 1612 SelectionDAG &DAG) { 1613 assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() && 1614 Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 && 1615 "Unexpected VTs!"); 1616 MachineFunction &MF = DAG.getMachineFunction(); 1617 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 1618 1619 // We use the same frame index we use for moving two i32s into 64-bit FPR. 1620 // This is an analogous operation. 1621 int FI = FuncInfo->getMoveF64FrameIndex(MF); 1622 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 1623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1624 SDValue StackSlot = 1625 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout())); 1626 1627 SDValue Chain = DAG.getEntryNode(); 1628 Lo = DAG.getStore(Chain, DL, Lo, StackSlot, MPI, Align(8)); 1629 1630 SDValue OffsetSlot = 1631 DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), DL); 1632 Hi = DAG.getStore(Chain, DL, Hi, OffsetSlot, MPI.getWithOffset(4), Align(8)); 1633 1634 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); 1635 1636 SDVTList VTs = DAG.getVTList({VT, MVT::Other}); 1637 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, MVT::i64); 1638 SDValue Ops[] = {Chain, IntID, StackSlot, 1639 DAG.getRegister(RISCV::X0, MVT::i64), VL}; 1640 1641 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MVT::i64, 1642 MPI, Align(8), MachineMemOperand::MOLoad); 1643 } 1644 1645 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo, 1646 SDValue Hi, SDValue VL, SelectionDAG &DAG) { 1647 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 1648 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 1649 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 1650 // If Hi constant is all the same sign bit as Lo, lower this as a custom 1651 // node in order to try and match RVV vector/scalar instructions. 1652 if ((LoC >> 31) == HiC) 1653 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL); 1654 } 1655 1656 // Fall back to a stack store and stride x0 vector load. 1657 return splatPartsI64ThroughStack(DL, VT, Lo, Hi, VL, DAG); 1658 } 1659 1660 // Called by type legalization to handle splat of i64 on RV32. 1661 // FIXME: We can optimize this when the type has sign or zero bits in one 1662 // of the halves. 1663 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar, 1664 SDValue VL, SelectionDAG &DAG) { 1665 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!"); 1666 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1667 DAG.getConstant(0, DL, MVT::i32)); 1668 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 1669 DAG.getConstant(1, DL, MVT::i32)); 1670 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG); 1671 } 1672 1673 // This function lowers a splat of a scalar operand Splat with the vector 1674 // length VL. It ensures the final sequence is type legal, which is useful when 1675 // lowering a splat after type legalization. 1676 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL, 1677 SelectionDAG &DAG, 1678 const RISCVSubtarget &Subtarget) { 1679 if (VT.isFloatingPoint()) 1680 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL); 1681 1682 MVT XLenVT = Subtarget.getXLenVT(); 1683 1684 // Simplest case is that the operand needs to be promoted to XLenVT. 1685 if (Scalar.getValueType().bitsLE(XLenVT)) { 1686 // If the operand is a constant, sign extend to increase our chances 1687 // of being able to use a .vi instruction. ANY_EXTEND would become a 1688 // a zero extend and the simm5 check in isel would fail. 1689 // FIXME: Should we ignore the upper bits in isel instead? 1690 unsigned ExtOpc = 1691 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 1692 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar); 1693 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL); 1694 } 1695 1696 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 && 1697 "Unexpected scalar for splat lowering!"); 1698 1699 // Otherwise use the more complicated splatting algorithm. 1700 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 1701 } 1702 1703 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, 1704 const RISCVSubtarget &Subtarget) { 1705 SDValue V1 = Op.getOperand(0); 1706 SDValue V2 = Op.getOperand(1); 1707 SDLoc DL(Op); 1708 MVT XLenVT = Subtarget.getXLenVT(); 1709 MVT VT = Op.getSimpleValueType(); 1710 unsigned NumElts = VT.getVectorNumElements(); 1711 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 1712 1713 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget); 1714 1715 SDValue TrueMask, VL; 1716 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1717 1718 if (SVN->isSplat()) { 1719 const int Lane = SVN->getSplatIndex(); 1720 if (Lane >= 0) { 1721 MVT SVT = VT.getVectorElementType(); 1722 1723 // Turn splatted vector load into a strided load with an X0 stride. 1724 SDValue V = V1; 1725 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector 1726 // with undef. 1727 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts? 1728 int Offset = Lane; 1729 if (V.getOpcode() == ISD::CONCAT_VECTORS) { 1730 int OpElements = 1731 V.getOperand(0).getSimpleValueType().getVectorNumElements(); 1732 V = V.getOperand(Offset / OpElements); 1733 Offset %= OpElements; 1734 } 1735 1736 // We need to ensure the load isn't atomic or volatile. 1737 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) { 1738 auto *Ld = cast<LoadSDNode>(V); 1739 Offset *= SVT.getStoreSize(); 1740 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), 1741 TypeSize::Fixed(Offset), DL); 1742 1743 // If this is SEW=64 on RV32, use a strided load with a stride of x0. 1744 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) { 1745 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 1746 SDValue IntID = 1747 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT); 1748 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr, 1749 DAG.getRegister(RISCV::X0, XLenVT), VL}; 1750 SDValue NewLoad = DAG.getMemIntrinsicNode( 1751 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT, 1752 DAG.getMachineFunction().getMachineMemOperand( 1753 Ld->getMemOperand(), Offset, SVT.getStoreSize())); 1754 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad); 1755 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 1756 } 1757 1758 // Otherwise use a scalar load and splat. This will give the best 1759 // opportunity to fold a splat into the operation. ISel can turn it into 1760 // the x0 strided load if we aren't able to fold away the select. 1761 if (SVT.isFloatingPoint()) 1762 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, 1763 Ld->getPointerInfo().getWithOffset(Offset), 1764 Ld->getOriginalAlign(), 1765 Ld->getMemOperand()->getFlags()); 1766 else 1767 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr, 1768 Ld->getPointerInfo().getWithOffset(Offset), SVT, 1769 Ld->getOriginalAlign(), 1770 Ld->getMemOperand()->getFlags()); 1771 DAG.makeEquivalentMemoryOrdering(Ld, V); 1772 1773 unsigned Opc = 1774 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL; 1775 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL); 1776 return convertFromScalableVector(VT, Splat, DAG, Subtarget); 1777 } 1778 1779 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1780 assert(Lane < (int)NumElts && "Unexpected lane!"); 1781 SDValue Gather = 1782 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1, 1783 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL); 1784 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1785 } 1786 } 1787 1788 // Detect shuffles which can be re-expressed as vector selects; these are 1789 // shuffles in which each element in the destination is taken from an element 1790 // at the corresponding index in either source vectors. 1791 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) { 1792 int MaskIndex = MaskIdx.value(); 1793 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts; 1794 }); 1795 1796 assert(!V1.isUndef() && "Unexpected shuffle canonicalization"); 1797 1798 SmallVector<SDValue> MaskVals; 1799 // As a backup, shuffles can be lowered via a vrgather instruction, possibly 1800 // merged with a second vrgather. 1801 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS; 1802 1803 // By default we preserve the original operand order, and use a mask to 1804 // select LHS as true and RHS as false. However, since RVV vector selects may 1805 // feature splats but only on the LHS, we may choose to invert our mask and 1806 // instead select between RHS and LHS. 1807 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1); 1808 bool InvertMask = IsSelect == SwapOps; 1809 1810 // Now construct the mask that will be used by the vselect or blended 1811 // vrgather operation. For vrgathers, construct the appropriate indices into 1812 // each vector. 1813 for (int MaskIndex : SVN->getMask()) { 1814 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask; 1815 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT)); 1816 if (!IsSelect) { 1817 bool IsLHS = MaskIndex < (int)NumElts; 1818 // For "undef" elements of -1, shuffle in element 0 instead. 1819 GatherIndicesLHS.push_back( 1820 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT)); 1821 // TODO: If we're masking out unused elements anyway, it might produce 1822 // better code if we use the most-common element index instead of 0. 1823 GatherIndicesRHS.push_back( 1824 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT)); 1825 } 1826 } 1827 1828 if (SwapOps) { 1829 std::swap(V1, V2); 1830 std::swap(GatherIndicesLHS, GatherIndicesRHS); 1831 } 1832 1833 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle"); 1834 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts); 1835 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals); 1836 1837 if (IsSelect) 1838 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2); 1839 1840 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) { 1841 // On such a large vector we're unable to use i8 as the index type. 1842 // FIXME: We could promote the index to i16 and use vrgatherei16, but that 1843 // may involve vector splitting if we're already at LMUL=8, or our 1844 // user-supplied maximum fixed-length LMUL. 1845 return SDValue(); 1846 } 1847 1848 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 1849 MVT IndexVT = VT.changeTypeToInteger(); 1850 // Since we can't introduce illegal index types at this stage, use i16 and 1851 // vrgatherei16 if the corresponding index type for plain vrgather is greater 1852 // than XLenVT. 1853 if (IndexVT.getScalarType().bitsGT(XLenVT)) { 1854 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 1855 IndexVT = IndexVT.changeVectorElementType(MVT::i16); 1856 } 1857 1858 MVT IndexContainerVT = 1859 ContainerVT.changeVectorElementType(IndexVT.getScalarType()); 1860 1861 SDValue Gather; 1862 // TODO: This doesn't trigger for i64 vectors on RV32, since there we 1863 // encounter a bitcasted BUILD_VECTOR with low/high i32 values. 1864 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) { 1865 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget); 1866 } else { 1867 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS); 1868 LHSIndices = 1869 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget); 1870 1871 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget); 1872 Gather = 1873 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL); 1874 } 1875 1876 // If a second vector operand is used by this shuffle, blend it in with an 1877 // additional vrgather. 1878 if (!V2.isUndef()) { 1879 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 1880 SelectMask = 1881 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget); 1882 1883 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS); 1884 RHSIndices = 1885 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget); 1886 1887 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget); 1888 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL); 1889 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2, 1890 Gather, VL); 1891 } 1892 1893 return convertFromScalableVector(VT, Gather, DAG, Subtarget); 1894 } 1895 1896 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT, 1897 SDLoc DL, SelectionDAG &DAG, 1898 const RISCVSubtarget &Subtarget) { 1899 if (VT.isScalableVector()) 1900 return DAG.getFPExtendOrRound(Op, DL, VT); 1901 assert(VT.isFixedLengthVector() && 1902 "Unexpected value type for RVV FP extend/round lowering"); 1903 SDValue Mask, VL; 1904 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 1905 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType()) 1906 ? RISCVISD::FP_EXTEND_VL 1907 : RISCVISD::FP_ROUND_VL; 1908 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL); 1909 } 1910 1911 SDValue RISCVTargetLowering::LowerOperation(SDValue Op, 1912 SelectionDAG &DAG) const { 1913 switch (Op.getOpcode()) { 1914 default: 1915 report_fatal_error("unimplemented operand"); 1916 case ISD::GlobalAddress: 1917 return lowerGlobalAddress(Op, DAG); 1918 case ISD::BlockAddress: 1919 return lowerBlockAddress(Op, DAG); 1920 case ISD::ConstantPool: 1921 return lowerConstantPool(Op, DAG); 1922 case ISD::JumpTable: 1923 return lowerJumpTable(Op, DAG); 1924 case ISD::GlobalTLSAddress: 1925 return lowerGlobalTLSAddress(Op, DAG); 1926 case ISD::SELECT: 1927 return lowerSELECT(Op, DAG); 1928 case ISD::BRCOND: 1929 return lowerBRCOND(Op, DAG); 1930 case ISD::VASTART: 1931 return lowerVASTART(Op, DAG); 1932 case ISD::FRAMEADDR: 1933 return lowerFRAMEADDR(Op, DAG); 1934 case ISD::RETURNADDR: 1935 return lowerRETURNADDR(Op, DAG); 1936 case ISD::SHL_PARTS: 1937 return lowerShiftLeftParts(Op, DAG); 1938 case ISD::SRA_PARTS: 1939 return lowerShiftRightParts(Op, DAG, true); 1940 case ISD::SRL_PARTS: 1941 return lowerShiftRightParts(Op, DAG, false); 1942 case ISD::BITCAST: { 1943 SDLoc DL(Op); 1944 EVT VT = Op.getValueType(); 1945 SDValue Op0 = Op.getOperand(0); 1946 EVT Op0VT = Op0.getValueType(); 1947 MVT XLenVT = Subtarget.getXLenVT(); 1948 if (VT.isFixedLengthVector()) { 1949 // We can handle fixed length vector bitcasts with a simple replacement 1950 // in isel. 1951 if (Op0VT.isFixedLengthVector()) 1952 return Op; 1953 // When bitcasting from scalar to fixed-length vector, insert the scalar 1954 // into a one-element vector of the result type, and perform a vector 1955 // bitcast. 1956 if (!Op0VT.isVector()) { 1957 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1); 1958 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT, 1959 DAG.getUNDEF(BVT), Op0, 1960 DAG.getConstant(0, DL, XLenVT))); 1961 } 1962 return SDValue(); 1963 } 1964 // Custom-legalize bitcasts from fixed-length vector types to scalar types 1965 // thus: bitcast the vector to a one-element vector type whose element type 1966 // is the same as the result type, and extract the first element. 1967 if (!VT.isVector() && Op0VT.isFixedLengthVector()) { 1968 LLVMContext &Context = *DAG.getContext(); 1969 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 1970 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 1971 DAG.getConstant(0, DL, XLenVT)); 1972 } 1973 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) { 1974 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0); 1975 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0); 1976 return FPConv; 1977 } 1978 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() && 1979 Subtarget.hasStdExtF()) { 1980 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 1981 SDValue FPConv = 1982 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0); 1983 return FPConv; 1984 } 1985 return SDValue(); 1986 } 1987 case ISD::INTRINSIC_WO_CHAIN: 1988 return LowerINTRINSIC_WO_CHAIN(Op, DAG); 1989 case ISD::INTRINSIC_W_CHAIN: 1990 return LowerINTRINSIC_W_CHAIN(Op, DAG); 1991 case ISD::BSWAP: 1992 case ISD::BITREVERSE: { 1993 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining. 1994 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 1995 MVT VT = Op.getSimpleValueType(); 1996 SDLoc DL(Op); 1997 // Start with the maximum immediate value which is the bitwidth - 1. 1998 unsigned Imm = VT.getSizeInBits() - 1; 1999 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits. 2000 if (Op.getOpcode() == ISD::BSWAP) 2001 Imm &= ~0x7U; 2002 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0), 2003 DAG.getConstant(Imm, DL, VT)); 2004 } 2005 case ISD::FSHL: 2006 case ISD::FSHR: { 2007 MVT VT = Op.getSimpleValueType(); 2008 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization"); 2009 SDLoc DL(Op); 2010 if (Op.getOperand(2).getOpcode() == ISD::Constant) 2011 return Op; 2012 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only 2013 // use log(XLen) bits. Mask the shift amount accordingly. 2014 unsigned ShAmtWidth = Subtarget.getXLen() - 1; 2015 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2), 2016 DAG.getConstant(ShAmtWidth, DL, VT)); 2017 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR; 2018 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt); 2019 } 2020 case ISD::TRUNCATE: { 2021 SDLoc DL(Op); 2022 MVT VT = Op.getSimpleValueType(); 2023 // Only custom-lower vector truncates 2024 if (!VT.isVector()) 2025 return Op; 2026 2027 // Truncates to mask types are handled differently 2028 if (VT.getVectorElementType() == MVT::i1) 2029 return lowerVectorMaskTrunc(Op, DAG); 2030 2031 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary 2032 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which 2033 // truncate by one power of two at a time. 2034 MVT DstEltVT = VT.getVectorElementType(); 2035 2036 SDValue Src = Op.getOperand(0); 2037 MVT SrcVT = Src.getSimpleValueType(); 2038 MVT SrcEltVT = SrcVT.getVectorElementType(); 2039 2040 assert(DstEltVT.bitsLT(SrcEltVT) && 2041 isPowerOf2_64(DstEltVT.getSizeInBits()) && 2042 isPowerOf2_64(SrcEltVT.getSizeInBits()) && 2043 "Unexpected vector truncate lowering"); 2044 2045 MVT ContainerVT = SrcVT; 2046 if (SrcVT.isFixedLengthVector()) { 2047 ContainerVT = getContainerForFixedLengthVector(SrcVT); 2048 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 2049 } 2050 2051 SDValue Result = Src; 2052 SDValue Mask, VL; 2053 std::tie(Mask, VL) = 2054 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget); 2055 LLVMContext &Context = *DAG.getContext(); 2056 const ElementCount Count = ContainerVT.getVectorElementCount(); 2057 do { 2058 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2); 2059 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count); 2060 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result, 2061 Mask, VL); 2062 } while (SrcEltVT != DstEltVT); 2063 2064 if (SrcVT.isFixedLengthVector()) 2065 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 2066 2067 return Result; 2068 } 2069 case ISD::ANY_EXTEND: 2070 case ISD::ZERO_EXTEND: 2071 if (Op.getOperand(0).getValueType().isVector() && 2072 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2073 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1); 2074 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL); 2075 case ISD::SIGN_EXTEND: 2076 if (Op.getOperand(0).getValueType().isVector() && 2077 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2078 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1); 2079 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL); 2080 case ISD::SPLAT_VECTOR_PARTS: 2081 return lowerSPLAT_VECTOR_PARTS(Op, DAG); 2082 case ISD::INSERT_VECTOR_ELT: 2083 return lowerINSERT_VECTOR_ELT(Op, DAG); 2084 case ISD::EXTRACT_VECTOR_ELT: 2085 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 2086 case ISD::VSCALE: { 2087 MVT VT = Op.getSimpleValueType(); 2088 SDLoc DL(Op); 2089 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT); 2090 // We define our scalable vector types for lmul=1 to use a 64 bit known 2091 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate 2092 // vscale as VLENB / 8. 2093 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!"); 2094 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB, 2095 DAG.getConstant(3, DL, VT)); 2096 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0)); 2097 } 2098 case ISD::FP_EXTEND: { 2099 // RVV can only do fp_extend to types double the size as the source. We 2100 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going 2101 // via f32. 2102 SDLoc DL(Op); 2103 MVT VT = Op.getSimpleValueType(); 2104 SDValue Src = Op.getOperand(0); 2105 MVT SrcVT = Src.getSimpleValueType(); 2106 2107 // Prepare any fixed-length vector operands. 2108 MVT ContainerVT = VT; 2109 if (SrcVT.isFixedLengthVector()) { 2110 ContainerVT = getContainerForFixedLengthVector(VT); 2111 MVT SrcContainerVT = 2112 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType()); 2113 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2114 } 2115 2116 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 || 2117 SrcVT.getVectorElementType() != MVT::f16) { 2118 // For scalable vectors, we only need to close the gap between 2119 // vXf16->vXf64. 2120 if (!VT.isFixedLengthVector()) 2121 return Op; 2122 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version. 2123 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2124 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2125 } 2126 2127 MVT InterVT = VT.changeVectorElementType(MVT::f32); 2128 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32); 2129 SDValue IntermediateExtend = getRVVFPExtendOrRound( 2130 Src, InterVT, InterContainerVT, DL, DAG, Subtarget); 2131 2132 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT, 2133 DL, DAG, Subtarget); 2134 if (VT.isFixedLengthVector()) 2135 return convertFromScalableVector(VT, Extend, DAG, Subtarget); 2136 return Extend; 2137 } 2138 case ISD::FP_ROUND: { 2139 // RVV can only do fp_round to types half the size as the source. We 2140 // custom-lower f64->f16 rounds via RVV's round-to-odd float 2141 // conversion instruction. 2142 SDLoc DL(Op); 2143 MVT VT = Op.getSimpleValueType(); 2144 SDValue Src = Op.getOperand(0); 2145 MVT SrcVT = Src.getSimpleValueType(); 2146 2147 // Prepare any fixed-length vector operands. 2148 MVT ContainerVT = VT; 2149 if (VT.isFixedLengthVector()) { 2150 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2151 ContainerVT = 2152 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2153 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2154 } 2155 2156 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 || 2157 SrcVT.getVectorElementType() != MVT::f64) { 2158 // For scalable vectors, we only need to close the gap between 2159 // vXf64<->vXf16. 2160 if (!VT.isFixedLengthVector()) 2161 return Op; 2162 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version. 2163 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget); 2164 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2165 } 2166 2167 SDValue Mask, VL; 2168 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2169 2170 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32); 2171 SDValue IntermediateRound = 2172 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL); 2173 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT, 2174 DL, DAG, Subtarget); 2175 2176 if (VT.isFixedLengthVector()) 2177 return convertFromScalableVector(VT, Round, DAG, Subtarget); 2178 return Round; 2179 } 2180 case ISD::FP_TO_SINT: 2181 case ISD::FP_TO_UINT: 2182 case ISD::SINT_TO_FP: 2183 case ISD::UINT_TO_FP: { 2184 // RVV can only do fp<->int conversions to types half/double the size as 2185 // the source. We custom-lower any conversions that do two hops into 2186 // sequences. 2187 MVT VT = Op.getSimpleValueType(); 2188 if (!VT.isVector()) 2189 return Op; 2190 SDLoc DL(Op); 2191 SDValue Src = Op.getOperand(0); 2192 MVT EltVT = VT.getVectorElementType(); 2193 MVT SrcVT = Src.getSimpleValueType(); 2194 MVT SrcEltVT = SrcVT.getVectorElementType(); 2195 unsigned EltSize = EltVT.getSizeInBits(); 2196 unsigned SrcEltSize = SrcEltVT.getSizeInBits(); 2197 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) && 2198 "Unexpected vector element types"); 2199 2200 bool IsInt2FP = SrcEltVT.isInteger(); 2201 // Widening conversions 2202 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) { 2203 if (IsInt2FP) { 2204 // Do a regular integer sign/zero extension then convert to float. 2205 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()), 2206 VT.getVectorElementCount()); 2207 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP 2208 ? ISD::ZERO_EXTEND 2209 : ISD::SIGN_EXTEND; 2210 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src); 2211 return DAG.getNode(Op.getOpcode(), DL, VT, Ext); 2212 } 2213 // FP2Int 2214 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering"); 2215 // Do one doubling fp_extend then complete the operation by converting 2216 // to int. 2217 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2218 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT); 2219 return DAG.getNode(Op.getOpcode(), DL, VT, FExt); 2220 } 2221 2222 // Narrowing conversions 2223 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) { 2224 if (IsInt2FP) { 2225 // One narrowing int_to_fp, then an fp_round. 2226 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering"); 2227 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount()); 2228 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src); 2229 return DAG.getFPExtendOrRound(Int2FP, DL, VT); 2230 } 2231 // FP2Int 2232 // One narrowing fp_to_int, then truncate the integer. If the float isn't 2233 // representable by the integer, the result is poison. 2234 MVT IVecVT = 2235 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2), 2236 VT.getVectorElementCount()); 2237 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src); 2238 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int); 2239 } 2240 2241 // Scalable vectors can exit here. Patterns will handle equally-sized 2242 // conversions halving/doubling ones. 2243 if (!VT.isFixedLengthVector()) 2244 return Op; 2245 2246 // For fixed-length vectors we lower to a custom "VL" node. 2247 unsigned RVVOpc = 0; 2248 switch (Op.getOpcode()) { 2249 default: 2250 llvm_unreachable("Impossible opcode"); 2251 case ISD::FP_TO_SINT: 2252 RVVOpc = RISCVISD::FP_TO_SINT_VL; 2253 break; 2254 case ISD::FP_TO_UINT: 2255 RVVOpc = RISCVISD::FP_TO_UINT_VL; 2256 break; 2257 case ISD::SINT_TO_FP: 2258 RVVOpc = RISCVISD::SINT_TO_FP_VL; 2259 break; 2260 case ISD::UINT_TO_FP: 2261 RVVOpc = RISCVISD::UINT_TO_FP_VL; 2262 break; 2263 } 2264 2265 MVT ContainerVT, SrcContainerVT; 2266 // Derive the reference container type from the larger vector type. 2267 if (SrcEltSize > EltSize) { 2268 SrcContainerVT = getContainerForFixedLengthVector(SrcVT); 2269 ContainerVT = 2270 SrcContainerVT.changeVectorElementType(VT.getVectorElementType()); 2271 } else { 2272 ContainerVT = getContainerForFixedLengthVector(VT); 2273 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT); 2274 } 2275 2276 SDValue Mask, VL; 2277 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 2278 2279 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget); 2280 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL); 2281 return convertFromScalableVector(VT, Src, DAG, Subtarget); 2282 } 2283 case ISD::VECREDUCE_ADD: 2284 case ISD::VECREDUCE_UMAX: 2285 case ISD::VECREDUCE_SMAX: 2286 case ISD::VECREDUCE_UMIN: 2287 case ISD::VECREDUCE_SMIN: 2288 return lowerVECREDUCE(Op, DAG); 2289 case ISD::VECREDUCE_AND: 2290 case ISD::VECREDUCE_OR: 2291 case ISD::VECREDUCE_XOR: 2292 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1) 2293 return lowerVectorMaskVECREDUCE(Op, DAG); 2294 return lowerVECREDUCE(Op, DAG); 2295 case ISD::VECREDUCE_FADD: 2296 case ISD::VECREDUCE_SEQ_FADD: 2297 case ISD::VECREDUCE_FMIN: 2298 case ISD::VECREDUCE_FMAX: 2299 return lowerFPVECREDUCE(Op, DAG); 2300 case ISD::INSERT_SUBVECTOR: 2301 return lowerINSERT_SUBVECTOR(Op, DAG); 2302 case ISD::EXTRACT_SUBVECTOR: 2303 return lowerEXTRACT_SUBVECTOR(Op, DAG); 2304 case ISD::STEP_VECTOR: 2305 return lowerSTEP_VECTOR(Op, DAG); 2306 case ISD::VECTOR_REVERSE: 2307 return lowerVECTOR_REVERSE(Op, DAG); 2308 case ISD::BUILD_VECTOR: 2309 return lowerBUILD_VECTOR(Op, DAG, Subtarget); 2310 case ISD::SPLAT_VECTOR: 2311 if (Op.getValueType().getVectorElementType() == MVT::i1) 2312 return lowerVectorMaskSplat(Op, DAG); 2313 return lowerSPLAT_VECTOR(Op, DAG, Subtarget); 2314 case ISD::VECTOR_SHUFFLE: 2315 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget); 2316 case ISD::CONCAT_VECTORS: { 2317 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is 2318 // better than going through the stack, as the default expansion does. 2319 SDLoc DL(Op); 2320 MVT VT = Op.getSimpleValueType(); 2321 unsigned NumOpElts = 2322 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements(); 2323 SDValue Vec = DAG.getUNDEF(VT); 2324 for (const auto &OpIdx : enumerate(Op->ops())) 2325 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(), 2326 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL)); 2327 return Vec; 2328 } 2329 case ISD::LOAD: 2330 return lowerFixedLengthVectorLoadToRVV(Op, DAG); 2331 case ISD::STORE: 2332 return lowerFixedLengthVectorStoreToRVV(Op, DAG); 2333 case ISD::MLOAD: 2334 return lowerMLOAD(Op, DAG); 2335 case ISD::MSTORE: 2336 return lowerMSTORE(Op, DAG); 2337 case ISD::SETCC: 2338 return lowerFixedLengthVectorSetccToRVV(Op, DAG); 2339 case ISD::ADD: 2340 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL); 2341 case ISD::SUB: 2342 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL); 2343 case ISD::MUL: 2344 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL); 2345 case ISD::MULHS: 2346 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL); 2347 case ISD::MULHU: 2348 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL); 2349 case ISD::AND: 2350 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL, 2351 RISCVISD::AND_VL); 2352 case ISD::OR: 2353 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL, 2354 RISCVISD::OR_VL); 2355 case ISD::XOR: 2356 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL, 2357 RISCVISD::XOR_VL); 2358 case ISD::SDIV: 2359 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL); 2360 case ISD::SREM: 2361 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL); 2362 case ISD::UDIV: 2363 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL); 2364 case ISD::UREM: 2365 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL); 2366 case ISD::SHL: 2367 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL); 2368 case ISD::SRA: 2369 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL); 2370 case ISD::SRL: 2371 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL); 2372 case ISD::FADD: 2373 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL); 2374 case ISD::FSUB: 2375 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL); 2376 case ISD::FMUL: 2377 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL); 2378 case ISD::FDIV: 2379 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL); 2380 case ISD::FNEG: 2381 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL); 2382 case ISD::FABS: 2383 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL); 2384 case ISD::FSQRT: 2385 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL); 2386 case ISD::FMA: 2387 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL); 2388 case ISD::SMIN: 2389 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL); 2390 case ISD::SMAX: 2391 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL); 2392 case ISD::UMIN: 2393 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL); 2394 case ISD::UMAX: 2395 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL); 2396 case ISD::FMINNUM: 2397 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL); 2398 case ISD::FMAXNUM: 2399 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL); 2400 case ISD::ABS: 2401 return lowerABS(Op, DAG); 2402 case ISD::VSELECT: 2403 return lowerFixedLengthVectorSelectToRVV(Op, DAG); 2404 case ISD::FCOPYSIGN: 2405 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG); 2406 case ISD::MGATHER: 2407 return lowerMGATHER(Op, DAG); 2408 case ISD::MSCATTER: 2409 return lowerMSCATTER(Op, DAG); 2410 case ISD::FLT_ROUNDS_: 2411 return lowerGET_ROUNDING(Op, DAG); 2412 case ISD::SET_ROUNDING: 2413 return lowerSET_ROUNDING(Op, DAG); 2414 case ISD::VP_ADD: 2415 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL); 2416 case ISD::VP_SUB: 2417 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL); 2418 case ISD::VP_MUL: 2419 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL); 2420 case ISD::VP_SDIV: 2421 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL); 2422 case ISD::VP_UDIV: 2423 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL); 2424 case ISD::VP_SREM: 2425 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL); 2426 case ISD::VP_UREM: 2427 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL); 2428 case ISD::VP_AND: 2429 return lowerVPOp(Op, DAG, RISCVISD::AND_VL); 2430 case ISD::VP_OR: 2431 return lowerVPOp(Op, DAG, RISCVISD::OR_VL); 2432 case ISD::VP_XOR: 2433 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL); 2434 case ISD::VP_ASHR: 2435 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL); 2436 case ISD::VP_LSHR: 2437 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL); 2438 case ISD::VP_SHL: 2439 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL); 2440 } 2441 } 2442 2443 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, 2444 SelectionDAG &DAG, unsigned Flags) { 2445 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags); 2446 } 2447 2448 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, 2449 SelectionDAG &DAG, unsigned Flags) { 2450 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(), 2451 Flags); 2452 } 2453 2454 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, 2455 SelectionDAG &DAG, unsigned Flags) { 2456 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), 2457 N->getOffset(), Flags); 2458 } 2459 2460 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, 2461 SelectionDAG &DAG, unsigned Flags) { 2462 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags); 2463 } 2464 2465 template <class NodeTy> 2466 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, 2467 bool IsLocal) const { 2468 SDLoc DL(N); 2469 EVT Ty = getPointerTy(DAG.getDataLayout()); 2470 2471 if (isPositionIndependent()) { 2472 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2473 if (IsLocal) 2474 // Use PC-relative addressing to access the symbol. This generates the 2475 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym)) 2476 // %pcrel_lo(auipc)). 2477 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2478 2479 // Use PC-relative addressing to access the GOT for this symbol, then load 2480 // the address from the GOT. This generates the pattern (PseudoLA sym), 2481 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))). 2482 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0); 2483 } 2484 2485 switch (getTargetMachine().getCodeModel()) { 2486 default: 2487 report_fatal_error("Unsupported code model for lowering"); 2488 case CodeModel::Small: { 2489 // Generate a sequence for accessing addresses within the first 2 GiB of 2490 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)). 2491 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI); 2492 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO); 2493 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2494 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0); 2495 } 2496 case CodeModel::Medium: { 2497 // Generate a sequence for accessing addresses within any 2GiB range within 2498 // the address space. This generates the pattern (PseudoLLA sym), which 2499 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)). 2500 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); 2501 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0); 2502 } 2503 } 2504 } 2505 2506 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op, 2507 SelectionDAG &DAG) const { 2508 SDLoc DL(Op); 2509 EVT Ty = Op.getValueType(); 2510 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2511 int64_t Offset = N->getOffset(); 2512 MVT XLenVT = Subtarget.getXLenVT(); 2513 2514 const GlobalValue *GV = N->getGlobal(); 2515 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); 2516 SDValue Addr = getAddr(N, DAG, IsLocal); 2517 2518 // In order to maximise the opportunity for common subexpression elimination, 2519 // emit a separate ADD node for the global address offset instead of folding 2520 // it in the global address node. Later peephole optimisations may choose to 2521 // fold it back in when profitable. 2522 if (Offset != 0) 2523 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2524 DAG.getConstant(Offset, DL, XLenVT)); 2525 return Addr; 2526 } 2527 2528 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op, 2529 SelectionDAG &DAG) const { 2530 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op); 2531 2532 return getAddr(N, DAG); 2533 } 2534 2535 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op, 2536 SelectionDAG &DAG) const { 2537 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); 2538 2539 return getAddr(N, DAG); 2540 } 2541 2542 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op, 2543 SelectionDAG &DAG) const { 2544 JumpTableSDNode *N = cast<JumpTableSDNode>(Op); 2545 2546 return getAddr(N, DAG); 2547 } 2548 2549 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, 2550 SelectionDAG &DAG, 2551 bool UseGOT) const { 2552 SDLoc DL(N); 2553 EVT Ty = getPointerTy(DAG.getDataLayout()); 2554 const GlobalValue *GV = N->getGlobal(); 2555 MVT XLenVT = Subtarget.getXLenVT(); 2556 2557 if (UseGOT) { 2558 // Use PC-relative addressing to access the GOT for this TLS symbol, then 2559 // load the address from the GOT and add the thread pointer. This generates 2560 // the pattern (PseudoLA_TLS_IE sym), which expands to 2561 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)). 2562 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2563 SDValue Load = 2564 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0); 2565 2566 // Add the thread pointer. 2567 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2568 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg); 2569 } 2570 2571 // Generate a sequence for accessing the address relative to the thread 2572 // pointer, with the appropriate adjustment for the thread pointer offset. 2573 // This generates the pattern 2574 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym)) 2575 SDValue AddrHi = 2576 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI); 2577 SDValue AddrAdd = 2578 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD); 2579 SDValue AddrLo = 2580 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO); 2581 2582 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0); 2583 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT); 2584 SDValue MNAdd = SDValue( 2585 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd), 2586 0); 2587 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0); 2588 } 2589 2590 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, 2591 SelectionDAG &DAG) const { 2592 SDLoc DL(N); 2593 EVT Ty = getPointerTy(DAG.getDataLayout()); 2594 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits()); 2595 const GlobalValue *GV = N->getGlobal(); 2596 2597 // Use a PC-relative addressing mode to access the global dynamic GOT address. 2598 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to 2599 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)). 2600 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0); 2601 SDValue Load = 2602 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0); 2603 2604 // Prepare argument list to generate call. 2605 ArgListTy Args; 2606 ArgListEntry Entry; 2607 Entry.Node = Load; 2608 Entry.Ty = CallTy; 2609 Args.push_back(Entry); 2610 2611 // Setup call to __tls_get_addr. 2612 TargetLowering::CallLoweringInfo CLI(DAG); 2613 CLI.setDebugLoc(DL) 2614 .setChain(DAG.getEntryNode()) 2615 .setLibCallee(CallingConv::C, CallTy, 2616 DAG.getExternalSymbol("__tls_get_addr", Ty), 2617 std::move(Args)); 2618 2619 return LowerCallTo(CLI).first; 2620 } 2621 2622 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op, 2623 SelectionDAG &DAG) const { 2624 SDLoc DL(Op); 2625 EVT Ty = Op.getValueType(); 2626 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op); 2627 int64_t Offset = N->getOffset(); 2628 MVT XLenVT = Subtarget.getXLenVT(); 2629 2630 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal()); 2631 2632 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2633 CallingConv::GHC) 2634 report_fatal_error("In GHC calling convention TLS is not supported"); 2635 2636 SDValue Addr; 2637 switch (Model) { 2638 case TLSModel::LocalExec: 2639 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false); 2640 break; 2641 case TLSModel::InitialExec: 2642 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true); 2643 break; 2644 case TLSModel::LocalDynamic: 2645 case TLSModel::GeneralDynamic: 2646 Addr = getDynamicTLSAddr(N, DAG); 2647 break; 2648 } 2649 2650 // In order to maximise the opportunity for common subexpression elimination, 2651 // emit a separate ADD node for the global address offset instead of folding 2652 // it in the global address node. Later peephole optimisations may choose to 2653 // fold it back in when profitable. 2654 if (Offset != 0) 2655 return DAG.getNode(ISD::ADD, DL, Ty, Addr, 2656 DAG.getConstant(Offset, DL, XLenVT)); 2657 return Addr; 2658 } 2659 2660 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 2661 SDValue CondV = Op.getOperand(0); 2662 SDValue TrueV = Op.getOperand(1); 2663 SDValue FalseV = Op.getOperand(2); 2664 SDLoc DL(Op); 2665 MVT XLenVT = Subtarget.getXLenVT(); 2666 2667 // If the result type is XLenVT and CondV is the output of a SETCC node 2668 // which also operated on XLenVT inputs, then merge the SETCC node into the 2669 // lowered RISCVISD::SELECT_CC to take advantage of the integer 2670 // compare+branch instructions. i.e.: 2671 // (select (setcc lhs, rhs, cc), truev, falsev) 2672 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev) 2673 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC && 2674 CondV.getOperand(0).getSimpleValueType() == XLenVT) { 2675 SDValue LHS = CondV.getOperand(0); 2676 SDValue RHS = CondV.getOperand(1); 2677 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2)); 2678 ISD::CondCode CCVal = CC->get(); 2679 2680 // Special case for a select of 2 constants that have a diffence of 1. 2681 // Normally this is done by DAGCombine, but if the select is introduced by 2682 // type legalization or op legalization, we miss it. Restricting to SETLT 2683 // case for now because that is what signed saturating add/sub need. 2684 // FIXME: We don't need the condition to be SETLT or even a SETCC, 2685 // but we would probably want to swap the true/false values if the condition 2686 // is SETGE/SETLE to avoid an XORI. 2687 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) && 2688 CCVal == ISD::SETLT) { 2689 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue(); 2690 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue(); 2691 if (TrueVal - 1 == FalseVal) 2692 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV); 2693 if (TrueVal + 1 == FalseVal) 2694 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV); 2695 } 2696 2697 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2698 2699 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT); 2700 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; 2701 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2702 } 2703 2704 // Otherwise: 2705 // (select condv, truev, falsev) 2706 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev) 2707 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 2708 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT); 2709 2710 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; 2711 2712 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops); 2713 } 2714 2715 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 2716 SDValue CondV = Op.getOperand(1); 2717 SDLoc DL(Op); 2718 MVT XLenVT = Subtarget.getXLenVT(); 2719 2720 if (CondV.getOpcode() == ISD::SETCC && 2721 CondV.getOperand(0).getValueType() == XLenVT) { 2722 SDValue LHS = CondV.getOperand(0); 2723 SDValue RHS = CondV.getOperand(1); 2724 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get(); 2725 2726 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 2727 2728 SDValue TargetCC = DAG.getCondCode(CCVal); 2729 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2730 LHS, RHS, TargetCC, Op.getOperand(2)); 2731 } 2732 2733 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0), 2734 CondV, DAG.getConstant(0, DL, XLenVT), 2735 DAG.getCondCode(ISD::SETNE), Op.getOperand(2)); 2736 } 2737 2738 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { 2739 MachineFunction &MF = DAG.getMachineFunction(); 2740 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>(); 2741 2742 SDLoc DL(Op); 2743 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 2744 getPointerTy(MF.getDataLayout())); 2745 2746 // vastart just stores the address of the VarArgsFrameIndex slot into the 2747 // memory location argument. 2748 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2749 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), 2750 MachinePointerInfo(SV)); 2751 } 2752 2753 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op, 2754 SelectionDAG &DAG) const { 2755 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2756 MachineFunction &MF = DAG.getMachineFunction(); 2757 MachineFrameInfo &MFI = MF.getFrameInfo(); 2758 MFI.setFrameAddressIsTaken(true); 2759 Register FrameReg = RI.getFrameRegister(MF); 2760 int XLenInBytes = Subtarget.getXLen() / 8; 2761 2762 EVT VT = Op.getValueType(); 2763 SDLoc DL(Op); 2764 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT); 2765 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2766 while (Depth--) { 2767 int Offset = -(XLenInBytes * 2); 2768 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, 2769 DAG.getIntPtrConstant(Offset, DL)); 2770 FrameAddr = 2771 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2772 } 2773 return FrameAddr; 2774 } 2775 2776 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op, 2777 SelectionDAG &DAG) const { 2778 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo(); 2779 MachineFunction &MF = DAG.getMachineFunction(); 2780 MachineFrameInfo &MFI = MF.getFrameInfo(); 2781 MFI.setReturnAddressIsTaken(true); 2782 MVT XLenVT = Subtarget.getXLenVT(); 2783 int XLenInBytes = Subtarget.getXLen() / 8; 2784 2785 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2786 return SDValue(); 2787 2788 EVT VT = Op.getValueType(); 2789 SDLoc DL(Op); 2790 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2791 if (Depth) { 2792 int Off = -XLenInBytes; 2793 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 2794 SDValue Offset = DAG.getConstant(Off, DL, VT); 2795 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 2796 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 2797 MachinePointerInfo()); 2798 } 2799 2800 // Return the value of the return address register, marking it an implicit 2801 // live-in. 2802 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT)); 2803 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT); 2804 } 2805 2806 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op, 2807 SelectionDAG &DAG) const { 2808 SDLoc DL(Op); 2809 SDValue Lo = Op.getOperand(0); 2810 SDValue Hi = Op.getOperand(1); 2811 SDValue Shamt = Op.getOperand(2); 2812 EVT VT = Lo.getValueType(); 2813 2814 // if Shamt-XLEN < 0: // Shamt < XLEN 2815 // Lo = Lo << Shamt 2816 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt)) 2817 // else: 2818 // Lo = 0 2819 // Hi = Lo << (Shamt-XLEN) 2820 2821 SDValue Zero = DAG.getConstant(0, DL, VT); 2822 SDValue One = DAG.getConstant(1, DL, VT); 2823 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2824 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2825 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2826 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2827 2828 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt); 2829 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One); 2830 SDValue ShiftRightLo = 2831 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt); 2832 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt); 2833 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo); 2834 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen); 2835 2836 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2837 2838 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero); 2839 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2840 2841 SDValue Parts[2] = {Lo, Hi}; 2842 return DAG.getMergeValues(Parts, DL); 2843 } 2844 2845 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, 2846 bool IsSRA) const { 2847 SDLoc DL(Op); 2848 SDValue Lo = Op.getOperand(0); 2849 SDValue Hi = Op.getOperand(1); 2850 SDValue Shamt = Op.getOperand(2); 2851 EVT VT = Lo.getValueType(); 2852 2853 // SRA expansion: 2854 // if Shamt-XLEN < 0: // Shamt < XLEN 2855 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2856 // Hi = Hi >>s Shamt 2857 // else: 2858 // Lo = Hi >>s (Shamt-XLEN); 2859 // Hi = Hi >>s (XLEN-1) 2860 // 2861 // SRL expansion: 2862 // if Shamt-XLEN < 0: // Shamt < XLEN 2863 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt)) 2864 // Hi = Hi >>u Shamt 2865 // else: 2866 // Lo = Hi >>u (Shamt-XLEN); 2867 // Hi = 0; 2868 2869 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; 2870 2871 SDValue Zero = DAG.getConstant(0, DL, VT); 2872 SDValue One = DAG.getConstant(1, DL, VT); 2873 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT); 2874 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT); 2875 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen); 2876 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt); 2877 2878 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt); 2879 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One); 2880 SDValue ShiftLeftHi = 2881 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt); 2882 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi); 2883 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt); 2884 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen); 2885 SDValue HiFalse = 2886 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero; 2887 2888 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT); 2889 2890 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse); 2891 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse); 2892 2893 SDValue Parts[2] = {Lo, Hi}; 2894 return DAG.getMergeValues(Parts, DL); 2895 } 2896 2897 // Lower splats of i1 types to SETCC. For each mask vector type, we have a 2898 // legal equivalently-sized i8 type, so we can use that as a go-between. 2899 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op, 2900 SelectionDAG &DAG) const { 2901 SDLoc DL(Op); 2902 MVT VT = Op.getSimpleValueType(); 2903 SDValue SplatVal = Op.getOperand(0); 2904 // All-zeros or all-ones splats are handled specially. 2905 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) { 2906 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2907 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL); 2908 } 2909 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) { 2910 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second; 2911 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL); 2912 } 2913 MVT XLenVT = Subtarget.getXLenVT(); 2914 assert(SplatVal.getValueType() == XLenVT && 2915 "Unexpected type for i1 splat value"); 2916 MVT InterVT = VT.changeVectorElementType(MVT::i8); 2917 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal, 2918 DAG.getConstant(1, DL, XLenVT)); 2919 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal); 2920 SDValue Zero = DAG.getConstant(0, DL, InterVT); 2921 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE); 2922 } 2923 2924 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is 2925 // illegal (currently only vXi64 RV32). 2926 // FIXME: We could also catch non-constant sign-extended i32 values and lower 2927 // them to SPLAT_VECTOR_I64 2928 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op, 2929 SelectionDAG &DAG) const { 2930 SDLoc DL(Op); 2931 MVT VecVT = Op.getSimpleValueType(); 2932 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 && 2933 "Unexpected SPLAT_VECTOR_PARTS lowering"); 2934 2935 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!"); 2936 SDValue Lo = Op.getOperand(0); 2937 SDValue Hi = Op.getOperand(1); 2938 2939 if (VecVT.isFixedLengthVector()) { 2940 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 2941 SDLoc DL(Op); 2942 SDValue Mask, VL; 2943 std::tie(Mask, VL) = 2944 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 2945 2946 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG); 2947 return convertFromScalableVector(VecVT, Res, DAG, Subtarget); 2948 } 2949 2950 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) { 2951 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue(); 2952 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue(); 2953 // If Hi constant is all the same sign bit as Lo, lower this as a custom 2954 // node in order to try and match RVV vector/scalar instructions. 2955 if ((LoC >> 31) == HiC) 2956 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2957 } 2958 2959 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended. 2960 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo && 2961 isa<ConstantSDNode>(Hi.getOperand(1)) && 2962 Hi.getConstantOperandVal(1) == 31) 2963 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo); 2964 2965 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL. 2966 return splatPartsI64ThroughStack(DL, VecVT, Lo, Hi, 2967 DAG.getRegister(RISCV::X0, MVT::i64), DAG); 2968 } 2969 2970 // Custom-lower extensions from mask vectors by using a vselect either with 1 2971 // for zero/any-extension or -1 for sign-extension: 2972 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0) 2973 // Note that any-extension is lowered identically to zero-extension. 2974 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG, 2975 int64_t ExtTrueVal) const { 2976 SDLoc DL(Op); 2977 MVT VecVT = Op.getSimpleValueType(); 2978 SDValue Src = Op.getOperand(0); 2979 // Only custom-lower extensions from mask types 2980 assert(Src.getValueType().isVector() && 2981 Src.getValueType().getVectorElementType() == MVT::i1); 2982 2983 MVT XLenVT = Subtarget.getXLenVT(); 2984 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT); 2985 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT); 2986 2987 if (VecVT.isScalableVector()) { 2988 // Be careful not to introduce illegal scalar types at this stage, and be 2989 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is 2990 // illegal and must be expanded. Since we know that the constants are 2991 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly. 2992 bool IsRV32E64 = 2993 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64; 2994 2995 if (!IsRV32E64) { 2996 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero); 2997 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal); 2998 } else { 2999 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero); 3000 SplatTrueVal = 3001 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal); 3002 } 3003 3004 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero); 3005 } 3006 3007 MVT ContainerVT = getContainerForFixedLengthVector(VecVT); 3008 MVT I1ContainerVT = 3009 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3010 3011 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget); 3012 3013 SDValue Mask, VL; 3014 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3015 3016 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL); 3017 SplatTrueVal = 3018 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL); 3019 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, 3020 SplatTrueVal, SplatZero, VL); 3021 3022 return convertFromScalableVector(VecVT, Select, DAG, Subtarget); 3023 } 3024 3025 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV( 3026 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const { 3027 MVT ExtVT = Op.getSimpleValueType(); 3028 // Only custom-lower extensions from fixed-length vector types. 3029 if (!ExtVT.isFixedLengthVector()) 3030 return Op; 3031 MVT VT = Op.getOperand(0).getSimpleValueType(); 3032 // Grab the canonical container type for the extended type. Infer the smaller 3033 // type from that to ensure the same number of vector elements, as we know 3034 // the LMUL will be sufficient to hold the smaller type. 3035 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT); 3036 // Get the extended container type manually to ensure the same number of 3037 // vector elements between source and dest. 3038 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 3039 ContainerExtVT.getVectorElementCount()); 3040 3041 SDValue Op1 = 3042 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 3043 3044 SDLoc DL(Op); 3045 SDValue Mask, VL; 3046 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 3047 3048 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL); 3049 3050 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget); 3051 } 3052 3053 // Custom-lower truncations from vectors to mask vectors by using a mask and a 3054 // setcc operation: 3055 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne) 3056 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op, 3057 SelectionDAG &DAG) const { 3058 SDLoc DL(Op); 3059 EVT MaskVT = Op.getValueType(); 3060 // Only expect to custom-lower truncations to mask types 3061 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 && 3062 "Unexpected type for vector mask lowering"); 3063 SDValue Src = Op.getOperand(0); 3064 MVT VecVT = Src.getSimpleValueType(); 3065 3066 // If this is a fixed vector, we need to convert it to a scalable vector. 3067 MVT ContainerVT = VecVT; 3068 if (VecVT.isFixedLengthVector()) { 3069 ContainerVT = getContainerForFixedLengthVector(VecVT); 3070 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget); 3071 } 3072 3073 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT()); 3074 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT()); 3075 3076 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne); 3077 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero); 3078 3079 if (VecVT.isScalableVector()) { 3080 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne); 3081 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE); 3082 } 3083 3084 SDValue Mask, VL; 3085 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3086 3087 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1); 3088 SDValue Trunc = 3089 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL); 3090 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero, 3091 DAG.getCondCode(ISD::SETNE), Mask, VL); 3092 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget); 3093 } 3094 3095 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the 3096 // first position of a vector, and that vector is slid up to the insert index. 3097 // By limiting the active vector length to index+1 and merging with the 3098 // original vector (with an undisturbed tail policy for elements >= VL), we 3099 // achieve the desired result of leaving all elements untouched except the one 3100 // at VL-1, which is replaced with the desired value. 3101 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 3102 SelectionDAG &DAG) const { 3103 SDLoc DL(Op); 3104 MVT VecVT = Op.getSimpleValueType(); 3105 SDValue Vec = Op.getOperand(0); 3106 SDValue Val = Op.getOperand(1); 3107 SDValue Idx = Op.getOperand(2); 3108 3109 if (VecVT.getVectorElementType() == MVT::i1) { 3110 // FIXME: For now we just promote to an i8 vector and insert into that, 3111 // but this is probably not optimal. 3112 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3113 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3114 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx); 3115 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec); 3116 } 3117 3118 MVT ContainerVT = VecVT; 3119 // If the operand is a fixed-length vector, convert to a scalable one. 3120 if (VecVT.isFixedLengthVector()) { 3121 ContainerVT = getContainerForFixedLengthVector(VecVT); 3122 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3123 } 3124 3125 MVT XLenVT = Subtarget.getXLenVT(); 3126 3127 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3128 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64; 3129 // Even i64-element vectors on RV32 can be lowered without scalar 3130 // legalization if the most-significant 32 bits of the value are not affected 3131 // by the sign-extension of the lower 32 bits. 3132 // TODO: We could also catch sign extensions of a 32-bit value. 3133 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) { 3134 const auto *CVal = cast<ConstantSDNode>(Val); 3135 if (isInt<32>(CVal->getSExtValue())) { 3136 IsLegalInsert = true; 3137 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3138 } 3139 } 3140 3141 SDValue Mask, VL; 3142 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3143 3144 SDValue ValInVec; 3145 3146 if (IsLegalInsert) { 3147 unsigned Opc = 3148 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL; 3149 if (isNullConstant(Idx)) { 3150 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL); 3151 if (!VecVT.isFixedLengthVector()) 3152 return Vec; 3153 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget); 3154 } 3155 ValInVec = 3156 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL); 3157 } else { 3158 // On RV32, i64-element vectors must be specially handled to place the 3159 // value at element 0, by using two vslide1up instructions in sequence on 3160 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for 3161 // this. 3162 SDValue One = DAG.getConstant(1, DL, XLenVT); 3163 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero); 3164 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One); 3165 MVT I32ContainerVT = 3166 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2); 3167 SDValue I32Mask = 3168 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first; 3169 // Limit the active VL to two. 3170 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT); 3171 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied 3172 // undef doesn't obey the earlyclobber constraint. Just splat a zero value. 3173 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero, 3174 InsertI64VL); 3175 // First slide in the hi value, then the lo in underneath it. 3176 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3177 ValHi, I32Mask, InsertI64VL); 3178 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec, 3179 ValLo, I32Mask, InsertI64VL); 3180 // Bitcast back to the right container type. 3181 ValInVec = DAG.getBitcast(ContainerVT, ValInVec); 3182 } 3183 3184 // Now that the value is in a vector, slide it into position. 3185 SDValue InsertVL = 3186 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT)); 3187 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3188 ValInVec, Idx, Mask, InsertVL); 3189 if (!VecVT.isFixedLengthVector()) 3190 return Slideup; 3191 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3192 } 3193 3194 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then 3195 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer 3196 // types this is done using VMV_X_S to allow us to glean information about the 3197 // sign bits of the result. 3198 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 3199 SelectionDAG &DAG) const { 3200 SDLoc DL(Op); 3201 SDValue Idx = Op.getOperand(1); 3202 SDValue Vec = Op.getOperand(0); 3203 EVT EltVT = Op.getValueType(); 3204 MVT VecVT = Vec.getSimpleValueType(); 3205 MVT XLenVT = Subtarget.getXLenVT(); 3206 3207 if (VecVT.getVectorElementType() == MVT::i1) { 3208 // FIXME: For now we just promote to an i8 vector and extract from that, 3209 // but this is probably not optimal. 3210 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount()); 3211 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec); 3212 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx); 3213 } 3214 3215 // If this is a fixed vector, we need to convert it to a scalable vector. 3216 MVT ContainerVT = VecVT; 3217 if (VecVT.isFixedLengthVector()) { 3218 ContainerVT = getContainerForFixedLengthVector(VecVT); 3219 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3220 } 3221 3222 // If the index is 0, the vector is already in the right position. 3223 if (!isNullConstant(Idx)) { 3224 // Use a VL of 1 to avoid processing more elements than we need. 3225 SDValue VL = DAG.getConstant(1, DL, XLenVT); 3226 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 3227 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3228 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3229 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 3230 } 3231 3232 if (!EltVT.isInteger()) { 3233 // Floating-point extracts are handled in TableGen. 3234 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, 3235 DAG.getConstant(0, DL, XLenVT)); 3236 } 3237 3238 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 3239 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0); 3240 } 3241 3242 // Some RVV intrinsics may claim that they want an integer operand to be 3243 // promoted or expanded. 3244 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG, 3245 const RISCVSubtarget &Subtarget) { 3246 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3247 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) && 3248 "Unexpected opcode"); 3249 3250 if (!Subtarget.hasStdExtV()) 3251 return SDValue(); 3252 3253 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN; 3254 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0); 3255 SDLoc DL(Op); 3256 3257 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II = 3258 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo); 3259 if (!II || !II->SplatOperand) 3260 return SDValue(); 3261 3262 unsigned SplatOp = II->SplatOperand + HasChain; 3263 assert(SplatOp < Op.getNumOperands()); 3264 3265 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end()); 3266 SDValue &ScalarOp = Operands[SplatOp]; 3267 MVT OpVT = ScalarOp.getSimpleValueType(); 3268 MVT XLenVT = Subtarget.getXLenVT(); 3269 3270 // If this isn't a scalar, or its type is XLenVT we're done. 3271 if (!OpVT.isScalarInteger() || OpVT == XLenVT) 3272 return SDValue(); 3273 3274 // Simplest case is that the operand needs to be promoted to XLenVT. 3275 if (OpVT.bitsLT(XLenVT)) { 3276 // If the operand is a constant, sign extend to increase our chances 3277 // of being able to use a .vi instruction. ANY_EXTEND would become a 3278 // a zero extend and the simm5 check in isel would fail. 3279 // FIXME: Should we ignore the upper bits in isel instead? 3280 unsigned ExtOpc = 3281 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND; 3282 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp); 3283 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3284 } 3285 3286 // Use the previous operand to get the vXi64 VT. The result might be a mask 3287 // VT for compares. Using the previous operand assumes that the previous 3288 // operand will never have a smaller element size than a scalar operand and 3289 // that a widening operation never uses SEW=64. 3290 // NOTE: If this fails the below assert, we can probably just find the 3291 // element count from any operand or result and use it to construct the VT. 3292 assert(II->SplatOperand > 1 && "Unexpected splat operand!"); 3293 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType(); 3294 3295 // The more complex case is when the scalar is larger than XLenVT. 3296 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 && 3297 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!"); 3298 3299 // If this is a sign-extended 32-bit constant, we can truncate it and rely 3300 // on the instruction to sign-extend since SEW>XLEN. 3301 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) { 3302 if (isInt<32>(CVal->getSExtValue())) { 3303 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32); 3304 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3305 } 3306 } 3307 3308 // We need to convert the scalar to a splat vector. 3309 // FIXME: Can we implicitly truncate the scalar if it is known to 3310 // be sign extended? 3311 // VL should be the last operand. 3312 SDValue VL = Op.getOperand(Op.getNumOperands() - 1); 3313 assert(VL.getValueType() == XLenVT); 3314 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG); 3315 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands); 3316 } 3317 3318 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3319 SelectionDAG &DAG) const { 3320 unsigned IntNo = Op.getConstantOperandVal(0); 3321 SDLoc DL(Op); 3322 MVT XLenVT = Subtarget.getXLenVT(); 3323 3324 switch (IntNo) { 3325 default: 3326 break; // Don't custom lower most intrinsics. 3327 case Intrinsic::thread_pointer: { 3328 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3329 return DAG.getRegister(RISCV::X4, PtrVT); 3330 } 3331 case Intrinsic::riscv_orc_b: 3332 // Lower to the GORCI encoding for orc.b. 3333 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1), 3334 DAG.getConstant(7, DL, XLenVT)); 3335 case Intrinsic::riscv_grev: 3336 case Intrinsic::riscv_gorc: { 3337 unsigned Opc = 3338 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC; 3339 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3340 } 3341 case Intrinsic::riscv_shfl: 3342 case Intrinsic::riscv_unshfl: { 3343 unsigned Opc = 3344 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 3345 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3346 } 3347 case Intrinsic::riscv_bcompress: 3348 case Intrinsic::riscv_bdecompress: { 3349 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS 3350 : RISCVISD::BDECOMPRESS; 3351 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2)); 3352 } 3353 case Intrinsic::riscv_vmv_x_s: 3354 assert(Op.getValueType() == XLenVT && "Unexpected VT!"); 3355 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(), 3356 Op.getOperand(1)); 3357 case Intrinsic::riscv_vmv_v_x: 3358 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2), 3359 Op.getSimpleValueType(), DL, DAG, Subtarget); 3360 case Intrinsic::riscv_vfmv_v_f: 3361 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(), 3362 Op.getOperand(1), Op.getOperand(2)); 3363 case Intrinsic::riscv_vmv_s_x: { 3364 SDValue Scalar = Op.getOperand(2); 3365 3366 if (Scalar.getValueType().bitsLE(XLenVT)) { 3367 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar); 3368 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(), 3369 Op.getOperand(1), Scalar, Op.getOperand(3)); 3370 } 3371 3372 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!"); 3373 3374 // This is an i64 value that lives in two scalar registers. We have to 3375 // insert this in a convoluted way. First we build vXi64 splat containing 3376 // the/ two values that we assemble using some bit math. Next we'll use 3377 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask 3378 // to merge element 0 from our splat into the source vector. 3379 // FIXME: This is probably not the best way to do this, but it is 3380 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting 3381 // point. 3382 // sw lo, (a0) 3383 // sw hi, 4(a0) 3384 // vlse vX, (a0) 3385 // 3386 // vid.v vVid 3387 // vmseq.vx mMask, vVid, 0 3388 // vmerge.vvm vDest, vSrc, vVal, mMask 3389 MVT VT = Op.getSimpleValueType(); 3390 SDValue Vec = Op.getOperand(1); 3391 SDValue VL = Op.getOperand(3); 3392 3393 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG); 3394 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3395 DAG.getConstant(0, DL, MVT::i32), VL); 3396 3397 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount()); 3398 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 3399 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3400 SDValue SelectCond = 3401 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx, 3402 DAG.getCondCode(ISD::SETEQ), Mask, VL); 3403 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal, 3404 Vec, VL); 3405 } 3406 case Intrinsic::riscv_vslide1up: 3407 case Intrinsic::riscv_vslide1down: 3408 case Intrinsic::riscv_vslide1up_mask: 3409 case Intrinsic::riscv_vslide1down_mask: { 3410 // We need to special case these when the scalar is larger than XLen. 3411 unsigned NumOps = Op.getNumOperands(); 3412 bool IsMasked = NumOps == 6; 3413 unsigned OpOffset = IsMasked ? 1 : 0; 3414 SDValue Scalar = Op.getOperand(2 + OpOffset); 3415 if (Scalar.getValueType().bitsLE(XLenVT)) 3416 break; 3417 3418 // Splatting a sign extended constant is fine. 3419 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar)) 3420 if (isInt<32>(CVal->getSExtValue())) 3421 break; 3422 3423 MVT VT = Op.getSimpleValueType(); 3424 assert(VT.getVectorElementType() == MVT::i64 && 3425 Scalar.getValueType() == MVT::i64 && "Unexpected VTs"); 3426 3427 // Convert the vector source to the equivalent nxvXi32 vector. 3428 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2); 3429 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset)); 3430 3431 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3432 DAG.getConstant(0, DL, XLenVT)); 3433 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar, 3434 DAG.getConstant(1, DL, XLenVT)); 3435 3436 // Double the VL since we halved SEW. 3437 SDValue VL = Op.getOperand(NumOps - 1); 3438 SDValue I32VL = 3439 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT)); 3440 3441 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount()); 3442 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL); 3443 3444 // Shift the two scalar parts in using SEW=32 slide1up/slide1down 3445 // instructions. 3446 if (IntNo == Intrinsic::riscv_vslide1up || 3447 IntNo == Intrinsic::riscv_vslide1up_mask) { 3448 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi, 3449 I32Mask, I32VL); 3450 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo, 3451 I32Mask, I32VL); 3452 } else { 3453 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo, 3454 I32Mask, I32VL); 3455 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi, 3456 I32Mask, I32VL); 3457 } 3458 3459 // Convert back to nxvXi64. 3460 Vec = DAG.getBitcast(VT, Vec); 3461 3462 if (!IsMasked) 3463 return Vec; 3464 3465 // Apply mask after the operation. 3466 SDValue Mask = Op.getOperand(NumOps - 2); 3467 SDValue MaskedOff = Op.getOperand(1); 3468 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL); 3469 } 3470 } 3471 3472 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3473 } 3474 3475 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, 3476 SelectionDAG &DAG) const { 3477 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget); 3478 } 3479 3480 static MVT getLMUL1VT(MVT VT) { 3481 assert(VT.getVectorElementType().getSizeInBits() <= 64 && 3482 "Unexpected vector MVT"); 3483 return MVT::getScalableVectorVT( 3484 VT.getVectorElementType(), 3485 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits()); 3486 } 3487 3488 static unsigned getRVVReductionOp(unsigned ISDOpcode) { 3489 switch (ISDOpcode) { 3490 default: 3491 llvm_unreachable("Unhandled reduction"); 3492 case ISD::VECREDUCE_ADD: 3493 return RISCVISD::VECREDUCE_ADD_VL; 3494 case ISD::VECREDUCE_UMAX: 3495 return RISCVISD::VECREDUCE_UMAX_VL; 3496 case ISD::VECREDUCE_SMAX: 3497 return RISCVISD::VECREDUCE_SMAX_VL; 3498 case ISD::VECREDUCE_UMIN: 3499 return RISCVISD::VECREDUCE_UMIN_VL; 3500 case ISD::VECREDUCE_SMIN: 3501 return RISCVISD::VECREDUCE_SMIN_VL; 3502 case ISD::VECREDUCE_AND: 3503 return RISCVISD::VECREDUCE_AND_VL; 3504 case ISD::VECREDUCE_OR: 3505 return RISCVISD::VECREDUCE_OR_VL; 3506 case ISD::VECREDUCE_XOR: 3507 return RISCVISD::VECREDUCE_XOR_VL; 3508 } 3509 } 3510 3511 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op, 3512 SelectionDAG &DAG) const { 3513 SDLoc DL(Op); 3514 SDValue Vec = Op.getOperand(0); 3515 MVT VecVT = Vec.getSimpleValueType(); 3516 assert((Op.getOpcode() == ISD::VECREDUCE_AND || 3517 Op.getOpcode() == ISD::VECREDUCE_OR || 3518 Op.getOpcode() == ISD::VECREDUCE_XOR) && 3519 "Unexpected reduction lowering"); 3520 3521 MVT XLenVT = Subtarget.getXLenVT(); 3522 assert(Op.getValueType() == XLenVT && 3523 "Expected reduction output to be legalized to XLenVT"); 3524 3525 MVT ContainerVT = VecVT; 3526 if (VecVT.isFixedLengthVector()) { 3527 ContainerVT = getContainerForFixedLengthVector(VecVT); 3528 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3529 } 3530 3531 SDValue Mask, VL; 3532 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3533 SDValue Zero = DAG.getConstant(0, DL, XLenVT); 3534 3535 switch (Op.getOpcode()) { 3536 default: 3537 llvm_unreachable("Unhandled reduction"); 3538 case ISD::VECREDUCE_AND: 3539 // vpopc ~x == 0 3540 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL); 3541 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3542 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ); 3543 case ISD::VECREDUCE_OR: 3544 // vpopc x != 0 3545 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3546 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3547 case ISD::VECREDUCE_XOR: { 3548 // ((vpopc x) & 1) != 0 3549 SDValue One = DAG.getConstant(1, DL, XLenVT); 3550 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL); 3551 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One); 3552 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE); 3553 } 3554 } 3555 } 3556 3557 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op, 3558 SelectionDAG &DAG) const { 3559 SDLoc DL(Op); 3560 SDValue Vec = Op.getOperand(0); 3561 EVT VecEVT = Vec.getValueType(); 3562 3563 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode()); 3564 3565 // Due to ordering in legalize types we may have a vector type that needs to 3566 // be split. Do that manually so we can get down to a legal type. 3567 while (getTypeAction(*DAG.getContext(), VecEVT) == 3568 TargetLowering::TypeSplitVector) { 3569 SDValue Lo, Hi; 3570 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); 3571 VecEVT = Lo.getValueType(); 3572 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi); 3573 } 3574 3575 // TODO: The type may need to be widened rather than split. Or widened before 3576 // it can be split. 3577 if (!isTypeLegal(VecEVT)) 3578 return SDValue(); 3579 3580 MVT VecVT = VecEVT.getSimpleVT(); 3581 MVT VecEltVT = VecVT.getVectorElementType(); 3582 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode()); 3583 3584 MVT ContainerVT = VecVT; 3585 if (VecVT.isFixedLengthVector()) { 3586 ContainerVT = getContainerForFixedLengthVector(VecVT); 3587 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3588 } 3589 3590 MVT M1VT = getLMUL1VT(ContainerVT); 3591 3592 SDValue Mask, VL; 3593 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3594 3595 // FIXME: This is a VLMAX splat which might be too large and can prevent 3596 // vsetvli removal. 3597 SDValue NeutralElem = 3598 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags()); 3599 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem); 3600 SDValue Reduction = 3601 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL); 3602 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3603 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3604 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType()); 3605 } 3606 3607 // Given a reduction op, this function returns the matching reduction opcode, 3608 // the vector SDValue and the scalar SDValue required to lower this to a 3609 // RISCVISD node. 3610 static std::tuple<unsigned, SDValue, SDValue> 3611 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) { 3612 SDLoc DL(Op); 3613 auto Flags = Op->getFlags(); 3614 unsigned Opcode = Op.getOpcode(); 3615 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode); 3616 switch (Opcode) { 3617 default: 3618 llvm_unreachable("Unhandled reduction"); 3619 case ISD::VECREDUCE_FADD: 3620 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), 3621 DAG.getConstantFP(0.0, DL, EltVT)); 3622 case ISD::VECREDUCE_SEQ_FADD: 3623 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1), 3624 Op.getOperand(0)); 3625 case ISD::VECREDUCE_FMIN: 3626 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0), 3627 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3628 case ISD::VECREDUCE_FMAX: 3629 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0), 3630 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags)); 3631 } 3632 } 3633 3634 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op, 3635 SelectionDAG &DAG) const { 3636 SDLoc DL(Op); 3637 MVT VecEltVT = Op.getSimpleValueType(); 3638 3639 unsigned RVVOpcode; 3640 SDValue VectorVal, ScalarVal; 3641 std::tie(RVVOpcode, VectorVal, ScalarVal) = 3642 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT); 3643 MVT VecVT = VectorVal.getSimpleValueType(); 3644 3645 MVT ContainerVT = VecVT; 3646 if (VecVT.isFixedLengthVector()) { 3647 ContainerVT = getContainerForFixedLengthVector(VecVT); 3648 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget); 3649 } 3650 3651 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType()); 3652 3653 SDValue Mask, VL; 3654 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget); 3655 3656 // FIXME: This is a VLMAX splat which might be too large and can prevent 3657 // vsetvli removal. 3658 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal); 3659 SDValue Reduction = 3660 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL); 3661 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction, 3662 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 3663 } 3664 3665 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op, 3666 SelectionDAG &DAG) const { 3667 SDValue Vec = Op.getOperand(0); 3668 SDValue SubVec = Op.getOperand(1); 3669 MVT VecVT = Vec.getSimpleValueType(); 3670 MVT SubVecVT = SubVec.getSimpleValueType(); 3671 3672 SDLoc DL(Op); 3673 MVT XLenVT = Subtarget.getXLenVT(); 3674 unsigned OrigIdx = Op.getConstantOperandVal(2); 3675 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3676 3677 // We don't have the ability to slide mask vectors up indexed by their i1 3678 // elements; the smallest we can do is i8. Often we are able to bitcast to 3679 // equivalent i8 vectors. Note that when inserting a fixed-length vector 3680 // into a scalable one, we might not necessarily have enough scalable 3681 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid. 3682 if (SubVecVT.getVectorElementType() == MVT::i1 && 3683 (OrigIdx != 0 || !Vec.isUndef())) { 3684 if (VecVT.getVectorMinNumElements() >= 8 && 3685 SubVecVT.getVectorMinNumElements() >= 8) { 3686 assert(OrigIdx % 8 == 0 && "Invalid index"); 3687 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3688 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3689 "Unexpected mask vector lowering"); 3690 OrigIdx /= 8; 3691 SubVecVT = 3692 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3693 SubVecVT.isScalableVector()); 3694 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3695 VecVT.isScalableVector()); 3696 Vec = DAG.getBitcast(VecVT, Vec); 3697 SubVec = DAG.getBitcast(SubVecVT, SubVec); 3698 } else { 3699 // We can't slide this mask vector up indexed by its i1 elements. 3700 // This poses a problem when we wish to insert a scalable vector which 3701 // can't be re-expressed as a larger type. Just choose the slow path and 3702 // extend to a larger type, then truncate back down. 3703 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3704 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3705 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3706 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec); 3707 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec, 3708 Op.getOperand(2)); 3709 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT); 3710 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE); 3711 } 3712 } 3713 3714 // If the subvector vector is a fixed-length type, we cannot use subregister 3715 // manipulation to simplify the codegen; we don't know which register of a 3716 // LMUL group contains the specific subvector as we only know the minimum 3717 // register size. Therefore we must slide the vector group up the full 3718 // amount. 3719 if (SubVecVT.isFixedLengthVector()) { 3720 if (OrigIdx == 0 && Vec.isUndef()) 3721 return Op; 3722 MVT ContainerVT = VecVT; 3723 if (VecVT.isFixedLengthVector()) { 3724 ContainerVT = getContainerForFixedLengthVector(VecVT); 3725 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3726 } 3727 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT, 3728 DAG.getUNDEF(ContainerVT), SubVec, 3729 DAG.getConstant(0, DL, XLenVT)); 3730 SDValue Mask = 3731 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3732 // Set the vector length to only the number of elements we care about. Note 3733 // that for slideup this includes the offset. 3734 SDValue VL = 3735 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT); 3736 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3737 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec, 3738 SubVec, SlideupAmt, Mask, VL); 3739 if (VecVT.isFixedLengthVector()) 3740 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget); 3741 return DAG.getBitcast(Op.getValueType(), Slideup); 3742 } 3743 3744 unsigned SubRegIdx, RemIdx; 3745 std::tie(SubRegIdx, RemIdx) = 3746 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3747 VecVT, SubVecVT, OrigIdx, TRI); 3748 3749 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT); 3750 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || 3751 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || 3752 SubVecLMUL == RISCVII::VLMUL::LMUL_F8; 3753 3754 // 1. If the Idx has been completely eliminated and this subvector's size is 3755 // a vector register or a multiple thereof, or the surrounding elements are 3756 // undef, then this is a subvector insert which naturally aligns to a vector 3757 // register. These can easily be handled using subregister manipulation. 3758 // 2. If the subvector is smaller than a vector register, then the insertion 3759 // must preserve the undisturbed elements of the register. We do this by 3760 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type 3761 // (which resolves to a subregister copy), performing a VSLIDEUP to place the 3762 // subvector within the vector register, and an INSERT_SUBVECTOR of that 3763 // LMUL=1 type back into the larger vector (resolving to another subregister 3764 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type 3765 // to avoid allocating a large register group to hold our subvector. 3766 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef())) 3767 return Op; 3768 3769 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements 3770 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy 3771 // (in our case undisturbed). This means we can set up a subvector insertion 3772 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the 3773 // size of the subvector. 3774 MVT InterSubVT = VecVT; 3775 SDValue AlignedExtract = Vec; 3776 unsigned AlignedIdx = OrigIdx - RemIdx; 3777 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3778 InterSubVT = getLMUL1VT(VecVT); 3779 // Extract a subvector equal to the nearest full vector register type. This 3780 // should resolve to a EXTRACT_SUBREG instruction. 3781 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3782 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3783 } 3784 3785 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3786 // For scalable vectors this must be further multiplied by vscale. 3787 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt); 3788 3789 SDValue Mask, VL; 3790 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 3791 3792 // Construct the vector length corresponding to RemIdx + length(SubVecVT). 3793 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT); 3794 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL); 3795 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL); 3796 3797 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT, 3798 DAG.getUNDEF(InterSubVT), SubVec, 3799 DAG.getConstant(0, DL, XLenVT)); 3800 3801 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT, 3802 AlignedExtract, SubVec, SlideupAmt, Mask, VL); 3803 3804 // If required, insert this subvector back into the correct vector register. 3805 // This should resolve to an INSERT_SUBREG instruction. 3806 if (VecVT.bitsGT(InterSubVT)) 3807 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup, 3808 DAG.getConstant(AlignedIdx, DL, XLenVT)); 3809 3810 // We might have bitcast from a mask type: cast back to the original type if 3811 // required. 3812 return DAG.getBitcast(Op.getSimpleValueType(), Slideup); 3813 } 3814 3815 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op, 3816 SelectionDAG &DAG) const { 3817 SDValue Vec = Op.getOperand(0); 3818 MVT SubVecVT = Op.getSimpleValueType(); 3819 MVT VecVT = Vec.getSimpleValueType(); 3820 3821 SDLoc DL(Op); 3822 MVT XLenVT = Subtarget.getXLenVT(); 3823 unsigned OrigIdx = Op.getConstantOperandVal(1); 3824 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3825 3826 // We don't have the ability to slide mask vectors down indexed by their i1 3827 // elements; the smallest we can do is i8. Often we are able to bitcast to 3828 // equivalent i8 vectors. Note that when extracting a fixed-length vector 3829 // from a scalable one, we might not necessarily have enough scalable 3830 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid. 3831 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) { 3832 if (VecVT.getVectorMinNumElements() >= 8 && 3833 SubVecVT.getVectorMinNumElements() >= 8) { 3834 assert(OrigIdx % 8 == 0 && "Invalid index"); 3835 assert(VecVT.getVectorMinNumElements() % 8 == 0 && 3836 SubVecVT.getVectorMinNumElements() % 8 == 0 && 3837 "Unexpected mask vector lowering"); 3838 OrigIdx /= 8; 3839 SubVecVT = 3840 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8, 3841 SubVecVT.isScalableVector()); 3842 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8, 3843 VecVT.isScalableVector()); 3844 Vec = DAG.getBitcast(VecVT, Vec); 3845 } else { 3846 // We can't slide this mask vector down, indexed by its i1 elements. 3847 // This poses a problem when we wish to extract a scalable vector which 3848 // can't be re-expressed as a larger type. Just choose the slow path and 3849 // extend to a larger type, then truncate back down. 3850 // TODO: We could probably improve this when extracting certain fixed 3851 // from fixed, where we can extract as i8 and shift the correct element 3852 // right to reach the desired subvector? 3853 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8); 3854 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8); 3855 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec); 3856 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec, 3857 Op.getOperand(1)); 3858 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT); 3859 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE); 3860 } 3861 } 3862 3863 // If the subvector vector is a fixed-length type, we cannot use subregister 3864 // manipulation to simplify the codegen; we don't know which register of a 3865 // LMUL group contains the specific subvector as we only know the minimum 3866 // register size. Therefore we must slide the vector group down the full 3867 // amount. 3868 if (SubVecVT.isFixedLengthVector()) { 3869 // With an index of 0 this is a cast-like subvector, which can be performed 3870 // with subregister operations. 3871 if (OrigIdx == 0) 3872 return Op; 3873 MVT ContainerVT = VecVT; 3874 if (VecVT.isFixedLengthVector()) { 3875 ContainerVT = getContainerForFixedLengthVector(VecVT); 3876 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 3877 } 3878 SDValue Mask = 3879 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first; 3880 // Set the vector length to only the number of elements we care about. This 3881 // avoids sliding down elements we're going to discard straight away. 3882 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT); 3883 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT); 3884 SDValue Slidedown = 3885 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 3886 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL); 3887 // Now we can use a cast-like subvector extract to get the result. 3888 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3889 DAG.getConstant(0, DL, XLenVT)); 3890 return DAG.getBitcast(Op.getValueType(), Slidedown); 3891 } 3892 3893 unsigned SubRegIdx, RemIdx; 3894 std::tie(SubRegIdx, RemIdx) = 3895 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( 3896 VecVT, SubVecVT, OrigIdx, TRI); 3897 3898 // If the Idx has been completely eliminated then this is a subvector extract 3899 // which naturally aligns to a vector register. These can easily be handled 3900 // using subregister manipulation. 3901 if (RemIdx == 0) 3902 return Op; 3903 3904 // Else we must shift our vector register directly to extract the subvector. 3905 // Do this using VSLIDEDOWN. 3906 3907 // If the vector type is an LMUL-group type, extract a subvector equal to the 3908 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG 3909 // instruction. 3910 MVT InterSubVT = VecVT; 3911 if (VecVT.bitsGT(getLMUL1VT(VecVT))) { 3912 InterSubVT = getLMUL1VT(VecVT); 3913 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec, 3914 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT)); 3915 } 3916 3917 // Slide this vector register down by the desired number of elements in order 3918 // to place the desired subvector starting at element 0. 3919 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT); 3920 // For scalable vectors this must be further multiplied by vscale. 3921 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt); 3922 3923 SDValue Mask, VL; 3924 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget); 3925 SDValue Slidedown = 3926 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT, 3927 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL); 3928 3929 // Now the vector is in the right position, extract our final subvector. This 3930 // should resolve to a COPY. 3931 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown, 3932 DAG.getConstant(0, DL, XLenVT)); 3933 3934 // We might have bitcast from a mask type: cast back to the original type if 3935 // required. 3936 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown); 3937 } 3938 3939 // Lower step_vector to the vid instruction. Any non-identity step value must 3940 // be accounted for my manual expansion. 3941 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op, 3942 SelectionDAG &DAG) const { 3943 SDLoc DL(Op); 3944 MVT VT = Op.getSimpleValueType(); 3945 MVT XLenVT = Subtarget.getXLenVT(); 3946 SDValue Mask, VL; 3947 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget); 3948 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL); 3949 uint64_t StepValImm = Op.getConstantOperandVal(0); 3950 if (StepValImm != 1) { 3951 assert(Op.getOperand(0).getValueType() == XLenVT && 3952 "Unexpected step value type"); 3953 if (isPowerOf2_64(StepValImm)) { 3954 SDValue StepVal = 3955 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, 3956 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT)); 3957 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal); 3958 } else { 3959 SDValue StepVal = 3960 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0)); 3961 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal); 3962 } 3963 } 3964 return StepVec; 3965 } 3966 3967 // Implement vector_reverse using vrgather.vv with indices determined by 3968 // subtracting the id of each element from (VLMAX-1). This will convert 3969 // the indices like so: 3970 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0). 3971 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16. 3972 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op, 3973 SelectionDAG &DAG) const { 3974 SDLoc DL(Op); 3975 MVT VecVT = Op.getSimpleValueType(); 3976 unsigned EltSize = VecVT.getScalarSizeInBits(); 3977 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue(); 3978 3979 unsigned MaxVLMAX = 0; 3980 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits(); 3981 if (VectorBitsMax != 0) 3982 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock; 3983 3984 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL; 3985 MVT IntVT = VecVT.changeVectorElementTypeToInteger(); 3986 3987 // If this is SEW=8 and VLMAX is unknown or more than 256, we need 3988 // to use vrgatherei16.vv. 3989 // TODO: It's also possible to use vrgatherei16.vv for other types to 3990 // decrease register width for the index calculation. 3991 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) { 3992 // If this is LMUL=8, we have to split before can use vrgatherei16.vv. 3993 // Reverse each half, then reassemble them in reverse order. 3994 // NOTE: It's also possible that after splitting that VLMAX no longer 3995 // requires vrgatherei16.vv. 3996 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) { 3997 SDValue Lo, Hi; 3998 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0); 3999 EVT LoVT, HiVT; 4000 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT); 4001 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo); 4002 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi); 4003 // Reassemble the low and high pieces reversed. 4004 // FIXME: This is a CONCAT_VECTORS. 4005 SDValue Res = 4006 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi, 4007 DAG.getIntPtrConstant(0, DL)); 4008 return DAG.getNode( 4009 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo, 4010 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL)); 4011 } 4012 4013 // Just promote the int type to i16 which will double the LMUL. 4014 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount()); 4015 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL; 4016 } 4017 4018 MVT XLenVT = Subtarget.getXLenVT(); 4019 SDValue Mask, VL; 4020 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget); 4021 4022 // Calculate VLMAX-1 for the desired SEW. 4023 unsigned MinElts = VecVT.getVectorMinNumElements(); 4024 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT, 4025 DAG.getConstant(MinElts, DL, XLenVT)); 4026 SDValue VLMinus1 = 4027 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT)); 4028 4029 // Splat VLMAX-1 taking care to handle SEW==64 on RV32. 4030 bool IsRV32E64 = 4031 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64; 4032 SDValue SplatVL; 4033 if (!IsRV32E64) 4034 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1); 4035 else 4036 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1); 4037 4038 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL); 4039 SDValue Indices = 4040 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL); 4041 4042 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL); 4043 } 4044 4045 SDValue 4046 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op, 4047 SelectionDAG &DAG) const { 4048 auto *Load = cast<LoadSDNode>(Op); 4049 4050 SDLoc DL(Op); 4051 MVT VT = Op.getSimpleValueType(); 4052 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4053 4054 SDValue VL = 4055 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4056 4057 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4058 SDValue NewLoad = DAG.getMemIntrinsicNode( 4059 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL}, 4060 Load->getMemoryVT(), Load->getMemOperand()); 4061 4062 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget); 4063 return DAG.getMergeValues({Result, Load->getChain()}, DL); 4064 } 4065 4066 SDValue 4067 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op, 4068 SelectionDAG &DAG) const { 4069 auto *Store = cast<StoreSDNode>(Op); 4070 4071 SDLoc DL(Op); 4072 SDValue StoreVal = Store->getValue(); 4073 MVT VT = StoreVal.getSimpleValueType(); 4074 4075 // If the size less than a byte, we need to pad with zeros to make a byte. 4076 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) { 4077 VT = MVT::v8i1; 4078 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 4079 DAG.getConstant(0, DL, VT), StoreVal, 4080 DAG.getIntPtrConstant(0, DL)); 4081 } 4082 4083 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4084 4085 SDValue VL = 4086 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4087 4088 SDValue NewValue = 4089 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget); 4090 return DAG.getMemIntrinsicNode( 4091 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other), 4092 {Store->getChain(), NewValue, Store->getBasePtr(), VL}, 4093 Store->getMemoryVT(), Store->getMemOperand()); 4094 } 4095 4096 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const { 4097 auto *Load = cast<MaskedLoadSDNode>(Op); 4098 4099 SDLoc DL(Op); 4100 MVT VT = Op.getSimpleValueType(); 4101 MVT XLenVT = Subtarget.getXLenVT(); 4102 4103 SDValue Mask = Load->getMask(); 4104 SDValue PassThru = Load->getPassThru(); 4105 SDValue VL; 4106 4107 MVT ContainerVT = VT; 4108 if (VT.isFixedLengthVector()) { 4109 ContainerVT = getContainerForFixedLengthVector(VT); 4110 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4111 4112 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4113 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4114 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4115 } else 4116 VL = DAG.getRegister(RISCV::X0, XLenVT); 4117 4118 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4119 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT); 4120 SDValue Ops[] = {Load->getChain(), IntID, PassThru, 4121 Load->getBasePtr(), Mask, VL}; 4122 SDValue Result = 4123 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4124 Load->getMemoryVT(), Load->getMemOperand()); 4125 SDValue Chain = Result.getValue(1); 4126 4127 if (VT.isFixedLengthVector()) 4128 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4129 4130 return DAG.getMergeValues({Result, Chain}, DL); 4131 } 4132 4133 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const { 4134 auto *Store = cast<MaskedStoreSDNode>(Op); 4135 4136 SDLoc DL(Op); 4137 SDValue Val = Store->getValue(); 4138 SDValue Mask = Store->getMask(); 4139 MVT VT = Val.getSimpleValueType(); 4140 MVT XLenVT = Subtarget.getXLenVT(); 4141 SDValue VL; 4142 4143 MVT ContainerVT = VT; 4144 if (VT.isFixedLengthVector()) { 4145 ContainerVT = getContainerForFixedLengthVector(VT); 4146 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4147 4148 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4149 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4150 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4151 } else 4152 VL = DAG.getRegister(RISCV::X0, XLenVT); 4153 4154 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT); 4155 return DAG.getMemIntrinsicNode( 4156 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other), 4157 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL}, 4158 Store->getMemoryVT(), Store->getMemOperand()); 4159 } 4160 4161 SDValue 4162 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op, 4163 SelectionDAG &DAG) const { 4164 MVT InVT = Op.getOperand(0).getSimpleValueType(); 4165 MVT ContainerVT = getContainerForFixedLengthVector(InVT); 4166 4167 MVT VT = Op.getSimpleValueType(); 4168 4169 SDValue Op1 = 4170 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget); 4171 SDValue Op2 = 4172 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4173 4174 SDLoc DL(Op); 4175 SDValue VL = 4176 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT()); 4177 4178 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4179 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4180 4181 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2, 4182 Op.getOperand(2), Mask, VL); 4183 4184 return convertFromScalableVector(VT, Cmp, DAG, Subtarget); 4185 } 4186 4187 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV( 4188 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const { 4189 MVT VT = Op.getSimpleValueType(); 4190 4191 if (VT.getVectorElementType() == MVT::i1) 4192 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false); 4193 4194 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true); 4195 } 4196 4197 // Lower vector ABS to smax(X, sub(0, X)). 4198 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const { 4199 SDLoc DL(Op); 4200 MVT VT = Op.getSimpleValueType(); 4201 SDValue X = Op.getOperand(0); 4202 4203 assert(VT.isFixedLengthVector() && "Unexpected type"); 4204 4205 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4206 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget); 4207 4208 SDValue Mask, VL; 4209 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4210 4211 SDValue SplatZero = 4212 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4213 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 4214 SDValue NegX = 4215 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL); 4216 SDValue Max = 4217 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL); 4218 4219 return convertFromScalableVector(VT, Max, DAG, Subtarget); 4220 } 4221 4222 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV( 4223 SDValue Op, SelectionDAG &DAG) const { 4224 SDLoc DL(Op); 4225 MVT VT = Op.getSimpleValueType(); 4226 SDValue Mag = Op.getOperand(0); 4227 SDValue Sign = Op.getOperand(1); 4228 assert(Mag.getValueType() == Sign.getValueType() && 4229 "Can only handle COPYSIGN with matching types."); 4230 4231 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4232 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget); 4233 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget); 4234 4235 SDValue Mask, VL; 4236 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4237 4238 SDValue CopySign = 4239 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL); 4240 4241 return convertFromScalableVector(VT, CopySign, DAG, Subtarget); 4242 } 4243 4244 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV( 4245 SDValue Op, SelectionDAG &DAG) const { 4246 MVT VT = Op.getSimpleValueType(); 4247 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4248 4249 MVT I1ContainerVT = 4250 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4251 4252 SDValue CC = 4253 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget); 4254 SDValue Op1 = 4255 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget); 4256 SDValue Op2 = 4257 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget); 4258 4259 SDLoc DL(Op); 4260 SDValue Mask, VL; 4261 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4262 4263 SDValue Select = 4264 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL); 4265 4266 return convertFromScalableVector(VT, Select, DAG, Subtarget); 4267 } 4268 4269 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG, 4270 unsigned NewOpc, 4271 bool HasMask) const { 4272 MVT VT = Op.getSimpleValueType(); 4273 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4274 4275 // Create list of operands by converting existing ones to scalable types. 4276 SmallVector<SDValue, 6> Ops; 4277 for (const SDValue &V : Op->op_values()) { 4278 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4279 4280 // Pass through non-vector operands. 4281 if (!V.getValueType().isVector()) { 4282 Ops.push_back(V); 4283 continue; 4284 } 4285 4286 // "cast" fixed length vector to a scalable vector. 4287 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) && 4288 "Only fixed length vectors are supported!"); 4289 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4290 } 4291 4292 SDLoc DL(Op); 4293 SDValue Mask, VL; 4294 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget); 4295 if (HasMask) 4296 Ops.push_back(Mask); 4297 Ops.push_back(VL); 4298 4299 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops); 4300 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget); 4301 } 4302 4303 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node: 4304 // * Operands of each node are assumed to be in the same order. 4305 // * The EVL operand is promoted from i32 to i64 on RV64. 4306 // * Fixed-length vectors are converted to their scalable-vector container 4307 // types. 4308 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG, 4309 unsigned RISCVISDOpc) const { 4310 SDLoc DL(Op); 4311 MVT VT = Op.getSimpleValueType(); 4312 Optional<unsigned> EVLIdx = ISD::getVPExplicitVectorLengthIdx(Op.getOpcode()); 4313 4314 SmallVector<SDValue, 4> Ops; 4315 MVT XLenVT = Subtarget.getXLenVT(); 4316 4317 for (const auto &OpIdx : enumerate(Op->ops())) { 4318 SDValue V = OpIdx.value(); 4319 if ((unsigned)OpIdx.index() == EVLIdx) { 4320 Ops.push_back(DAG.getZExtOrTrunc(V, DL, XLenVT)); 4321 continue; 4322 } 4323 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!"); 4324 // Pass through operands which aren't fixed-length vectors. 4325 if (!V.getValueType().isFixedLengthVector()) { 4326 Ops.push_back(V); 4327 continue; 4328 } 4329 // "cast" fixed length vector to a scalable vector. 4330 MVT OpVT = V.getSimpleValueType(); 4331 MVT ContainerVT = getContainerForFixedLengthVector(OpVT); 4332 assert(useRVVForFixedLengthVectorVT(OpVT) && 4333 "Only fixed length vectors are supported!"); 4334 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget)); 4335 } 4336 4337 if (!VT.isFixedLengthVector()) 4338 return DAG.getNode(RISCVISDOpc, DL, VT, Ops); 4339 4340 MVT ContainerVT = getContainerForFixedLengthVector(VT); 4341 4342 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops); 4343 4344 return convertFromScalableVector(VT, VPOp, DAG, Subtarget); 4345 } 4346 4347 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to 4348 // a RVV indexed load. The RVV indexed load instructions only support the 4349 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4350 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4351 // indexing is extended to the XLEN value type and scaled accordingly. 4352 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const { 4353 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode()); 4354 SDLoc DL(Op); 4355 4356 SDValue Index = MGN->getIndex(); 4357 SDValue Mask = MGN->getMask(); 4358 SDValue PassThru = MGN->getPassThru(); 4359 4360 MVT VT = Op.getSimpleValueType(); 4361 MVT IndexVT = Index.getSimpleValueType(); 4362 MVT XLenVT = Subtarget.getXLenVT(); 4363 4364 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4365 "Unexpected VTs!"); 4366 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT && 4367 "Unexpected pointer type"); 4368 // Targets have to explicitly opt-in for extending vector loads. 4369 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD && 4370 "Unexpected extending MGATHER"); 4371 4372 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4373 // the selection of the masked intrinsics doesn't do this for us. 4374 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4375 4376 SDValue VL; 4377 MVT ContainerVT = VT; 4378 if (VT.isFixedLengthVector()) { 4379 // We need to use the larger of the result and index type to determine the 4380 // scalable type to use so we don't increase LMUL for any operand/result. 4381 if (VT.bitsGE(IndexVT)) { 4382 ContainerVT = getContainerForFixedLengthVector(VT); 4383 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4384 ContainerVT.getVectorElementCount()); 4385 } else { 4386 IndexVT = getContainerForFixedLengthVector(IndexVT); 4387 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(), 4388 IndexVT.getVectorElementCount()); 4389 } 4390 4391 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4392 4393 if (!IsUnmasked) { 4394 MVT MaskVT = 4395 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4396 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4397 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget); 4398 } 4399 4400 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4401 } else 4402 VL = DAG.getRegister(RISCV::X0, XLenVT); 4403 4404 unsigned IntID = 4405 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask; 4406 SmallVector<SDValue, 8> Ops{MGN->getChain(), 4407 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4408 if (!IsUnmasked) 4409 Ops.push_back(PassThru); 4410 Ops.push_back(MGN->getBasePtr()); 4411 Ops.push_back(Index); 4412 if (!IsUnmasked) 4413 Ops.push_back(Mask); 4414 Ops.push_back(VL); 4415 4416 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other}); 4417 SDValue Result = 4418 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, 4419 MGN->getMemoryVT(), MGN->getMemOperand()); 4420 SDValue Chain = Result.getValue(1); 4421 4422 if (VT.isFixedLengthVector()) 4423 Result = convertFromScalableVector(VT, Result, DAG, Subtarget); 4424 4425 return DAG.getMergeValues({Result, Chain}, DL); 4426 } 4427 4428 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to 4429 // a RVV indexed store. The RVV indexed store instructions only support the 4430 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or 4431 // truncated to XLEN and are treated as byte offsets. Any signed or scaled 4432 // indexing is extended to the XLEN value type and scaled accordingly. 4433 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op, 4434 SelectionDAG &DAG) const { 4435 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode()); 4436 SDLoc DL(Op); 4437 SDValue Index = MSN->getIndex(); 4438 SDValue Mask = MSN->getMask(); 4439 SDValue Val = MSN->getValue(); 4440 4441 MVT VT = Val.getSimpleValueType(); 4442 MVT IndexVT = Index.getSimpleValueType(); 4443 MVT XLenVT = Subtarget.getXLenVT(); 4444 4445 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && 4446 "Unexpected VTs!"); 4447 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT && 4448 "Unexpected pointer type"); 4449 // Targets have to explicitly opt-in for extending vector loads and 4450 // truncating vector stores. 4451 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER"); 4452 4453 // If the mask is known to be all ones, optimize to an unmasked intrinsic; 4454 // the selection of the masked intrinsics doesn't do this for us. 4455 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode()); 4456 4457 SDValue VL; 4458 if (VT.isFixedLengthVector()) { 4459 // We need to use the larger of the value and index type to determine the 4460 // scalable type to use so we don't increase LMUL for any operand/result. 4461 MVT ContainerVT; 4462 if (VT.bitsGE(IndexVT)) { 4463 ContainerVT = getContainerForFixedLengthVector(VT); 4464 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), 4465 ContainerVT.getVectorElementCount()); 4466 } else { 4467 IndexVT = getContainerForFixedLengthVector(IndexVT); 4468 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(), 4469 IndexVT.getVectorElementCount()); 4470 } 4471 4472 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget); 4473 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget); 4474 4475 if (!IsUnmasked) { 4476 MVT MaskVT = 4477 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount()); 4478 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget); 4479 } 4480 4481 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT); 4482 } else 4483 VL = DAG.getRegister(RISCV::X0, XLenVT); 4484 4485 unsigned IntID = 4486 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask; 4487 SmallVector<SDValue, 8> Ops{MSN->getChain(), 4488 DAG.getTargetConstant(IntID, DL, XLenVT)}; 4489 Ops.push_back(Val); 4490 Ops.push_back(MSN->getBasePtr()); 4491 Ops.push_back(Index); 4492 if (!IsUnmasked) 4493 Ops.push_back(Mask); 4494 Ops.push_back(VL); 4495 4496 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops, 4497 MSN->getMemoryVT(), MSN->getMemOperand()); 4498 } 4499 4500 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op, 4501 SelectionDAG &DAG) const { 4502 const MVT XLenVT = Subtarget.getXLenVT(); 4503 SDLoc DL(Op); 4504 SDValue Chain = Op->getOperand(0); 4505 SDValue SysRegNo = DAG.getConstant( 4506 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4507 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other); 4508 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo); 4509 4510 // Encoding used for rounding mode in RISCV differs from that used in 4511 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a 4512 // table, which consists of a sequence of 4-bit fields, each representing 4513 // corresponding FLT_ROUNDS mode. 4514 static const int Table = 4515 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) | 4516 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) | 4517 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) | 4518 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) | 4519 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM); 4520 4521 SDValue Shift = 4522 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT)); 4523 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4524 DAG.getConstant(Table, DL, XLenVT), Shift); 4525 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4526 DAG.getConstant(7, DL, XLenVT)); 4527 4528 return DAG.getMergeValues({Masked, Chain}, DL); 4529 } 4530 4531 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op, 4532 SelectionDAG &DAG) const { 4533 const MVT XLenVT = Subtarget.getXLenVT(); 4534 SDLoc DL(Op); 4535 SDValue Chain = Op->getOperand(0); 4536 SDValue RMValue = Op->getOperand(1); 4537 SDValue SysRegNo = DAG.getConstant( 4538 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT); 4539 4540 // Encoding used for rounding mode in RISCV differs from that used in 4541 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in 4542 // a table, which consists of a sequence of 4-bit fields, each representing 4543 // corresponding RISCV mode. 4544 static const unsigned Table = 4545 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) | 4546 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) | 4547 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) | 4548 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) | 4549 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway)); 4550 4551 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue, 4552 DAG.getConstant(2, DL, XLenVT)); 4553 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT, 4554 DAG.getConstant(Table, DL, XLenVT), Shift); 4555 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted, 4556 DAG.getConstant(0x7, DL, XLenVT)); 4557 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo, 4558 RMValue); 4559 } 4560 4561 // Returns the opcode of the target-specific SDNode that implements the 32-bit 4562 // form of the given Opcode. 4563 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) { 4564 switch (Opcode) { 4565 default: 4566 llvm_unreachable("Unexpected opcode"); 4567 case ISD::SHL: 4568 return RISCVISD::SLLW; 4569 case ISD::SRA: 4570 return RISCVISD::SRAW; 4571 case ISD::SRL: 4572 return RISCVISD::SRLW; 4573 case ISD::SDIV: 4574 return RISCVISD::DIVW; 4575 case ISD::UDIV: 4576 return RISCVISD::DIVUW; 4577 case ISD::UREM: 4578 return RISCVISD::REMUW; 4579 case ISD::ROTL: 4580 return RISCVISD::ROLW; 4581 case ISD::ROTR: 4582 return RISCVISD::RORW; 4583 case RISCVISD::GREV: 4584 return RISCVISD::GREVW; 4585 case RISCVISD::GORC: 4586 return RISCVISD::GORCW; 4587 } 4588 } 4589 4590 // Converts the given 32-bit operation to a target-specific SelectionDAG node. 4591 // Because i32 isn't a legal type for RV64, these operations would otherwise 4592 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W 4593 // later one because the fact the operation was originally of type i32 is 4594 // lost. 4595 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, 4596 unsigned ExtOpc = ISD::ANY_EXTEND) { 4597 SDLoc DL(N); 4598 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4599 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0)); 4600 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1)); 4601 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4602 // ReplaceNodeResults requires we maintain the same type for the return value. 4603 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes); 4604 } 4605 4606 // Converts the given 32-bit operation to a i64 operation with signed extension 4607 // semantic to reduce the signed extension instructions. 4608 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { 4609 SDLoc DL(N); 4610 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4611 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4612 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1); 4613 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp, 4614 DAG.getValueType(MVT::i32)); 4615 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes); 4616 } 4617 4618 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N, 4619 SmallVectorImpl<SDValue> &Results, 4620 SelectionDAG &DAG) const { 4621 SDLoc DL(N); 4622 switch (N->getOpcode()) { 4623 default: 4624 llvm_unreachable("Don't know how to custom type legalize this operation!"); 4625 case ISD::STRICT_FP_TO_SINT: 4626 case ISD::STRICT_FP_TO_UINT: 4627 case ISD::FP_TO_SINT: 4628 case ISD::FP_TO_UINT: { 4629 bool IsStrict = N->isStrictFPOpcode(); 4630 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4631 "Unexpected custom legalisation"); 4632 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0); 4633 // If the FP type needs to be softened, emit a library call using the 'si' 4634 // version. If we left it to default legalization we'd end up with 'di'. If 4635 // the FP type doesn't need to be softened just let generic type 4636 // legalization promote the result type. 4637 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) != 4638 TargetLowering::TypeSoftenFloat) 4639 return; 4640 RTLIB::Libcall LC; 4641 if (N->getOpcode() == ISD::FP_TO_SINT || 4642 N->getOpcode() == ISD::STRICT_FP_TO_SINT) 4643 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0)); 4644 else 4645 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0)); 4646 MakeLibCallOptions CallOptions; 4647 EVT OpVT = Op0.getValueType(); 4648 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true); 4649 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue(); 4650 SDValue Result; 4651 std::tie(Result, Chain) = 4652 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain); 4653 Results.push_back(Result); 4654 if (IsStrict) 4655 Results.push_back(Chain); 4656 break; 4657 } 4658 case ISD::READCYCLECOUNTER: { 4659 assert(!Subtarget.is64Bit() && 4660 "READCYCLECOUNTER only has custom type legalization on riscv32"); 4661 4662 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 4663 SDValue RCW = 4664 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0)); 4665 4666 Results.push_back( 4667 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1))); 4668 Results.push_back(RCW.getValue(2)); 4669 break; 4670 } 4671 case ISD::MUL: { 4672 unsigned Size = N->getSimpleValueType(0).getSizeInBits(); 4673 unsigned XLen = Subtarget.getXLen(); 4674 // This multiply needs to be expanded, try to use MULHSU+MUL if possible. 4675 if (Size > XLen) { 4676 assert(Size == (XLen * 2) && "Unexpected custom legalisation"); 4677 SDValue LHS = N->getOperand(0); 4678 SDValue RHS = N->getOperand(1); 4679 APInt HighMask = APInt::getHighBitsSet(Size, XLen); 4680 4681 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask); 4682 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask); 4683 // We need exactly one side to be unsigned. 4684 if (LHSIsU == RHSIsU) 4685 return; 4686 4687 auto MakeMULPair = [&](SDValue S, SDValue U) { 4688 MVT XLenVT = Subtarget.getXLenVT(); 4689 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S); 4690 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U); 4691 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U); 4692 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U); 4693 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi); 4694 }; 4695 4696 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen; 4697 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen; 4698 4699 // The other operand should be signed, but still prefer MULH when 4700 // possible. 4701 if (RHSIsU && LHSIsS && !RHSIsS) 4702 Results.push_back(MakeMULPair(LHS, RHS)); 4703 else if (LHSIsU && RHSIsS && !LHSIsS) 4704 Results.push_back(MakeMULPair(RHS, LHS)); 4705 4706 return; 4707 } 4708 LLVM_FALLTHROUGH; 4709 } 4710 case ISD::ADD: 4711 case ISD::SUB: 4712 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4713 "Unexpected custom legalisation"); 4714 if (N->getOperand(1).getOpcode() == ISD::Constant) 4715 return; 4716 Results.push_back(customLegalizeToWOpWithSExt(N, DAG)); 4717 break; 4718 case ISD::SHL: 4719 case ISD::SRA: 4720 case ISD::SRL: 4721 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4722 "Unexpected custom legalisation"); 4723 if (N->getOperand(1).getOpcode() == ISD::Constant) 4724 return; 4725 Results.push_back(customLegalizeToWOp(N, DAG)); 4726 break; 4727 case ISD::ROTL: 4728 case ISD::ROTR: 4729 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4730 "Unexpected custom legalisation"); 4731 Results.push_back(customLegalizeToWOp(N, DAG)); 4732 break; 4733 case ISD::CTTZ: 4734 case ISD::CTTZ_ZERO_UNDEF: 4735 case ISD::CTLZ: 4736 case ISD::CTLZ_ZERO_UNDEF: { 4737 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4738 "Unexpected custom legalisation"); 4739 4740 SDValue NewOp0 = 4741 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4742 bool IsCTZ = 4743 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF; 4744 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW; 4745 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0); 4746 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4747 return; 4748 } 4749 case ISD::SDIV: 4750 case ISD::UDIV: 4751 case ISD::UREM: { 4752 MVT VT = N->getSimpleValueType(0); 4753 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) && 4754 Subtarget.is64Bit() && Subtarget.hasStdExtM() && 4755 "Unexpected custom legalisation"); 4756 if (N->getOperand(0).getOpcode() == ISD::Constant || 4757 N->getOperand(1).getOpcode() == ISD::Constant) 4758 return; 4759 4760 // If the input is i32, use ANY_EXTEND since the W instructions don't read 4761 // the upper 32 bits. For other types we need to sign or zero extend 4762 // based on the opcode. 4763 unsigned ExtOpc = ISD::ANY_EXTEND; 4764 if (VT != MVT::i32) 4765 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND 4766 : ISD::ZERO_EXTEND; 4767 4768 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc)); 4769 break; 4770 } 4771 case ISD::UADDO: 4772 case ISD::USUBO: { 4773 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4774 "Unexpected custom legalisation"); 4775 bool IsAdd = N->getOpcode() == ISD::UADDO; 4776 // Create an ADDW or SUBW. 4777 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4778 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4779 SDValue Res = 4780 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS); 4781 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res, 4782 DAG.getValueType(MVT::i32)); 4783 4784 // Sign extend the LHS and perform an unsigned compare with the ADDW result. 4785 // Since the inputs are sign extended from i32, this is equivalent to 4786 // comparing the lower 32 bits. 4787 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4788 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS, 4789 IsAdd ? ISD::SETULT : ISD::SETUGT); 4790 4791 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4792 Results.push_back(Overflow); 4793 return; 4794 } 4795 case ISD::UADDSAT: 4796 case ISD::USUBSAT: { 4797 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4798 "Unexpected custom legalisation"); 4799 if (Subtarget.hasStdExtZbb()) { 4800 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using 4801 // sign extend allows overflow of the lower 32 bits to be detected on 4802 // the promoted size. 4803 SDValue LHS = 4804 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0)); 4805 SDValue RHS = 4806 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1)); 4807 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS); 4808 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4809 return; 4810 } 4811 4812 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom 4813 // promotion for UADDO/USUBO. 4814 Results.push_back(expandAddSubSat(N, DAG)); 4815 return; 4816 } 4817 case ISD::BITCAST: { 4818 EVT VT = N->getValueType(0); 4819 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!"); 4820 SDValue Op0 = N->getOperand(0); 4821 EVT Op0VT = Op0.getValueType(); 4822 MVT XLenVT = Subtarget.getXLenVT(); 4823 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) { 4824 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0); 4825 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv)); 4826 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() && 4827 Subtarget.hasStdExtF()) { 4828 SDValue FPConv = 4829 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0); 4830 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv)); 4831 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() && 4832 isTypeLegal(Op0VT)) { 4833 // Custom-legalize bitcasts from fixed-length vector types to illegal 4834 // scalar types in order to improve codegen. Bitcast the vector to a 4835 // one-element vector type whose element type is the same as the result 4836 // type, and extract the first element. 4837 LLVMContext &Context = *DAG.getContext(); 4838 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0); 4839 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec, 4840 DAG.getConstant(0, DL, XLenVT))); 4841 } 4842 break; 4843 } 4844 case RISCVISD::GREV: 4845 case RISCVISD::GORC: { 4846 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4847 "Unexpected custom legalisation"); 4848 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4849 // This is similar to customLegalizeToWOp, except that we pass the second 4850 // operand (a TargetConstant) straight through: it is already of type 4851 // XLenVT. 4852 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode()); 4853 SDValue NewOp0 = 4854 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4855 SDValue NewOp1 = 4856 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4857 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1); 4858 // ReplaceNodeResults requires we maintain the same type for the return 4859 // value. 4860 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4861 break; 4862 } 4863 case RISCVISD::SHFL: { 4864 // There is no SHFLIW instruction, but we can just promote the operation. 4865 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4866 "Unexpected custom legalisation"); 4867 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant"); 4868 SDValue NewOp0 = 4869 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4870 SDValue NewOp1 = 4871 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4872 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1); 4873 // ReplaceNodeResults requires we maintain the same type for the return 4874 // value. 4875 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes)); 4876 break; 4877 } 4878 case ISD::BSWAP: 4879 case ISD::BITREVERSE: { 4880 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4881 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation"); 4882 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 4883 N->getOperand(0)); 4884 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24; 4885 SDValue GREVIW = DAG.getNode(RISCVISD::GREVW, DL, MVT::i64, NewOp0, 4886 DAG.getConstant(Imm, DL, MVT::i64)); 4887 // ReplaceNodeResults requires we maintain the same type for the return 4888 // value. 4889 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW)); 4890 break; 4891 } 4892 case ISD::FSHL: 4893 case ISD::FSHR: { 4894 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4895 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation"); 4896 SDValue NewOp0 = 4897 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0)); 4898 SDValue NewOp1 = 4899 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4900 SDValue NewOp2 = 4901 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4902 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits. 4903 // Mask the shift amount to 5 bits. 4904 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 4905 DAG.getConstant(0x1f, DL, MVT::i64)); 4906 unsigned Opc = 4907 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW; 4908 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2); 4909 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp)); 4910 break; 4911 } 4912 case ISD::EXTRACT_VECTOR_ELT: { 4913 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element 4914 // type is illegal (currently only vXi64 RV32). 4915 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are 4916 // transferred to the destination register. We issue two of these from the 4917 // upper- and lower- halves of the SEW-bit vector element, slid down to the 4918 // first element. 4919 SDValue Vec = N->getOperand(0); 4920 SDValue Idx = N->getOperand(1); 4921 4922 // The vector type hasn't been legalized yet so we can't issue target 4923 // specific nodes if it needs legalization. 4924 // FIXME: We would manually legalize if it's important. 4925 if (!isTypeLegal(Vec.getValueType())) 4926 return; 4927 4928 MVT VecVT = Vec.getSimpleValueType(); 4929 4930 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 && 4931 VecVT.getVectorElementType() == MVT::i64 && 4932 "Unexpected EXTRACT_VECTOR_ELT legalization"); 4933 4934 // If this is a fixed vector, we need to convert it to a scalable vector. 4935 MVT ContainerVT = VecVT; 4936 if (VecVT.isFixedLengthVector()) { 4937 ContainerVT = getContainerForFixedLengthVector(VecVT); 4938 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget); 4939 } 4940 4941 MVT XLenVT = Subtarget.getXLenVT(); 4942 4943 // Use a VL of 1 to avoid processing more elements than we need. 4944 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 4945 SDValue VL = DAG.getConstant(1, DL, XLenVT); 4946 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 4947 4948 // Unless the index is known to be 0, we must slide the vector down to get 4949 // the desired element into index 0. 4950 if (!isNullConstant(Idx)) { 4951 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, 4952 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL); 4953 } 4954 4955 // Extract the lower XLEN bits of the correct vector element. 4956 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 4957 4958 // To extract the upper XLEN bits of the vector element, shift the first 4959 // element right by 32 bits and re-extract the lower XLEN bits. 4960 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, 4961 DAG.getConstant(32, DL, XLenVT), VL); 4962 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec, 4963 ThirtyTwoV, Mask, VL); 4964 4965 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 4966 4967 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 4968 break; 4969 } 4970 case ISD::INTRINSIC_WO_CHAIN: { 4971 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 4972 switch (IntNo) { 4973 default: 4974 llvm_unreachable( 4975 "Don't know how to custom type legalize this intrinsic!"); 4976 case Intrinsic::riscv_orc_b: { 4977 // Lower to the GORCI encoding for orc.b with the operand extended. 4978 SDValue NewOp = 4979 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4980 // If Zbp is enabled, use GORCIW which will sign extend the result. 4981 unsigned Opc = 4982 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC; 4983 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp, 4984 DAG.getConstant(7, DL, MVT::i64)); 4985 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 4986 return; 4987 } 4988 case Intrinsic::riscv_grev: 4989 case Intrinsic::riscv_gorc: { 4990 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 4991 "Unexpected custom legalisation"); 4992 SDValue NewOp1 = 4993 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 4994 SDValue NewOp2 = 4995 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 4996 unsigned Opc = 4997 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW; 4998 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 4999 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5000 break; 5001 } 5002 case Intrinsic::riscv_shfl: 5003 case Intrinsic::riscv_unshfl: { 5004 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5005 "Unexpected custom legalisation"); 5006 SDValue NewOp1 = 5007 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5008 SDValue NewOp2 = 5009 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5010 unsigned Opc = 5011 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW; 5012 if (isa<ConstantSDNode>(N->getOperand(2))) { 5013 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2, 5014 DAG.getConstant(0xf, DL, MVT::i64)); 5015 Opc = 5016 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL; 5017 } 5018 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5019 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5020 break; 5021 } 5022 case Intrinsic::riscv_bcompress: 5023 case Intrinsic::riscv_bdecompress: { 5024 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && 5025 "Unexpected custom legalisation"); 5026 SDValue NewOp1 = 5027 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1)); 5028 SDValue NewOp2 = 5029 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2)); 5030 unsigned Opc = IntNo == Intrinsic::riscv_bcompress 5031 ? RISCVISD::BCOMPRESSW 5032 : RISCVISD::BDECOMPRESSW; 5033 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2); 5034 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res)); 5035 break; 5036 } 5037 case Intrinsic::riscv_vmv_x_s: { 5038 EVT VT = N->getValueType(0); 5039 MVT XLenVT = Subtarget.getXLenVT(); 5040 if (VT.bitsLT(XLenVT)) { 5041 // Simple case just extract using vmv.x.s and truncate. 5042 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL, 5043 Subtarget.getXLenVT(), N->getOperand(1)); 5044 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract)); 5045 return; 5046 } 5047 5048 assert(VT == MVT::i64 && !Subtarget.is64Bit() && 5049 "Unexpected custom legalization"); 5050 5051 // We need to do the move in two steps. 5052 SDValue Vec = N->getOperand(1); 5053 MVT VecVT = Vec.getSimpleValueType(); 5054 5055 // First extract the lower XLEN bits of the element. 5056 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec); 5057 5058 // To extract the upper XLEN bits of the vector element, shift the first 5059 // element right by 32 bits and re-extract the lower XLEN bits. 5060 SDValue VL = DAG.getConstant(1, DL, XLenVT); 5061 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount()); 5062 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL); 5063 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, 5064 DAG.getConstant(32, DL, XLenVT), VL); 5065 SDValue LShr32 = 5066 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL); 5067 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32); 5068 5069 Results.push_back( 5070 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi)); 5071 break; 5072 } 5073 } 5074 break; 5075 } 5076 case ISD::VECREDUCE_ADD: 5077 case ISD::VECREDUCE_AND: 5078 case ISD::VECREDUCE_OR: 5079 case ISD::VECREDUCE_XOR: 5080 case ISD::VECREDUCE_SMAX: 5081 case ISD::VECREDUCE_UMAX: 5082 case ISD::VECREDUCE_SMIN: 5083 case ISD::VECREDUCE_UMIN: 5084 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG)) 5085 Results.push_back(V); 5086 break; 5087 case ISD::FLT_ROUNDS_: { 5088 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other); 5089 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0)); 5090 Results.push_back(Res.getValue(0)); 5091 Results.push_back(Res.getValue(1)); 5092 break; 5093 } 5094 } 5095 } 5096 5097 // A structure to hold one of the bit-manipulation patterns below. Together, a 5098 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source: 5099 // (or (and (shl x, 1), 0xAAAAAAAA), 5100 // (and (srl x, 1), 0x55555555)) 5101 struct RISCVBitmanipPat { 5102 SDValue Op; 5103 unsigned ShAmt; 5104 bool IsSHL; 5105 5106 bool formsPairWith(const RISCVBitmanipPat &Other) const { 5107 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL; 5108 } 5109 }; 5110 5111 // Matches patterns of the form 5112 // (and (shl x, C2), (C1 << C2)) 5113 // (and (srl x, C2), C1) 5114 // (shl (and x, C1), C2) 5115 // (srl (and x, (C1 << C2)), C2) 5116 // Where C2 is a power of 2 and C1 has at least that many leading zeroes. 5117 // The expected masks for each shift amount are specified in BitmanipMasks where 5118 // BitmanipMasks[log2(C2)] specifies the expected C1 value. 5119 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether 5120 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible 5121 // XLen is 64. 5122 static Optional<RISCVBitmanipPat> 5123 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) { 5124 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) && 5125 "Unexpected number of masks"); 5126 Optional<uint64_t> Mask; 5127 // Optionally consume a mask around the shift operation. 5128 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) { 5129 Mask = Op.getConstantOperandVal(1); 5130 Op = Op.getOperand(0); 5131 } 5132 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL) 5133 return None; 5134 bool IsSHL = Op.getOpcode() == ISD::SHL; 5135 5136 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5137 return None; 5138 uint64_t ShAmt = Op.getConstantOperandVal(1); 5139 5140 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5141 if (ShAmt >= Width && !isPowerOf2_64(ShAmt)) 5142 return None; 5143 // If we don't have enough masks for 64 bit, then we must be trying to 5144 // match SHFL so we're only allowed to shift 1/4 of the width. 5145 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2)) 5146 return None; 5147 5148 SDValue Src = Op.getOperand(0); 5149 5150 // The expected mask is shifted left when the AND is found around SHL 5151 // patterns. 5152 // ((x >> 1) & 0x55555555) 5153 // ((x << 1) & 0xAAAAAAAA) 5154 bool SHLExpMask = IsSHL; 5155 5156 if (!Mask) { 5157 // Sometimes LLVM keeps the mask as an operand of the shift, typically when 5158 // the mask is all ones: consume that now. 5159 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) { 5160 Mask = Src.getConstantOperandVal(1); 5161 Src = Src.getOperand(0); 5162 // The expected mask is now in fact shifted left for SRL, so reverse the 5163 // decision. 5164 // ((x & 0xAAAAAAAA) >> 1) 5165 // ((x & 0x55555555) << 1) 5166 SHLExpMask = !SHLExpMask; 5167 } else { 5168 // Use a default shifted mask of all-ones if there's no AND, truncated 5169 // down to the expected width. This simplifies the logic later on. 5170 Mask = maskTrailingOnes<uint64_t>(Width); 5171 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt); 5172 } 5173 } 5174 5175 unsigned MaskIdx = Log2_32(ShAmt); 5176 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5177 5178 if (SHLExpMask) 5179 ExpMask <<= ShAmt; 5180 5181 if (Mask != ExpMask) 5182 return None; 5183 5184 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL}; 5185 } 5186 5187 // Matches any of the following bit-manipulation patterns: 5188 // (and (shl x, 1), (0x55555555 << 1)) 5189 // (and (srl x, 1), 0x55555555) 5190 // (shl (and x, 0x55555555), 1) 5191 // (srl (and x, (0x55555555 << 1)), 1) 5192 // where the shift amount and mask may vary thus: 5193 // [1] = 0x55555555 / 0xAAAAAAAA 5194 // [2] = 0x33333333 / 0xCCCCCCCC 5195 // [4] = 0x0F0F0F0F / 0xF0F0F0F0 5196 // [8] = 0x00FF00FF / 0xFF00FF00 5197 // [16] = 0x0000FFFF / 0xFFFFFFFF 5198 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64) 5199 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) { 5200 // These are the unshifted masks which we use to match bit-manipulation 5201 // patterns. They may be shifted left in certain circumstances. 5202 static const uint64_t BitmanipMasks[] = { 5203 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 5204 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL}; 5205 5206 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5207 } 5208 5209 // Match the following pattern as a GREVI(W) operation 5210 // (or (BITMANIP_SHL x), (BITMANIP_SRL x)) 5211 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG, 5212 const RISCVSubtarget &Subtarget) { 5213 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5214 EVT VT = Op.getValueType(); 5215 5216 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5217 auto LHS = matchGREVIPat(Op.getOperand(0)); 5218 auto RHS = matchGREVIPat(Op.getOperand(1)); 5219 if (LHS && RHS && LHS->formsPairWith(*RHS)) { 5220 SDLoc DL(Op); 5221 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op, 5222 DAG.getConstant(LHS->ShAmt, DL, VT)); 5223 } 5224 } 5225 return SDValue(); 5226 } 5227 5228 // Matches any the following pattern as a GORCI(W) operation 5229 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2 5230 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2 5231 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x)) 5232 // Note that with the variant of 3., 5233 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x) 5234 // the inner pattern will first be matched as GREVI and then the outer 5235 // pattern will be matched to GORC via the first rule above. 5236 // 4. (or (rotl/rotr x, bitwidth/2), x) 5237 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG, 5238 const RISCVSubtarget &Subtarget) { 5239 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5240 EVT VT = Op.getValueType(); 5241 5242 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) { 5243 SDLoc DL(Op); 5244 SDValue Op0 = Op.getOperand(0); 5245 SDValue Op1 = Op.getOperand(1); 5246 5247 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) { 5248 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X && 5249 isa<ConstantSDNode>(Reverse.getOperand(1)) && 5250 isPowerOf2_32(Reverse.getConstantOperandVal(1))) 5251 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1)); 5252 // We can also form GORCI from ROTL/ROTR by half the bitwidth. 5253 if ((Reverse.getOpcode() == ISD::ROTL || 5254 Reverse.getOpcode() == ISD::ROTR) && 5255 Reverse.getOperand(0) == X && 5256 isa<ConstantSDNode>(Reverse.getOperand(1))) { 5257 uint64_t RotAmt = Reverse.getConstantOperandVal(1); 5258 if (RotAmt == (VT.getSizeInBits() / 2)) 5259 return DAG.getNode(RISCVISD::GORC, DL, VT, X, 5260 DAG.getConstant(RotAmt, DL, VT)); 5261 } 5262 return SDValue(); 5263 }; 5264 5265 // Check for either commutable permutation of (or (GREVI x, shamt), x) 5266 if (SDValue V = MatchOROfReverse(Op0, Op1)) 5267 return V; 5268 if (SDValue V = MatchOROfReverse(Op1, Op0)) 5269 return V; 5270 5271 // OR is commutable so canonicalize its OR operand to the left 5272 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR) 5273 std::swap(Op0, Op1); 5274 if (Op0.getOpcode() != ISD::OR) 5275 return SDValue(); 5276 SDValue OrOp0 = Op0.getOperand(0); 5277 SDValue OrOp1 = Op0.getOperand(1); 5278 auto LHS = matchGREVIPat(OrOp0); 5279 // OR is commutable so swap the operands and try again: x might have been 5280 // on the left 5281 if (!LHS) { 5282 std::swap(OrOp0, OrOp1); 5283 LHS = matchGREVIPat(OrOp0); 5284 } 5285 auto RHS = matchGREVIPat(Op1); 5286 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) { 5287 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op, 5288 DAG.getConstant(LHS->ShAmt, DL, VT)); 5289 } 5290 } 5291 return SDValue(); 5292 } 5293 5294 // Matches any of the following bit-manipulation patterns: 5295 // (and (shl x, 1), (0x22222222 << 1)) 5296 // (and (srl x, 1), 0x22222222) 5297 // (shl (and x, 0x22222222), 1) 5298 // (srl (and x, (0x22222222 << 1)), 1) 5299 // where the shift amount and mask may vary thus: 5300 // [1] = 0x22222222 / 0x44444444 5301 // [2] = 0x0C0C0C0C / 0x3C3C3C3C 5302 // [4] = 0x00F000F0 / 0x0F000F00 5303 // [8] = 0x0000FF00 / 0x00FF0000 5304 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64) 5305 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) { 5306 // These are the unshifted masks which we use to match bit-manipulation 5307 // patterns. They may be shifted left in certain circumstances. 5308 static const uint64_t BitmanipMasks[] = { 5309 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL, 5310 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL}; 5311 5312 return matchRISCVBitmanipPat(Op, BitmanipMasks); 5313 } 5314 5315 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x) 5316 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG, 5317 const RISCVSubtarget &Subtarget) { 5318 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson"); 5319 EVT VT = Op.getValueType(); 5320 5321 if (VT != MVT::i32 && VT != Subtarget.getXLenVT()) 5322 return SDValue(); 5323 5324 SDValue Op0 = Op.getOperand(0); 5325 SDValue Op1 = Op.getOperand(1); 5326 5327 // Or is commutable so canonicalize the second OR to the LHS. 5328 if (Op0.getOpcode() != ISD::OR) 5329 std::swap(Op0, Op1); 5330 if (Op0.getOpcode() != ISD::OR) 5331 return SDValue(); 5332 5333 // We found an inner OR, so our operands are the operands of the inner OR 5334 // and the other operand of the outer OR. 5335 SDValue A = Op0.getOperand(0); 5336 SDValue B = Op0.getOperand(1); 5337 SDValue C = Op1; 5338 5339 auto Match1 = matchSHFLPat(A); 5340 auto Match2 = matchSHFLPat(B); 5341 5342 // If neither matched, we failed. 5343 if (!Match1 && !Match2) 5344 return SDValue(); 5345 5346 // We had at least one match. if one failed, try the remaining C operand. 5347 if (!Match1) { 5348 std::swap(A, C); 5349 Match1 = matchSHFLPat(A); 5350 if (!Match1) 5351 return SDValue(); 5352 } else if (!Match2) { 5353 std::swap(B, C); 5354 Match2 = matchSHFLPat(B); 5355 if (!Match2) 5356 return SDValue(); 5357 } 5358 assert(Match1 && Match2); 5359 5360 // Make sure our matches pair up. 5361 if (!Match1->formsPairWith(*Match2)) 5362 return SDValue(); 5363 5364 // All the remains is to make sure C is an AND with the same input, that masks 5365 // out the bits that are being shuffled. 5366 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) || 5367 C.getOperand(0) != Match1->Op) 5368 return SDValue(); 5369 5370 uint64_t Mask = C.getConstantOperandVal(1); 5371 5372 static const uint64_t BitmanipMasks[] = { 5373 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL, 5374 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL, 5375 }; 5376 5377 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32; 5378 unsigned MaskIdx = Log2_32(Match1->ShAmt); 5379 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width); 5380 5381 if (Mask != ExpMask) 5382 return SDValue(); 5383 5384 SDLoc DL(Op); 5385 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op, 5386 DAG.getConstant(Match1->ShAmt, DL, VT)); 5387 } 5388 5389 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is 5390 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself. 5391 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does 5392 // not undo itself, but they are redundant. 5393 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) { 5394 SDValue Src = N->getOperand(0); 5395 5396 if (Src.getOpcode() != N->getOpcode()) 5397 return SDValue(); 5398 5399 if (!isa<ConstantSDNode>(N->getOperand(1)) || 5400 !isa<ConstantSDNode>(Src.getOperand(1))) 5401 return SDValue(); 5402 5403 unsigned ShAmt1 = N->getConstantOperandVal(1); 5404 unsigned ShAmt2 = Src.getConstantOperandVal(1); 5405 Src = Src.getOperand(0); 5406 5407 unsigned CombinedShAmt; 5408 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW) 5409 CombinedShAmt = ShAmt1 | ShAmt2; 5410 else 5411 CombinedShAmt = ShAmt1 ^ ShAmt2; 5412 5413 if (CombinedShAmt == 0) 5414 return Src; 5415 5416 SDLoc DL(N); 5417 return DAG.getNode( 5418 N->getOpcode(), DL, N->getValueType(0), Src, 5419 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType())); 5420 } 5421 5422 // Combine a constant select operand into its use: 5423 // 5424 // (and (select_cc lhs, rhs, cc, -1, c), x) 5425 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1] 5426 // (or (select_cc lhs, rhs, cc, 0, c), x) 5427 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0] 5428 // (xor (select_cc lhs, rhs, cc, 0, c), x) 5429 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0] 5430 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 5431 SelectionDAG &DAG, bool AllOnes) { 5432 EVT VT = N->getValueType(0); 5433 5434 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse()) 5435 return SDValue(); 5436 5437 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) { 5438 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 5439 }; 5440 5441 bool SwapSelectOps; 5442 SDValue TrueVal = Slct.getOperand(3); 5443 SDValue FalseVal = Slct.getOperand(4); 5444 SDValue NonConstantVal; 5445 if (isZeroOrAllOnes(TrueVal, AllOnes)) { 5446 SwapSelectOps = false; 5447 NonConstantVal = FalseVal; 5448 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) { 5449 SwapSelectOps = true; 5450 NonConstantVal = TrueVal; 5451 } else 5452 return SDValue(); 5453 5454 // Slct is now know to be the desired identity constant when CC is true. 5455 TrueVal = OtherOp; 5456 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); 5457 // Unless SwapSelectOps says CC should be false. 5458 if (SwapSelectOps) 5459 std::swap(TrueVal, FalseVal); 5460 5461 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT, 5462 {Slct.getOperand(0), Slct.getOperand(1), 5463 Slct.getOperand(2), TrueVal, FalseVal}); 5464 } 5465 5466 // Attempt combineSelectAndUse on each operand of a commutative operator N. 5467 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG, 5468 bool AllOnes) { 5469 SDValue N0 = N->getOperand(0); 5470 SDValue N1 = N->getOperand(1); 5471 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes)) 5472 return Result; 5473 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes)) 5474 return Result; 5475 return SDValue(); 5476 } 5477 5478 static SDValue performANDCombine(SDNode *N, 5479 TargetLowering::DAGCombinerInfo &DCI, 5480 const RISCVSubtarget &Subtarget) { 5481 SelectionDAG &DAG = DCI.DAG; 5482 5483 // fold (and (select_cc lhs, rhs, cc, -1, y), x) -> 5484 // (select lhs, rhs, cc, x, (and x, y)) 5485 return combineSelectCCAndUseCommutative(N, DAG, true); 5486 } 5487 5488 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 5489 const RISCVSubtarget &Subtarget) { 5490 SelectionDAG &DAG = DCI.DAG; 5491 if (Subtarget.hasStdExtZbp()) { 5492 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget)) 5493 return GREV; 5494 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget)) 5495 return GORC; 5496 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget)) 5497 return SHFL; 5498 } 5499 5500 // fold (or (select_cc lhs, rhs, cc, 0, y), x) -> 5501 // (select lhs, rhs, cc, x, (or x, y)) 5502 return combineSelectCCAndUseCommutative(N, DAG, false); 5503 } 5504 5505 static SDValue performXORCombine(SDNode *N, 5506 TargetLowering::DAGCombinerInfo &DCI, 5507 const RISCVSubtarget &Subtarget) { 5508 SelectionDAG &DAG = DCI.DAG; 5509 5510 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) -> 5511 // (select lhs, rhs, cc, x, (xor x, y)) 5512 return combineSelectCCAndUseCommutative(N, DAG, false); 5513 } 5514 5515 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N, 5516 DAGCombinerInfo &DCI) const { 5517 SelectionDAG &DAG = DCI.DAG; 5518 5519 switch (N->getOpcode()) { 5520 default: 5521 break; 5522 case RISCVISD::SplitF64: { 5523 SDValue Op0 = N->getOperand(0); 5524 // If the input to SplitF64 is just BuildPairF64 then the operation is 5525 // redundant. Instead, use BuildPairF64's operands directly. 5526 if (Op0->getOpcode() == RISCVISD::BuildPairF64) 5527 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1)); 5528 5529 SDLoc DL(N); 5530 5531 // It's cheaper to materialise two 32-bit integers than to load a double 5532 // from the constant pool and transfer it to integer registers through the 5533 // stack. 5534 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) { 5535 APInt V = C->getValueAPF().bitcastToAPInt(); 5536 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32); 5537 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32); 5538 return DCI.CombineTo(N, Lo, Hi); 5539 } 5540 5541 // This is a target-specific version of a DAGCombine performed in 5542 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5543 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5544 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5545 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5546 !Op0.getNode()->hasOneUse()) 5547 break; 5548 SDValue NewSplitF64 = 5549 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), 5550 Op0.getOperand(0)); 5551 SDValue Lo = NewSplitF64.getValue(0); 5552 SDValue Hi = NewSplitF64.getValue(1); 5553 APInt SignBit = APInt::getSignMask(32); 5554 if (Op0.getOpcode() == ISD::FNEG) { 5555 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi, 5556 DAG.getConstant(SignBit, DL, MVT::i32)); 5557 return DCI.CombineTo(N, Lo, NewHi); 5558 } 5559 assert(Op0.getOpcode() == ISD::FABS); 5560 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi, 5561 DAG.getConstant(~SignBit, DL, MVT::i32)); 5562 return DCI.CombineTo(N, Lo, NewHi); 5563 } 5564 case RISCVISD::SLLW: 5565 case RISCVISD::SRAW: 5566 case RISCVISD::SRLW: 5567 case RISCVISD::ROLW: 5568 case RISCVISD::RORW: { 5569 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5570 SDValue LHS = N->getOperand(0); 5571 SDValue RHS = N->getOperand(1); 5572 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5573 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5574 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) || 5575 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) { 5576 if (N->getOpcode() != ISD::DELETED_NODE) 5577 DCI.AddToWorklist(N); 5578 return SDValue(N, 0); 5579 } 5580 break; 5581 } 5582 case RISCVISD::CLZW: 5583 case RISCVISD::CTZW: { 5584 // Only the lower 32 bits of the first operand are read 5585 SDValue Op0 = N->getOperand(0); 5586 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5587 if (SimplifyDemandedBits(Op0, Mask, DCI)) { 5588 if (N->getOpcode() != ISD::DELETED_NODE) 5589 DCI.AddToWorklist(N); 5590 return SDValue(N, 0); 5591 } 5592 break; 5593 } 5594 case RISCVISD::FSL: 5595 case RISCVISD::FSR: { 5596 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read. 5597 SDValue ShAmt = N->getOperand(2); 5598 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5599 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5600 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1); 5601 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5602 if (N->getOpcode() != ISD::DELETED_NODE) 5603 DCI.AddToWorklist(N); 5604 return SDValue(N, 0); 5605 } 5606 break; 5607 } 5608 case RISCVISD::FSLW: 5609 case RISCVISD::FSRW: { 5610 // Only the lower 32 bits of Values and lower 6 bits of shift amount are 5611 // read. 5612 SDValue Op0 = N->getOperand(0); 5613 SDValue Op1 = N->getOperand(1); 5614 SDValue ShAmt = N->getOperand(2); 5615 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32); 5616 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6); 5617 if (SimplifyDemandedBits(Op0, OpMask, DCI) || 5618 SimplifyDemandedBits(Op1, OpMask, DCI) || 5619 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5620 if (N->getOpcode() != ISD::DELETED_NODE) 5621 DCI.AddToWorklist(N); 5622 return SDValue(N, 0); 5623 } 5624 break; 5625 } 5626 case RISCVISD::GREV: 5627 case RISCVISD::GORC: { 5628 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5629 SDValue ShAmt = N->getOperand(1); 5630 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5631 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5632 APInt ShAmtMask(BitWidth, BitWidth - 1); 5633 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5634 if (N->getOpcode() != ISD::DELETED_NODE) 5635 DCI.AddToWorklist(N); 5636 return SDValue(N, 0); 5637 } 5638 5639 return combineGREVI_GORCI(N, DCI.DAG); 5640 } 5641 case RISCVISD::GREVW: 5642 case RISCVISD::GORCW: { 5643 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5644 SDValue LHS = N->getOperand(0); 5645 SDValue RHS = N->getOperand(1); 5646 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5647 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5); 5648 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5649 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5650 if (N->getOpcode() != ISD::DELETED_NODE) 5651 DCI.AddToWorklist(N); 5652 return SDValue(N, 0); 5653 } 5654 5655 return combineGREVI_GORCI(N, DCI.DAG); 5656 } 5657 case RISCVISD::SHFL: 5658 case RISCVISD::UNSHFL: { 5659 // Only the lower log2(Bitwidth) bits of the the shift amount are read. 5660 SDValue ShAmt = N->getOperand(1); 5661 unsigned BitWidth = ShAmt.getValueSizeInBits(); 5662 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width"); 5663 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1); 5664 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) { 5665 if (N->getOpcode() != ISD::DELETED_NODE) 5666 DCI.AddToWorklist(N); 5667 return SDValue(N, 0); 5668 } 5669 5670 break; 5671 } 5672 case RISCVISD::SHFLW: 5673 case RISCVISD::UNSHFLW: { 5674 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read. 5675 SDValue LHS = N->getOperand(0); 5676 SDValue RHS = N->getOperand(1); 5677 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5678 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4); 5679 if (SimplifyDemandedBits(LHS, LHSMask, DCI) || 5680 SimplifyDemandedBits(RHS, RHSMask, DCI)) { 5681 if (N->getOpcode() != ISD::DELETED_NODE) 5682 DCI.AddToWorklist(N); 5683 return SDValue(N, 0); 5684 } 5685 5686 break; 5687 } 5688 case RISCVISD::BCOMPRESSW: 5689 case RISCVISD::BDECOMPRESSW: { 5690 // Only the lower 32 bits of LHS and RHS are read. 5691 SDValue LHS = N->getOperand(0); 5692 SDValue RHS = N->getOperand(1); 5693 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32); 5694 if (SimplifyDemandedBits(LHS, Mask, DCI) || 5695 SimplifyDemandedBits(RHS, Mask, DCI)) { 5696 if (N->getOpcode() != ISD::DELETED_NODE) 5697 DCI.AddToWorklist(N); 5698 return SDValue(N, 0); 5699 } 5700 5701 break; 5702 } 5703 case RISCVISD::FMV_X_ANYEXTW_RV64: { 5704 SDLoc DL(N); 5705 SDValue Op0 = N->getOperand(0); 5706 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the 5707 // conversion is unnecessary and can be replaced with an ANY_EXTEND 5708 // of the FMV_W_X_RV64 operand. 5709 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) { 5710 assert(Op0.getOperand(0).getValueType() == MVT::i64 && 5711 "Unexpected value type!"); 5712 return Op0.getOperand(0); 5713 } 5714 5715 // This is a target-specific version of a DAGCombine performed in 5716 // DAGCombiner::visitBITCAST. It performs the equivalent of: 5717 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) 5718 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) 5719 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) || 5720 !Op0.getNode()->hasOneUse()) 5721 break; 5722 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, 5723 Op0.getOperand(0)); 5724 APInt SignBit = APInt::getSignMask(32).sext(64); 5725 if (Op0.getOpcode() == ISD::FNEG) 5726 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV, 5727 DAG.getConstant(SignBit, DL, MVT::i64)); 5728 5729 assert(Op0.getOpcode() == ISD::FABS); 5730 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV, 5731 DAG.getConstant(~SignBit, DL, MVT::i64)); 5732 } 5733 case ISD::AND: 5734 return performANDCombine(N, DCI, Subtarget); 5735 case ISD::OR: 5736 return performORCombine(N, DCI, Subtarget); 5737 case ISD::XOR: 5738 return performXORCombine(N, DCI, Subtarget); 5739 case RISCVISD::SELECT_CC: { 5740 // Transform 5741 SDValue LHS = N->getOperand(0); 5742 SDValue RHS = N->getOperand(1); 5743 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2)); 5744 if (!ISD::isIntEqualitySetCC(CCVal)) 5745 break; 5746 5747 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) -> 5748 // (select_cc X, Y, lt, trueV, falseV) 5749 // Sometimes the setcc is introduced after select_cc has been formed. 5750 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5751 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5752 // If we're looking for eq 0 instead of ne 0, we need to invert the 5753 // condition. 5754 bool Invert = CCVal == ISD::SETEQ; 5755 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5756 if (Invert) 5757 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5758 5759 SDLoc DL(N); 5760 RHS = LHS.getOperand(1); 5761 LHS = LHS.getOperand(0); 5762 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5763 5764 SDValue TargetCC = 5765 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5766 return DAG.getNode( 5767 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5768 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5769 } 5770 5771 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) -> 5772 // (select_cc X, Y, eq/ne, trueV, falseV) 5773 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5774 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0), 5775 {LHS.getOperand(0), LHS.getOperand(1), 5776 N->getOperand(2), N->getOperand(3), 5777 N->getOperand(4)}); 5778 // (select_cc X, 1, setne, trueV, falseV) -> 5779 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1. 5780 // This can occur when legalizing some floating point comparisons. 5781 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5782 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5783 SDLoc DL(N); 5784 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5785 SDValue TargetCC = 5786 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT()); 5787 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5788 return DAG.getNode( 5789 RISCVISD::SELECT_CC, DL, N->getValueType(0), 5790 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)}); 5791 } 5792 5793 break; 5794 } 5795 case RISCVISD::BR_CC: { 5796 SDValue LHS = N->getOperand(1); 5797 SDValue RHS = N->getOperand(2); 5798 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get(); 5799 if (!ISD::isIntEqualitySetCC(CCVal)) 5800 break; 5801 5802 // Fold (br_cc (setlt X, Y), 0, ne, dest) -> 5803 // (br_cc X, Y, lt, dest) 5804 // Sometimes the setcc is introduced after br_cc has been formed. 5805 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) && 5806 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) { 5807 // If we're looking for eq 0 instead of ne 0, we need to invert the 5808 // condition. 5809 bool Invert = CCVal == ISD::SETEQ; 5810 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); 5811 if (Invert) 5812 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5813 5814 SDLoc DL(N); 5815 RHS = LHS.getOperand(1); 5816 LHS = LHS.getOperand(0); 5817 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG); 5818 5819 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5820 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal), 5821 N->getOperand(4)); 5822 } 5823 5824 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) -> 5825 // (br_cc X, Y, eq/ne, trueV, falseV) 5826 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) 5827 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0), 5828 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1), 5829 N->getOperand(3), N->getOperand(4)); 5830 5831 // (br_cc X, 1, setne, br_cc) -> 5832 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1. 5833 // This can occur when legalizing some floating point comparisons. 5834 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1); 5835 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) { 5836 SDLoc DL(N); 5837 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType()); 5838 SDValue TargetCC = DAG.getCondCode(CCVal); 5839 RHS = DAG.getConstant(0, DL, LHS.getValueType()); 5840 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0), 5841 N->getOperand(0), LHS, RHS, TargetCC, 5842 N->getOperand(4)); 5843 } 5844 break; 5845 } 5846 case ISD::FCOPYSIGN: { 5847 EVT VT = N->getValueType(0); 5848 if (!VT.isVector()) 5849 break; 5850 // There is a form of VFSGNJ which injects the negated sign of its second 5851 // operand. Try and bubble any FNEG up after the extend/round to produce 5852 // this optimized pattern. Avoid modifying cases where FP_ROUND and 5853 // TRUNC=1. 5854 SDValue In2 = N->getOperand(1); 5855 // Avoid cases where the extend/round has multiple uses, as duplicating 5856 // those is typically more expensive than removing a fneg. 5857 if (!In2.hasOneUse()) 5858 break; 5859 if (In2.getOpcode() != ISD::FP_EXTEND && 5860 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0)) 5861 break; 5862 In2 = In2.getOperand(0); 5863 if (In2.getOpcode() != ISD::FNEG) 5864 break; 5865 SDLoc DL(N); 5866 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT); 5867 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0), 5868 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound)); 5869 } 5870 case ISD::MGATHER: 5871 case ISD::MSCATTER: { 5872 if (!DCI.isBeforeLegalize()) 5873 break; 5874 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N); 5875 SDValue Index = MGSN->getIndex(); 5876 EVT IndexVT = Index.getValueType(); 5877 MVT XLenVT = Subtarget.getXLenVT(); 5878 // RISCV indexed loads only support the "unsigned unscaled" addressing 5879 // mode, so anything else must be manually legalized. 5880 bool NeedsIdxLegalization = MGSN->isIndexScaled() || 5881 (MGSN->isIndexSigned() && 5882 IndexVT.getVectorElementType().bitsLT(XLenVT)); 5883 if (!NeedsIdxLegalization) 5884 break; 5885 5886 SDLoc DL(N); 5887 5888 // Any index legalization should first promote to XLenVT, so we don't lose 5889 // bits when scaling. This may create an illegal index type so we let 5890 // LLVM's legalization take care of the splitting. 5891 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) { 5892 IndexVT = IndexVT.changeVectorElementType(XLenVT); 5893 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND 5894 : ISD::ZERO_EXTEND, 5895 DL, IndexVT, Index); 5896 } 5897 5898 unsigned Scale = N->getConstantOperandVal(5); 5899 if (MGSN->isIndexScaled() && Scale != 1) { 5900 // Manually scale the indices by the element size. 5901 // TODO: Sanitize the scale operand here? 5902 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types"); 5903 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT); 5904 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale); 5905 } 5906 5907 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED; 5908 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) { 5909 return DAG.getMaskedGather( 5910 N->getVTList(), MGSN->getMemoryVT(), DL, 5911 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(), 5912 MGSN->getBasePtr(), Index, MGN->getScale()}, 5913 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType()); 5914 } 5915 const auto *MSN = cast<MaskedScatterSDNode>(N); 5916 return DAG.getMaskedScatter( 5917 N->getVTList(), MGSN->getMemoryVT(), DL, 5918 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(), 5919 Index, MGSN->getScale()}, 5920 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore()); 5921 } 5922 } 5923 5924 return SDValue(); 5925 } 5926 5927 bool RISCVTargetLowering::isDesirableToCommuteWithShift( 5928 const SDNode *N, CombineLevel Level) const { 5929 // The following folds are only desirable if `(OP _, c1 << c2)` can be 5930 // materialised in fewer instructions than `(OP _, c1)`: 5931 // 5932 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) 5933 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) 5934 SDValue N0 = N->getOperand(0); 5935 EVT Ty = N0.getValueType(); 5936 if (Ty.isScalarInteger() && 5937 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) { 5938 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1)); 5939 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5940 if (C1 && C2) { 5941 const APInt &C1Int = C1->getAPIntValue(); 5942 APInt ShiftedC1Int = C1Int << C2->getAPIntValue(); 5943 5944 // We can materialise `c1 << c2` into an add immediate, so it's "free", 5945 // and the combine should happen, to potentially allow further combines 5946 // later. 5947 if (ShiftedC1Int.getMinSignedBits() <= 64 && 5948 isLegalAddImmediate(ShiftedC1Int.getSExtValue())) 5949 return true; 5950 5951 // We can materialise `c1` in an add immediate, so it's "free", and the 5952 // combine should be prevented. 5953 if (C1Int.getMinSignedBits() <= 64 && 5954 isLegalAddImmediate(C1Int.getSExtValue())) 5955 return false; 5956 5957 // Neither constant will fit into an immediate, so find materialisation 5958 // costs. 5959 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(), 5960 Subtarget.is64Bit()); 5961 int ShiftedC1Cost = RISCVMatInt::getIntMatCost( 5962 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit()); 5963 5964 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the 5965 // combine should be prevented. 5966 if (C1Cost < ShiftedC1Cost) 5967 return false; 5968 } 5969 } 5970 return true; 5971 } 5972 5973 bool RISCVTargetLowering::targetShrinkDemandedConstant( 5974 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 5975 TargetLoweringOpt &TLO) const { 5976 // Delay this optimization as late as possible. 5977 if (!TLO.LegalOps) 5978 return false; 5979 5980 EVT VT = Op.getValueType(); 5981 if (VT.isVector()) 5982 return false; 5983 5984 // Only handle AND for now. 5985 if (Op.getOpcode() != ISD::AND) 5986 return false; 5987 5988 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 5989 if (!C) 5990 return false; 5991 5992 const APInt &Mask = C->getAPIntValue(); 5993 5994 // Clear all non-demanded bits initially. 5995 APInt ShrunkMask = Mask & DemandedBits; 5996 5997 // Try to make a smaller immediate by setting undemanded bits. 5998 5999 APInt ExpandedMask = Mask | ~DemandedBits; 6000 6001 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool { 6002 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask); 6003 }; 6004 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool { 6005 if (NewMask == Mask) 6006 return true; 6007 SDLoc DL(Op); 6008 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT); 6009 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC); 6010 return TLO.CombineTo(Op, NewOp); 6011 }; 6012 6013 // If the shrunk mask fits in sign extended 12 bits, let the target 6014 // independent code apply it. 6015 if (ShrunkMask.isSignedIntN(12)) 6016 return false; 6017 6018 // Preserve (and X, 0xffff) when zext.h is supported. 6019 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) { 6020 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff); 6021 if (IsLegalMask(NewMask)) 6022 return UseMask(NewMask); 6023 } 6024 6025 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern. 6026 if (VT == MVT::i64) { 6027 APInt NewMask = APInt(64, 0xffffffff); 6028 if (IsLegalMask(NewMask)) 6029 return UseMask(NewMask); 6030 } 6031 6032 // For the remaining optimizations, we need to be able to make a negative 6033 // number through a combination of mask and undemanded bits. 6034 if (!ExpandedMask.isNegative()) 6035 return false; 6036 6037 // What is the fewest number of bits we need to represent the negative number. 6038 unsigned MinSignedBits = ExpandedMask.getMinSignedBits(); 6039 6040 // Try to make a 12 bit negative immediate. If that fails try to make a 32 6041 // bit negative immediate unless the shrunk immediate already fits in 32 bits. 6042 APInt NewMask = ShrunkMask; 6043 if (MinSignedBits <= 12) 6044 NewMask.setBitsFrom(11); 6045 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32)) 6046 NewMask.setBitsFrom(31); 6047 else 6048 return false; 6049 6050 // Sanity check that our new mask is a subset of the demanded mask. 6051 assert(IsLegalMask(NewMask)); 6052 return UseMask(NewMask); 6053 } 6054 6055 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6056 KnownBits &Known, 6057 const APInt &DemandedElts, 6058 const SelectionDAG &DAG, 6059 unsigned Depth) const { 6060 unsigned BitWidth = Known.getBitWidth(); 6061 unsigned Opc = Op.getOpcode(); 6062 assert((Opc >= ISD::BUILTIN_OP_END || 6063 Opc == ISD::INTRINSIC_WO_CHAIN || 6064 Opc == ISD::INTRINSIC_W_CHAIN || 6065 Opc == ISD::INTRINSIC_VOID) && 6066 "Should use MaskedValueIsZero if you don't know whether Op" 6067 " is a target node!"); 6068 6069 Known.resetAll(); 6070 switch (Opc) { 6071 default: break; 6072 case RISCVISD::SELECT_CC: { 6073 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1); 6074 // If we don't know any bits, early out. 6075 if (Known.isUnknown()) 6076 break; 6077 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1); 6078 6079 // Only known if known in both the LHS and RHS. 6080 Known = KnownBits::commonBits(Known, Known2); 6081 break; 6082 } 6083 case RISCVISD::REMUW: { 6084 KnownBits Known2; 6085 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6086 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6087 // We only care about the lower 32 bits. 6088 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32)); 6089 // Restore the original width by sign extending. 6090 Known = Known.sext(BitWidth); 6091 break; 6092 } 6093 case RISCVISD::DIVUW: { 6094 KnownBits Known2; 6095 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 6096 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 6097 // We only care about the lower 32 bits. 6098 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32)); 6099 // Restore the original width by sign extending. 6100 Known = Known.sext(BitWidth); 6101 break; 6102 } 6103 case RISCVISD::CTZW: { 6104 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6105 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros(); 6106 unsigned LowBits = Log2_32(PossibleTZ) + 1; 6107 Known.Zero.setBitsFrom(LowBits); 6108 break; 6109 } 6110 case RISCVISD::CLZW: { 6111 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 6112 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros(); 6113 unsigned LowBits = Log2_32(PossibleLZ) + 1; 6114 Known.Zero.setBitsFrom(LowBits); 6115 break; 6116 } 6117 case RISCVISD::READ_VLENB: 6118 // We assume VLENB is at least 16 bytes. 6119 Known.Zero.setLowBits(4); 6120 break; 6121 case ISD::INTRINSIC_W_CHAIN: { 6122 unsigned IntNo = Op.getConstantOperandVal(1); 6123 switch (IntNo) { 6124 default: 6125 // We can't do anything for most intrinsics. 6126 break; 6127 case Intrinsic::riscv_vsetvli: 6128 case Intrinsic::riscv_vsetvlimax: 6129 // Assume that VL output is positive and would fit in an int32_t. 6130 // TODO: VLEN might be capped at 16 bits in a future V spec update. 6131 if (BitWidth >= 32) 6132 Known.Zero.setBitsFrom(31); 6133 break; 6134 } 6135 break; 6136 } 6137 } 6138 } 6139 6140 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode( 6141 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6142 unsigned Depth) const { 6143 switch (Op.getOpcode()) { 6144 default: 6145 break; 6146 case RISCVISD::SLLW: 6147 case RISCVISD::SRAW: 6148 case RISCVISD::SRLW: 6149 case RISCVISD::DIVW: 6150 case RISCVISD::DIVUW: 6151 case RISCVISD::REMUW: 6152 case RISCVISD::ROLW: 6153 case RISCVISD::RORW: 6154 case RISCVISD::GREVW: 6155 case RISCVISD::GORCW: 6156 case RISCVISD::FSLW: 6157 case RISCVISD::FSRW: 6158 case RISCVISD::SHFLW: 6159 case RISCVISD::UNSHFLW: 6160 case RISCVISD::BCOMPRESSW: 6161 case RISCVISD::BDECOMPRESSW: 6162 // TODO: As the result is sign-extended, this is conservatively correct. A 6163 // more precise answer could be calculated for SRAW depending on known 6164 // bits in the shift amount. 6165 return 33; 6166 case RISCVISD::SHFL: 6167 case RISCVISD::UNSHFL: { 6168 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word 6169 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but 6170 // will stay within the upper 32 bits. If there were more than 32 sign bits 6171 // before there will be at least 33 sign bits after. 6172 if (Op.getValueType() == MVT::i64 && 6173 isa<ConstantSDNode>(Op.getOperand(1)) && 6174 (Op.getConstantOperandVal(1) & 0x10) == 0) { 6175 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 6176 if (Tmp > 32) 6177 return 33; 6178 } 6179 break; 6180 } 6181 case RISCVISD::VMV_X_S: 6182 // The number of sign bits of the scalar result is computed by obtaining the 6183 // element type of the input vector operand, subtracting its width from the 6184 // XLEN, and then adding one (sign bit within the element type). If the 6185 // element type is wider than XLen, the least-significant XLEN bits are 6186 // taken. 6187 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen()) 6188 return 1; 6189 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1; 6190 } 6191 6192 return 1; 6193 } 6194 6195 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI, 6196 MachineBasicBlock *BB) { 6197 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction"); 6198 6199 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves. 6200 // Should the count have wrapped while it was being read, we need to try 6201 // again. 6202 // ... 6203 // read: 6204 // rdcycleh x3 # load high word of cycle 6205 // rdcycle x2 # load low word of cycle 6206 // rdcycleh x4 # load high word of cycle 6207 // bne x3, x4, read # check if high word reads match, otherwise try again 6208 // ... 6209 6210 MachineFunction &MF = *BB->getParent(); 6211 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6212 MachineFunction::iterator It = ++BB->getIterator(); 6213 6214 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6215 MF.insert(It, LoopMBB); 6216 6217 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB); 6218 MF.insert(It, DoneMBB); 6219 6220 // Transfer the remainder of BB and its successor edges to DoneMBB. 6221 DoneMBB->splice(DoneMBB->begin(), BB, 6222 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 6223 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 6224 6225 BB->addSuccessor(LoopMBB); 6226 6227 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6228 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 6229 Register LoReg = MI.getOperand(0).getReg(); 6230 Register HiReg = MI.getOperand(1).getReg(); 6231 DebugLoc DL = MI.getDebugLoc(); 6232 6233 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 6234 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg) 6235 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6236 .addReg(RISCV::X0); 6237 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg) 6238 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding) 6239 .addReg(RISCV::X0); 6240 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg) 6241 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding) 6242 .addReg(RISCV::X0); 6243 6244 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE)) 6245 .addReg(HiReg) 6246 .addReg(ReadAgainReg) 6247 .addMBB(LoopMBB); 6248 6249 LoopMBB->addSuccessor(LoopMBB); 6250 LoopMBB->addSuccessor(DoneMBB); 6251 6252 MI.eraseFromParent(); 6253 6254 return DoneMBB; 6255 } 6256 6257 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI, 6258 MachineBasicBlock *BB) { 6259 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction"); 6260 6261 MachineFunction &MF = *BB->getParent(); 6262 DebugLoc DL = MI.getDebugLoc(); 6263 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6264 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6265 Register LoReg = MI.getOperand(0).getReg(); 6266 Register HiReg = MI.getOperand(1).getReg(); 6267 Register SrcReg = MI.getOperand(2).getReg(); 6268 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass; 6269 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6270 6271 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC, 6272 RI); 6273 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6274 MachineMemOperand *MMOLo = 6275 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8)); 6276 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6277 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8)); 6278 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg) 6279 .addFrameIndex(FI) 6280 .addImm(0) 6281 .addMemOperand(MMOLo); 6282 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg) 6283 .addFrameIndex(FI) 6284 .addImm(4) 6285 .addMemOperand(MMOHi); 6286 MI.eraseFromParent(); // The pseudo instruction is gone now. 6287 return BB; 6288 } 6289 6290 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI, 6291 MachineBasicBlock *BB) { 6292 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo && 6293 "Unexpected instruction"); 6294 6295 MachineFunction &MF = *BB->getParent(); 6296 DebugLoc DL = MI.getDebugLoc(); 6297 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6298 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); 6299 Register DstReg = MI.getOperand(0).getReg(); 6300 Register LoReg = MI.getOperand(1).getReg(); 6301 Register HiReg = MI.getOperand(2).getReg(); 6302 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass; 6303 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF); 6304 6305 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); 6306 MachineMemOperand *MMOLo = 6307 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8)); 6308 MachineMemOperand *MMOHi = MF.getMachineMemOperand( 6309 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8)); 6310 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6311 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill())) 6312 .addFrameIndex(FI) 6313 .addImm(0) 6314 .addMemOperand(MMOLo); 6315 BuildMI(*BB, MI, DL, TII.get(RISCV::SW)) 6316 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill())) 6317 .addFrameIndex(FI) 6318 .addImm(4) 6319 .addMemOperand(MMOHi); 6320 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI); 6321 MI.eraseFromParent(); // The pseudo instruction is gone now. 6322 return BB; 6323 } 6324 6325 static bool isSelectPseudo(MachineInstr &MI) { 6326 switch (MI.getOpcode()) { 6327 default: 6328 return false; 6329 case RISCV::Select_GPR_Using_CC_GPR: 6330 case RISCV::Select_FPR16_Using_CC_GPR: 6331 case RISCV::Select_FPR32_Using_CC_GPR: 6332 case RISCV::Select_FPR64_Using_CC_GPR: 6333 return true; 6334 } 6335 } 6336 6337 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI, 6338 MachineBasicBlock *BB) { 6339 // To "insert" Select_* instructions, we actually have to insert the triangle 6340 // control-flow pattern. The incoming instructions know the destination vreg 6341 // to set, the condition code register to branch on, the true/false values to 6342 // select between, and the condcode to use to select the appropriate branch. 6343 // 6344 // We produce the following control flow: 6345 // HeadMBB 6346 // | \ 6347 // | IfFalseMBB 6348 // | / 6349 // TailMBB 6350 // 6351 // When we find a sequence of selects we attempt to optimize their emission 6352 // by sharing the control flow. Currently we only handle cases where we have 6353 // multiple selects with the exact same condition (same LHS, RHS and CC). 6354 // The selects may be interleaved with other instructions if the other 6355 // instructions meet some requirements we deem safe: 6356 // - They are debug instructions. Otherwise, 6357 // - They do not have side-effects, do not access memory and their inputs do 6358 // not depend on the results of the select pseudo-instructions. 6359 // The TrueV/FalseV operands of the selects cannot depend on the result of 6360 // previous selects in the sequence. 6361 // These conditions could be further relaxed. See the X86 target for a 6362 // related approach and more information. 6363 Register LHS = MI.getOperand(1).getReg(); 6364 Register RHS = MI.getOperand(2).getReg(); 6365 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm()); 6366 6367 SmallVector<MachineInstr *, 4> SelectDebugValues; 6368 SmallSet<Register, 4> SelectDests; 6369 SelectDests.insert(MI.getOperand(0).getReg()); 6370 6371 MachineInstr *LastSelectPseudo = &MI; 6372 6373 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); 6374 SequenceMBBI != E; ++SequenceMBBI) { 6375 if (SequenceMBBI->isDebugInstr()) 6376 continue; 6377 else if (isSelectPseudo(*SequenceMBBI)) { 6378 if (SequenceMBBI->getOperand(1).getReg() != LHS || 6379 SequenceMBBI->getOperand(2).getReg() != RHS || 6380 SequenceMBBI->getOperand(3).getImm() != CC || 6381 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) || 6382 SelectDests.count(SequenceMBBI->getOperand(5).getReg())) 6383 break; 6384 LastSelectPseudo = &*SequenceMBBI; 6385 SequenceMBBI->collectDebugValues(SelectDebugValues); 6386 SelectDests.insert(SequenceMBBI->getOperand(0).getReg()); 6387 } else { 6388 if (SequenceMBBI->hasUnmodeledSideEffects() || 6389 SequenceMBBI->mayLoadOrStore()) 6390 break; 6391 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) { 6392 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg()); 6393 })) 6394 break; 6395 } 6396 } 6397 6398 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 6399 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6400 DebugLoc DL = MI.getDebugLoc(); 6401 MachineFunction::iterator I = ++BB->getIterator(); 6402 6403 MachineBasicBlock *HeadMBB = BB; 6404 MachineFunction *F = BB->getParent(); 6405 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB); 6406 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 6407 6408 F->insert(I, IfFalseMBB); 6409 F->insert(I, TailMBB); 6410 6411 // Transfer debug instructions associated with the selects to TailMBB. 6412 for (MachineInstr *DebugInstr : SelectDebugValues) { 6413 TailMBB->push_back(DebugInstr->removeFromParent()); 6414 } 6415 6416 // Move all instructions after the sequence to TailMBB. 6417 TailMBB->splice(TailMBB->end(), HeadMBB, 6418 std::next(LastSelectPseudo->getIterator()), HeadMBB->end()); 6419 // Update machine-CFG edges by transferring all successors of the current 6420 // block to the new block which will contain the Phi nodes for the selects. 6421 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB); 6422 // Set the successors for HeadMBB. 6423 HeadMBB->addSuccessor(IfFalseMBB); 6424 HeadMBB->addSuccessor(TailMBB); 6425 6426 // Insert appropriate branch. 6427 unsigned Opcode = getBranchOpcodeForIntCondCode(CC); 6428 6429 BuildMI(HeadMBB, DL, TII.get(Opcode)) 6430 .addReg(LHS) 6431 .addReg(RHS) 6432 .addMBB(TailMBB); 6433 6434 // IfFalseMBB just falls through to TailMBB. 6435 IfFalseMBB->addSuccessor(TailMBB); 6436 6437 // Create PHIs for all of the select pseudo-instructions. 6438 auto SelectMBBI = MI.getIterator(); 6439 auto SelectEnd = std::next(LastSelectPseudo->getIterator()); 6440 auto InsertionPoint = TailMBB->begin(); 6441 while (SelectMBBI != SelectEnd) { 6442 auto Next = std::next(SelectMBBI); 6443 if (isSelectPseudo(*SelectMBBI)) { 6444 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] 6445 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(), 6446 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg()) 6447 .addReg(SelectMBBI->getOperand(4).getReg()) 6448 .addMBB(HeadMBB) 6449 .addReg(SelectMBBI->getOperand(5).getReg()) 6450 .addMBB(IfFalseMBB); 6451 SelectMBBI->eraseFromParent(); 6452 } 6453 SelectMBBI = Next; 6454 } 6455 6456 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6457 return TailMBB; 6458 } 6459 6460 static MachineInstr *elideCopies(MachineInstr *MI, 6461 const MachineRegisterInfo &MRI) { 6462 while (true) { 6463 if (!MI->isFullCopy()) 6464 return MI; 6465 if (!Register::isVirtualRegister(MI->getOperand(1).getReg())) 6466 return nullptr; 6467 MI = MRI.getVRegDef(MI->getOperand(1).getReg()); 6468 if (!MI) 6469 return nullptr; 6470 } 6471 } 6472 6473 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB, 6474 int VLIndex, unsigned SEWIndex, 6475 RISCVII::VLMUL VLMul, 6476 bool ForceTailAgnostic) { 6477 MachineFunction &MF = *BB->getParent(); 6478 DebugLoc DL = MI.getDebugLoc(); 6479 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 6480 6481 unsigned Log2SEW = MI.getOperand(SEWIndex).getImm(); 6482 unsigned SEW = 1 << Log2SEW; 6483 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW"); 6484 6485 MachineRegisterInfo &MRI = MF.getRegInfo(); 6486 6487 auto BuildVSETVLI = [&]() { 6488 if (VLIndex >= 0) { 6489 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass); 6490 const MachineOperand &VLOp = MI.getOperand(VLIndex); 6491 6492 // VL can be a register or an immediate. 6493 if (VLOp.isImm()) 6494 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI)) 6495 .addReg(DestReg, RegState::Define | RegState::Dead) 6496 .addImm(VLOp.getImm()); 6497 6498 Register VLReg = MI.getOperand(VLIndex).getReg(); 6499 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 6500 .addReg(DestReg, RegState::Define | RegState::Dead) 6501 .addReg(VLReg); 6502 } 6503 6504 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0). 6505 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI)) 6506 .addReg(RISCV::X0, RegState::Define | RegState::Dead) 6507 .addReg(RISCV::X0, RegState::Kill); 6508 }; 6509 6510 MachineInstrBuilder MIB = BuildVSETVLI(); 6511 6512 // Default to tail agnostic unless the destination is tied to a source. In 6513 // that case the user would have some control over the tail values. The tail 6514 // policy is also ignored on instructions that only update element 0 like 6515 // vmv.s.x or reductions so use agnostic there to match the common case. 6516 // FIXME: This is conservatively correct, but we might want to detect that 6517 // the input is undefined. 6518 bool TailAgnostic = true; 6519 unsigned UseOpIdx; 6520 if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) { 6521 TailAgnostic = false; 6522 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic. 6523 const MachineOperand &UseMO = MI.getOperand(UseOpIdx); 6524 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg()); 6525 if (UseMI) { 6526 UseMI = elideCopies(UseMI, MRI); 6527 if (UseMI && UseMI->isImplicitDef()) 6528 TailAgnostic = true; 6529 } 6530 } 6531 6532 // For simplicity we reuse the vtype representation here. 6533 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, SEW, 6534 /*TailAgnostic*/ TailAgnostic, 6535 /*MaskAgnostic*/ false)); 6536 6537 // Remove (now) redundant operands from pseudo 6538 if (VLIndex >= 0 && MI.getOperand(VLIndex).isReg()) { 6539 MI.getOperand(VLIndex).setReg(RISCV::NoRegister); 6540 MI.getOperand(VLIndex).setIsKill(false); 6541 } 6542 6543 return BB; 6544 } 6545 6546 MachineBasicBlock * 6547 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 6548 MachineBasicBlock *BB) const { 6549 uint64_t TSFlags = MI.getDesc().TSFlags; 6550 6551 if (RISCVII::hasSEWOp(TSFlags)) { 6552 unsigned NumOperands = MI.getNumExplicitOperands(); 6553 int VLIndex = RISCVII::hasVLOp(TSFlags) ? NumOperands - 2 : -1; 6554 unsigned SEWIndex = NumOperands - 1; 6555 bool ForceTailAgnostic = RISCVII::doesForceTailAgnostic(TSFlags); 6556 6557 RISCVII::VLMUL VLMul = RISCVII::getLMul(TSFlags); 6558 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic); 6559 } 6560 6561 switch (MI.getOpcode()) { 6562 default: 6563 llvm_unreachable("Unexpected instr type to insert"); 6564 case RISCV::ReadCycleWide: 6565 assert(!Subtarget.is64Bit() && 6566 "ReadCycleWrite is only to be used on riscv32"); 6567 return emitReadCycleWidePseudo(MI, BB); 6568 case RISCV::Select_GPR_Using_CC_GPR: 6569 case RISCV::Select_FPR16_Using_CC_GPR: 6570 case RISCV::Select_FPR32_Using_CC_GPR: 6571 case RISCV::Select_FPR64_Using_CC_GPR: 6572 return emitSelectPseudo(MI, BB); 6573 case RISCV::BuildPairF64Pseudo: 6574 return emitBuildPairF64Pseudo(MI, BB); 6575 case RISCV::SplitF64Pseudo: 6576 return emitSplitF64Pseudo(MI, BB); 6577 } 6578 } 6579 6580 // Calling Convention Implementation. 6581 // The expectations for frontend ABI lowering vary from target to target. 6582 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI 6583 // details, but this is a longer term goal. For now, we simply try to keep the 6584 // role of the frontend as simple and well-defined as possible. The rules can 6585 // be summarised as: 6586 // * Never split up large scalar arguments. We handle them here. 6587 // * If a hardfloat calling convention is being used, and the struct may be 6588 // passed in a pair of registers (fp+fp, int+fp), and both registers are 6589 // available, then pass as two separate arguments. If either the GPRs or FPRs 6590 // are exhausted, then pass according to the rule below. 6591 // * If a struct could never be passed in registers or directly in a stack 6592 // slot (as it is larger than 2*XLEN and the floating point rules don't 6593 // apply), then pass it using a pointer with the byval attribute. 6594 // * If a struct is less than 2*XLEN, then coerce to either a two-element 6595 // word-sized array or a 2*XLEN scalar (depending on alignment). 6596 // * The frontend can determine whether a struct is returned by reference or 6597 // not based on its size and fields. If it will be returned by reference, the 6598 // frontend must modify the prototype so a pointer with the sret annotation is 6599 // passed as the first argument. This is not necessary for large scalar 6600 // returns. 6601 // * Struct return values and varargs should be coerced to structs containing 6602 // register-size fields in the same situations they would be for fixed 6603 // arguments. 6604 6605 static const MCPhysReg ArgGPRs[] = { 6606 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, 6607 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17 6608 }; 6609 static const MCPhysReg ArgFPR16s[] = { 6610 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, 6611 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H 6612 }; 6613 static const MCPhysReg ArgFPR32s[] = { 6614 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, 6615 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F 6616 }; 6617 static const MCPhysReg ArgFPR64s[] = { 6618 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, 6619 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D 6620 }; 6621 // This is an interim calling convention and it may be changed in the future. 6622 static const MCPhysReg ArgVRs[] = { 6623 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13, 6624 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19, 6625 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23}; 6626 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2, 6627 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2, 6628 RISCV::V20M2, RISCV::V22M2}; 6629 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4, 6630 RISCV::V20M4}; 6631 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8}; 6632 6633 // Pass a 2*XLEN argument that has been split into two XLEN values through 6634 // registers or the stack as necessary. 6635 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1, 6636 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, 6637 MVT ValVT2, MVT LocVT2, 6638 ISD::ArgFlagsTy ArgFlags2) { 6639 unsigned XLenInBytes = XLen / 8; 6640 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6641 // At least one half can be passed via register. 6642 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg, 6643 VA1.getLocVT(), CCValAssign::Full)); 6644 } else { 6645 // Both halves must be passed on the stack, with proper alignment. 6646 Align StackAlign = 6647 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign()); 6648 State.addLoc( 6649 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(), 6650 State.AllocateStack(XLenInBytes, StackAlign), 6651 VA1.getLocVT(), CCValAssign::Full)); 6652 State.addLoc(CCValAssign::getMem( 6653 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6654 LocVT2, CCValAssign::Full)); 6655 return false; 6656 } 6657 6658 if (Register Reg = State.AllocateReg(ArgGPRs)) { 6659 // The second half can also be passed via register. 6660 State.addLoc( 6661 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full)); 6662 } else { 6663 // The second half is passed via the stack, without additional alignment. 6664 State.addLoc(CCValAssign::getMem( 6665 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)), 6666 LocVT2, CCValAssign::Full)); 6667 } 6668 6669 return false; 6670 } 6671 6672 // Implements the RISC-V calling convention. Returns true upon failure. 6673 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo, 6674 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, 6675 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed, 6676 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI, 6677 Optional<unsigned> FirstMaskArgument) { 6678 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits(); 6679 assert(XLen == 32 || XLen == 64); 6680 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64; 6681 6682 // Any return value split in to more than two values can't be returned 6683 // directly. Vectors are returned via the available vector registers. 6684 if (!LocVT.isVector() && IsRet && ValNo > 1) 6685 return true; 6686 6687 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a 6688 // variadic argument, or if no F16/F32 argument registers are available. 6689 bool UseGPRForF16_F32 = true; 6690 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a 6691 // variadic argument, or if no F64 argument registers are available. 6692 bool UseGPRForF64 = true; 6693 6694 switch (ABI) { 6695 default: 6696 llvm_unreachable("Unexpected ABI"); 6697 case RISCVABI::ABI_ILP32: 6698 case RISCVABI::ABI_LP64: 6699 break; 6700 case RISCVABI::ABI_ILP32F: 6701 case RISCVABI::ABI_LP64F: 6702 UseGPRForF16_F32 = !IsFixed; 6703 break; 6704 case RISCVABI::ABI_ILP32D: 6705 case RISCVABI::ABI_LP64D: 6706 UseGPRForF16_F32 = !IsFixed; 6707 UseGPRForF64 = !IsFixed; 6708 break; 6709 } 6710 6711 // FPR16, FPR32, and FPR64 alias each other. 6712 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) { 6713 UseGPRForF16_F32 = true; 6714 UseGPRForF64 = true; 6715 } 6716 6717 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and 6718 // similar local variables rather than directly checking against the target 6719 // ABI. 6720 6721 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) { 6722 LocVT = XLenVT; 6723 LocInfo = CCValAssign::BCvt; 6724 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) { 6725 LocVT = MVT::i64; 6726 LocInfo = CCValAssign::BCvt; 6727 } 6728 6729 // If this is a variadic argument, the RISC-V calling convention requires 6730 // that it is assigned an 'even' or 'aligned' register if it has 8-byte 6731 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should 6732 // be used regardless of whether the original argument was split during 6733 // legalisation or not. The argument will not be passed by registers if the 6734 // original type is larger than 2*XLEN, so the register alignment rule does 6735 // not apply. 6736 unsigned TwoXLenInBytes = (2 * XLen) / 8; 6737 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes && 6738 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) { 6739 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs); 6740 // Skip 'odd' register if necessary. 6741 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1) 6742 State.AllocateReg(ArgGPRs); 6743 } 6744 6745 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); 6746 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = 6747 State.getPendingArgFlags(); 6748 6749 assert(PendingLocs.size() == PendingArgFlags.size() && 6750 "PendingLocs and PendingArgFlags out of sync"); 6751 6752 // Handle passing f64 on RV32D with a soft float ABI or when floating point 6753 // registers are exhausted. 6754 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) { 6755 assert(!ArgFlags.isSplit() && PendingLocs.empty() && 6756 "Can't lower f64 if it is split"); 6757 // Depending on available argument GPRS, f64 may be passed in a pair of 6758 // GPRs, split between a GPR and the stack, or passed completely on the 6759 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these 6760 // cases. 6761 Register Reg = State.AllocateReg(ArgGPRs); 6762 LocVT = MVT::i32; 6763 if (!Reg) { 6764 unsigned StackOffset = State.AllocateStack(8, Align(8)); 6765 State.addLoc( 6766 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6767 return false; 6768 } 6769 if (!State.AllocateReg(ArgGPRs)) 6770 State.AllocateStack(4, Align(4)); 6771 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6772 return false; 6773 } 6774 6775 // Fixed-length vectors are located in the corresponding scalable-vector 6776 // container types. 6777 if (ValVT.isFixedLengthVector()) 6778 LocVT = TLI.getContainerForFixedLengthVector(LocVT); 6779 6780 // Split arguments might be passed indirectly, so keep track of the pending 6781 // values. Split vectors are passed via a mix of registers and indirectly, so 6782 // treat them as we would any other argument. 6783 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) { 6784 LocVT = XLenVT; 6785 LocInfo = CCValAssign::Indirect; 6786 PendingLocs.push_back( 6787 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); 6788 PendingArgFlags.push_back(ArgFlags); 6789 if (!ArgFlags.isSplitEnd()) { 6790 return false; 6791 } 6792 } 6793 6794 // If the split argument only had two elements, it should be passed directly 6795 // in registers or on the stack. 6796 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) { 6797 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()"); 6798 // Apply the normal calling convention rules to the first half of the 6799 // split argument. 6800 CCValAssign VA = PendingLocs[0]; 6801 ISD::ArgFlagsTy AF = PendingArgFlags[0]; 6802 PendingLocs.clear(); 6803 PendingArgFlags.clear(); 6804 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT, 6805 ArgFlags); 6806 } 6807 6808 // Allocate to a register if possible, or else a stack slot. 6809 Register Reg; 6810 if (ValVT == MVT::f16 && !UseGPRForF16_F32) 6811 Reg = State.AllocateReg(ArgFPR16s); 6812 else if (ValVT == MVT::f32 && !UseGPRForF16_F32) 6813 Reg = State.AllocateReg(ArgFPR32s); 6814 else if (ValVT == MVT::f64 && !UseGPRForF64) 6815 Reg = State.AllocateReg(ArgFPR64s); 6816 else if (ValVT.isVector()) { 6817 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT); 6818 if (RC == &RISCV::VRRegClass) { 6819 // Assign the first mask argument to V0. 6820 // This is an interim calling convention and it may be changed in the 6821 // future. 6822 if (FirstMaskArgument.hasValue() && 6823 ValNo == FirstMaskArgument.getValue()) { 6824 Reg = State.AllocateReg(RISCV::V0); 6825 } else { 6826 Reg = State.AllocateReg(ArgVRs); 6827 } 6828 } else if (RC == &RISCV::VRM2RegClass) { 6829 Reg = State.AllocateReg(ArgVRM2s); 6830 } else if (RC == &RISCV::VRM4RegClass) { 6831 Reg = State.AllocateReg(ArgVRM4s); 6832 } else if (RC == &RISCV::VRM8RegClass) { 6833 Reg = State.AllocateReg(ArgVRM8s); 6834 } else { 6835 llvm_unreachable("Unhandled class register for ValueType"); 6836 } 6837 if (!Reg) { 6838 // For return values, the vector must be passed fully via registers or 6839 // via the stack. 6840 // FIXME: The proposed vector ABI only mandates v8-v15 for return values, 6841 // but we're using all of them. 6842 if (IsRet) 6843 return true; 6844 LocInfo = CCValAssign::Indirect; 6845 // Try using a GPR to pass the address 6846 Reg = State.AllocateReg(ArgGPRs); 6847 LocVT = XLenVT; 6848 } 6849 } else 6850 Reg = State.AllocateReg(ArgGPRs); 6851 unsigned StackOffset = 6852 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8)); 6853 6854 // If we reach this point and PendingLocs is non-empty, we must be at the 6855 // end of a split argument that must be passed indirectly. 6856 if (!PendingLocs.empty()) { 6857 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()"); 6858 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()"); 6859 6860 for (auto &It : PendingLocs) { 6861 if (Reg) 6862 It.convertToReg(Reg); 6863 else 6864 It.convertToMem(StackOffset); 6865 State.addLoc(It); 6866 } 6867 PendingLocs.clear(); 6868 PendingArgFlags.clear(); 6869 return false; 6870 } 6871 6872 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT || 6873 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) && 6874 "Expected an XLenVT or vector types at this stage"); 6875 6876 if (Reg) { 6877 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6878 return false; 6879 } 6880 6881 // When a floating-point value is passed on the stack, no bit-conversion is 6882 // needed. 6883 if (ValVT.isFloatingPoint()) { 6884 LocVT = ValVT; 6885 LocInfo = CCValAssign::Full; 6886 } 6887 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo)); 6888 return false; 6889 } 6890 6891 template <typename ArgTy> 6892 static Optional<unsigned> preAssignMask(const ArgTy &Args) { 6893 for (const auto &ArgIdx : enumerate(Args)) { 6894 MVT ArgVT = ArgIdx.value().VT; 6895 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1) 6896 return ArgIdx.index(); 6897 } 6898 return None; 6899 } 6900 6901 void RISCVTargetLowering::analyzeInputArgs( 6902 MachineFunction &MF, CCState &CCInfo, 6903 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const { 6904 unsigned NumArgs = Ins.size(); 6905 FunctionType *FType = MF.getFunction().getFunctionType(); 6906 6907 Optional<unsigned> FirstMaskArgument; 6908 if (Subtarget.hasStdExtV()) 6909 FirstMaskArgument = preAssignMask(Ins); 6910 6911 for (unsigned i = 0; i != NumArgs; ++i) { 6912 MVT ArgVT = Ins[i].VT; 6913 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; 6914 6915 Type *ArgTy = nullptr; 6916 if (IsRet) 6917 ArgTy = FType->getReturnType(); 6918 else if (Ins[i].isOrigArg()) 6919 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex()); 6920 6921 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6922 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6923 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this, 6924 FirstMaskArgument)) { 6925 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " 6926 << EVT(ArgVT).getEVTString() << '\n'); 6927 llvm_unreachable(nullptr); 6928 } 6929 } 6930 } 6931 6932 void RISCVTargetLowering::analyzeOutputArgs( 6933 MachineFunction &MF, CCState &CCInfo, 6934 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, 6935 CallLoweringInfo *CLI) const { 6936 unsigned NumArgs = Outs.size(); 6937 6938 Optional<unsigned> FirstMaskArgument; 6939 if (Subtarget.hasStdExtV()) 6940 FirstMaskArgument = preAssignMask(Outs); 6941 6942 for (unsigned i = 0; i != NumArgs; i++) { 6943 MVT ArgVT = Outs[i].VT; 6944 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 6945 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; 6946 6947 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 6948 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full, 6949 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this, 6950 FirstMaskArgument)) { 6951 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " 6952 << EVT(ArgVT).getEVTString() << "\n"); 6953 llvm_unreachable(nullptr); 6954 } 6955 } 6956 } 6957 6958 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect 6959 // values. 6960 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, 6961 const CCValAssign &VA, const SDLoc &DL, 6962 const RISCVSubtarget &Subtarget) { 6963 switch (VA.getLocInfo()) { 6964 default: 6965 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 6966 case CCValAssign::Full: 6967 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector()) 6968 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget); 6969 break; 6970 case CCValAssign::BCvt: 6971 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 6972 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val); 6973 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 6974 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val); 6975 else 6976 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 6977 break; 6978 } 6979 return Val; 6980 } 6981 6982 // The caller is responsible for loading the full value if the argument is 6983 // passed with CCValAssign::Indirect. 6984 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, 6985 const CCValAssign &VA, const SDLoc &DL, 6986 const RISCVTargetLowering &TLI) { 6987 MachineFunction &MF = DAG.getMachineFunction(); 6988 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6989 EVT LocVT = VA.getLocVT(); 6990 SDValue Val; 6991 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT()); 6992 Register VReg = RegInfo.createVirtualRegister(RC); 6993 RegInfo.addLiveIn(VA.getLocReg(), VReg); 6994 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 6995 6996 if (VA.getLocInfo() == CCValAssign::Indirect) 6997 return Val; 6998 6999 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget()); 7000 } 7001 7002 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, 7003 const CCValAssign &VA, const SDLoc &DL, 7004 const RISCVSubtarget &Subtarget) { 7005 EVT LocVT = VA.getLocVT(); 7006 7007 switch (VA.getLocInfo()) { 7008 default: 7009 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7010 case CCValAssign::Full: 7011 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector()) 7012 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget); 7013 break; 7014 case CCValAssign::BCvt: 7015 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16) 7016 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val); 7017 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) 7018 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val); 7019 else 7020 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val); 7021 break; 7022 } 7023 return Val; 7024 } 7025 7026 // The caller is responsible for loading the full value if the argument is 7027 // passed with CCValAssign::Indirect. 7028 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, 7029 const CCValAssign &VA, const SDLoc &DL) { 7030 MachineFunction &MF = DAG.getMachineFunction(); 7031 MachineFrameInfo &MFI = MF.getFrameInfo(); 7032 EVT LocVT = VA.getLocVT(); 7033 EVT ValVT = VA.getValVT(); 7034 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)); 7035 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, 7036 VA.getLocMemOffset(), /*Immutable=*/true); 7037 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7038 SDValue Val; 7039 7040 ISD::LoadExtType ExtType; 7041 switch (VA.getLocInfo()) { 7042 default: 7043 llvm_unreachable("Unexpected CCValAssign::LocInfo"); 7044 case CCValAssign::Full: 7045 case CCValAssign::Indirect: 7046 case CCValAssign::BCvt: 7047 ExtType = ISD::NON_EXTLOAD; 7048 break; 7049 } 7050 Val = DAG.getExtLoad( 7051 ExtType, DL, LocVT, Chain, FIN, 7052 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT); 7053 return Val; 7054 } 7055 7056 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain, 7057 const CCValAssign &VA, const SDLoc &DL) { 7058 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && 7059 "Unexpected VA"); 7060 MachineFunction &MF = DAG.getMachineFunction(); 7061 MachineFrameInfo &MFI = MF.getFrameInfo(); 7062 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7063 7064 if (VA.isMemLoc()) { 7065 // f64 is passed on the stack. 7066 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true); 7067 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7068 return DAG.getLoad(MVT::f64, DL, Chain, FIN, 7069 MachinePointerInfo::getFixedStack(MF, FI)); 7070 } 7071 7072 assert(VA.isRegLoc() && "Expected register VA assignment"); 7073 7074 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7075 RegInfo.addLiveIn(VA.getLocReg(), LoVReg); 7076 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32); 7077 SDValue Hi; 7078 if (VA.getLocReg() == RISCV::X17) { 7079 // Second half of f64 is passed on the stack. 7080 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true); 7081 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 7082 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN, 7083 MachinePointerInfo::getFixedStack(MF, FI)); 7084 } else { 7085 // Second half of f64 is passed in another GPR. 7086 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass); 7087 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg); 7088 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32); 7089 } 7090 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 7091 } 7092 7093 // FastCC has less than 1% performance improvement for some particular 7094 // benchmark. But theoretically, it may has benenfit for some cases. 7095 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT, 7096 CCValAssign::LocInfo LocInfo, 7097 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7098 7099 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7100 // X5 and X6 might be used for save-restore libcall. 7101 static const MCPhysReg GPRList[] = { 7102 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, 7103 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28, 7104 RISCV::X29, RISCV::X30, RISCV::X31}; 7105 if (unsigned Reg = State.AllocateReg(GPRList)) { 7106 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7107 return false; 7108 } 7109 } 7110 7111 if (LocVT == MVT::f16) { 7112 static const MCPhysReg FPR16List[] = { 7113 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H, 7114 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H, 7115 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H, 7116 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H}; 7117 if (unsigned Reg = State.AllocateReg(FPR16List)) { 7118 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7119 return false; 7120 } 7121 } 7122 7123 if (LocVT == MVT::f32) { 7124 static const MCPhysReg FPR32List[] = { 7125 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F, 7126 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F, 7127 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F, 7128 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F}; 7129 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7130 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7131 return false; 7132 } 7133 } 7134 7135 if (LocVT == MVT::f64) { 7136 static const MCPhysReg FPR64List[] = { 7137 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D, 7138 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D, 7139 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D, 7140 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D}; 7141 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7142 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7143 return false; 7144 } 7145 } 7146 7147 if (LocVT == MVT::i32 || LocVT == MVT::f32) { 7148 unsigned Offset4 = State.AllocateStack(4, Align(4)); 7149 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo)); 7150 return false; 7151 } 7152 7153 if (LocVT == MVT::i64 || LocVT == MVT::f64) { 7154 unsigned Offset5 = State.AllocateStack(8, Align(8)); 7155 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo)); 7156 return false; 7157 } 7158 7159 return true; // CC didn't match. 7160 } 7161 7162 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, 7163 CCValAssign::LocInfo LocInfo, 7164 ISD::ArgFlagsTy ArgFlags, CCState &State) { 7165 7166 if (LocVT == MVT::i32 || LocVT == MVT::i64) { 7167 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim 7168 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 7169 static const MCPhysReg GPRList[] = { 7170 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22, 7171 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27}; 7172 if (unsigned Reg = State.AllocateReg(GPRList)) { 7173 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7174 return false; 7175 } 7176 } 7177 7178 if (LocVT == MVT::f32) { 7179 // Pass in STG registers: F1, ..., F6 7180 // fs0 ... fs5 7181 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F, 7182 RISCV::F18_F, RISCV::F19_F, 7183 RISCV::F20_F, RISCV::F21_F}; 7184 if (unsigned Reg = State.AllocateReg(FPR32List)) { 7185 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7186 return false; 7187 } 7188 } 7189 7190 if (LocVT == MVT::f64) { 7191 // Pass in STG registers: D1, ..., D6 7192 // fs6 ... fs11 7193 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D, 7194 RISCV::F24_D, RISCV::F25_D, 7195 RISCV::F26_D, RISCV::F27_D}; 7196 if (unsigned Reg = State.AllocateReg(FPR64List)) { 7197 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 7198 return false; 7199 } 7200 } 7201 7202 report_fatal_error("No registers left in GHC calling convention"); 7203 return true; 7204 } 7205 7206 // Transform physical registers into virtual registers. 7207 SDValue RISCVTargetLowering::LowerFormalArguments( 7208 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 7209 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 7210 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7211 7212 MachineFunction &MF = DAG.getMachineFunction(); 7213 7214 switch (CallConv) { 7215 default: 7216 report_fatal_error("Unsupported calling convention"); 7217 case CallingConv::C: 7218 case CallingConv::Fast: 7219 break; 7220 case CallingConv::GHC: 7221 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] || 7222 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD]) 7223 report_fatal_error( 7224 "GHC calling convention requires the F and D instruction set extensions"); 7225 } 7226 7227 const Function &Func = MF.getFunction(); 7228 if (Func.hasFnAttribute("interrupt")) { 7229 if (!Func.arg_empty()) 7230 report_fatal_error( 7231 "Functions with the interrupt attribute cannot have arguments!"); 7232 7233 StringRef Kind = 7234 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7235 7236 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine")) 7237 report_fatal_error( 7238 "Function interrupt attribute argument not supported!"); 7239 } 7240 7241 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7242 MVT XLenVT = Subtarget.getXLenVT(); 7243 unsigned XLenInBytes = Subtarget.getXLen() / 8; 7244 // Used with vargs to acumulate store chains. 7245 std::vector<SDValue> OutChains; 7246 7247 // Assign locations to all of the incoming arguments. 7248 SmallVector<CCValAssign, 16> ArgLocs; 7249 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7250 7251 if (CallConv == CallingConv::Fast) 7252 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC); 7253 else if (CallConv == CallingConv::GHC) 7254 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC); 7255 else 7256 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false); 7257 7258 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7259 CCValAssign &VA = ArgLocs[i]; 7260 SDValue ArgValue; 7261 // Passing f64 on RV32D with a soft float ABI must be handled as a special 7262 // case. 7263 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) 7264 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL); 7265 else if (VA.isRegLoc()) 7266 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this); 7267 else 7268 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); 7269 7270 if (VA.getLocInfo() == CCValAssign::Indirect) { 7271 // If the original argument was split and passed by reference (e.g. i128 7272 // on RV32), we need to load all parts of it here (using the same 7273 // address). Vectors may be partly split to registers and partly to the 7274 // stack, in which case the base address is partly offset and subsequent 7275 // stores are relative to that. 7276 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 7277 MachinePointerInfo())); 7278 unsigned ArgIndex = Ins[i].OrigArgIndex; 7279 unsigned ArgPartOffset = Ins[i].PartOffset; 7280 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7281 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) { 7282 CCValAssign &PartVA = ArgLocs[i + 1]; 7283 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset; 7284 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 7285 DAG.getIntPtrConstant(PartOffset, DL)); 7286 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 7287 MachinePointerInfo())); 7288 ++i; 7289 } 7290 continue; 7291 } 7292 InVals.push_back(ArgValue); 7293 } 7294 7295 if (IsVarArg) { 7296 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs); 7297 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs); 7298 const TargetRegisterClass *RC = &RISCV::GPRRegClass; 7299 MachineFrameInfo &MFI = MF.getFrameInfo(); 7300 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7301 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>(); 7302 7303 // Offset of the first variable argument from stack pointer, and size of 7304 // the vararg save area. For now, the varargs save area is either zero or 7305 // large enough to hold a0-a7. 7306 int VaArgOffset, VarArgsSaveSize; 7307 7308 // If all registers are allocated, then all varargs must be passed on the 7309 // stack and we don't need to save any argregs. 7310 if (ArgRegs.size() == Idx) { 7311 VaArgOffset = CCInfo.getNextStackOffset(); 7312 VarArgsSaveSize = 0; 7313 } else { 7314 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx); 7315 VaArgOffset = -VarArgsSaveSize; 7316 } 7317 7318 // Record the frame index of the first variable argument 7319 // which is a value necessary to VASTART. 7320 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7321 RVFI->setVarArgsFrameIndex(FI); 7322 7323 // If saving an odd number of registers then create an extra stack slot to 7324 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures 7325 // offsets to even-numbered registered remain 2*XLEN-aligned. 7326 if (Idx % 2) { 7327 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true); 7328 VarArgsSaveSize += XLenInBytes; 7329 } 7330 7331 // Copy the integer registers that may have been used for passing varargs 7332 // to the vararg save area. 7333 for (unsigned I = Idx; I < ArgRegs.size(); 7334 ++I, VaArgOffset += XLenInBytes) { 7335 const Register Reg = RegInfo.createVirtualRegister(RC); 7336 RegInfo.addLiveIn(ArgRegs[I], Reg); 7337 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT); 7338 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true); 7339 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7340 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, 7341 MachinePointerInfo::getFixedStack(MF, FI)); 7342 cast<StoreSDNode>(Store.getNode()) 7343 ->getMemOperand() 7344 ->setValue((Value *)nullptr); 7345 OutChains.push_back(Store); 7346 } 7347 RVFI->setVarArgsSaveSize(VarArgsSaveSize); 7348 } 7349 7350 // All stores are grouped in one node to allow the matching between 7351 // the size of Ins and InVals. This only happens for vararg functions. 7352 if (!OutChains.empty()) { 7353 OutChains.push_back(Chain); 7354 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 7355 } 7356 7357 return Chain; 7358 } 7359 7360 /// isEligibleForTailCallOptimization - Check whether the call is eligible 7361 /// for tail call optimization. 7362 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization. 7363 bool RISCVTargetLowering::isEligibleForTailCallOptimization( 7364 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, 7365 const SmallVector<CCValAssign, 16> &ArgLocs) const { 7366 7367 auto &Callee = CLI.Callee; 7368 auto CalleeCC = CLI.CallConv; 7369 auto &Outs = CLI.Outs; 7370 auto &Caller = MF.getFunction(); 7371 auto CallerCC = Caller.getCallingConv(); 7372 7373 // Exception-handling functions need a special set of instructions to 7374 // indicate a return to the hardware. Tail-calling another function would 7375 // probably break this. 7376 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This 7377 // should be expanded as new function attributes are introduced. 7378 if (Caller.hasFnAttribute("interrupt")) 7379 return false; 7380 7381 // Do not tail call opt if the stack is used to pass parameters. 7382 if (CCInfo.getNextStackOffset() != 0) 7383 return false; 7384 7385 // Do not tail call opt if any parameters need to be passed indirectly. 7386 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are 7387 // passed indirectly. So the address of the value will be passed in a 7388 // register, or if not available, then the address is put on the stack. In 7389 // order to pass indirectly, space on the stack often needs to be allocated 7390 // in order to store the value. In this case the CCInfo.getNextStackOffset() 7391 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs 7392 // are passed CCValAssign::Indirect. 7393 for (auto &VA : ArgLocs) 7394 if (VA.getLocInfo() == CCValAssign::Indirect) 7395 return false; 7396 7397 // Do not tail call opt if either caller or callee uses struct return 7398 // semantics. 7399 auto IsCallerStructRet = Caller.hasStructRetAttr(); 7400 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); 7401 if (IsCallerStructRet || IsCalleeStructRet) 7402 return false; 7403 7404 // Externally-defined functions with weak linkage should not be 7405 // tail-called. The behaviour of branch instructions in this situation (as 7406 // used for tail calls) is implementation-defined, so we cannot rely on the 7407 // linker replacing the tail call with a return. 7408 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 7409 const GlobalValue *GV = G->getGlobal(); 7410 if (GV->hasExternalWeakLinkage()) 7411 return false; 7412 } 7413 7414 // The callee has to preserve all registers the caller needs to preserve. 7415 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7416 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 7417 if (CalleeCC != CallerCC) { 7418 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 7419 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 7420 return false; 7421 } 7422 7423 // Byval parameters hand the function a pointer directly into the stack area 7424 // we want to reuse during a tail call. Working around this *is* possible 7425 // but less efficient and uglier in LowerCall. 7426 for (auto &Arg : Outs) 7427 if (Arg.Flags.isByVal()) 7428 return false; 7429 7430 return true; 7431 } 7432 7433 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { 7434 return DAG.getDataLayout().getPrefTypeAlign( 7435 VT.getTypeForEVT(*DAG.getContext())); 7436 } 7437 7438 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input 7439 // and output parameter nodes. 7440 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI, 7441 SmallVectorImpl<SDValue> &InVals) const { 7442 SelectionDAG &DAG = CLI.DAG; 7443 SDLoc &DL = CLI.DL; 7444 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 7445 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 7446 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 7447 SDValue Chain = CLI.Chain; 7448 SDValue Callee = CLI.Callee; 7449 bool &IsTailCall = CLI.IsTailCall; 7450 CallingConv::ID CallConv = CLI.CallConv; 7451 bool IsVarArg = CLI.IsVarArg; 7452 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7453 MVT XLenVT = Subtarget.getXLenVT(); 7454 7455 MachineFunction &MF = DAG.getMachineFunction(); 7456 7457 // Analyze the operands of the call, assigning locations to each operand. 7458 SmallVector<CCValAssign, 16> ArgLocs; 7459 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 7460 7461 if (CallConv == CallingConv::Fast) 7462 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC); 7463 else if (CallConv == CallingConv::GHC) 7464 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC); 7465 else 7466 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI); 7467 7468 // Check if it's really possible to do a tail call. 7469 if (IsTailCall) 7470 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs); 7471 7472 if (IsTailCall) 7473 ++NumTailCalls; 7474 else if (CLI.CB && CLI.CB->isMustTailCall()) 7475 report_fatal_error("failed to perform tail call elimination on a call " 7476 "site marked musttail"); 7477 7478 // Get a count of how many bytes are to be pushed on the stack. 7479 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 7480 7481 // Create local copies for byval args 7482 SmallVector<SDValue, 8> ByValArgs; 7483 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7484 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7485 if (!Flags.isByVal()) 7486 continue; 7487 7488 SDValue Arg = OutVals[i]; 7489 unsigned Size = Flags.getByValSize(); 7490 Align Alignment = Flags.getNonZeroByValAlign(); 7491 7492 int FI = 7493 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false); 7494 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 7495 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT); 7496 7497 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment, 7498 /*IsVolatile=*/false, 7499 /*AlwaysInline=*/false, IsTailCall, 7500 MachinePointerInfo(), MachinePointerInfo()); 7501 ByValArgs.push_back(FIPtr); 7502 } 7503 7504 if (!IsTailCall) 7505 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); 7506 7507 // Copy argument values to their designated locations. 7508 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 7509 SmallVector<SDValue, 8> MemOpChains; 7510 SDValue StackPtr; 7511 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) { 7512 CCValAssign &VA = ArgLocs[i]; 7513 SDValue ArgValue = OutVals[i]; 7514 ISD::ArgFlagsTy Flags = Outs[i].Flags; 7515 7516 // Handle passing f64 on RV32D with a soft float ABI as a special case. 7517 bool IsF64OnRV32DSoftABI = 7518 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64; 7519 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) { 7520 SDValue SplitF64 = DAG.getNode( 7521 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue); 7522 SDValue Lo = SplitF64.getValue(0); 7523 SDValue Hi = SplitF64.getValue(1); 7524 7525 Register RegLo = VA.getLocReg(); 7526 RegsToPass.push_back(std::make_pair(RegLo, Lo)); 7527 7528 if (RegLo == RISCV::X17) { 7529 // Second half of f64 is passed on the stack. 7530 // Work out the address of the stack slot. 7531 if (!StackPtr.getNode()) 7532 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7533 // Emit the store. 7534 MemOpChains.push_back( 7535 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo())); 7536 } else { 7537 // Second half of f64 is passed in another GPR. 7538 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7539 Register RegHigh = RegLo + 1; 7540 RegsToPass.push_back(std::make_pair(RegHigh, Hi)); 7541 } 7542 continue; 7543 } 7544 7545 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way 7546 // as any other MemLoc. 7547 7548 // Promote the value if needed. 7549 // For now, only handle fully promoted and indirect arguments. 7550 if (VA.getLocInfo() == CCValAssign::Indirect) { 7551 // Store the argument in a stack slot and pass its address. 7552 Align StackAlign = 7553 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG), 7554 getPrefTypeAlign(ArgValue.getValueType(), DAG)); 7555 TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); 7556 // If the original argument was split (e.g. i128), we need 7557 // to store the required parts of it here (and pass just one address). 7558 // Vectors may be partly split to registers and partly to the stack, in 7559 // which case the base address is partly offset and subsequent stores are 7560 // relative to that. 7561 unsigned ArgIndex = Outs[i].OrigArgIndex; 7562 unsigned ArgPartOffset = Outs[i].PartOffset; 7563 assert(VA.getValVT().isVector() || ArgPartOffset == 0); 7564 // Calculate the total size to store. We don't have access to what we're 7565 // actually storing other than performing the loop and collecting the 7566 // info. 7567 SmallVector<std::pair<SDValue, unsigned>> Parts; 7568 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) { 7569 SDValue PartValue = OutVals[i + 1]; 7570 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset; 7571 EVT PartVT = PartValue.getValueType(); 7572 StoredSize += PartVT.getStoreSize(); 7573 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG)); 7574 Parts.push_back(std::make_pair(PartValue, PartOffset)); 7575 ++i; 7576 } 7577 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign); 7578 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 7579 MemOpChains.push_back( 7580 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 7581 MachinePointerInfo::getFixedStack(MF, FI))); 7582 for (const auto &Part : Parts) { 7583 SDValue PartValue = Part.first; 7584 unsigned PartOffset = Part.second; 7585 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 7586 DAG.getIntPtrConstant(PartOffset, DL)); 7587 MemOpChains.push_back( 7588 DAG.getStore(Chain, DL, PartValue, Address, 7589 MachinePointerInfo::getFixedStack(MF, FI))); 7590 } 7591 ArgValue = SpillSlot; 7592 } else { 7593 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget); 7594 } 7595 7596 // Use local copy if it is a byval arg. 7597 if (Flags.isByVal()) 7598 ArgValue = ByValArgs[j++]; 7599 7600 if (VA.isRegLoc()) { 7601 // Queue up the argument copies and emit them at the end. 7602 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 7603 } else { 7604 assert(VA.isMemLoc() && "Argument not register or memory"); 7605 assert(!IsTailCall && "Tail call not allowed if stack is used " 7606 "for passing parameters"); 7607 7608 // Work out the address of the stack slot. 7609 if (!StackPtr.getNode()) 7610 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT); 7611 SDValue Address = 7612 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 7613 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); 7614 7615 // Emit the store. 7616 MemOpChains.push_back( 7617 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 7618 } 7619 } 7620 7621 // Join the stores, which are independent of one another. 7622 if (!MemOpChains.empty()) 7623 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 7624 7625 SDValue Glue; 7626 7627 // Build a sequence of copy-to-reg nodes, chained and glued together. 7628 for (auto &Reg : RegsToPass) { 7629 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue); 7630 Glue = Chain.getValue(1); 7631 } 7632 7633 // Validate that none of the argument registers have been marked as 7634 // reserved, if so report an error. Do the same for the return address if this 7635 // is not a tailcall. 7636 validateCCReservedRegs(RegsToPass, MF); 7637 if (!IsTailCall && 7638 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1)) 7639 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7640 MF.getFunction(), 7641 "Return address register required, but has been reserved."}); 7642 7643 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a 7644 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't 7645 // split it and then direct call can be matched by PseudoCALL. 7646 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) { 7647 const GlobalValue *GV = S->getGlobal(); 7648 7649 unsigned OpFlags = RISCVII::MO_CALL; 7650 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) 7651 OpFlags = RISCVII::MO_PLT; 7652 7653 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 7654 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 7655 unsigned OpFlags = RISCVII::MO_CALL; 7656 7657 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(), 7658 nullptr)) 7659 OpFlags = RISCVII::MO_PLT; 7660 7661 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags); 7662 } 7663 7664 // The first call operand is the chain and the second is the target address. 7665 SmallVector<SDValue, 8> Ops; 7666 Ops.push_back(Chain); 7667 Ops.push_back(Callee); 7668 7669 // Add argument registers to the end of the list so that they are 7670 // known live into the call. 7671 for (auto &Reg : RegsToPass) 7672 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); 7673 7674 if (!IsTailCall) { 7675 // Add a register mask operand representing the call-preserved registers. 7676 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7677 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 7678 assert(Mask && "Missing call preserved mask for calling convention"); 7679 Ops.push_back(DAG.getRegisterMask(Mask)); 7680 } 7681 7682 // Glue the call to the argument copies, if any. 7683 if (Glue.getNode()) 7684 Ops.push_back(Glue); 7685 7686 // Emit the call. 7687 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7688 7689 if (IsTailCall) { 7690 MF.getFrameInfo().setHasTailCall(); 7691 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops); 7692 } 7693 7694 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops); 7695 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 7696 Glue = Chain.getValue(1); 7697 7698 // Mark the end of the call, which is glued to the call itself. 7699 Chain = DAG.getCALLSEQ_END(Chain, 7700 DAG.getConstant(NumBytes, DL, PtrVT, true), 7701 DAG.getConstant(0, DL, PtrVT, true), 7702 Glue, DL); 7703 Glue = Chain.getValue(1); 7704 7705 // Assign locations to each value returned by this call. 7706 SmallVector<CCValAssign, 16> RVLocs; 7707 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); 7708 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true); 7709 7710 // Copy all of the result registers out of their specified physreg. 7711 for (auto &VA : RVLocs) { 7712 // Copy the value out 7713 SDValue RetValue = 7714 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue); 7715 // Glue the RetValue to the end of the call sequence 7716 Chain = RetValue.getValue(1); 7717 Glue = RetValue.getValue(2); 7718 7719 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7720 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment"); 7721 SDValue RetValue2 = 7722 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue); 7723 Chain = RetValue2.getValue(1); 7724 Glue = RetValue2.getValue(2); 7725 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue, 7726 RetValue2); 7727 } 7728 7729 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget); 7730 7731 InVals.push_back(RetValue); 7732 } 7733 7734 return Chain; 7735 } 7736 7737 bool RISCVTargetLowering::CanLowerReturn( 7738 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, 7739 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 7740 SmallVector<CCValAssign, 16> RVLocs; 7741 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); 7742 7743 Optional<unsigned> FirstMaskArgument; 7744 if (Subtarget.hasStdExtV()) 7745 FirstMaskArgument = preAssignMask(Outs); 7746 7747 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 7748 MVT VT = Outs[i].VT; 7749 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 7750 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI(); 7751 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full, 7752 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr, 7753 *this, FirstMaskArgument)) 7754 return false; 7755 } 7756 return true; 7757 } 7758 7759 SDValue 7760 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7761 bool IsVarArg, 7762 const SmallVectorImpl<ISD::OutputArg> &Outs, 7763 const SmallVectorImpl<SDValue> &OutVals, 7764 const SDLoc &DL, SelectionDAG &DAG) const { 7765 const MachineFunction &MF = DAG.getMachineFunction(); 7766 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7767 7768 // Stores the assignment of the return value to a location. 7769 SmallVector<CCValAssign, 16> RVLocs; 7770 7771 // Info about the registers and stack slot. 7772 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 7773 *DAG.getContext()); 7774 7775 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, 7776 nullptr); 7777 7778 if (CallConv == CallingConv::GHC && !RVLocs.empty()) 7779 report_fatal_error("GHC functions return void only"); 7780 7781 SDValue Glue; 7782 SmallVector<SDValue, 4> RetOps(1, Chain); 7783 7784 // Copy the result values into the output registers. 7785 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) { 7786 SDValue Val = OutVals[i]; 7787 CCValAssign &VA = RVLocs[i]; 7788 assert(VA.isRegLoc() && "Can only return in registers!"); 7789 7790 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { 7791 // Handle returning f64 on RV32D with a soft float ABI. 7792 assert(VA.isRegLoc() && "Expected return via registers"); 7793 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL, 7794 DAG.getVTList(MVT::i32, MVT::i32), Val); 7795 SDValue Lo = SplitF64.getValue(0); 7796 SDValue Hi = SplitF64.getValue(1); 7797 Register RegLo = VA.getLocReg(); 7798 assert(RegLo < RISCV::X31 && "Invalid register pair"); 7799 Register RegHi = RegLo + 1; 7800 7801 if (STI.isRegisterReservedByUser(RegLo) || 7802 STI.isRegisterReservedByUser(RegHi)) 7803 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7804 MF.getFunction(), 7805 "Return value register required, but has been reserved."}); 7806 7807 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue); 7808 Glue = Chain.getValue(1); 7809 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32)); 7810 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue); 7811 Glue = Chain.getValue(1); 7812 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32)); 7813 } else { 7814 // Handle a 'normal' return. 7815 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget); 7816 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue); 7817 7818 if (STI.isRegisterReservedByUser(VA.getLocReg())) 7819 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{ 7820 MF.getFunction(), 7821 "Return value register required, but has been reserved."}); 7822 7823 // Guarantee that all emitted copies are stuck together. 7824 Glue = Chain.getValue(1); 7825 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7826 } 7827 } 7828 7829 RetOps[0] = Chain; // Update chain. 7830 7831 // Add the glue node if we have it. 7832 if (Glue.getNode()) { 7833 RetOps.push_back(Glue); 7834 } 7835 7836 // Interrupt service routines use different return instructions. 7837 const Function &Func = DAG.getMachineFunction().getFunction(); 7838 if (Func.hasFnAttribute("interrupt")) { 7839 if (!Func.getReturnType()->isVoidTy()) 7840 report_fatal_error( 7841 "Functions with the interrupt attribute must have void return type!"); 7842 7843 MachineFunction &MF = DAG.getMachineFunction(); 7844 StringRef Kind = 7845 MF.getFunction().getFnAttribute("interrupt").getValueAsString(); 7846 7847 unsigned RetOpc; 7848 if (Kind == "user") 7849 RetOpc = RISCVISD::URET_FLAG; 7850 else if (Kind == "supervisor") 7851 RetOpc = RISCVISD::SRET_FLAG; 7852 else 7853 RetOpc = RISCVISD::MRET_FLAG; 7854 7855 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps); 7856 } 7857 7858 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps); 7859 } 7860 7861 void RISCVTargetLowering::validateCCReservedRegs( 7862 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs, 7863 MachineFunction &MF) const { 7864 const Function &F = MF.getFunction(); 7865 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>(); 7866 7867 if (llvm::any_of(Regs, [&STI](auto Reg) { 7868 return STI.isRegisterReservedByUser(Reg.first); 7869 })) 7870 F.getContext().diagnose(DiagnosticInfoUnsupported{ 7871 F, "Argument register required, but has been reserved."}); 7872 } 7873 7874 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 7875 return CI->isTailCall(); 7876 } 7877 7878 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const { 7879 #define NODE_NAME_CASE(NODE) \ 7880 case RISCVISD::NODE: \ 7881 return "RISCVISD::" #NODE; 7882 // clang-format off 7883 switch ((RISCVISD::NodeType)Opcode) { 7884 case RISCVISD::FIRST_NUMBER: 7885 break; 7886 NODE_NAME_CASE(RET_FLAG) 7887 NODE_NAME_CASE(URET_FLAG) 7888 NODE_NAME_CASE(SRET_FLAG) 7889 NODE_NAME_CASE(MRET_FLAG) 7890 NODE_NAME_CASE(CALL) 7891 NODE_NAME_CASE(SELECT_CC) 7892 NODE_NAME_CASE(BR_CC) 7893 NODE_NAME_CASE(BuildPairF64) 7894 NODE_NAME_CASE(SplitF64) 7895 NODE_NAME_CASE(TAIL) 7896 NODE_NAME_CASE(MULHSU) 7897 NODE_NAME_CASE(SLLW) 7898 NODE_NAME_CASE(SRAW) 7899 NODE_NAME_CASE(SRLW) 7900 NODE_NAME_CASE(DIVW) 7901 NODE_NAME_CASE(DIVUW) 7902 NODE_NAME_CASE(REMUW) 7903 NODE_NAME_CASE(ROLW) 7904 NODE_NAME_CASE(RORW) 7905 NODE_NAME_CASE(CLZW) 7906 NODE_NAME_CASE(CTZW) 7907 NODE_NAME_CASE(FSLW) 7908 NODE_NAME_CASE(FSRW) 7909 NODE_NAME_CASE(FSL) 7910 NODE_NAME_CASE(FSR) 7911 NODE_NAME_CASE(FMV_H_X) 7912 NODE_NAME_CASE(FMV_X_ANYEXTH) 7913 NODE_NAME_CASE(FMV_W_X_RV64) 7914 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64) 7915 NODE_NAME_CASE(READ_CYCLE_WIDE) 7916 NODE_NAME_CASE(GREV) 7917 NODE_NAME_CASE(GREVW) 7918 NODE_NAME_CASE(GORC) 7919 NODE_NAME_CASE(GORCW) 7920 NODE_NAME_CASE(SHFL) 7921 NODE_NAME_CASE(SHFLW) 7922 NODE_NAME_CASE(UNSHFL) 7923 NODE_NAME_CASE(UNSHFLW) 7924 NODE_NAME_CASE(BCOMPRESS) 7925 NODE_NAME_CASE(BCOMPRESSW) 7926 NODE_NAME_CASE(BDECOMPRESS) 7927 NODE_NAME_CASE(BDECOMPRESSW) 7928 NODE_NAME_CASE(VMV_V_X_VL) 7929 NODE_NAME_CASE(VFMV_V_F_VL) 7930 NODE_NAME_CASE(VMV_X_S) 7931 NODE_NAME_CASE(VMV_S_X_VL) 7932 NODE_NAME_CASE(VFMV_S_F_VL) 7933 NODE_NAME_CASE(SPLAT_VECTOR_I64) 7934 NODE_NAME_CASE(READ_VLENB) 7935 NODE_NAME_CASE(TRUNCATE_VECTOR_VL) 7936 NODE_NAME_CASE(VSLIDEUP_VL) 7937 NODE_NAME_CASE(VSLIDE1UP_VL) 7938 NODE_NAME_CASE(VSLIDEDOWN_VL) 7939 NODE_NAME_CASE(VSLIDE1DOWN_VL) 7940 NODE_NAME_CASE(VID_VL) 7941 NODE_NAME_CASE(VFNCVT_ROD_VL) 7942 NODE_NAME_CASE(VECREDUCE_ADD_VL) 7943 NODE_NAME_CASE(VECREDUCE_UMAX_VL) 7944 NODE_NAME_CASE(VECREDUCE_SMAX_VL) 7945 NODE_NAME_CASE(VECREDUCE_UMIN_VL) 7946 NODE_NAME_CASE(VECREDUCE_SMIN_VL) 7947 NODE_NAME_CASE(VECREDUCE_AND_VL) 7948 NODE_NAME_CASE(VECREDUCE_OR_VL) 7949 NODE_NAME_CASE(VECREDUCE_XOR_VL) 7950 NODE_NAME_CASE(VECREDUCE_FADD_VL) 7951 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL) 7952 NODE_NAME_CASE(VECREDUCE_FMIN_VL) 7953 NODE_NAME_CASE(VECREDUCE_FMAX_VL) 7954 NODE_NAME_CASE(ADD_VL) 7955 NODE_NAME_CASE(AND_VL) 7956 NODE_NAME_CASE(MUL_VL) 7957 NODE_NAME_CASE(OR_VL) 7958 NODE_NAME_CASE(SDIV_VL) 7959 NODE_NAME_CASE(SHL_VL) 7960 NODE_NAME_CASE(SREM_VL) 7961 NODE_NAME_CASE(SRA_VL) 7962 NODE_NAME_CASE(SRL_VL) 7963 NODE_NAME_CASE(SUB_VL) 7964 NODE_NAME_CASE(UDIV_VL) 7965 NODE_NAME_CASE(UREM_VL) 7966 NODE_NAME_CASE(XOR_VL) 7967 NODE_NAME_CASE(FADD_VL) 7968 NODE_NAME_CASE(FSUB_VL) 7969 NODE_NAME_CASE(FMUL_VL) 7970 NODE_NAME_CASE(FDIV_VL) 7971 NODE_NAME_CASE(FNEG_VL) 7972 NODE_NAME_CASE(FABS_VL) 7973 NODE_NAME_CASE(FSQRT_VL) 7974 NODE_NAME_CASE(FMA_VL) 7975 NODE_NAME_CASE(FCOPYSIGN_VL) 7976 NODE_NAME_CASE(SMIN_VL) 7977 NODE_NAME_CASE(SMAX_VL) 7978 NODE_NAME_CASE(UMIN_VL) 7979 NODE_NAME_CASE(UMAX_VL) 7980 NODE_NAME_CASE(FMINNUM_VL) 7981 NODE_NAME_CASE(FMAXNUM_VL) 7982 NODE_NAME_CASE(MULHS_VL) 7983 NODE_NAME_CASE(MULHU_VL) 7984 NODE_NAME_CASE(FP_TO_SINT_VL) 7985 NODE_NAME_CASE(FP_TO_UINT_VL) 7986 NODE_NAME_CASE(SINT_TO_FP_VL) 7987 NODE_NAME_CASE(UINT_TO_FP_VL) 7988 NODE_NAME_CASE(FP_EXTEND_VL) 7989 NODE_NAME_CASE(FP_ROUND_VL) 7990 NODE_NAME_CASE(SETCC_VL) 7991 NODE_NAME_CASE(VSELECT_VL) 7992 NODE_NAME_CASE(VMAND_VL) 7993 NODE_NAME_CASE(VMOR_VL) 7994 NODE_NAME_CASE(VMXOR_VL) 7995 NODE_NAME_CASE(VMCLR_VL) 7996 NODE_NAME_CASE(VMSET_VL) 7997 NODE_NAME_CASE(VRGATHER_VX_VL) 7998 NODE_NAME_CASE(VRGATHER_VV_VL) 7999 NODE_NAME_CASE(VRGATHEREI16_VV_VL) 8000 NODE_NAME_CASE(VSEXT_VL) 8001 NODE_NAME_CASE(VZEXT_VL) 8002 NODE_NAME_CASE(VPOPC_VL) 8003 NODE_NAME_CASE(VLE_VL) 8004 NODE_NAME_CASE(VSE_VL) 8005 NODE_NAME_CASE(READ_CSR) 8006 NODE_NAME_CASE(WRITE_CSR) 8007 NODE_NAME_CASE(SWAP_CSR) 8008 } 8009 // clang-format on 8010 return nullptr; 8011 #undef NODE_NAME_CASE 8012 } 8013 8014 /// getConstraintType - Given a constraint letter, return the type of 8015 /// constraint it is for this target. 8016 RISCVTargetLowering::ConstraintType 8017 RISCVTargetLowering::getConstraintType(StringRef Constraint) const { 8018 if (Constraint.size() == 1) { 8019 switch (Constraint[0]) { 8020 default: 8021 break; 8022 case 'f': 8023 case 'v': 8024 return C_RegisterClass; 8025 case 'I': 8026 case 'J': 8027 case 'K': 8028 return C_Immediate; 8029 case 'A': 8030 return C_Memory; 8031 } 8032 } 8033 return TargetLowering::getConstraintType(Constraint); 8034 } 8035 8036 std::pair<unsigned, const TargetRegisterClass *> 8037 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 8038 StringRef Constraint, 8039 MVT VT) const { 8040 // First, see if this is a constraint that directly corresponds to a 8041 // RISCV register class. 8042 if (Constraint.size() == 1) { 8043 switch (Constraint[0]) { 8044 case 'r': 8045 return std::make_pair(0U, &RISCV::GPRRegClass); 8046 case 'f': 8047 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) 8048 return std::make_pair(0U, &RISCV::FPR16RegClass); 8049 if (Subtarget.hasStdExtF() && VT == MVT::f32) 8050 return std::make_pair(0U, &RISCV::FPR32RegClass); 8051 if (Subtarget.hasStdExtD() && VT == MVT::f64) 8052 return std::make_pair(0U, &RISCV::FPR64RegClass); 8053 break; 8054 case 'v': 8055 for (const auto *RC : 8056 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass, 8057 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8058 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) 8059 return std::make_pair(0U, RC); 8060 } 8061 break; 8062 default: 8063 break; 8064 } 8065 } 8066 8067 // Clang will correctly decode the usage of register name aliases into their 8068 // official names. However, other frontends like `rustc` do not. This allows 8069 // users of these frontends to use the ABI names for registers in LLVM-style 8070 // register constraints. 8071 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower()) 8072 .Case("{zero}", RISCV::X0) 8073 .Case("{ra}", RISCV::X1) 8074 .Case("{sp}", RISCV::X2) 8075 .Case("{gp}", RISCV::X3) 8076 .Case("{tp}", RISCV::X4) 8077 .Case("{t0}", RISCV::X5) 8078 .Case("{t1}", RISCV::X6) 8079 .Case("{t2}", RISCV::X7) 8080 .Cases("{s0}", "{fp}", RISCV::X8) 8081 .Case("{s1}", RISCV::X9) 8082 .Case("{a0}", RISCV::X10) 8083 .Case("{a1}", RISCV::X11) 8084 .Case("{a2}", RISCV::X12) 8085 .Case("{a3}", RISCV::X13) 8086 .Case("{a4}", RISCV::X14) 8087 .Case("{a5}", RISCV::X15) 8088 .Case("{a6}", RISCV::X16) 8089 .Case("{a7}", RISCV::X17) 8090 .Case("{s2}", RISCV::X18) 8091 .Case("{s3}", RISCV::X19) 8092 .Case("{s4}", RISCV::X20) 8093 .Case("{s5}", RISCV::X21) 8094 .Case("{s6}", RISCV::X22) 8095 .Case("{s7}", RISCV::X23) 8096 .Case("{s8}", RISCV::X24) 8097 .Case("{s9}", RISCV::X25) 8098 .Case("{s10}", RISCV::X26) 8099 .Case("{s11}", RISCV::X27) 8100 .Case("{t3}", RISCV::X28) 8101 .Case("{t4}", RISCV::X29) 8102 .Case("{t5}", RISCV::X30) 8103 .Case("{t6}", RISCV::X31) 8104 .Default(RISCV::NoRegister); 8105 if (XRegFromAlias != RISCV::NoRegister) 8106 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass); 8107 8108 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the 8109 // TableGen record rather than the AsmName to choose registers for InlineAsm 8110 // constraints, plus we want to match those names to the widest floating point 8111 // register type available, manually select floating point registers here. 8112 // 8113 // The second case is the ABI name of the register, so that frontends can also 8114 // use the ABI names in register constraint lists. 8115 if (Subtarget.hasStdExtF()) { 8116 unsigned FReg = StringSwitch<unsigned>(Constraint.lower()) 8117 .Cases("{f0}", "{ft0}", RISCV::F0_F) 8118 .Cases("{f1}", "{ft1}", RISCV::F1_F) 8119 .Cases("{f2}", "{ft2}", RISCV::F2_F) 8120 .Cases("{f3}", "{ft3}", RISCV::F3_F) 8121 .Cases("{f4}", "{ft4}", RISCV::F4_F) 8122 .Cases("{f5}", "{ft5}", RISCV::F5_F) 8123 .Cases("{f6}", "{ft6}", RISCV::F6_F) 8124 .Cases("{f7}", "{ft7}", RISCV::F7_F) 8125 .Cases("{f8}", "{fs0}", RISCV::F8_F) 8126 .Cases("{f9}", "{fs1}", RISCV::F9_F) 8127 .Cases("{f10}", "{fa0}", RISCV::F10_F) 8128 .Cases("{f11}", "{fa1}", RISCV::F11_F) 8129 .Cases("{f12}", "{fa2}", RISCV::F12_F) 8130 .Cases("{f13}", "{fa3}", RISCV::F13_F) 8131 .Cases("{f14}", "{fa4}", RISCV::F14_F) 8132 .Cases("{f15}", "{fa5}", RISCV::F15_F) 8133 .Cases("{f16}", "{fa6}", RISCV::F16_F) 8134 .Cases("{f17}", "{fa7}", RISCV::F17_F) 8135 .Cases("{f18}", "{fs2}", RISCV::F18_F) 8136 .Cases("{f19}", "{fs3}", RISCV::F19_F) 8137 .Cases("{f20}", "{fs4}", RISCV::F20_F) 8138 .Cases("{f21}", "{fs5}", RISCV::F21_F) 8139 .Cases("{f22}", "{fs6}", RISCV::F22_F) 8140 .Cases("{f23}", "{fs7}", RISCV::F23_F) 8141 .Cases("{f24}", "{fs8}", RISCV::F24_F) 8142 .Cases("{f25}", "{fs9}", RISCV::F25_F) 8143 .Cases("{f26}", "{fs10}", RISCV::F26_F) 8144 .Cases("{f27}", "{fs11}", RISCV::F27_F) 8145 .Cases("{f28}", "{ft8}", RISCV::F28_F) 8146 .Cases("{f29}", "{ft9}", RISCV::F29_F) 8147 .Cases("{f30}", "{ft10}", RISCV::F30_F) 8148 .Cases("{f31}", "{ft11}", RISCV::F31_F) 8149 .Default(RISCV::NoRegister); 8150 if (FReg != RISCV::NoRegister) { 8151 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg"); 8152 if (Subtarget.hasStdExtD()) { 8153 unsigned RegNo = FReg - RISCV::F0_F; 8154 unsigned DReg = RISCV::F0_D + RegNo; 8155 return std::make_pair(DReg, &RISCV::FPR64RegClass); 8156 } 8157 return std::make_pair(FReg, &RISCV::FPR32RegClass); 8158 } 8159 } 8160 8161 if (Subtarget.hasStdExtV()) { 8162 Register VReg = StringSwitch<Register>(Constraint.lower()) 8163 .Case("{v0}", RISCV::V0) 8164 .Case("{v1}", RISCV::V1) 8165 .Case("{v2}", RISCV::V2) 8166 .Case("{v3}", RISCV::V3) 8167 .Case("{v4}", RISCV::V4) 8168 .Case("{v5}", RISCV::V5) 8169 .Case("{v6}", RISCV::V6) 8170 .Case("{v7}", RISCV::V7) 8171 .Case("{v8}", RISCV::V8) 8172 .Case("{v9}", RISCV::V9) 8173 .Case("{v10}", RISCV::V10) 8174 .Case("{v11}", RISCV::V11) 8175 .Case("{v12}", RISCV::V12) 8176 .Case("{v13}", RISCV::V13) 8177 .Case("{v14}", RISCV::V14) 8178 .Case("{v15}", RISCV::V15) 8179 .Case("{v16}", RISCV::V16) 8180 .Case("{v17}", RISCV::V17) 8181 .Case("{v18}", RISCV::V18) 8182 .Case("{v19}", RISCV::V19) 8183 .Case("{v20}", RISCV::V20) 8184 .Case("{v21}", RISCV::V21) 8185 .Case("{v22}", RISCV::V22) 8186 .Case("{v23}", RISCV::V23) 8187 .Case("{v24}", RISCV::V24) 8188 .Case("{v25}", RISCV::V25) 8189 .Case("{v26}", RISCV::V26) 8190 .Case("{v27}", RISCV::V27) 8191 .Case("{v28}", RISCV::V28) 8192 .Case("{v29}", RISCV::V29) 8193 .Case("{v30}", RISCV::V30) 8194 .Case("{v31}", RISCV::V31) 8195 .Default(RISCV::NoRegister); 8196 if (VReg != RISCV::NoRegister) { 8197 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy)) 8198 return std::make_pair(VReg, &RISCV::VMRegClass); 8199 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy)) 8200 return std::make_pair(VReg, &RISCV::VRRegClass); 8201 for (const auto *RC : 8202 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) { 8203 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) { 8204 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC); 8205 return std::make_pair(VReg, RC); 8206 } 8207 } 8208 } 8209 } 8210 8211 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 8212 } 8213 8214 unsigned 8215 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const { 8216 // Currently only support length 1 constraints. 8217 if (ConstraintCode.size() == 1) { 8218 switch (ConstraintCode[0]) { 8219 case 'A': 8220 return InlineAsm::Constraint_A; 8221 default: 8222 break; 8223 } 8224 } 8225 8226 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); 8227 } 8228 8229 void RISCVTargetLowering::LowerAsmOperandForConstraint( 8230 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 8231 SelectionDAG &DAG) const { 8232 // Currently only support length 1 constraints. 8233 if (Constraint.length() == 1) { 8234 switch (Constraint[0]) { 8235 case 'I': 8236 // Validate & create a 12-bit signed immediate operand. 8237 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8238 uint64_t CVal = C->getSExtValue(); 8239 if (isInt<12>(CVal)) 8240 Ops.push_back( 8241 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8242 } 8243 return; 8244 case 'J': 8245 // Validate & create an integer zero operand. 8246 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 8247 if (C->getZExtValue() == 0) 8248 Ops.push_back( 8249 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT())); 8250 return; 8251 case 'K': 8252 // Validate & create a 5-bit unsigned immediate operand. 8253 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 8254 uint64_t CVal = C->getZExtValue(); 8255 if (isUInt<5>(CVal)) 8256 Ops.push_back( 8257 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT())); 8258 } 8259 return; 8260 default: 8261 break; 8262 } 8263 } 8264 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 8265 } 8266 8267 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 8268 Instruction *Inst, 8269 AtomicOrdering Ord) const { 8270 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent) 8271 return Builder.CreateFence(Ord); 8272 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord)) 8273 return Builder.CreateFence(AtomicOrdering::Release); 8274 return nullptr; 8275 } 8276 8277 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 8278 Instruction *Inst, 8279 AtomicOrdering Ord) const { 8280 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord)) 8281 return Builder.CreateFence(AtomicOrdering::Acquire); 8282 return nullptr; 8283 } 8284 8285 TargetLowering::AtomicExpansionKind 8286 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 8287 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating 8288 // point operations can't be used in an lr/sc sequence without breaking the 8289 // forward-progress guarantee. 8290 if (AI->isFloatingPointOperation()) 8291 return AtomicExpansionKind::CmpXChg; 8292 8293 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 8294 if (Size == 8 || Size == 16) 8295 return AtomicExpansionKind::MaskedIntrinsic; 8296 return AtomicExpansionKind::None; 8297 } 8298 8299 static Intrinsic::ID 8300 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) { 8301 if (XLen == 32) { 8302 switch (BinOp) { 8303 default: 8304 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8305 case AtomicRMWInst::Xchg: 8306 return Intrinsic::riscv_masked_atomicrmw_xchg_i32; 8307 case AtomicRMWInst::Add: 8308 return Intrinsic::riscv_masked_atomicrmw_add_i32; 8309 case AtomicRMWInst::Sub: 8310 return Intrinsic::riscv_masked_atomicrmw_sub_i32; 8311 case AtomicRMWInst::Nand: 8312 return Intrinsic::riscv_masked_atomicrmw_nand_i32; 8313 case AtomicRMWInst::Max: 8314 return Intrinsic::riscv_masked_atomicrmw_max_i32; 8315 case AtomicRMWInst::Min: 8316 return Intrinsic::riscv_masked_atomicrmw_min_i32; 8317 case AtomicRMWInst::UMax: 8318 return Intrinsic::riscv_masked_atomicrmw_umax_i32; 8319 case AtomicRMWInst::UMin: 8320 return Intrinsic::riscv_masked_atomicrmw_umin_i32; 8321 } 8322 } 8323 8324 if (XLen == 64) { 8325 switch (BinOp) { 8326 default: 8327 llvm_unreachable("Unexpected AtomicRMW BinOp"); 8328 case AtomicRMWInst::Xchg: 8329 return Intrinsic::riscv_masked_atomicrmw_xchg_i64; 8330 case AtomicRMWInst::Add: 8331 return Intrinsic::riscv_masked_atomicrmw_add_i64; 8332 case AtomicRMWInst::Sub: 8333 return Intrinsic::riscv_masked_atomicrmw_sub_i64; 8334 case AtomicRMWInst::Nand: 8335 return Intrinsic::riscv_masked_atomicrmw_nand_i64; 8336 case AtomicRMWInst::Max: 8337 return Intrinsic::riscv_masked_atomicrmw_max_i64; 8338 case AtomicRMWInst::Min: 8339 return Intrinsic::riscv_masked_atomicrmw_min_i64; 8340 case AtomicRMWInst::UMax: 8341 return Intrinsic::riscv_masked_atomicrmw_umax_i64; 8342 case AtomicRMWInst::UMin: 8343 return Intrinsic::riscv_masked_atomicrmw_umin_i64; 8344 } 8345 } 8346 8347 llvm_unreachable("Unexpected XLen\n"); 8348 } 8349 8350 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic( 8351 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 8352 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 8353 unsigned XLen = Subtarget.getXLen(); 8354 Value *Ordering = 8355 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering())); 8356 Type *Tys[] = {AlignedAddr->getType()}; 8357 Function *LrwOpScwLoop = Intrinsic::getDeclaration( 8358 AI->getModule(), 8359 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys); 8360 8361 if (XLen == 64) { 8362 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty()); 8363 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8364 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty()); 8365 } 8366 8367 Value *Result; 8368 8369 // Must pass the shift amount needed to sign extend the loaded value prior 8370 // to performing a signed comparison for min/max. ShiftAmt is the number of 8371 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which 8372 // is the number of bits to left+right shift the value in order to 8373 // sign-extend. 8374 if (AI->getOperation() == AtomicRMWInst::Min || 8375 AI->getOperation() == AtomicRMWInst::Max) { 8376 const DataLayout &DL = AI->getModule()->getDataLayout(); 8377 unsigned ValWidth = 8378 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType()); 8379 Value *SextShamt = 8380 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt); 8381 Result = Builder.CreateCall(LrwOpScwLoop, 8382 {AlignedAddr, Incr, Mask, SextShamt, Ordering}); 8383 } else { 8384 Result = 8385 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering}); 8386 } 8387 8388 if (XLen == 64) 8389 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8390 return Result; 8391 } 8392 8393 TargetLowering::AtomicExpansionKind 8394 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR( 8395 AtomicCmpXchgInst *CI) const { 8396 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); 8397 if (Size == 8 || Size == 16) 8398 return AtomicExpansionKind::MaskedIntrinsic; 8399 return AtomicExpansionKind::None; 8400 } 8401 8402 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 8403 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 8404 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 8405 unsigned XLen = Subtarget.getXLen(); 8406 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord)); 8407 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32; 8408 if (XLen == 64) { 8409 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty()); 8410 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty()); 8411 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty()); 8412 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64; 8413 } 8414 Type *Tys[] = {AlignedAddr->getType()}; 8415 Function *MaskedCmpXchg = 8416 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys); 8417 Value *Result = Builder.CreateCall( 8418 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering}); 8419 if (XLen == 64) 8420 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty()); 8421 return Result; 8422 } 8423 8424 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const { 8425 return false; 8426 } 8427 8428 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 8429 EVT VT) const { 8430 VT = VT.getScalarType(); 8431 8432 if (!VT.isSimple()) 8433 return false; 8434 8435 switch (VT.getSimpleVT().SimpleTy) { 8436 case MVT::f16: 8437 return Subtarget.hasStdExtZfh(); 8438 case MVT::f32: 8439 return Subtarget.hasStdExtF(); 8440 case MVT::f64: 8441 return Subtarget.hasStdExtD(); 8442 default: 8443 break; 8444 } 8445 8446 return false; 8447 } 8448 8449 Register RISCVTargetLowering::getExceptionPointerRegister( 8450 const Constant *PersonalityFn) const { 8451 return RISCV::X10; 8452 } 8453 8454 Register RISCVTargetLowering::getExceptionSelectorRegister( 8455 const Constant *PersonalityFn) const { 8456 return RISCV::X11; 8457 } 8458 8459 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { 8460 // Return false to suppress the unnecessary extensions if the LibCall 8461 // arguments or return value is f32 type for LP64 ABI. 8462 RISCVABI::ABI ABI = Subtarget.getTargetABI(); 8463 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32)) 8464 return false; 8465 8466 return true; 8467 } 8468 8469 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { 8470 if (Subtarget.is64Bit() && Type == MVT::i32) 8471 return true; 8472 8473 return IsSigned; 8474 } 8475 8476 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 8477 SDValue C) const { 8478 // Check integral scalar types. 8479 if (VT.isScalarInteger()) { 8480 // Omit the optimization if the sub target has the M extension and the data 8481 // size exceeds XLen. 8482 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen()) 8483 return false; 8484 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 8485 // Break the MUL to a SLLI and an ADD/SUB. 8486 const APInt &Imm = ConstNode->getAPIntValue(); 8487 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || 8488 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) 8489 return true; 8490 // Omit the following optimization if the sub target has the M extension 8491 // and the data size >= XLen. 8492 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen()) 8493 return false; 8494 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs 8495 // a pair of LUI/ADDI. 8496 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) { 8497 APInt ImmS = Imm.ashr(Imm.countTrailingZeros()); 8498 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() || 8499 (1 - ImmS).isPowerOf2()) 8500 return true; 8501 } 8502 } 8503 } 8504 8505 return false; 8506 } 8507 8508 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses( 8509 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 8510 bool *Fast) const { 8511 if (!VT.isScalableVector()) 8512 return false; 8513 8514 EVT ElemVT = VT.getVectorElementType(); 8515 if (Alignment >= ElemVT.getStoreSize()) { 8516 if (Fast) 8517 *Fast = true; 8518 return true; 8519 } 8520 8521 return false; 8522 } 8523 8524 bool RISCVTargetLowering::splitValueIntoRegisterParts( 8525 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 8526 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 8527 bool IsABIRegCopy = CC.hasValue(); 8528 EVT ValueVT = Val.getValueType(); 8529 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8530 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan, 8531 // and cast to f32. 8532 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val); 8533 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val); 8534 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val, 8535 DAG.getConstant(0xFFFF0000, DL, MVT::i32)); 8536 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 8537 Parts[0] = Val; 8538 return true; 8539 } 8540 8541 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8542 LLVMContext &Context = *DAG.getContext(); 8543 EVT ValueEltVT = ValueVT.getVectorElementType(); 8544 EVT PartEltVT = PartVT.getVectorElementType(); 8545 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8546 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8547 if (PartVTBitSize % ValueVTBitSize == 0) { 8548 // If the element types are different, bitcast to the same element type of 8549 // PartVT first. 8550 if (ValueEltVT != PartEltVT) { 8551 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8552 assert(Count != 0 && "The number of element should not be zero."); 8553 EVT SameEltTypeVT = 8554 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8555 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val); 8556 } 8557 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 8558 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8559 Parts[0] = Val; 8560 return true; 8561 } 8562 } 8563 return false; 8564 } 8565 8566 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue( 8567 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 8568 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 8569 bool IsABIRegCopy = CC.hasValue(); 8570 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) { 8571 SDValue Val = Parts[0]; 8572 8573 // Cast the f32 to i32, truncate to i16, and cast back to f16. 8574 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val); 8575 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val); 8576 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val); 8577 return Val; 8578 } 8579 8580 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) { 8581 LLVMContext &Context = *DAG.getContext(); 8582 SDValue Val = Parts[0]; 8583 EVT ValueEltVT = ValueVT.getVectorElementType(); 8584 EVT PartEltVT = PartVT.getVectorElementType(); 8585 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize(); 8586 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize(); 8587 if (PartVTBitSize % ValueVTBitSize == 0) { 8588 EVT SameEltTypeVT = ValueVT; 8589 // If the element types are different, convert it to the same element type 8590 // of PartVT. 8591 if (ValueEltVT != PartEltVT) { 8592 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits(); 8593 assert(Count != 0 && "The number of element should not be zero."); 8594 SameEltTypeVT = 8595 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true); 8596 } 8597 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val, 8598 DAG.getConstant(0, DL, Subtarget.getXLenVT())); 8599 if (ValueEltVT != PartEltVT) 8600 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 8601 return Val; 8602 } 8603 } 8604 return SDValue(); 8605 } 8606 8607 #define GET_REGISTER_MATCHER 8608 #include "RISCVGenAsmMatcher.inc" 8609 8610 Register 8611 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT, 8612 const MachineFunction &MF) const { 8613 Register Reg = MatchRegisterAltName(RegName); 8614 if (Reg == RISCV::NoRegister) 8615 Reg = MatchRegisterName(RegName); 8616 if (Reg == RISCV::NoRegister) 8617 report_fatal_error( 8618 Twine("Invalid register name \"" + StringRef(RegName) + "\".")); 8619 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); 8620 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg)) 8621 report_fatal_error(Twine("Trying to obtain non-reserved register \"" + 8622 StringRef(RegName) + "\".")); 8623 return Reg; 8624 } 8625 8626 namespace llvm { 8627 namespace RISCVVIntrinsicsTable { 8628 8629 #define GET_RISCVVIntrinsicsTable_IMPL 8630 #include "RISCVGenSearchableTables.inc" 8631 8632 } // namespace RISCVVIntrinsicsTable 8633 8634 } // namespace llvm 8635