1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CodeGen/ValueTypes.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32 #include "llvm/IR/IntrinsicsRISCV.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "riscv-lower"
42
43 STATISTIC(NumTailCalls, "Number of tail calls");
44
RISCVTargetLowering(const TargetMachine & TM,const RISCVSubtarget & STI)45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46 const RISCVSubtarget &STI)
47 : TargetLowering(TM), Subtarget(STI) {
48
49 if (Subtarget.isRV32E())
50 report_fatal_error("Codegen not yet implemented for RV32E");
51
52 RISCVABI::ABI ABI = Subtarget.getTargetABI();
53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54
55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56 !Subtarget.hasStdExtF()) {
57 errs() << "Hard-float 'f' ABI can't be used for a target that "
58 "doesn't support the F instruction set extension (ignoring "
59 "target-abi)\n";
60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62 !Subtarget.hasStdExtD()) {
63 errs() << "Hard-float 'd' ABI can't be used for a target that "
64 "doesn't support the D instruction set extension (ignoring "
65 "target-abi)\n";
66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67 }
68
69 switch (ABI) {
70 default:
71 report_fatal_error("Don't know how to lower this ABI");
72 case RISCVABI::ABI_ILP32:
73 case RISCVABI::ABI_ILP32F:
74 case RISCVABI::ABI_ILP32D:
75 case RISCVABI::ABI_LP64:
76 case RISCVABI::ABI_LP64F:
77 case RISCVABI::ABI_LP64D:
78 break;
79 }
80
81 MVT XLenVT = Subtarget.getXLenVT();
82
83 // Set up the register classes.
84 addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85
86 if (Subtarget.hasStdExtZfh())
87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88 if (Subtarget.hasStdExtF())
89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90 if (Subtarget.hasStdExtD())
91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92
93 static const MVT::SimpleValueType BoolVecVTs[] = {
94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1,
95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96 static const MVT::SimpleValueType IntVecVTs[] = {
97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8,
98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16,
99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101 MVT::nxv4i64, MVT::nxv8i64};
102 static const MVT::SimpleValueType F16VecVTs[] = {
103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16,
104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105 static const MVT::SimpleValueType F32VecVTs[] = {
106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107 static const MVT::SimpleValueType F64VecVTs[] = {
108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109
110 if (Subtarget.hasStdExtV()) {
111 auto addRegClassForRVV = [this](MVT VT) {
112 unsigned Size = VT.getSizeInBits().getKnownMinValue();
113 assert(Size <= 512 && isPowerOf2_32(Size));
114 const TargetRegisterClass *RC;
115 if (Size <= 64)
116 RC = &RISCV::VRRegClass;
117 else if (Size == 128)
118 RC = &RISCV::VRM2RegClass;
119 else if (Size == 256)
120 RC = &RISCV::VRM4RegClass;
121 else
122 RC = &RISCV::VRM8RegClass;
123
124 addRegisterClass(VT, RC);
125 };
126
127 for (MVT VT : BoolVecVTs)
128 addRegClassForRVV(VT);
129 for (MVT VT : IntVecVTs)
130 addRegClassForRVV(VT);
131
132 if (Subtarget.hasStdExtZfh())
133 for (MVT VT : F16VecVTs)
134 addRegClassForRVV(VT);
135
136 if (Subtarget.hasStdExtF())
137 for (MVT VT : F32VecVTs)
138 addRegClassForRVV(VT);
139
140 if (Subtarget.hasStdExtD())
141 for (MVT VT : F64VecVTs)
142 addRegClassForRVV(VT);
143
144 if (Subtarget.useRVVForFixedLengthVectors()) {
145 auto addRegClassForFixedVectors = [this](MVT VT) {
146 MVT ContainerVT = getContainerForFixedLengthVector(VT);
147 unsigned RCID = getRegClassIDForVecVT(ContainerVT);
148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
149 addRegisterClass(VT, TRI.getRegClass(RCID));
150 };
151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
152 if (useRVVForFixedLengthVectorVT(VT))
153 addRegClassForFixedVectors(VT);
154
155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
156 if (useRVVForFixedLengthVectorVT(VT))
157 addRegClassForFixedVectors(VT);
158 }
159 }
160
161 // Compute derived properties from the register classes.
162 computeRegisterProperties(STI.getRegisterInfo());
163
164 setStackPointerRegisterToSaveRestore(RISCV::X2);
165
166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
167 setLoadExtAction(N, XLenVT, MVT::i1, Promote);
168
169 // TODO: add all necessary setOperationAction calls.
170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
171
172 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
173 setOperationAction(ISD::BR_CC, XLenVT, Expand);
174 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
176
177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179
180 setOperationAction(ISD::VASTART, MVT::Other, Custom);
181 setOperationAction(ISD::VAARG, MVT::Other, Expand);
182 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
183 setOperationAction(ISD::VAEND, MVT::Other, Expand);
184
185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186 if (!Subtarget.hasStdExtZbb()) {
187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
189 }
190
191 if (Subtarget.is64Bit()) {
192 setOperationAction(ISD::ADD, MVT::i32, Custom);
193 setOperationAction(ISD::SUB, MVT::i32, Custom);
194 setOperationAction(ISD::SHL, MVT::i32, Custom);
195 setOperationAction(ISD::SRA, MVT::i32, Custom);
196 setOperationAction(ISD::SRL, MVT::i32, Custom);
197
198 setOperationAction(ISD::UADDO, MVT::i32, Custom);
199 setOperationAction(ISD::USUBO, MVT::i32, Custom);
200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
202 }
203
204 if (!Subtarget.hasStdExtM()) {
205 setOperationAction(ISD::MUL, XLenVT, Expand);
206 setOperationAction(ISD::MULHS, XLenVT, Expand);
207 setOperationAction(ISD::MULHU, XLenVT, Expand);
208 setOperationAction(ISD::SDIV, XLenVT, Expand);
209 setOperationAction(ISD::UDIV, XLenVT, Expand);
210 setOperationAction(ISD::SREM, XLenVT, Expand);
211 setOperationAction(ISD::UREM, XLenVT, Expand);
212 } else {
213 if (Subtarget.is64Bit()) {
214 setOperationAction(ISD::MUL, MVT::i32, Custom);
215 setOperationAction(ISD::MUL, MVT::i128, Custom);
216
217 setOperationAction(ISD::SDIV, MVT::i8, Custom);
218 setOperationAction(ISD::UDIV, MVT::i8, Custom);
219 setOperationAction(ISD::UREM, MVT::i8, Custom);
220 setOperationAction(ISD::SDIV, MVT::i16, Custom);
221 setOperationAction(ISD::UDIV, MVT::i16, Custom);
222 setOperationAction(ISD::UREM, MVT::i16, Custom);
223 setOperationAction(ISD::SDIV, MVT::i32, Custom);
224 setOperationAction(ISD::UDIV, MVT::i32, Custom);
225 setOperationAction(ISD::UREM, MVT::i32, Custom);
226 } else {
227 setOperationAction(ISD::MUL, MVT::i64, Custom);
228 }
229 }
230
231 setOperationAction(ISD::SDIVREM, XLenVT, Expand);
232 setOperationAction(ISD::UDIVREM, XLenVT, Expand);
233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
235
236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
239
240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
241 if (Subtarget.is64Bit()) {
242 setOperationAction(ISD::ROTL, MVT::i32, Custom);
243 setOperationAction(ISD::ROTR, MVT::i32, Custom);
244 }
245 } else {
246 setOperationAction(ISD::ROTL, XLenVT, Expand);
247 setOperationAction(ISD::ROTR, XLenVT, Expand);
248 }
249
250 if (Subtarget.hasStdExtZbp()) {
251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
252 // more combining.
253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
254 setOperationAction(ISD::BSWAP, XLenVT, Custom);
255
256 if (Subtarget.is64Bit()) {
257 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
258 setOperationAction(ISD::BSWAP, MVT::i32, Custom);
259 }
260 } else {
261 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
262 // pattern match it directly in isel.
263 setOperationAction(ISD::BSWAP, XLenVT,
264 Subtarget.hasStdExtZbb() ? Legal : Expand);
265 }
266
267 if (Subtarget.hasStdExtZbb()) {
268 setOperationAction(ISD::SMIN, XLenVT, Legal);
269 setOperationAction(ISD::SMAX, XLenVT, Legal);
270 setOperationAction(ISD::UMIN, XLenVT, Legal);
271 setOperationAction(ISD::UMAX, XLenVT, Legal);
272
273 if (Subtarget.is64Bit()) {
274 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
275 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
276 setOperationAction(ISD::CTLZ, MVT::i32, Custom);
277 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
278 }
279 } else {
280 setOperationAction(ISD::CTTZ, XLenVT, Expand);
281 setOperationAction(ISD::CTLZ, XLenVT, Expand);
282 setOperationAction(ISD::CTPOP, XLenVT, Expand);
283 }
284
285 if (Subtarget.hasStdExtZbt()) {
286 setOperationAction(ISD::FSHL, XLenVT, Custom);
287 setOperationAction(ISD::FSHR, XLenVT, Custom);
288 setOperationAction(ISD::SELECT, XLenVT, Legal);
289
290 if (Subtarget.is64Bit()) {
291 setOperationAction(ISD::FSHL, MVT::i32, Custom);
292 setOperationAction(ISD::FSHR, MVT::i32, Custom);
293 }
294 } else {
295 setOperationAction(ISD::SELECT, XLenVT, Custom);
296 }
297
298 ISD::CondCode FPCCToExpand[] = {
299 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
300 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
301 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO};
302
303 ISD::NodeType FPOpToExpand[] = {
304 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
305 ISD::FP_TO_FP16};
306
307 if (Subtarget.hasStdExtZfh())
308 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
309
310 if (Subtarget.hasStdExtZfh()) {
311 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
312 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
313 for (auto CC : FPCCToExpand)
314 setCondCodeAction(CC, MVT::f16, Expand);
315 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
316 setOperationAction(ISD::SELECT, MVT::f16, Custom);
317 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
318 for (auto Op : FPOpToExpand)
319 setOperationAction(Op, MVT::f16, Expand);
320 }
321
322 if (Subtarget.hasStdExtF()) {
323 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
324 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
325 for (auto CC : FPCCToExpand)
326 setCondCodeAction(CC, MVT::f32, Expand);
327 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
328 setOperationAction(ISD::SELECT, MVT::f32, Custom);
329 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
330 for (auto Op : FPOpToExpand)
331 setOperationAction(Op, MVT::f32, Expand);
332 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
333 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
334 }
335
336 if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
337 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
338
339 if (Subtarget.hasStdExtD()) {
340 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
341 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
342 for (auto CC : FPCCToExpand)
343 setCondCodeAction(CC, MVT::f64, Expand);
344 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
345 setOperationAction(ISD::SELECT, MVT::f64, Custom);
346 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
347 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
348 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
349 for (auto Op : FPOpToExpand)
350 setOperationAction(Op, MVT::f64, Expand);
351 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
352 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
353 }
354
355 if (Subtarget.is64Bit()) {
356 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
357 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
358 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
359 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
360 }
361
362 if (Subtarget.hasStdExtF()) {
363 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
364 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
365 }
366
367 setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
368 setOperationAction(ISD::BlockAddress, XLenVT, Custom);
369 setOperationAction(ISD::ConstantPool, XLenVT, Custom);
370 setOperationAction(ISD::JumpTable, XLenVT, Custom);
371
372 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
373
374 // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
375 // Unfortunately this can't be determined just from the ISA naming string.
376 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
377 Subtarget.is64Bit() ? Legal : Custom);
378
379 setOperationAction(ISD::TRAP, MVT::Other, Legal);
380 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
381 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
382 if (Subtarget.is64Bit())
383 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
384
385 if (Subtarget.hasStdExtA()) {
386 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
387 setMinCmpXchgSizeInBits(32);
388 } else {
389 setMaxAtomicSizeInBitsSupported(0);
390 }
391
392 setBooleanContents(ZeroOrOneBooleanContent);
393
394 if (Subtarget.hasStdExtV()) {
395 setBooleanVectorContents(ZeroOrOneBooleanContent);
396
397 setOperationAction(ISD::VSCALE, XLenVT, Custom);
398
399 // RVV intrinsics may have illegal operands.
400 // We also need to custom legalize vmv.x.s.
401 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
402 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
403 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
404 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
405 if (Subtarget.is64Bit()) {
406 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
407 } else {
408 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
409 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
410 }
411
412 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
413
414 static unsigned IntegerVPOps[] = {
415 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV,
416 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR,
417 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL};
418
419 if (!Subtarget.is64Bit()) {
420 // We must custom-lower certain vXi64 operations on RV32 due to the vector
421 // element type being illegal.
422 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
423 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
424
425 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
426 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
427 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
428 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
429 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
430 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
431 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
432 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
433 }
434
435 for (MVT VT : BoolVecVTs) {
436 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
437
438 // Mask VTs are custom-expanded into a series of standard nodes
439 setOperationAction(ISD::TRUNCATE, VT, Custom);
440 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
441 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
442
443 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
444 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
445
446 setOperationAction(ISD::SELECT, VT, Expand);
447 setOperationAction(ISD::SELECT_CC, VT, Expand);
448
449 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
450 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
451 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
452
453 // Expand all extending loads to types larger than this, and truncating
454 // stores from types larger than this.
455 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
456 setTruncStoreAction(OtherVT, VT, Expand);
457 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
458 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
459 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
460 }
461 }
462
463 for (MVT VT : IntVecVTs) {
464 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
465 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
466
467 setOperationAction(ISD::SMIN, VT, Legal);
468 setOperationAction(ISD::SMAX, VT, Legal);
469 setOperationAction(ISD::UMIN, VT, Legal);
470 setOperationAction(ISD::UMAX, VT, Legal);
471
472 setOperationAction(ISD::ROTL, VT, Expand);
473 setOperationAction(ISD::ROTR, VT, Expand);
474
475 // Custom-lower extensions and truncations from/to mask types.
476 setOperationAction(ISD::ANY_EXTEND, VT, Custom);
477 setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
478 setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
479
480 // RVV has native int->float & float->int conversions where the
481 // element type sizes are within one power-of-two of each other. Any
482 // wider distances between type sizes have to be lowered as sequences
483 // which progressively narrow the gap in stages.
484 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
485 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
486 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
487 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
488
489 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
490 // nodes which truncate by one power of two at a time.
491 setOperationAction(ISD::TRUNCATE, VT, Custom);
492
493 // Custom-lower insert/extract operations to simplify patterns.
494 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
496
497 // Custom-lower reduction operations to set up the corresponding custom
498 // nodes' operands.
499 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
500 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
501 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
502 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
503 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
504 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
505 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
506 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
507
508 for (unsigned VPOpc : IntegerVPOps) {
509 setOperationAction(VPOpc, VT, Custom);
510 // RV64 must custom-legalize the i32 EVL parameter.
511 if (Subtarget.is64Bit())
512 setOperationAction(VPOpc, MVT::i32, Custom);
513 }
514
515 setOperationAction(ISD::MLOAD, VT, Custom);
516 setOperationAction(ISD::MSTORE, VT, Custom);
517 setOperationAction(ISD::MGATHER, VT, Custom);
518 setOperationAction(ISD::MSCATTER, VT, Custom);
519
520 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
521 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
522 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
523
524 setOperationAction(ISD::SELECT, VT, Expand);
525 setOperationAction(ISD::SELECT_CC, VT, Expand);
526
527 setOperationAction(ISD::STEP_VECTOR, VT, Custom);
528 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
529
530 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
531 setTruncStoreAction(VT, OtherVT, Expand);
532 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
533 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
534 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
535 }
536 }
537
538 // Expand various CCs to best match the RVV ISA, which natively supports UNE
539 // but no other unordered comparisons, and supports all ordered comparisons
540 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
541 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
542 // and we pattern-match those back to the "original", swapping operands once
543 // more. This way we catch both operations and both "vf" and "fv" forms with
544 // fewer patterns.
545 ISD::CondCode VFPCCToExpand[] = {
546 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
547 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
548 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE,
549 };
550
551 // Sets common operation actions on RVV floating-point vector types.
552 const auto SetCommonVFPActions = [&](MVT VT) {
553 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
554 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
555 // sizes are within one power-of-two of each other. Therefore conversions
556 // between vXf16 and vXf64 must be lowered as sequences which convert via
557 // vXf32.
558 setOperationAction(ISD::FP_ROUND, VT, Custom);
559 setOperationAction(ISD::FP_EXTEND, VT, Custom);
560 // Custom-lower insert/extract operations to simplify patterns.
561 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
562 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
563 // Expand various condition codes (explained above).
564 for (auto CC : VFPCCToExpand)
565 setCondCodeAction(CC, VT, Expand);
566
567 setOperationAction(ISD::FMINNUM, VT, Legal);
568 setOperationAction(ISD::FMAXNUM, VT, Legal);
569
570 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
571 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
572 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
573 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
574 setOperationAction(ISD::FCOPYSIGN, VT, Legal);
575
576 setOperationAction(ISD::MLOAD, VT, Custom);
577 setOperationAction(ISD::MSTORE, VT, Custom);
578 setOperationAction(ISD::MGATHER, VT, Custom);
579 setOperationAction(ISD::MSCATTER, VT, Custom);
580
581 setOperationAction(ISD::SELECT, VT, Expand);
582 setOperationAction(ISD::SELECT_CC, VT, Expand);
583
584 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
585 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
586 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
587
588 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
589 };
590
591 // Sets common extload/truncstore actions on RVV floating-point vector
592 // types.
593 const auto SetCommonVFPExtLoadTruncStoreActions =
594 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
595 for (auto SmallVT : SmallerVTs) {
596 setTruncStoreAction(VT, SmallVT, Expand);
597 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
598 }
599 };
600
601 if (Subtarget.hasStdExtZfh())
602 for (MVT VT : F16VecVTs)
603 SetCommonVFPActions(VT);
604
605 for (MVT VT : F32VecVTs) {
606 if (Subtarget.hasStdExtF())
607 SetCommonVFPActions(VT);
608 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
609 }
610
611 for (MVT VT : F64VecVTs) {
612 if (Subtarget.hasStdExtD())
613 SetCommonVFPActions(VT);
614 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
615 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
616 }
617
618 if (Subtarget.useRVVForFixedLengthVectors()) {
619 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
620 if (!useRVVForFixedLengthVectorVT(VT))
621 continue;
622
623 // By default everything must be expanded.
624 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
625 setOperationAction(Op, VT, Expand);
626 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
627 setTruncStoreAction(VT, OtherVT, Expand);
628 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
629 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
630 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
631 }
632
633 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
634 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
635 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
636
637 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
638 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
639
640 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
641 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
642
643 setOperationAction(ISD::LOAD, VT, Custom);
644 setOperationAction(ISD::STORE, VT, Custom);
645
646 setOperationAction(ISD::SETCC, VT, Custom);
647
648 setOperationAction(ISD::TRUNCATE, VT, Custom);
649
650 setOperationAction(ISD::BITCAST, VT, Custom);
651
652 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
653 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
654 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
655
656 // Operations below are different for between masks and other vectors.
657 if (VT.getVectorElementType() == MVT::i1) {
658 setOperationAction(ISD::AND, VT, Custom);
659 setOperationAction(ISD::OR, VT, Custom);
660 setOperationAction(ISD::XOR, VT, Custom);
661 continue;
662 }
663
664 // Use SPLAT_VECTOR to prevent type legalization from destroying the
665 // splats when type legalizing i64 scalar on RV32.
666 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
667 // improvements first.
668 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
669 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
670 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
671 }
672
673 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
674 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
675
676 setOperationAction(ISD::MLOAD, VT, Custom);
677 setOperationAction(ISD::MSTORE, VT, Custom);
678 setOperationAction(ISD::MGATHER, VT, Custom);
679 setOperationAction(ISD::MSCATTER, VT, Custom);
680 setOperationAction(ISD::ADD, VT, Custom);
681 setOperationAction(ISD::MUL, VT, Custom);
682 setOperationAction(ISD::SUB, VT, Custom);
683 setOperationAction(ISD::AND, VT, Custom);
684 setOperationAction(ISD::OR, VT, Custom);
685 setOperationAction(ISD::XOR, VT, Custom);
686 setOperationAction(ISD::SDIV, VT, Custom);
687 setOperationAction(ISD::SREM, VT, Custom);
688 setOperationAction(ISD::UDIV, VT, Custom);
689 setOperationAction(ISD::UREM, VT, Custom);
690 setOperationAction(ISD::SHL, VT, Custom);
691 setOperationAction(ISD::SRA, VT, Custom);
692 setOperationAction(ISD::SRL, VT, Custom);
693
694 setOperationAction(ISD::SMIN, VT, Custom);
695 setOperationAction(ISD::SMAX, VT, Custom);
696 setOperationAction(ISD::UMIN, VT, Custom);
697 setOperationAction(ISD::UMAX, VT, Custom);
698 setOperationAction(ISD::ABS, VT, Custom);
699
700 setOperationAction(ISD::MULHS, VT, Custom);
701 setOperationAction(ISD::MULHU, VT, Custom);
702
703 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
704 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
705 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
706 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
707
708 setOperationAction(ISD::VSELECT, VT, Custom);
709 setOperationAction(ISD::SELECT, VT, Expand);
710 setOperationAction(ISD::SELECT_CC, VT, Expand);
711
712 setOperationAction(ISD::ANY_EXTEND, VT, Custom);
713 setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
714 setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
715
716 // Custom-lower reduction operations to set up the corresponding custom
717 // nodes' operands.
718 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
719 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
720 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
721 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
722 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
723
724 for (unsigned VPOpc : IntegerVPOps) {
725 setOperationAction(VPOpc, VT, Custom);
726 // RV64 must custom-legalize the i32 EVL parameter.
727 if (Subtarget.is64Bit())
728 setOperationAction(VPOpc, MVT::i32, Custom);
729 }
730 }
731
732 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
733 if (!useRVVForFixedLengthVectorVT(VT))
734 continue;
735
736 // By default everything must be expanded.
737 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
738 setOperationAction(Op, VT, Expand);
739 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
740 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
741 setTruncStoreAction(VT, OtherVT, Expand);
742 }
743
744 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
745 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
746 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
747
748 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
749 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
750 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
751 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
752
753 setOperationAction(ISD::LOAD, VT, Custom);
754 setOperationAction(ISD::STORE, VT, Custom);
755 setOperationAction(ISD::MLOAD, VT, Custom);
756 setOperationAction(ISD::MSTORE, VT, Custom);
757 setOperationAction(ISD::MGATHER, VT, Custom);
758 setOperationAction(ISD::MSCATTER, VT, Custom);
759 setOperationAction(ISD::FADD, VT, Custom);
760 setOperationAction(ISD::FSUB, VT, Custom);
761 setOperationAction(ISD::FMUL, VT, Custom);
762 setOperationAction(ISD::FDIV, VT, Custom);
763 setOperationAction(ISD::FNEG, VT, Custom);
764 setOperationAction(ISD::FABS, VT, Custom);
765 setOperationAction(ISD::FCOPYSIGN, VT, Custom);
766 setOperationAction(ISD::FSQRT, VT, Custom);
767 setOperationAction(ISD::FMA, VT, Custom);
768 setOperationAction(ISD::FMINNUM, VT, Custom);
769 setOperationAction(ISD::FMAXNUM, VT, Custom);
770
771 setOperationAction(ISD::FP_ROUND, VT, Custom);
772 setOperationAction(ISD::FP_EXTEND, VT, Custom);
773
774 for (auto CC : VFPCCToExpand)
775 setCondCodeAction(CC, VT, Expand);
776
777 setOperationAction(ISD::VSELECT, VT, Custom);
778 setOperationAction(ISD::SELECT, VT, Expand);
779 setOperationAction(ISD::SELECT_CC, VT, Expand);
780
781 setOperationAction(ISD::BITCAST, VT, Custom);
782
783 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
784 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
785 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
786 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
787 }
788
789 // Custom-legalize bitcasts from fixed-length vectors to scalar types.
790 setOperationAction(ISD::BITCAST, MVT::i8, Custom);
791 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
792 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
793 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
794 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
795 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
796 setOperationAction(ISD::BITCAST, MVT::f64, Custom);
797 }
798 }
799
800 // Function alignments.
801 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
802 setMinFunctionAlignment(FunctionAlignment);
803 setPrefFunctionAlignment(FunctionAlignment);
804
805 setMinimumJumpTableEntries(5);
806
807 // Jumps are expensive, compared to logic
808 setJumpIsExpensive();
809
810 // We can use any register for comparisons
811 setHasMultipleConditionRegisters();
812
813 setTargetDAGCombine(ISD::AND);
814 setTargetDAGCombine(ISD::OR);
815 setTargetDAGCombine(ISD::XOR);
816 if (Subtarget.hasStdExtV()) {
817 setTargetDAGCombine(ISD::FCOPYSIGN);
818 setTargetDAGCombine(ISD::MGATHER);
819 setTargetDAGCombine(ISD::MSCATTER);
820 }
821 }
822
getSetCCResultType(const DataLayout & DL,LLVMContext & Context,EVT VT) const823 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
824 LLVMContext &Context,
825 EVT VT) const {
826 if (!VT.isVector())
827 return getPointerTy(DL);
828 if (Subtarget.hasStdExtV() &&
829 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
830 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
831 return VT.changeVectorElementTypeToInteger();
832 }
833
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const834 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
835 const CallInst &I,
836 MachineFunction &MF,
837 unsigned Intrinsic) const {
838 switch (Intrinsic) {
839 default:
840 return false;
841 case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
842 case Intrinsic::riscv_masked_atomicrmw_add_i32:
843 case Intrinsic::riscv_masked_atomicrmw_sub_i32:
844 case Intrinsic::riscv_masked_atomicrmw_nand_i32:
845 case Intrinsic::riscv_masked_atomicrmw_max_i32:
846 case Intrinsic::riscv_masked_atomicrmw_min_i32:
847 case Intrinsic::riscv_masked_atomicrmw_umax_i32:
848 case Intrinsic::riscv_masked_atomicrmw_umin_i32:
849 case Intrinsic::riscv_masked_cmpxchg_i32:
850 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
851 Info.opc = ISD::INTRINSIC_W_CHAIN;
852 Info.memVT = MVT::getVT(PtrTy->getElementType());
853 Info.ptrVal = I.getArgOperand(0);
854 Info.offset = 0;
855 Info.align = Align(4);
856 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
857 MachineMemOperand::MOVolatile;
858 return true;
859 }
860 }
861
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const862 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
863 const AddrMode &AM, Type *Ty,
864 unsigned AS,
865 Instruction *I) const {
866 // No global is ever allowed as a base.
867 if (AM.BaseGV)
868 return false;
869
870 // Require a 12-bit signed offset.
871 if (!isInt<12>(AM.BaseOffs))
872 return false;
873
874 switch (AM.Scale) {
875 case 0: // "r+i" or just "i", depending on HasBaseReg.
876 break;
877 case 1:
878 if (!AM.HasBaseReg) // allow "r+i".
879 break;
880 return false; // disallow "r+r" or "r+r+i".
881 default:
882 return false;
883 }
884
885 return true;
886 }
887
isLegalICmpImmediate(int64_t Imm) const888 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
889 return isInt<12>(Imm);
890 }
891
isLegalAddImmediate(int64_t Imm) const892 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
893 return isInt<12>(Imm);
894 }
895
896 // On RV32, 64-bit integers are split into their high and low parts and held
897 // in two different registers, so the trunc is free since the low register can
898 // just be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const899 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
900 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
901 return false;
902 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
903 unsigned DestBits = DstTy->getPrimitiveSizeInBits();
904 return (SrcBits == 64 && DestBits == 32);
905 }
906
isTruncateFree(EVT SrcVT,EVT DstVT) const907 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
908 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
909 !SrcVT.isInteger() || !DstVT.isInteger())
910 return false;
911 unsigned SrcBits = SrcVT.getSizeInBits();
912 unsigned DestBits = DstVT.getSizeInBits();
913 return (SrcBits == 64 && DestBits == 32);
914 }
915
isZExtFree(SDValue Val,EVT VT2) const916 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
917 // Zexts are free if they can be combined with a load.
918 if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
919 EVT MemVT = LD->getMemoryVT();
920 if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
921 (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
922 (LD->getExtensionType() == ISD::NON_EXTLOAD ||
923 LD->getExtensionType() == ISD::ZEXTLOAD))
924 return true;
925 }
926
927 return TargetLowering::isZExtFree(Val, VT2);
928 }
929
isSExtCheaperThanZExt(EVT SrcVT,EVT DstVT) const930 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
931 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
932 }
933
isCheapToSpeculateCttz() const934 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
935 return Subtarget.hasStdExtZbb();
936 }
937
isCheapToSpeculateCtlz() const938 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
939 return Subtarget.hasStdExtZbb();
940 }
941
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const942 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
943 bool ForCodeSize) const {
944 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
945 return false;
946 if (VT == MVT::f32 && !Subtarget.hasStdExtF())
947 return false;
948 if (VT == MVT::f64 && !Subtarget.hasStdExtD())
949 return false;
950 if (Imm.isNegZero())
951 return false;
952 return Imm.isZero();
953 }
954
hasBitPreservingFPLogic(EVT VT) const955 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
956 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
957 (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
958 (VT == MVT::f64 && Subtarget.hasStdExtD());
959 }
960
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const961 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
962 CallingConv::ID CC,
963 EVT VT) const {
964 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
965 // end up using a GPR but that will be decided based on ABI.
966 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
967 return MVT::f32;
968
969 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
970 }
971
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const972 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
973 CallingConv::ID CC,
974 EVT VT) const {
975 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
976 // end up using a GPR but that will be decided based on ABI.
977 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
978 return 1;
979
980 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
981 }
982
983 // Changes the condition code and swaps operands if necessary, so the SetCC
984 // operation matches one of the comparisons supported directly by branches
985 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
986 // with 1/-1.
translateSetCCForBranch(const SDLoc & DL,SDValue & LHS,SDValue & RHS,ISD::CondCode & CC,SelectionDAG & DAG)987 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
988 ISD::CondCode &CC, SelectionDAG &DAG) {
989 // Convert X > -1 to X >= 0.
990 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
991 RHS = DAG.getConstant(0, DL, RHS.getValueType());
992 CC = ISD::SETGE;
993 return;
994 }
995 // Convert X < 1 to 0 >= X.
996 if (CC == ISD::SETLT && isOneConstant(RHS)) {
997 RHS = LHS;
998 LHS = DAG.getConstant(0, DL, RHS.getValueType());
999 CC = ISD::SETGE;
1000 return;
1001 }
1002
1003 switch (CC) {
1004 default:
1005 break;
1006 case ISD::SETGT:
1007 case ISD::SETLE:
1008 case ISD::SETUGT:
1009 case ISD::SETULE:
1010 CC = ISD::getSetCCSwappedOperands(CC);
1011 std::swap(LHS, RHS);
1012 break;
1013 }
1014 }
1015
1016 // Return the RISC-V branch opcode that matches the given DAG integer
1017 // condition code. The CondCode must be one of those supported by the RISC-V
1018 // ISA (see translateSetCCForBranch).
getBranchOpcodeForIntCondCode(ISD::CondCode CC)1019 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
1020 switch (CC) {
1021 default:
1022 llvm_unreachable("Unsupported CondCode");
1023 case ISD::SETEQ:
1024 return RISCV::BEQ;
1025 case ISD::SETNE:
1026 return RISCV::BNE;
1027 case ISD::SETLT:
1028 return RISCV::BLT;
1029 case ISD::SETGE:
1030 return RISCV::BGE;
1031 case ISD::SETULT:
1032 return RISCV::BLTU;
1033 case ISD::SETUGE:
1034 return RISCV::BGEU;
1035 }
1036 }
1037
getLMUL(MVT VT)1038 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1039 assert(VT.isScalableVector() && "Expecting a scalable vector type");
1040 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1041 if (VT.getVectorElementType() == MVT::i1)
1042 KnownSize *= 8;
1043
1044 switch (KnownSize) {
1045 default:
1046 llvm_unreachable("Invalid LMUL.");
1047 case 8:
1048 return RISCVII::VLMUL::LMUL_F8;
1049 case 16:
1050 return RISCVII::VLMUL::LMUL_F4;
1051 case 32:
1052 return RISCVII::VLMUL::LMUL_F2;
1053 case 64:
1054 return RISCVII::VLMUL::LMUL_1;
1055 case 128:
1056 return RISCVII::VLMUL::LMUL_2;
1057 case 256:
1058 return RISCVII::VLMUL::LMUL_4;
1059 case 512:
1060 return RISCVII::VLMUL::LMUL_8;
1061 }
1062 }
1063
getRegClassIDForLMUL(RISCVII::VLMUL LMul)1064 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1065 switch (LMul) {
1066 default:
1067 llvm_unreachable("Invalid LMUL.");
1068 case RISCVII::VLMUL::LMUL_F8:
1069 case RISCVII::VLMUL::LMUL_F4:
1070 case RISCVII::VLMUL::LMUL_F2:
1071 case RISCVII::VLMUL::LMUL_1:
1072 return RISCV::VRRegClassID;
1073 case RISCVII::VLMUL::LMUL_2:
1074 return RISCV::VRM2RegClassID;
1075 case RISCVII::VLMUL::LMUL_4:
1076 return RISCV::VRM4RegClassID;
1077 case RISCVII::VLMUL::LMUL_8:
1078 return RISCV::VRM8RegClassID;
1079 }
1080 }
1081
getSubregIndexByMVT(MVT VT,unsigned Index)1082 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1083 RISCVII::VLMUL LMUL = getLMUL(VT);
1084 if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1085 LMUL == RISCVII::VLMUL::LMUL_F4 ||
1086 LMUL == RISCVII::VLMUL::LMUL_F2 ||
1087 LMUL == RISCVII::VLMUL::LMUL_1) {
1088 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1089 "Unexpected subreg numbering");
1090 return RISCV::sub_vrm1_0 + Index;
1091 }
1092 if (LMUL == RISCVII::VLMUL::LMUL_2) {
1093 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1094 "Unexpected subreg numbering");
1095 return RISCV::sub_vrm2_0 + Index;
1096 }
1097 if (LMUL == RISCVII::VLMUL::LMUL_4) {
1098 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1099 "Unexpected subreg numbering");
1100 return RISCV::sub_vrm4_0 + Index;
1101 }
1102 llvm_unreachable("Invalid vector type.");
1103 }
1104
getRegClassIDForVecVT(MVT VT)1105 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1106 if (VT.getVectorElementType() == MVT::i1)
1107 return RISCV::VRRegClassID;
1108 return getRegClassIDForLMUL(getLMUL(VT));
1109 }
1110
1111 // Attempt to decompose a subvector insert/extract between VecVT and
1112 // SubVecVT via subregister indices. Returns the subregister index that
1113 // can perform the subvector insert/extract with the given element index, as
1114 // well as the index corresponding to any leftover subvectors that must be
1115 // further inserted/extracted within the register class for SubVecVT.
1116 std::pair<unsigned, unsigned>
decomposeSubvectorInsertExtractToSubRegs(MVT VecVT,MVT SubVecVT,unsigned InsertExtractIdx,const RISCVRegisterInfo * TRI)1117 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1118 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1119 const RISCVRegisterInfo *TRI) {
1120 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1121 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1122 RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1123 "Register classes not ordered");
1124 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1125 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1126 // Try to compose a subregister index that takes us from the incoming
1127 // LMUL>1 register class down to the outgoing one. At each step we half
1128 // the LMUL:
1129 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1130 // Note that this is not guaranteed to find a subregister index, such as
1131 // when we are extracting from one VR type to another.
1132 unsigned SubRegIdx = RISCV::NoSubRegister;
1133 for (const unsigned RCID :
1134 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1135 if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1136 VecVT = VecVT.getHalfNumVectorElementsVT();
1137 bool IsHi =
1138 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1139 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1140 getSubregIndexByMVT(VecVT, IsHi));
1141 if (IsHi)
1142 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1143 }
1144 return {SubRegIdx, InsertExtractIdx};
1145 }
1146
useRVVForFixedLengthVectorVT(MVT VT,const RISCVSubtarget & Subtarget)1147 static bool useRVVForFixedLengthVectorVT(MVT VT,
1148 const RISCVSubtarget &Subtarget) {
1149 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1150 if (!Subtarget.useRVVForFixedLengthVectors())
1151 return false;
1152
1153 // We only support a set of vector types with an equivalent number of
1154 // elements to avoid legalization issues. Therefore -- since we don't have
1155 // v512i8/v512i16/etc -- the longest fixed-length vector type we support has
1156 // 256 elements.
1157 if (VT.getVectorNumElements() > 256)
1158 return false;
1159
1160 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1161
1162 // Don't use RVV for vectors we cannot scalarize if required.
1163 switch (VT.getVectorElementType().SimpleTy) {
1164 // i1 is supported but has different rules.
1165 default:
1166 return false;
1167 case MVT::i1:
1168 // Masks can only use a single register.
1169 if (VT.getVectorNumElements() > MinVLen)
1170 return false;
1171 MinVLen /= 8;
1172 break;
1173 case MVT::i8:
1174 case MVT::i16:
1175 case MVT::i32:
1176 case MVT::i64:
1177 break;
1178 case MVT::f16:
1179 if (!Subtarget.hasStdExtZfh())
1180 return false;
1181 break;
1182 case MVT::f32:
1183 if (!Subtarget.hasStdExtF())
1184 return false;
1185 break;
1186 case MVT::f64:
1187 if (!Subtarget.hasStdExtD())
1188 return false;
1189 break;
1190 }
1191
1192 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1193 // Don't use RVV for types that don't fit.
1194 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1195 return false;
1196
1197 // TODO: Perhaps an artificial restriction, but worth having whilst getting
1198 // the base fixed length RVV support in place.
1199 if (!VT.isPow2VectorType())
1200 return false;
1201
1202 return true;
1203 }
1204
useRVVForFixedLengthVectorVT(MVT VT) const1205 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1206 return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1207 }
1208
1209 // Return the largest legal scalable vector type that matches VT's element type.
getContainerForFixedLengthVector(const TargetLowering & TLI,MVT VT,const RISCVSubtarget & Subtarget)1210 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1211 const RISCVSubtarget &Subtarget) {
1212 // This may be called before legal types are setup.
1213 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1214 useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1215 "Expected legal fixed length vector!");
1216
1217 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1218
1219 MVT EltVT = VT.getVectorElementType();
1220 switch (EltVT.SimpleTy) {
1221 default:
1222 llvm_unreachable("unexpected element type for RVV container");
1223 case MVT::i1:
1224 case MVT::i8:
1225 case MVT::i16:
1226 case MVT::i32:
1227 case MVT::i64:
1228 case MVT::f16:
1229 case MVT::f32:
1230 case MVT::f64: {
1231 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1232 // narrower types, but we can't have a fractional LMUL with demoninator less
1233 // than 64/SEW.
1234 unsigned NumElts =
1235 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock);
1236 return MVT::getScalableVectorVT(EltVT, NumElts);
1237 }
1238 }
1239 }
1240
getContainerForFixedLengthVector(SelectionDAG & DAG,MVT VT,const RISCVSubtarget & Subtarget)1241 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1242 const RISCVSubtarget &Subtarget) {
1243 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1244 Subtarget);
1245 }
1246
getContainerForFixedLengthVector(MVT VT) const1247 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1248 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1249 }
1250
1251 // Grow V to consume an entire RVV register.
convertToScalableVector(EVT VT,SDValue V,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1252 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1253 const RISCVSubtarget &Subtarget) {
1254 assert(VT.isScalableVector() &&
1255 "Expected to convert into a scalable vector!");
1256 assert(V.getValueType().isFixedLengthVector() &&
1257 "Expected a fixed length vector operand!");
1258 SDLoc DL(V);
1259 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1260 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1261 }
1262
1263 // Shrink V so it's just big enough to maintain a VT's worth of data.
convertFromScalableVector(EVT VT,SDValue V,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1264 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1265 const RISCVSubtarget &Subtarget) {
1266 assert(VT.isFixedLengthVector() &&
1267 "Expected to convert into a fixed length vector!");
1268 assert(V.getValueType().isScalableVector() &&
1269 "Expected a scalable vector operand!");
1270 SDLoc DL(V);
1271 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1272 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1273 }
1274
1275 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1276 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1277 // the vector type that it is contained in.
1278 static std::pair<SDValue, SDValue>
getDefaultVLOps(MVT VecVT,MVT ContainerVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1279 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1280 const RISCVSubtarget &Subtarget) {
1281 assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1282 MVT XLenVT = Subtarget.getXLenVT();
1283 SDValue VL = VecVT.isFixedLengthVector()
1284 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1285 : DAG.getRegister(RISCV::X0, XLenVT);
1286 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1287 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1288 return {Mask, VL};
1289 }
1290
1291 // As above but assuming the given type is a scalable vector type.
1292 static std::pair<SDValue, SDValue>
getDefaultScalableVLOps(MVT VecVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1293 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1294 const RISCVSubtarget &Subtarget) {
1295 assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1296 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1297 }
1298
1299 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1300 // of either is (currently) supported. This can get us into an infinite loop
1301 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1302 // as a ..., etc.
1303 // Until either (or both) of these can reliably lower any node, reporting that
1304 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1305 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1306 // which is not desirable.
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const1307 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1308 EVT VT, unsigned DefinedValues) const {
1309 return false;
1310 }
1311
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const1312 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1313 // Only splats are currently supported.
1314 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1315 return true;
1316
1317 return false;
1318 }
1319
lowerSPLAT_VECTOR(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1320 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1321 const RISCVSubtarget &Subtarget) {
1322 MVT VT = Op.getSimpleValueType();
1323 assert(VT.isFixedLengthVector() && "Unexpected vector!");
1324
1325 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1326
1327 SDLoc DL(Op);
1328 SDValue Mask, VL;
1329 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1330
1331 unsigned Opc =
1332 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1333 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1334 return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1335 }
1336
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1337 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1338 const RISCVSubtarget &Subtarget) {
1339 MVT VT = Op.getSimpleValueType();
1340 assert(VT.isFixedLengthVector() && "Unexpected vector!");
1341
1342 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1343
1344 SDLoc DL(Op);
1345 SDValue Mask, VL;
1346 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1347
1348 MVT XLenVT = Subtarget.getXLenVT();
1349 unsigned NumElts = Op.getNumOperands();
1350
1351 if (VT.getVectorElementType() == MVT::i1) {
1352 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1353 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1354 return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1355 }
1356
1357 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1358 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1359 return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1360 }
1361
1362 // Lower constant mask BUILD_VECTORs via an integer vector type, in
1363 // scalar integer chunks whose bit-width depends on the number of mask
1364 // bits and XLEN.
1365 // First, determine the most appropriate scalar integer type to use. This
1366 // is at most XLenVT, but may be shrunk to a smaller vector element type
1367 // according to the size of the final vector - use i8 chunks rather than
1368 // XLenVT if we're producing a v8i1. This results in more consistent
1369 // codegen across RV32 and RV64.
1370 unsigned NumViaIntegerBits =
1371 std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1372 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1373 // If we have to use more than one INSERT_VECTOR_ELT then this
1374 // optimization is likely to increase code size; avoid peforming it in
1375 // such a case. We can go through the stack as long as we're at least
1376 // byte-sized.
1377 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1378 return SDValue();
1379 // Now we can create our integer vector type. Note that it may be larger
1380 // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1381 MVT IntegerViaVecVT =
1382 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1383 divideCeil(NumElts, NumViaIntegerBits));
1384
1385 uint64_t Bits = 0;
1386 unsigned BitPos = 0, IntegerEltIdx = 0;
1387 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1388
1389 for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1390 // Once we accumulate enough bits to fill our scalar type, insert into
1391 // our vector and clear our accumulated data.
1392 if (I != 0 && I % NumViaIntegerBits == 0) {
1393 if (NumViaIntegerBits <= 32)
1394 Bits = SignExtend64(Bits, 32);
1395 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1396 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1397 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1398 Bits = 0;
1399 BitPos = 0;
1400 IntegerEltIdx++;
1401 }
1402 SDValue V = Op.getOperand(I);
1403 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1404 Bits |= ((uint64_t)BitValue << BitPos);
1405 }
1406
1407 // Insert the (remaining) scalar value into position in our integer
1408 // vector type.
1409 if (NumViaIntegerBits <= 32)
1410 Bits = SignExtend64(Bits, 32);
1411 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1412 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1413 DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1414
1415 if (NumElts < NumViaIntegerBits) {
1416 // If we're producing a smaller vector than our minimum legal integer
1417 // type, bitcast to the equivalent (known-legal) mask type, and extract
1418 // our final mask.
1419 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1420 Vec = DAG.getBitcast(MVT::v8i1, Vec);
1421 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1422 DAG.getConstant(0, DL, XLenVT));
1423 } else {
1424 // Else we must have produced an integer type with the same size as the
1425 // mask type; bitcast for the final result.
1426 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1427 Vec = DAG.getBitcast(VT, Vec);
1428 }
1429
1430 return Vec;
1431 }
1432
1433 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1434 // vector type, we have a legal equivalently-sized i8 type, so we can use
1435 // that.
1436 MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1437 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1438
1439 SDValue WideVec;
1440 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1441 // For a splat, perform a scalar truncate before creating the wider
1442 // vector.
1443 assert(Splat.getValueType() == XLenVT &&
1444 "Unexpected type for i1 splat value");
1445 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1446 DAG.getConstant(1, DL, XLenVT));
1447 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1448 } else {
1449 SmallVector<SDValue, 8> Ops(Op->op_values());
1450 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1451 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1452 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1453 }
1454
1455 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1456 }
1457
1458 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1459 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1460 : RISCVISD::VMV_V_X_VL;
1461 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1462 return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1463 }
1464
1465 // Try and match an index sequence, which we can lower directly to the vid
1466 // instruction. An all-undef vector is matched by getSplatValue, above.
1467 if (VT.isInteger()) {
1468 bool IsVID = true;
1469 for (unsigned I = 0; I < NumElts && IsVID; I++)
1470 IsVID &= Op.getOperand(I).isUndef() ||
1471 (isa<ConstantSDNode>(Op.getOperand(I)) &&
1472 Op.getConstantOperandVal(I) == I);
1473
1474 if (IsVID) {
1475 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1476 return convertFromScalableVector(VT, VID, DAG, Subtarget);
1477 }
1478 }
1479
1480 // Attempt to detect "hidden" splats, which only reveal themselves as splats
1481 // when re-interpreted as a vector with a larger element type. For example,
1482 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1483 // could be instead splat as
1484 // v2i32 = build_vector i32 0x00010000, i32 0x00010000
1485 // TODO: This optimization could also work on non-constant splats, but it
1486 // would require bit-manipulation instructions to construct the splat value.
1487 SmallVector<SDValue> Sequence;
1488 unsigned EltBitSize = VT.getScalarSizeInBits();
1489 const auto *BV = cast<BuildVectorSDNode>(Op);
1490 if (VT.isInteger() && EltBitSize < 64 &&
1491 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1492 BV->getRepeatedSequence(Sequence) &&
1493 (Sequence.size() * EltBitSize) <= 64) {
1494 unsigned SeqLen = Sequence.size();
1495 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1496 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1497 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1498 ViaIntVT == MVT::i64) &&
1499 "Unexpected sequence type");
1500
1501 unsigned EltIdx = 0;
1502 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1503 uint64_t SplatValue = 0;
1504 // Construct the amalgamated value which can be splatted as this larger
1505 // vector type.
1506 for (const auto &SeqV : Sequence) {
1507 if (!SeqV.isUndef())
1508 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1509 << (EltIdx * EltBitSize));
1510 EltIdx++;
1511 }
1512
1513 // On RV64, sign-extend from 32 to 64 bits where possible in order to
1514 // achieve better constant materializion.
1515 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1516 SplatValue = SignExtend64(SplatValue, 32);
1517
1518 // Since we can't introduce illegal i64 types at this stage, we can only
1519 // perform an i64 splat on RV32 if it is its own sign-extended value. That
1520 // way we can use RVV instructions to splat.
1521 assert((ViaIntVT.bitsLE(XLenVT) ||
1522 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1523 "Unexpected bitcast sequence");
1524 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1525 SDValue ViaVL =
1526 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1527 MVT ViaContainerVT =
1528 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1529 SDValue Splat =
1530 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1531 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1532 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1533 return DAG.getBitcast(VT, Splat);
1534 }
1535 }
1536
1537 // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1538 // which constitute a large proportion of the elements. In such cases we can
1539 // splat a vector with the dominant element and make up the shortfall with
1540 // INSERT_VECTOR_ELTs.
1541 // Note that this includes vectors of 2 elements by association. The
1542 // upper-most element is the "dominant" one, allowing us to use a splat to
1543 // "insert" the upper element, and an insert of the lower element at position
1544 // 0, which improves codegen.
1545 SDValue DominantValue;
1546 unsigned MostCommonCount = 0;
1547 DenseMap<SDValue, unsigned> ValueCounts;
1548 unsigned NumUndefElts =
1549 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1550
1551 for (SDValue V : Op->op_values()) {
1552 if (V.isUndef())
1553 continue;
1554
1555 ValueCounts.insert(std::make_pair(V, 0));
1556 unsigned &Count = ValueCounts[V];
1557
1558 // Is this value dominant? In case of a tie, prefer the highest element as
1559 // it's cheaper to insert near the beginning of a vector than it is at the
1560 // end.
1561 if (++Count >= MostCommonCount) {
1562 DominantValue = V;
1563 MostCommonCount = Count;
1564 }
1565 }
1566
1567 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1568 unsigned NumDefElts = NumElts - NumUndefElts;
1569 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1570
1571 // Don't perform this optimization when optimizing for size, since
1572 // materializing elements and inserting them tends to cause code bloat.
1573 if (!DAG.shouldOptForSize() &&
1574 ((MostCommonCount > DominantValueCountThreshold) ||
1575 (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1576 // Start by splatting the most common element.
1577 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1578
1579 DenseSet<SDValue> Processed{DominantValue};
1580 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1581 for (const auto &OpIdx : enumerate(Op->ops())) {
1582 const SDValue &V = OpIdx.value();
1583 if (V.isUndef() || !Processed.insert(V).second)
1584 continue;
1585 if (ValueCounts[V] == 1) {
1586 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1587 DAG.getConstant(OpIdx.index(), DL, XLenVT));
1588 } else {
1589 // Blend in all instances of this value using a VSELECT, using a
1590 // mask where each bit signals whether that element is the one
1591 // we're after.
1592 SmallVector<SDValue> Ops;
1593 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1594 return DAG.getConstant(V == V1, DL, XLenVT);
1595 });
1596 Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1597 DAG.getBuildVector(SelMaskTy, DL, Ops),
1598 DAG.getSplatBuildVector(VT, DL, V), Vec);
1599 }
1600 }
1601
1602 return Vec;
1603 }
1604
1605 return SDValue();
1606 }
1607
1608 // Use a stack slot to splat the two i32 values in Lo/Hi to the vector desired
1609 // vector nxvXi64 VT.
splatPartsI64ThroughStack(const SDLoc & DL,MVT VT,SDValue Lo,SDValue Hi,SDValue VL,SelectionDAG & DAG)1610 static SDValue splatPartsI64ThroughStack(const SDLoc &DL, MVT VT, SDValue Lo,
1611 SDValue Hi, SDValue VL,
1612 SelectionDAG &DAG) {
1613 assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() &&
1614 Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 &&
1615 "Unexpected VTs!");
1616 MachineFunction &MF = DAG.getMachineFunction();
1617 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
1618
1619 // We use the same frame index we use for moving two i32s into 64-bit FPR.
1620 // This is an analogous operation.
1621 int FI = FuncInfo->getMoveF64FrameIndex(MF);
1622 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
1623 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1624 SDValue StackSlot =
1625 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()));
1626
1627 SDValue Chain = DAG.getEntryNode();
1628 Lo = DAG.getStore(Chain, DL, Lo, StackSlot, MPI, Align(8));
1629
1630 SDValue OffsetSlot =
1631 DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), DL);
1632 Hi = DAG.getStore(Chain, DL, Hi, OffsetSlot, MPI.getWithOffset(4), Align(8));
1633
1634 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1635
1636 SDVTList VTs = DAG.getVTList({VT, MVT::Other});
1637 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, MVT::i64);
1638 SDValue Ops[] = {Chain, IntID, StackSlot,
1639 DAG.getRegister(RISCV::X0, MVT::i64), VL};
1640
1641 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MVT::i64,
1642 MPI, Align(8), MachineMemOperand::MOLoad);
1643 }
1644
splatPartsI64WithVL(const SDLoc & DL,MVT VT,SDValue Lo,SDValue Hi,SDValue VL,SelectionDAG & DAG)1645 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1646 SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1647 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1648 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1649 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1650 // If Hi constant is all the same sign bit as Lo, lower this as a custom
1651 // node in order to try and match RVV vector/scalar instructions.
1652 if ((LoC >> 31) == HiC)
1653 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
1654 }
1655
1656 // Fall back to a stack store and stride x0 vector load.
1657 return splatPartsI64ThroughStack(DL, VT, Lo, Hi, VL, DAG);
1658 }
1659
1660 // Called by type legalization to handle splat of i64 on RV32.
1661 // FIXME: We can optimize this when the type has sign or zero bits in one
1662 // of the halves.
splatSplitI64WithVL(const SDLoc & DL,MVT VT,SDValue Scalar,SDValue VL,SelectionDAG & DAG)1663 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
1664 SDValue VL, SelectionDAG &DAG) {
1665 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
1666 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1667 DAG.getConstant(0, DL, MVT::i32));
1668 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1669 DAG.getConstant(1, DL, MVT::i32));
1670 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
1671 }
1672
1673 // This function lowers a splat of a scalar operand Splat with the vector
1674 // length VL. It ensures the final sequence is type legal, which is useful when
1675 // lowering a splat after type legalization.
lowerScalarSplat(SDValue Scalar,SDValue VL,MVT VT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1676 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
1677 SelectionDAG &DAG,
1678 const RISCVSubtarget &Subtarget) {
1679 if (VT.isFloatingPoint())
1680 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
1681
1682 MVT XLenVT = Subtarget.getXLenVT();
1683
1684 // Simplest case is that the operand needs to be promoted to XLenVT.
1685 if (Scalar.getValueType().bitsLE(XLenVT)) {
1686 // If the operand is a constant, sign extend to increase our chances
1687 // of being able to use a .vi instruction. ANY_EXTEND would become a
1688 // a zero extend and the simm5 check in isel would fail.
1689 // FIXME: Should we ignore the upper bits in isel instead?
1690 unsigned ExtOpc =
1691 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
1692 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
1693 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
1694 }
1695
1696 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
1697 "Unexpected scalar for splat lowering!");
1698
1699 // Otherwise use the more complicated splatting algorithm.
1700 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
1701 }
1702
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1703 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1704 const RISCVSubtarget &Subtarget) {
1705 SDValue V1 = Op.getOperand(0);
1706 SDValue V2 = Op.getOperand(1);
1707 SDLoc DL(Op);
1708 MVT XLenVT = Subtarget.getXLenVT();
1709 MVT VT = Op.getSimpleValueType();
1710 unsigned NumElts = VT.getVectorNumElements();
1711 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1712
1713 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1714
1715 SDValue TrueMask, VL;
1716 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1717
1718 if (SVN->isSplat()) {
1719 const int Lane = SVN->getSplatIndex();
1720 if (Lane >= 0) {
1721 MVT SVT = VT.getVectorElementType();
1722
1723 // Turn splatted vector load into a strided load with an X0 stride.
1724 SDValue V = V1;
1725 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1726 // with undef.
1727 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1728 int Offset = Lane;
1729 if (V.getOpcode() == ISD::CONCAT_VECTORS) {
1730 int OpElements =
1731 V.getOperand(0).getSimpleValueType().getVectorNumElements();
1732 V = V.getOperand(Offset / OpElements);
1733 Offset %= OpElements;
1734 }
1735
1736 // We need to ensure the load isn't atomic or volatile.
1737 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
1738 auto *Ld = cast<LoadSDNode>(V);
1739 Offset *= SVT.getStoreSize();
1740 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
1741 TypeSize::Fixed(Offset), DL);
1742
1743 // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1744 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
1745 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
1746 SDValue IntID =
1747 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1748 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
1749 DAG.getRegister(RISCV::X0, XLenVT), VL};
1750 SDValue NewLoad = DAG.getMemIntrinsicNode(
1751 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
1752 DAG.getMachineFunction().getMachineMemOperand(
1753 Ld->getMemOperand(), Offset, SVT.getStoreSize()));
1754 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
1755 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
1756 }
1757
1758 // Otherwise use a scalar load and splat. This will give the best
1759 // opportunity to fold a splat into the operation. ISel can turn it into
1760 // the x0 strided load if we aren't able to fold away the select.
1761 if (SVT.isFloatingPoint())
1762 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
1763 Ld->getPointerInfo().getWithOffset(Offset),
1764 Ld->getOriginalAlign(),
1765 Ld->getMemOperand()->getFlags());
1766 else
1767 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
1768 Ld->getPointerInfo().getWithOffset(Offset), SVT,
1769 Ld->getOriginalAlign(),
1770 Ld->getMemOperand()->getFlags());
1771 DAG.makeEquivalentMemoryOrdering(Ld, V);
1772
1773 unsigned Opc =
1774 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1775 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
1776 return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1777 }
1778
1779 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1780 assert(Lane < (int)NumElts && "Unexpected lane!");
1781 SDValue Gather =
1782 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1783 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
1784 return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1785 }
1786 }
1787
1788 // Detect shuffles which can be re-expressed as vector selects; these are
1789 // shuffles in which each element in the destination is taken from an element
1790 // at the corresponding index in either source vectors.
1791 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1792 int MaskIndex = MaskIdx.value();
1793 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1794 });
1795
1796 assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
1797
1798 SmallVector<SDValue> MaskVals;
1799 // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1800 // merged with a second vrgather.
1801 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
1802
1803 // By default we preserve the original operand order, and use a mask to
1804 // select LHS as true and RHS as false. However, since RVV vector selects may
1805 // feature splats but only on the LHS, we may choose to invert our mask and
1806 // instead select between RHS and LHS.
1807 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1808 bool InvertMask = IsSelect == SwapOps;
1809
1810 // Now construct the mask that will be used by the vselect or blended
1811 // vrgather operation. For vrgathers, construct the appropriate indices into
1812 // each vector.
1813 for (int MaskIndex : SVN->getMask()) {
1814 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
1815 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1816 if (!IsSelect) {
1817 bool IsLHS = MaskIndex < (int)NumElts;
1818 // For "undef" elements of -1, shuffle in element 0 instead.
1819 GatherIndicesLHS.push_back(
1820 DAG.getConstant(IsLHS ? std::max(MaskIndex, 0) : 0, DL, XLenVT));
1821 // TODO: If we're masking out unused elements anyway, it might produce
1822 // better code if we use the most-common element index instead of 0.
1823 GatherIndicesRHS.push_back(
1824 DAG.getConstant(IsLHS ? 0 : MaskIndex - NumElts, DL, XLenVT));
1825 }
1826 }
1827
1828 if (SwapOps) {
1829 std::swap(V1, V2);
1830 std::swap(GatherIndicesLHS, GatherIndicesRHS);
1831 }
1832
1833 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
1834 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
1835 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
1836
1837 if (IsSelect)
1838 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
1839
1840 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
1841 // On such a large vector we're unable to use i8 as the index type.
1842 // FIXME: We could promote the index to i16 and use vrgatherei16, but that
1843 // may involve vector splitting if we're already at LMUL=8, or our
1844 // user-supplied maximum fixed-length LMUL.
1845 return SDValue();
1846 }
1847
1848 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
1849 MVT IndexVT = VT.changeTypeToInteger();
1850 // Since we can't introduce illegal index types at this stage, use i16 and
1851 // vrgatherei16 if the corresponding index type for plain vrgather is greater
1852 // than XLenVT.
1853 if (IndexVT.getScalarType().bitsGT(XLenVT)) {
1854 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
1855 IndexVT = IndexVT.changeVectorElementType(MVT::i16);
1856 }
1857
1858 MVT IndexContainerVT =
1859 ContainerVT.changeVectorElementType(IndexVT.getScalarType());
1860
1861 SDValue Gather;
1862 // TODO: This doesn't trigger for i64 vectors on RV32, since there we
1863 // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
1864 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
1865 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
1866 } else {
1867 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
1868 LHSIndices =
1869 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
1870
1871 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1872 Gather =
1873 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL);
1874 }
1875
1876 // If a second vector operand is used by this shuffle, blend it in with an
1877 // additional vrgather.
1878 if (!V2.isUndef()) {
1879 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
1880 SelectMask =
1881 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
1882
1883 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
1884 RHSIndices =
1885 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
1886
1887 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
1888 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL);
1889 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
1890 Gather, VL);
1891 }
1892
1893 return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1894 }
1895
getRVVFPExtendOrRound(SDValue Op,MVT VT,MVT ContainerVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1896 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
1897 SDLoc DL, SelectionDAG &DAG,
1898 const RISCVSubtarget &Subtarget) {
1899 if (VT.isScalableVector())
1900 return DAG.getFPExtendOrRound(Op, DL, VT);
1901 assert(VT.isFixedLengthVector() &&
1902 "Unexpected value type for RVV FP extend/round lowering");
1903 SDValue Mask, VL;
1904 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1905 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
1906 ? RISCVISD::FP_EXTEND_VL
1907 : RISCVISD::FP_ROUND_VL;
1908 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
1909 }
1910
LowerOperation(SDValue Op,SelectionDAG & DAG) const1911 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
1912 SelectionDAG &DAG) const {
1913 switch (Op.getOpcode()) {
1914 default:
1915 report_fatal_error("unimplemented operand");
1916 case ISD::GlobalAddress:
1917 return lowerGlobalAddress(Op, DAG);
1918 case ISD::BlockAddress:
1919 return lowerBlockAddress(Op, DAG);
1920 case ISD::ConstantPool:
1921 return lowerConstantPool(Op, DAG);
1922 case ISD::JumpTable:
1923 return lowerJumpTable(Op, DAG);
1924 case ISD::GlobalTLSAddress:
1925 return lowerGlobalTLSAddress(Op, DAG);
1926 case ISD::SELECT:
1927 return lowerSELECT(Op, DAG);
1928 case ISD::BRCOND:
1929 return lowerBRCOND(Op, DAG);
1930 case ISD::VASTART:
1931 return lowerVASTART(Op, DAG);
1932 case ISD::FRAMEADDR:
1933 return lowerFRAMEADDR(Op, DAG);
1934 case ISD::RETURNADDR:
1935 return lowerRETURNADDR(Op, DAG);
1936 case ISD::SHL_PARTS:
1937 return lowerShiftLeftParts(Op, DAG);
1938 case ISD::SRA_PARTS:
1939 return lowerShiftRightParts(Op, DAG, true);
1940 case ISD::SRL_PARTS:
1941 return lowerShiftRightParts(Op, DAG, false);
1942 case ISD::BITCAST: {
1943 SDLoc DL(Op);
1944 EVT VT = Op.getValueType();
1945 SDValue Op0 = Op.getOperand(0);
1946 EVT Op0VT = Op0.getValueType();
1947 MVT XLenVT = Subtarget.getXLenVT();
1948 if (VT.isFixedLengthVector()) {
1949 // We can handle fixed length vector bitcasts with a simple replacement
1950 // in isel.
1951 if (Op0VT.isFixedLengthVector())
1952 return Op;
1953 // When bitcasting from scalar to fixed-length vector, insert the scalar
1954 // into a one-element vector of the result type, and perform a vector
1955 // bitcast.
1956 if (!Op0VT.isVector()) {
1957 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
1958 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
1959 DAG.getUNDEF(BVT), Op0,
1960 DAG.getConstant(0, DL, XLenVT)));
1961 }
1962 return SDValue();
1963 }
1964 // Custom-legalize bitcasts from fixed-length vector types to scalar types
1965 // thus: bitcast the vector to a one-element vector type whose element type
1966 // is the same as the result type, and extract the first element.
1967 if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
1968 LLVMContext &Context = *DAG.getContext();
1969 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
1970 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
1971 DAG.getConstant(0, DL, XLenVT));
1972 }
1973 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
1974 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
1975 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
1976 return FPConv;
1977 }
1978 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
1979 Subtarget.hasStdExtF()) {
1980 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1981 SDValue FPConv =
1982 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
1983 return FPConv;
1984 }
1985 return SDValue();
1986 }
1987 case ISD::INTRINSIC_WO_CHAIN:
1988 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1989 case ISD::INTRINSIC_W_CHAIN:
1990 return LowerINTRINSIC_W_CHAIN(Op, DAG);
1991 case ISD::BSWAP:
1992 case ISD::BITREVERSE: {
1993 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
1994 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
1995 MVT VT = Op.getSimpleValueType();
1996 SDLoc DL(Op);
1997 // Start with the maximum immediate value which is the bitwidth - 1.
1998 unsigned Imm = VT.getSizeInBits() - 1;
1999 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2000 if (Op.getOpcode() == ISD::BSWAP)
2001 Imm &= ~0x7U;
2002 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2003 DAG.getConstant(Imm, DL, VT));
2004 }
2005 case ISD::FSHL:
2006 case ISD::FSHR: {
2007 MVT VT = Op.getSimpleValueType();
2008 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2009 SDLoc DL(Op);
2010 if (Op.getOperand(2).getOpcode() == ISD::Constant)
2011 return Op;
2012 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2013 // use log(XLen) bits. Mask the shift amount accordingly.
2014 unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2015 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2016 DAG.getConstant(ShAmtWidth, DL, VT));
2017 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2018 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2019 }
2020 case ISD::TRUNCATE: {
2021 SDLoc DL(Op);
2022 MVT VT = Op.getSimpleValueType();
2023 // Only custom-lower vector truncates
2024 if (!VT.isVector())
2025 return Op;
2026
2027 // Truncates to mask types are handled differently
2028 if (VT.getVectorElementType() == MVT::i1)
2029 return lowerVectorMaskTrunc(Op, DAG);
2030
2031 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2032 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2033 // truncate by one power of two at a time.
2034 MVT DstEltVT = VT.getVectorElementType();
2035
2036 SDValue Src = Op.getOperand(0);
2037 MVT SrcVT = Src.getSimpleValueType();
2038 MVT SrcEltVT = SrcVT.getVectorElementType();
2039
2040 assert(DstEltVT.bitsLT(SrcEltVT) &&
2041 isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2042 isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2043 "Unexpected vector truncate lowering");
2044
2045 MVT ContainerVT = SrcVT;
2046 if (SrcVT.isFixedLengthVector()) {
2047 ContainerVT = getContainerForFixedLengthVector(SrcVT);
2048 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2049 }
2050
2051 SDValue Result = Src;
2052 SDValue Mask, VL;
2053 std::tie(Mask, VL) =
2054 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2055 LLVMContext &Context = *DAG.getContext();
2056 const ElementCount Count = ContainerVT.getVectorElementCount();
2057 do {
2058 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2059 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2060 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2061 Mask, VL);
2062 } while (SrcEltVT != DstEltVT);
2063
2064 if (SrcVT.isFixedLengthVector())
2065 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2066
2067 return Result;
2068 }
2069 case ISD::ANY_EXTEND:
2070 case ISD::ZERO_EXTEND:
2071 if (Op.getOperand(0).getValueType().isVector() &&
2072 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2073 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2074 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2075 case ISD::SIGN_EXTEND:
2076 if (Op.getOperand(0).getValueType().isVector() &&
2077 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2078 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2079 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2080 case ISD::SPLAT_VECTOR_PARTS:
2081 return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2082 case ISD::INSERT_VECTOR_ELT:
2083 return lowerINSERT_VECTOR_ELT(Op, DAG);
2084 case ISD::EXTRACT_VECTOR_ELT:
2085 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2086 case ISD::VSCALE: {
2087 MVT VT = Op.getSimpleValueType();
2088 SDLoc DL(Op);
2089 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2090 // We define our scalable vector types for lmul=1 to use a 64 bit known
2091 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2092 // vscale as VLENB / 8.
2093 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2094 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2095 DAG.getConstant(3, DL, VT));
2096 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2097 }
2098 case ISD::FP_EXTEND: {
2099 // RVV can only do fp_extend to types double the size as the source. We
2100 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2101 // via f32.
2102 SDLoc DL(Op);
2103 MVT VT = Op.getSimpleValueType();
2104 SDValue Src = Op.getOperand(0);
2105 MVT SrcVT = Src.getSimpleValueType();
2106
2107 // Prepare any fixed-length vector operands.
2108 MVT ContainerVT = VT;
2109 if (SrcVT.isFixedLengthVector()) {
2110 ContainerVT = getContainerForFixedLengthVector(VT);
2111 MVT SrcContainerVT =
2112 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2113 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2114 }
2115
2116 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2117 SrcVT.getVectorElementType() != MVT::f16) {
2118 // For scalable vectors, we only need to close the gap between
2119 // vXf16->vXf64.
2120 if (!VT.isFixedLengthVector())
2121 return Op;
2122 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2123 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2124 return convertFromScalableVector(VT, Src, DAG, Subtarget);
2125 }
2126
2127 MVT InterVT = VT.changeVectorElementType(MVT::f32);
2128 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2129 SDValue IntermediateExtend = getRVVFPExtendOrRound(
2130 Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2131
2132 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2133 DL, DAG, Subtarget);
2134 if (VT.isFixedLengthVector())
2135 return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2136 return Extend;
2137 }
2138 case ISD::FP_ROUND: {
2139 // RVV can only do fp_round to types half the size as the source. We
2140 // custom-lower f64->f16 rounds via RVV's round-to-odd float
2141 // conversion instruction.
2142 SDLoc DL(Op);
2143 MVT VT = Op.getSimpleValueType();
2144 SDValue Src = Op.getOperand(0);
2145 MVT SrcVT = Src.getSimpleValueType();
2146
2147 // Prepare any fixed-length vector operands.
2148 MVT ContainerVT = VT;
2149 if (VT.isFixedLengthVector()) {
2150 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2151 ContainerVT =
2152 SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2153 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2154 }
2155
2156 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2157 SrcVT.getVectorElementType() != MVT::f64) {
2158 // For scalable vectors, we only need to close the gap between
2159 // vXf64<->vXf16.
2160 if (!VT.isFixedLengthVector())
2161 return Op;
2162 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2163 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2164 return convertFromScalableVector(VT, Src, DAG, Subtarget);
2165 }
2166
2167 SDValue Mask, VL;
2168 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2169
2170 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2171 SDValue IntermediateRound =
2172 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2173 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2174 DL, DAG, Subtarget);
2175
2176 if (VT.isFixedLengthVector())
2177 return convertFromScalableVector(VT, Round, DAG, Subtarget);
2178 return Round;
2179 }
2180 case ISD::FP_TO_SINT:
2181 case ISD::FP_TO_UINT:
2182 case ISD::SINT_TO_FP:
2183 case ISD::UINT_TO_FP: {
2184 // RVV can only do fp<->int conversions to types half/double the size as
2185 // the source. We custom-lower any conversions that do two hops into
2186 // sequences.
2187 MVT VT = Op.getSimpleValueType();
2188 if (!VT.isVector())
2189 return Op;
2190 SDLoc DL(Op);
2191 SDValue Src = Op.getOperand(0);
2192 MVT EltVT = VT.getVectorElementType();
2193 MVT SrcVT = Src.getSimpleValueType();
2194 MVT SrcEltVT = SrcVT.getVectorElementType();
2195 unsigned EltSize = EltVT.getSizeInBits();
2196 unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2197 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2198 "Unexpected vector element types");
2199
2200 bool IsInt2FP = SrcEltVT.isInteger();
2201 // Widening conversions
2202 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2203 if (IsInt2FP) {
2204 // Do a regular integer sign/zero extension then convert to float.
2205 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2206 VT.getVectorElementCount());
2207 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2208 ? ISD::ZERO_EXTEND
2209 : ISD::SIGN_EXTEND;
2210 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2211 return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2212 }
2213 // FP2Int
2214 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2215 // Do one doubling fp_extend then complete the operation by converting
2216 // to int.
2217 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2218 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2219 return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2220 }
2221
2222 // Narrowing conversions
2223 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2224 if (IsInt2FP) {
2225 // One narrowing int_to_fp, then an fp_round.
2226 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2227 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2228 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2229 return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2230 }
2231 // FP2Int
2232 // One narrowing fp_to_int, then truncate the integer. If the float isn't
2233 // representable by the integer, the result is poison.
2234 MVT IVecVT =
2235 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2236 VT.getVectorElementCount());
2237 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2238 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2239 }
2240
2241 // Scalable vectors can exit here. Patterns will handle equally-sized
2242 // conversions halving/doubling ones.
2243 if (!VT.isFixedLengthVector())
2244 return Op;
2245
2246 // For fixed-length vectors we lower to a custom "VL" node.
2247 unsigned RVVOpc = 0;
2248 switch (Op.getOpcode()) {
2249 default:
2250 llvm_unreachable("Impossible opcode");
2251 case ISD::FP_TO_SINT:
2252 RVVOpc = RISCVISD::FP_TO_SINT_VL;
2253 break;
2254 case ISD::FP_TO_UINT:
2255 RVVOpc = RISCVISD::FP_TO_UINT_VL;
2256 break;
2257 case ISD::SINT_TO_FP:
2258 RVVOpc = RISCVISD::SINT_TO_FP_VL;
2259 break;
2260 case ISD::UINT_TO_FP:
2261 RVVOpc = RISCVISD::UINT_TO_FP_VL;
2262 break;
2263 }
2264
2265 MVT ContainerVT, SrcContainerVT;
2266 // Derive the reference container type from the larger vector type.
2267 if (SrcEltSize > EltSize) {
2268 SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2269 ContainerVT =
2270 SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2271 } else {
2272 ContainerVT = getContainerForFixedLengthVector(VT);
2273 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2274 }
2275
2276 SDValue Mask, VL;
2277 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2278
2279 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2280 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2281 return convertFromScalableVector(VT, Src, DAG, Subtarget);
2282 }
2283 case ISD::VECREDUCE_ADD:
2284 case ISD::VECREDUCE_UMAX:
2285 case ISD::VECREDUCE_SMAX:
2286 case ISD::VECREDUCE_UMIN:
2287 case ISD::VECREDUCE_SMIN:
2288 return lowerVECREDUCE(Op, DAG);
2289 case ISD::VECREDUCE_AND:
2290 case ISD::VECREDUCE_OR:
2291 case ISD::VECREDUCE_XOR:
2292 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2293 return lowerVectorMaskVECREDUCE(Op, DAG);
2294 return lowerVECREDUCE(Op, DAG);
2295 case ISD::VECREDUCE_FADD:
2296 case ISD::VECREDUCE_SEQ_FADD:
2297 case ISD::VECREDUCE_FMIN:
2298 case ISD::VECREDUCE_FMAX:
2299 return lowerFPVECREDUCE(Op, DAG);
2300 case ISD::INSERT_SUBVECTOR:
2301 return lowerINSERT_SUBVECTOR(Op, DAG);
2302 case ISD::EXTRACT_SUBVECTOR:
2303 return lowerEXTRACT_SUBVECTOR(Op, DAG);
2304 case ISD::STEP_VECTOR:
2305 return lowerSTEP_VECTOR(Op, DAG);
2306 case ISD::VECTOR_REVERSE:
2307 return lowerVECTOR_REVERSE(Op, DAG);
2308 case ISD::BUILD_VECTOR:
2309 return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2310 case ISD::SPLAT_VECTOR:
2311 if (Op.getValueType().getVectorElementType() == MVT::i1)
2312 return lowerVectorMaskSplat(Op, DAG);
2313 return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2314 case ISD::VECTOR_SHUFFLE:
2315 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2316 case ISD::CONCAT_VECTORS: {
2317 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2318 // better than going through the stack, as the default expansion does.
2319 SDLoc DL(Op);
2320 MVT VT = Op.getSimpleValueType();
2321 unsigned NumOpElts =
2322 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2323 SDValue Vec = DAG.getUNDEF(VT);
2324 for (const auto &OpIdx : enumerate(Op->ops()))
2325 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2326 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2327 return Vec;
2328 }
2329 case ISD::LOAD:
2330 return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2331 case ISD::STORE:
2332 return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2333 case ISD::MLOAD:
2334 return lowerMLOAD(Op, DAG);
2335 case ISD::MSTORE:
2336 return lowerMSTORE(Op, DAG);
2337 case ISD::SETCC:
2338 return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2339 case ISD::ADD:
2340 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2341 case ISD::SUB:
2342 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2343 case ISD::MUL:
2344 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2345 case ISD::MULHS:
2346 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2347 case ISD::MULHU:
2348 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2349 case ISD::AND:
2350 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2351 RISCVISD::AND_VL);
2352 case ISD::OR:
2353 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2354 RISCVISD::OR_VL);
2355 case ISD::XOR:
2356 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2357 RISCVISD::XOR_VL);
2358 case ISD::SDIV:
2359 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2360 case ISD::SREM:
2361 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2362 case ISD::UDIV:
2363 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2364 case ISD::UREM:
2365 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2366 case ISD::SHL:
2367 return lowerToScalableOp(Op, DAG, RISCVISD::SHL_VL);
2368 case ISD::SRA:
2369 return lowerToScalableOp(Op, DAG, RISCVISD::SRA_VL);
2370 case ISD::SRL:
2371 return lowerToScalableOp(Op, DAG, RISCVISD::SRL_VL);
2372 case ISD::FADD:
2373 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2374 case ISD::FSUB:
2375 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2376 case ISD::FMUL:
2377 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2378 case ISD::FDIV:
2379 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2380 case ISD::FNEG:
2381 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2382 case ISD::FABS:
2383 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2384 case ISD::FSQRT:
2385 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2386 case ISD::FMA:
2387 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2388 case ISD::SMIN:
2389 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2390 case ISD::SMAX:
2391 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2392 case ISD::UMIN:
2393 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2394 case ISD::UMAX:
2395 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2396 case ISD::FMINNUM:
2397 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2398 case ISD::FMAXNUM:
2399 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2400 case ISD::ABS:
2401 return lowerABS(Op, DAG);
2402 case ISD::VSELECT:
2403 return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2404 case ISD::FCOPYSIGN:
2405 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2406 case ISD::MGATHER:
2407 return lowerMGATHER(Op, DAG);
2408 case ISD::MSCATTER:
2409 return lowerMSCATTER(Op, DAG);
2410 case ISD::FLT_ROUNDS_:
2411 return lowerGET_ROUNDING(Op, DAG);
2412 case ISD::SET_ROUNDING:
2413 return lowerSET_ROUNDING(Op, DAG);
2414 case ISD::VP_ADD:
2415 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2416 case ISD::VP_SUB:
2417 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2418 case ISD::VP_MUL:
2419 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2420 case ISD::VP_SDIV:
2421 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2422 case ISD::VP_UDIV:
2423 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2424 case ISD::VP_SREM:
2425 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2426 case ISD::VP_UREM:
2427 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2428 case ISD::VP_AND:
2429 return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2430 case ISD::VP_OR:
2431 return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2432 case ISD::VP_XOR:
2433 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2434 case ISD::VP_ASHR:
2435 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2436 case ISD::VP_LSHR:
2437 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2438 case ISD::VP_SHL:
2439 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2440 }
2441 }
2442
getTargetNode(GlobalAddressSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2443 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2444 SelectionDAG &DAG, unsigned Flags) {
2445 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2446 }
2447
getTargetNode(BlockAddressSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2448 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2449 SelectionDAG &DAG, unsigned Flags) {
2450 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2451 Flags);
2452 }
2453
getTargetNode(ConstantPoolSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2454 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2455 SelectionDAG &DAG, unsigned Flags) {
2456 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2457 N->getOffset(), Flags);
2458 }
2459
getTargetNode(JumpTableSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2460 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2461 SelectionDAG &DAG, unsigned Flags) {
2462 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2463 }
2464
2465 template <class NodeTy>
getAddr(NodeTy * N,SelectionDAG & DAG,bool IsLocal) const2466 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2467 bool IsLocal) const {
2468 SDLoc DL(N);
2469 EVT Ty = getPointerTy(DAG.getDataLayout());
2470
2471 if (isPositionIndependent()) {
2472 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2473 if (IsLocal)
2474 // Use PC-relative addressing to access the symbol. This generates the
2475 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2476 // %pcrel_lo(auipc)).
2477 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2478
2479 // Use PC-relative addressing to access the GOT for this symbol, then load
2480 // the address from the GOT. This generates the pattern (PseudoLA sym),
2481 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2482 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2483 }
2484
2485 switch (getTargetMachine().getCodeModel()) {
2486 default:
2487 report_fatal_error("Unsupported code model for lowering");
2488 case CodeModel::Small: {
2489 // Generate a sequence for accessing addresses within the first 2 GiB of
2490 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2491 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2492 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2493 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2494 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2495 }
2496 case CodeModel::Medium: {
2497 // Generate a sequence for accessing addresses within any 2GiB range within
2498 // the address space. This generates the pattern (PseudoLLA sym), which
2499 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2500 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2501 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2502 }
2503 }
2504 }
2505
lowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const2506 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2507 SelectionDAG &DAG) const {
2508 SDLoc DL(Op);
2509 EVT Ty = Op.getValueType();
2510 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2511 int64_t Offset = N->getOffset();
2512 MVT XLenVT = Subtarget.getXLenVT();
2513
2514 const GlobalValue *GV = N->getGlobal();
2515 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2516 SDValue Addr = getAddr(N, DAG, IsLocal);
2517
2518 // In order to maximise the opportunity for common subexpression elimination,
2519 // emit a separate ADD node for the global address offset instead of folding
2520 // it in the global address node. Later peephole optimisations may choose to
2521 // fold it back in when profitable.
2522 if (Offset != 0)
2523 return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2524 DAG.getConstant(Offset, DL, XLenVT));
2525 return Addr;
2526 }
2527
lowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2528 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2529 SelectionDAG &DAG) const {
2530 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2531
2532 return getAddr(N, DAG);
2533 }
2534
lowerConstantPool(SDValue Op,SelectionDAG & DAG) const2535 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2536 SelectionDAG &DAG) const {
2537 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2538
2539 return getAddr(N, DAG);
2540 }
2541
lowerJumpTable(SDValue Op,SelectionDAG & DAG) const2542 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2543 SelectionDAG &DAG) const {
2544 JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2545
2546 return getAddr(N, DAG);
2547 }
2548
getStaticTLSAddr(GlobalAddressSDNode * N,SelectionDAG & DAG,bool UseGOT) const2549 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2550 SelectionDAG &DAG,
2551 bool UseGOT) const {
2552 SDLoc DL(N);
2553 EVT Ty = getPointerTy(DAG.getDataLayout());
2554 const GlobalValue *GV = N->getGlobal();
2555 MVT XLenVT = Subtarget.getXLenVT();
2556
2557 if (UseGOT) {
2558 // Use PC-relative addressing to access the GOT for this TLS symbol, then
2559 // load the address from the GOT and add the thread pointer. This generates
2560 // the pattern (PseudoLA_TLS_IE sym), which expands to
2561 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2562 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2563 SDValue Load =
2564 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2565
2566 // Add the thread pointer.
2567 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2568 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2569 }
2570
2571 // Generate a sequence for accessing the address relative to the thread
2572 // pointer, with the appropriate adjustment for the thread pointer offset.
2573 // This generates the pattern
2574 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2575 SDValue AddrHi =
2576 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2577 SDValue AddrAdd =
2578 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2579 SDValue AddrLo =
2580 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2581
2582 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2583 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2584 SDValue MNAdd = SDValue(
2585 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2586 0);
2587 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2588 }
2589
getDynamicTLSAddr(GlobalAddressSDNode * N,SelectionDAG & DAG) const2590 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2591 SelectionDAG &DAG) const {
2592 SDLoc DL(N);
2593 EVT Ty = getPointerTy(DAG.getDataLayout());
2594 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2595 const GlobalValue *GV = N->getGlobal();
2596
2597 // Use a PC-relative addressing mode to access the global dynamic GOT address.
2598 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2599 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2600 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2601 SDValue Load =
2602 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2603
2604 // Prepare argument list to generate call.
2605 ArgListTy Args;
2606 ArgListEntry Entry;
2607 Entry.Node = Load;
2608 Entry.Ty = CallTy;
2609 Args.push_back(Entry);
2610
2611 // Setup call to __tls_get_addr.
2612 TargetLowering::CallLoweringInfo CLI(DAG);
2613 CLI.setDebugLoc(DL)
2614 .setChain(DAG.getEntryNode())
2615 .setLibCallee(CallingConv::C, CallTy,
2616 DAG.getExternalSymbol("__tls_get_addr", Ty),
2617 std::move(Args));
2618
2619 return LowerCallTo(CLI).first;
2620 }
2621
lowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2622 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2623 SelectionDAG &DAG) const {
2624 SDLoc DL(Op);
2625 EVT Ty = Op.getValueType();
2626 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2627 int64_t Offset = N->getOffset();
2628 MVT XLenVT = Subtarget.getXLenVT();
2629
2630 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2631
2632 if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2633 CallingConv::GHC)
2634 report_fatal_error("In GHC calling convention TLS is not supported");
2635
2636 SDValue Addr;
2637 switch (Model) {
2638 case TLSModel::LocalExec:
2639 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2640 break;
2641 case TLSModel::InitialExec:
2642 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2643 break;
2644 case TLSModel::LocalDynamic:
2645 case TLSModel::GeneralDynamic:
2646 Addr = getDynamicTLSAddr(N, DAG);
2647 break;
2648 }
2649
2650 // In order to maximise the opportunity for common subexpression elimination,
2651 // emit a separate ADD node for the global address offset instead of folding
2652 // it in the global address node. Later peephole optimisations may choose to
2653 // fold it back in when profitable.
2654 if (Offset != 0)
2655 return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2656 DAG.getConstant(Offset, DL, XLenVT));
2657 return Addr;
2658 }
2659
lowerSELECT(SDValue Op,SelectionDAG & DAG) const2660 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2661 SDValue CondV = Op.getOperand(0);
2662 SDValue TrueV = Op.getOperand(1);
2663 SDValue FalseV = Op.getOperand(2);
2664 SDLoc DL(Op);
2665 MVT XLenVT = Subtarget.getXLenVT();
2666
2667 // If the result type is XLenVT and CondV is the output of a SETCC node
2668 // which also operated on XLenVT inputs, then merge the SETCC node into the
2669 // lowered RISCVISD::SELECT_CC to take advantage of the integer
2670 // compare+branch instructions. i.e.:
2671 // (select (setcc lhs, rhs, cc), truev, falsev)
2672 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2673 if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2674 CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2675 SDValue LHS = CondV.getOperand(0);
2676 SDValue RHS = CondV.getOperand(1);
2677 auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2678 ISD::CondCode CCVal = CC->get();
2679
2680 // Special case for a select of 2 constants that have a diffence of 1.
2681 // Normally this is done by DAGCombine, but if the select is introduced by
2682 // type legalization or op legalization, we miss it. Restricting to SETLT
2683 // case for now because that is what signed saturating add/sub need.
2684 // FIXME: We don't need the condition to be SETLT or even a SETCC,
2685 // but we would probably want to swap the true/false values if the condition
2686 // is SETGE/SETLE to avoid an XORI.
2687 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
2688 CCVal == ISD::SETLT) {
2689 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
2690 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
2691 if (TrueVal - 1 == FalseVal)
2692 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
2693 if (TrueVal + 1 == FalseVal)
2694 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
2695 }
2696
2697 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2698
2699 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT);
2700 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
2701 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2702 }
2703
2704 // Otherwise:
2705 // (select condv, truev, falsev)
2706 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
2707 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2708 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT);
2709
2710 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
2711
2712 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2713 }
2714
lowerBRCOND(SDValue Op,SelectionDAG & DAG) const2715 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2716 SDValue CondV = Op.getOperand(1);
2717 SDLoc DL(Op);
2718 MVT XLenVT = Subtarget.getXLenVT();
2719
2720 if (CondV.getOpcode() == ISD::SETCC &&
2721 CondV.getOperand(0).getValueType() == XLenVT) {
2722 SDValue LHS = CondV.getOperand(0);
2723 SDValue RHS = CondV.getOperand(1);
2724 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
2725
2726 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2727
2728 SDValue TargetCC = DAG.getCondCode(CCVal);
2729 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2730 LHS, RHS, TargetCC, Op.getOperand(2));
2731 }
2732
2733 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2734 CondV, DAG.getConstant(0, DL, XLenVT),
2735 DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2736 }
2737
lowerVASTART(SDValue Op,SelectionDAG & DAG) const2738 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2739 MachineFunction &MF = DAG.getMachineFunction();
2740 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2741
2742 SDLoc DL(Op);
2743 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2744 getPointerTy(MF.getDataLayout()));
2745
2746 // vastart just stores the address of the VarArgsFrameIndex slot into the
2747 // memory location argument.
2748 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2749 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2750 MachinePointerInfo(SV));
2751 }
2752
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const2753 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2754 SelectionDAG &DAG) const {
2755 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2756 MachineFunction &MF = DAG.getMachineFunction();
2757 MachineFrameInfo &MFI = MF.getFrameInfo();
2758 MFI.setFrameAddressIsTaken(true);
2759 Register FrameReg = RI.getFrameRegister(MF);
2760 int XLenInBytes = Subtarget.getXLen() / 8;
2761
2762 EVT VT = Op.getValueType();
2763 SDLoc DL(Op);
2764 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
2765 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2766 while (Depth--) {
2767 int Offset = -(XLenInBytes * 2);
2768 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
2769 DAG.getIntPtrConstant(Offset, DL));
2770 FrameAddr =
2771 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2772 }
2773 return FrameAddr;
2774 }
2775
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const2776 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
2777 SelectionDAG &DAG) const {
2778 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2779 MachineFunction &MF = DAG.getMachineFunction();
2780 MachineFrameInfo &MFI = MF.getFrameInfo();
2781 MFI.setReturnAddressIsTaken(true);
2782 MVT XLenVT = Subtarget.getXLenVT();
2783 int XLenInBytes = Subtarget.getXLen() / 8;
2784
2785 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2786 return SDValue();
2787
2788 EVT VT = Op.getValueType();
2789 SDLoc DL(Op);
2790 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2791 if (Depth) {
2792 int Off = -XLenInBytes;
2793 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
2794 SDValue Offset = DAG.getConstant(Off, DL, VT);
2795 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
2796 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
2797 MachinePointerInfo());
2798 }
2799
2800 // Return the value of the return address register, marking it an implicit
2801 // live-in.
2802 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
2803 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
2804 }
2805
lowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const2806 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
2807 SelectionDAG &DAG) const {
2808 SDLoc DL(Op);
2809 SDValue Lo = Op.getOperand(0);
2810 SDValue Hi = Op.getOperand(1);
2811 SDValue Shamt = Op.getOperand(2);
2812 EVT VT = Lo.getValueType();
2813
2814 // if Shamt-XLEN < 0: // Shamt < XLEN
2815 // Lo = Lo << Shamt
2816 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
2817 // else:
2818 // Lo = 0
2819 // Hi = Lo << (Shamt-XLEN)
2820
2821 SDValue Zero = DAG.getConstant(0, DL, VT);
2822 SDValue One = DAG.getConstant(1, DL, VT);
2823 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2824 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2825 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2826 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2827
2828 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2829 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
2830 SDValue ShiftRightLo =
2831 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
2832 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2833 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2834 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
2835
2836 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2837
2838 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2839 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2840
2841 SDValue Parts[2] = {Lo, Hi};
2842 return DAG.getMergeValues(Parts, DL);
2843 }
2844
lowerShiftRightParts(SDValue Op,SelectionDAG & DAG,bool IsSRA) const2845 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2846 bool IsSRA) const {
2847 SDLoc DL(Op);
2848 SDValue Lo = Op.getOperand(0);
2849 SDValue Hi = Op.getOperand(1);
2850 SDValue Shamt = Op.getOperand(2);
2851 EVT VT = Lo.getValueType();
2852
2853 // SRA expansion:
2854 // if Shamt-XLEN < 0: // Shamt < XLEN
2855 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2856 // Hi = Hi >>s Shamt
2857 // else:
2858 // Lo = Hi >>s (Shamt-XLEN);
2859 // Hi = Hi >>s (XLEN-1)
2860 //
2861 // SRL expansion:
2862 // if Shamt-XLEN < 0: // Shamt < XLEN
2863 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
2864 // Hi = Hi >>u Shamt
2865 // else:
2866 // Lo = Hi >>u (Shamt-XLEN);
2867 // Hi = 0;
2868
2869 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2870
2871 SDValue Zero = DAG.getConstant(0, DL, VT);
2872 SDValue One = DAG.getConstant(1, DL, VT);
2873 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
2874 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
2875 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
2876 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
2877
2878 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2879 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2880 SDValue ShiftLeftHi =
2881 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
2882 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2883 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2884 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
2885 SDValue HiFalse =
2886 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
2887
2888 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
2889
2890 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2891 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2892
2893 SDValue Parts[2] = {Lo, Hi};
2894 return DAG.getMergeValues(Parts, DL);
2895 }
2896
2897 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
2898 // legal equivalently-sized i8 type, so we can use that as a go-between.
lowerVectorMaskSplat(SDValue Op,SelectionDAG & DAG) const2899 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
2900 SelectionDAG &DAG) const {
2901 SDLoc DL(Op);
2902 MVT VT = Op.getSimpleValueType();
2903 SDValue SplatVal = Op.getOperand(0);
2904 // All-zeros or all-ones splats are handled specially.
2905 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
2906 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
2907 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
2908 }
2909 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
2910 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
2911 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
2912 }
2913 MVT XLenVT = Subtarget.getXLenVT();
2914 assert(SplatVal.getValueType() == XLenVT &&
2915 "Unexpected type for i1 splat value");
2916 MVT InterVT = VT.changeVectorElementType(MVT::i8);
2917 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
2918 DAG.getConstant(1, DL, XLenVT));
2919 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
2920 SDValue Zero = DAG.getConstant(0, DL, InterVT);
2921 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
2922 }
2923
2924 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
2925 // illegal (currently only vXi64 RV32).
2926 // FIXME: We could also catch non-constant sign-extended i32 values and lower
2927 // them to SPLAT_VECTOR_I64
lowerSPLAT_VECTOR_PARTS(SDValue Op,SelectionDAG & DAG) const2928 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
2929 SelectionDAG &DAG) const {
2930 SDLoc DL(Op);
2931 MVT VecVT = Op.getSimpleValueType();
2932 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
2933 "Unexpected SPLAT_VECTOR_PARTS lowering");
2934
2935 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
2936 SDValue Lo = Op.getOperand(0);
2937 SDValue Hi = Op.getOperand(1);
2938
2939 if (VecVT.isFixedLengthVector()) {
2940 MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
2941 SDLoc DL(Op);
2942 SDValue Mask, VL;
2943 std::tie(Mask, VL) =
2944 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
2945
2946 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
2947 return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
2948 }
2949
2950 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2951 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2952 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2953 // If Hi constant is all the same sign bit as Lo, lower this as a custom
2954 // node in order to try and match RVV vector/scalar instructions.
2955 if ((LoC >> 31) == HiC)
2956 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2957 }
2958
2959 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
2960 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
2961 isa<ConstantSDNode>(Hi.getOperand(1)) &&
2962 Hi.getConstantOperandVal(1) == 31)
2963 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
2964
2965 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
2966 return splatPartsI64ThroughStack(DL, VecVT, Lo, Hi,
2967 DAG.getRegister(RISCV::X0, MVT::i64), DAG);
2968 }
2969
2970 // Custom-lower extensions from mask vectors by using a vselect either with 1
2971 // for zero/any-extension or -1 for sign-extension:
2972 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
2973 // Note that any-extension is lowered identically to zero-extension.
lowerVectorMaskExt(SDValue Op,SelectionDAG & DAG,int64_t ExtTrueVal) const2974 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
2975 int64_t ExtTrueVal) const {
2976 SDLoc DL(Op);
2977 MVT VecVT = Op.getSimpleValueType();
2978 SDValue Src = Op.getOperand(0);
2979 // Only custom-lower extensions from mask types
2980 assert(Src.getValueType().isVector() &&
2981 Src.getValueType().getVectorElementType() == MVT::i1);
2982
2983 MVT XLenVT = Subtarget.getXLenVT();
2984 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
2985 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
2986
2987 if (VecVT.isScalableVector()) {
2988 // Be careful not to introduce illegal scalar types at this stage, and be
2989 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
2990 // illegal and must be expanded. Since we know that the constants are
2991 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
2992 bool IsRV32E64 =
2993 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
2994
2995 if (!IsRV32E64) {
2996 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
2997 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
2998 } else {
2999 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3000 SplatTrueVal =
3001 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3002 }
3003
3004 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3005 }
3006
3007 MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3008 MVT I1ContainerVT =
3009 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3010
3011 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3012
3013 SDValue Mask, VL;
3014 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3015
3016 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3017 SplatTrueVal =
3018 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3019 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3020 SplatTrueVal, SplatZero, VL);
3021
3022 return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3023 }
3024
lowerFixedLengthVectorExtendToRVV(SDValue Op,SelectionDAG & DAG,unsigned ExtendOpc) const3025 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3026 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3027 MVT ExtVT = Op.getSimpleValueType();
3028 // Only custom-lower extensions from fixed-length vector types.
3029 if (!ExtVT.isFixedLengthVector())
3030 return Op;
3031 MVT VT = Op.getOperand(0).getSimpleValueType();
3032 // Grab the canonical container type for the extended type. Infer the smaller
3033 // type from that to ensure the same number of vector elements, as we know
3034 // the LMUL will be sufficient to hold the smaller type.
3035 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3036 // Get the extended container type manually to ensure the same number of
3037 // vector elements between source and dest.
3038 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3039 ContainerExtVT.getVectorElementCount());
3040
3041 SDValue Op1 =
3042 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3043
3044 SDLoc DL(Op);
3045 SDValue Mask, VL;
3046 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3047
3048 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3049
3050 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3051 }
3052
3053 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3054 // setcc operation:
3055 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
lowerVectorMaskTrunc(SDValue Op,SelectionDAG & DAG) const3056 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3057 SelectionDAG &DAG) const {
3058 SDLoc DL(Op);
3059 EVT MaskVT = Op.getValueType();
3060 // Only expect to custom-lower truncations to mask types
3061 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3062 "Unexpected type for vector mask lowering");
3063 SDValue Src = Op.getOperand(0);
3064 MVT VecVT = Src.getSimpleValueType();
3065
3066 // If this is a fixed vector, we need to convert it to a scalable vector.
3067 MVT ContainerVT = VecVT;
3068 if (VecVT.isFixedLengthVector()) {
3069 ContainerVT = getContainerForFixedLengthVector(VecVT);
3070 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3071 }
3072
3073 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3074 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3075
3076 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3077 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3078
3079 if (VecVT.isScalableVector()) {
3080 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3081 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3082 }
3083
3084 SDValue Mask, VL;
3085 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3086
3087 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3088 SDValue Trunc =
3089 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3090 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3091 DAG.getCondCode(ISD::SETNE), Mask, VL);
3092 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3093 }
3094
3095 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3096 // first position of a vector, and that vector is slid up to the insert index.
3097 // By limiting the active vector length to index+1 and merging with the
3098 // original vector (with an undisturbed tail policy for elements >= VL), we
3099 // achieve the desired result of leaving all elements untouched except the one
3100 // at VL-1, which is replaced with the desired value.
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const3101 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3102 SelectionDAG &DAG) const {
3103 SDLoc DL(Op);
3104 MVT VecVT = Op.getSimpleValueType();
3105 SDValue Vec = Op.getOperand(0);
3106 SDValue Val = Op.getOperand(1);
3107 SDValue Idx = Op.getOperand(2);
3108
3109 if (VecVT.getVectorElementType() == MVT::i1) {
3110 // FIXME: For now we just promote to an i8 vector and insert into that,
3111 // but this is probably not optimal.
3112 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3113 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3114 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3115 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3116 }
3117
3118 MVT ContainerVT = VecVT;
3119 // If the operand is a fixed-length vector, convert to a scalable one.
3120 if (VecVT.isFixedLengthVector()) {
3121 ContainerVT = getContainerForFixedLengthVector(VecVT);
3122 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3123 }
3124
3125 MVT XLenVT = Subtarget.getXLenVT();
3126
3127 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3128 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3129 // Even i64-element vectors on RV32 can be lowered without scalar
3130 // legalization if the most-significant 32 bits of the value are not affected
3131 // by the sign-extension of the lower 32 bits.
3132 // TODO: We could also catch sign extensions of a 32-bit value.
3133 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3134 const auto *CVal = cast<ConstantSDNode>(Val);
3135 if (isInt<32>(CVal->getSExtValue())) {
3136 IsLegalInsert = true;
3137 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3138 }
3139 }
3140
3141 SDValue Mask, VL;
3142 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3143
3144 SDValue ValInVec;
3145
3146 if (IsLegalInsert) {
3147 unsigned Opc =
3148 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3149 if (isNullConstant(Idx)) {
3150 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3151 if (!VecVT.isFixedLengthVector())
3152 return Vec;
3153 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3154 }
3155 ValInVec =
3156 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3157 } else {
3158 // On RV32, i64-element vectors must be specially handled to place the
3159 // value at element 0, by using two vslide1up instructions in sequence on
3160 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3161 // this.
3162 SDValue One = DAG.getConstant(1, DL, XLenVT);
3163 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3164 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3165 MVT I32ContainerVT =
3166 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3167 SDValue I32Mask =
3168 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3169 // Limit the active VL to two.
3170 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3171 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3172 // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3173 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3174 InsertI64VL);
3175 // First slide in the hi value, then the lo in underneath it.
3176 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3177 ValHi, I32Mask, InsertI64VL);
3178 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3179 ValLo, I32Mask, InsertI64VL);
3180 // Bitcast back to the right container type.
3181 ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3182 }
3183
3184 // Now that the value is in a vector, slide it into position.
3185 SDValue InsertVL =
3186 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3187 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3188 ValInVec, Idx, Mask, InsertVL);
3189 if (!VecVT.isFixedLengthVector())
3190 return Slideup;
3191 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3192 }
3193
3194 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3195 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3196 // types this is done using VMV_X_S to allow us to glean information about the
3197 // sign bits of the result.
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const3198 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3199 SelectionDAG &DAG) const {
3200 SDLoc DL(Op);
3201 SDValue Idx = Op.getOperand(1);
3202 SDValue Vec = Op.getOperand(0);
3203 EVT EltVT = Op.getValueType();
3204 MVT VecVT = Vec.getSimpleValueType();
3205 MVT XLenVT = Subtarget.getXLenVT();
3206
3207 if (VecVT.getVectorElementType() == MVT::i1) {
3208 // FIXME: For now we just promote to an i8 vector and extract from that,
3209 // but this is probably not optimal.
3210 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3211 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3212 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3213 }
3214
3215 // If this is a fixed vector, we need to convert it to a scalable vector.
3216 MVT ContainerVT = VecVT;
3217 if (VecVT.isFixedLengthVector()) {
3218 ContainerVT = getContainerForFixedLengthVector(VecVT);
3219 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3220 }
3221
3222 // If the index is 0, the vector is already in the right position.
3223 if (!isNullConstant(Idx)) {
3224 // Use a VL of 1 to avoid processing more elements than we need.
3225 SDValue VL = DAG.getConstant(1, DL, XLenVT);
3226 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3227 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3228 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3229 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3230 }
3231
3232 if (!EltVT.isInteger()) {
3233 // Floating-point extracts are handled in TableGen.
3234 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3235 DAG.getConstant(0, DL, XLenVT));
3236 }
3237
3238 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3239 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3240 }
3241
3242 // Some RVV intrinsics may claim that they want an integer operand to be
3243 // promoted or expanded.
lowerVectorIntrinsicSplats(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)3244 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3245 const RISCVSubtarget &Subtarget) {
3246 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3247 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3248 "Unexpected opcode");
3249
3250 if (!Subtarget.hasStdExtV())
3251 return SDValue();
3252
3253 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3254 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3255 SDLoc DL(Op);
3256
3257 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3258 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3259 if (!II || !II->SplatOperand)
3260 return SDValue();
3261
3262 unsigned SplatOp = II->SplatOperand + HasChain;
3263 assert(SplatOp < Op.getNumOperands());
3264
3265 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3266 SDValue &ScalarOp = Operands[SplatOp];
3267 MVT OpVT = ScalarOp.getSimpleValueType();
3268 MVT XLenVT = Subtarget.getXLenVT();
3269
3270 // If this isn't a scalar, or its type is XLenVT we're done.
3271 if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3272 return SDValue();
3273
3274 // Simplest case is that the operand needs to be promoted to XLenVT.
3275 if (OpVT.bitsLT(XLenVT)) {
3276 // If the operand is a constant, sign extend to increase our chances
3277 // of being able to use a .vi instruction. ANY_EXTEND would become a
3278 // a zero extend and the simm5 check in isel would fail.
3279 // FIXME: Should we ignore the upper bits in isel instead?
3280 unsigned ExtOpc =
3281 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3282 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3283 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3284 }
3285
3286 // Use the previous operand to get the vXi64 VT. The result might be a mask
3287 // VT for compares. Using the previous operand assumes that the previous
3288 // operand will never have a smaller element size than a scalar operand and
3289 // that a widening operation never uses SEW=64.
3290 // NOTE: If this fails the below assert, we can probably just find the
3291 // element count from any operand or result and use it to construct the VT.
3292 assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3293 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3294
3295 // The more complex case is when the scalar is larger than XLenVT.
3296 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3297 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3298
3299 // If this is a sign-extended 32-bit constant, we can truncate it and rely
3300 // on the instruction to sign-extend since SEW>XLEN.
3301 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3302 if (isInt<32>(CVal->getSExtValue())) {
3303 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3304 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3305 }
3306 }
3307
3308 // We need to convert the scalar to a splat vector.
3309 // FIXME: Can we implicitly truncate the scalar if it is known to
3310 // be sign extended?
3311 // VL should be the last operand.
3312 SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3313 assert(VL.getValueType() == XLenVT);
3314 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3315 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3316 }
3317
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3318 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3319 SelectionDAG &DAG) const {
3320 unsigned IntNo = Op.getConstantOperandVal(0);
3321 SDLoc DL(Op);
3322 MVT XLenVT = Subtarget.getXLenVT();
3323
3324 switch (IntNo) {
3325 default:
3326 break; // Don't custom lower most intrinsics.
3327 case Intrinsic::thread_pointer: {
3328 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3329 return DAG.getRegister(RISCV::X4, PtrVT);
3330 }
3331 case Intrinsic::riscv_orc_b:
3332 // Lower to the GORCI encoding for orc.b.
3333 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3334 DAG.getConstant(7, DL, XLenVT));
3335 case Intrinsic::riscv_grev:
3336 case Intrinsic::riscv_gorc: {
3337 unsigned Opc =
3338 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3339 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3340 }
3341 case Intrinsic::riscv_shfl:
3342 case Intrinsic::riscv_unshfl: {
3343 unsigned Opc =
3344 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3345 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3346 }
3347 case Intrinsic::riscv_bcompress:
3348 case Intrinsic::riscv_bdecompress: {
3349 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3350 : RISCVISD::BDECOMPRESS;
3351 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3352 }
3353 case Intrinsic::riscv_vmv_x_s:
3354 assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3355 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3356 Op.getOperand(1));
3357 case Intrinsic::riscv_vmv_v_x:
3358 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3359 Op.getSimpleValueType(), DL, DAG, Subtarget);
3360 case Intrinsic::riscv_vfmv_v_f:
3361 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3362 Op.getOperand(1), Op.getOperand(2));
3363 case Intrinsic::riscv_vmv_s_x: {
3364 SDValue Scalar = Op.getOperand(2);
3365
3366 if (Scalar.getValueType().bitsLE(XLenVT)) {
3367 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3368 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3369 Op.getOperand(1), Scalar, Op.getOperand(3));
3370 }
3371
3372 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3373
3374 // This is an i64 value that lives in two scalar registers. We have to
3375 // insert this in a convoluted way. First we build vXi64 splat containing
3376 // the/ two values that we assemble using some bit math. Next we'll use
3377 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3378 // to merge element 0 from our splat into the source vector.
3379 // FIXME: This is probably not the best way to do this, but it is
3380 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3381 // point.
3382 // sw lo, (a0)
3383 // sw hi, 4(a0)
3384 // vlse vX, (a0)
3385 //
3386 // vid.v vVid
3387 // vmseq.vx mMask, vVid, 0
3388 // vmerge.vvm vDest, vSrc, vVal, mMask
3389 MVT VT = Op.getSimpleValueType();
3390 SDValue Vec = Op.getOperand(1);
3391 SDValue VL = Op.getOperand(3);
3392
3393 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3394 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3395 DAG.getConstant(0, DL, MVT::i32), VL);
3396
3397 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3398 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3399 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3400 SDValue SelectCond =
3401 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3402 DAG.getCondCode(ISD::SETEQ), Mask, VL);
3403 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3404 Vec, VL);
3405 }
3406 case Intrinsic::riscv_vslide1up:
3407 case Intrinsic::riscv_vslide1down:
3408 case Intrinsic::riscv_vslide1up_mask:
3409 case Intrinsic::riscv_vslide1down_mask: {
3410 // We need to special case these when the scalar is larger than XLen.
3411 unsigned NumOps = Op.getNumOperands();
3412 bool IsMasked = NumOps == 6;
3413 unsigned OpOffset = IsMasked ? 1 : 0;
3414 SDValue Scalar = Op.getOperand(2 + OpOffset);
3415 if (Scalar.getValueType().bitsLE(XLenVT))
3416 break;
3417
3418 // Splatting a sign extended constant is fine.
3419 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3420 if (isInt<32>(CVal->getSExtValue()))
3421 break;
3422
3423 MVT VT = Op.getSimpleValueType();
3424 assert(VT.getVectorElementType() == MVT::i64 &&
3425 Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3426
3427 // Convert the vector source to the equivalent nxvXi32 vector.
3428 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3429 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3430
3431 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3432 DAG.getConstant(0, DL, XLenVT));
3433 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3434 DAG.getConstant(1, DL, XLenVT));
3435
3436 // Double the VL since we halved SEW.
3437 SDValue VL = Op.getOperand(NumOps - 1);
3438 SDValue I32VL =
3439 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3440
3441 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3442 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3443
3444 // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3445 // instructions.
3446 if (IntNo == Intrinsic::riscv_vslide1up ||
3447 IntNo == Intrinsic::riscv_vslide1up_mask) {
3448 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3449 I32Mask, I32VL);
3450 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3451 I32Mask, I32VL);
3452 } else {
3453 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3454 I32Mask, I32VL);
3455 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3456 I32Mask, I32VL);
3457 }
3458
3459 // Convert back to nxvXi64.
3460 Vec = DAG.getBitcast(VT, Vec);
3461
3462 if (!IsMasked)
3463 return Vec;
3464
3465 // Apply mask after the operation.
3466 SDValue Mask = Op.getOperand(NumOps - 2);
3467 SDValue MaskedOff = Op.getOperand(1);
3468 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3469 }
3470 }
3471
3472 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3473 }
3474
LowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const3475 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3476 SelectionDAG &DAG) const {
3477 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3478 }
3479
getLMUL1VT(MVT VT)3480 static MVT getLMUL1VT(MVT VT) {
3481 assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3482 "Unexpected vector MVT");
3483 return MVT::getScalableVectorVT(
3484 VT.getVectorElementType(),
3485 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3486 }
3487
getRVVReductionOp(unsigned ISDOpcode)3488 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3489 switch (ISDOpcode) {
3490 default:
3491 llvm_unreachable("Unhandled reduction");
3492 case ISD::VECREDUCE_ADD:
3493 return RISCVISD::VECREDUCE_ADD_VL;
3494 case ISD::VECREDUCE_UMAX:
3495 return RISCVISD::VECREDUCE_UMAX_VL;
3496 case ISD::VECREDUCE_SMAX:
3497 return RISCVISD::VECREDUCE_SMAX_VL;
3498 case ISD::VECREDUCE_UMIN:
3499 return RISCVISD::VECREDUCE_UMIN_VL;
3500 case ISD::VECREDUCE_SMIN:
3501 return RISCVISD::VECREDUCE_SMIN_VL;
3502 case ISD::VECREDUCE_AND:
3503 return RISCVISD::VECREDUCE_AND_VL;
3504 case ISD::VECREDUCE_OR:
3505 return RISCVISD::VECREDUCE_OR_VL;
3506 case ISD::VECREDUCE_XOR:
3507 return RISCVISD::VECREDUCE_XOR_VL;
3508 }
3509 }
3510
lowerVectorMaskVECREDUCE(SDValue Op,SelectionDAG & DAG) const3511 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3512 SelectionDAG &DAG) const {
3513 SDLoc DL(Op);
3514 SDValue Vec = Op.getOperand(0);
3515 MVT VecVT = Vec.getSimpleValueType();
3516 assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3517 Op.getOpcode() == ISD::VECREDUCE_OR ||
3518 Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3519 "Unexpected reduction lowering");
3520
3521 MVT XLenVT = Subtarget.getXLenVT();
3522 assert(Op.getValueType() == XLenVT &&
3523 "Expected reduction output to be legalized to XLenVT");
3524
3525 MVT ContainerVT = VecVT;
3526 if (VecVT.isFixedLengthVector()) {
3527 ContainerVT = getContainerForFixedLengthVector(VecVT);
3528 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3529 }
3530
3531 SDValue Mask, VL;
3532 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3533 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3534
3535 switch (Op.getOpcode()) {
3536 default:
3537 llvm_unreachable("Unhandled reduction");
3538 case ISD::VECREDUCE_AND:
3539 // vpopc ~x == 0
3540 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3541 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3542 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3543 case ISD::VECREDUCE_OR:
3544 // vpopc x != 0
3545 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3546 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3547 case ISD::VECREDUCE_XOR: {
3548 // ((vpopc x) & 1) != 0
3549 SDValue One = DAG.getConstant(1, DL, XLenVT);
3550 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3551 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3552 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3553 }
3554 }
3555 }
3556
lowerVECREDUCE(SDValue Op,SelectionDAG & DAG) const3557 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3558 SelectionDAG &DAG) const {
3559 SDLoc DL(Op);
3560 SDValue Vec = Op.getOperand(0);
3561 EVT VecEVT = Vec.getValueType();
3562
3563 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3564
3565 // Due to ordering in legalize types we may have a vector type that needs to
3566 // be split. Do that manually so we can get down to a legal type.
3567 while (getTypeAction(*DAG.getContext(), VecEVT) ==
3568 TargetLowering::TypeSplitVector) {
3569 SDValue Lo, Hi;
3570 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3571 VecEVT = Lo.getValueType();
3572 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3573 }
3574
3575 // TODO: The type may need to be widened rather than split. Or widened before
3576 // it can be split.
3577 if (!isTypeLegal(VecEVT))
3578 return SDValue();
3579
3580 MVT VecVT = VecEVT.getSimpleVT();
3581 MVT VecEltVT = VecVT.getVectorElementType();
3582 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3583
3584 MVT ContainerVT = VecVT;
3585 if (VecVT.isFixedLengthVector()) {
3586 ContainerVT = getContainerForFixedLengthVector(VecVT);
3587 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3588 }
3589
3590 MVT M1VT = getLMUL1VT(ContainerVT);
3591
3592 SDValue Mask, VL;
3593 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3594
3595 // FIXME: This is a VLMAX splat which might be too large and can prevent
3596 // vsetvli removal.
3597 SDValue NeutralElem =
3598 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3599 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3600 SDValue Reduction =
3601 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3602 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3603 DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3604 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3605 }
3606
3607 // Given a reduction op, this function returns the matching reduction opcode,
3608 // the vector SDValue and the scalar SDValue required to lower this to a
3609 // RISCVISD node.
3610 static std::tuple<unsigned, SDValue, SDValue>
getRVVFPReductionOpAndOperands(SDValue Op,SelectionDAG & DAG,EVT EltVT)3611 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3612 SDLoc DL(Op);
3613 auto Flags = Op->getFlags();
3614 unsigned Opcode = Op.getOpcode();
3615 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
3616 switch (Opcode) {
3617 default:
3618 llvm_unreachable("Unhandled reduction");
3619 case ISD::VECREDUCE_FADD:
3620 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3621 DAG.getConstantFP(0.0, DL, EltVT));
3622 case ISD::VECREDUCE_SEQ_FADD:
3623 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3624 Op.getOperand(0));
3625 case ISD::VECREDUCE_FMIN:
3626 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
3627 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3628 case ISD::VECREDUCE_FMAX:
3629 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
3630 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3631 }
3632 }
3633
lowerFPVECREDUCE(SDValue Op,SelectionDAG & DAG) const3634 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3635 SelectionDAG &DAG) const {
3636 SDLoc DL(Op);
3637 MVT VecEltVT = Op.getSimpleValueType();
3638
3639 unsigned RVVOpcode;
3640 SDValue VectorVal, ScalarVal;
3641 std::tie(RVVOpcode, VectorVal, ScalarVal) =
3642 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3643 MVT VecVT = VectorVal.getSimpleValueType();
3644
3645 MVT ContainerVT = VecVT;
3646 if (VecVT.isFixedLengthVector()) {
3647 ContainerVT = getContainerForFixedLengthVector(VecVT);
3648 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3649 }
3650
3651 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3652
3653 SDValue Mask, VL;
3654 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3655
3656 // FIXME: This is a VLMAX splat which might be too large and can prevent
3657 // vsetvli removal.
3658 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3659 SDValue Reduction =
3660 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3661 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3662 DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3663 }
3664
lowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const3665 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3666 SelectionDAG &DAG) const {
3667 SDValue Vec = Op.getOperand(0);
3668 SDValue SubVec = Op.getOperand(1);
3669 MVT VecVT = Vec.getSimpleValueType();
3670 MVT SubVecVT = SubVec.getSimpleValueType();
3671
3672 SDLoc DL(Op);
3673 MVT XLenVT = Subtarget.getXLenVT();
3674 unsigned OrigIdx = Op.getConstantOperandVal(2);
3675 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3676
3677 // We don't have the ability to slide mask vectors up indexed by their i1
3678 // elements; the smallest we can do is i8. Often we are able to bitcast to
3679 // equivalent i8 vectors. Note that when inserting a fixed-length vector
3680 // into a scalable one, we might not necessarily have enough scalable
3681 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3682 if (SubVecVT.getVectorElementType() == MVT::i1 &&
3683 (OrigIdx != 0 || !Vec.isUndef())) {
3684 if (VecVT.getVectorMinNumElements() >= 8 &&
3685 SubVecVT.getVectorMinNumElements() >= 8) {
3686 assert(OrigIdx % 8 == 0 && "Invalid index");
3687 assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3688 SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3689 "Unexpected mask vector lowering");
3690 OrigIdx /= 8;
3691 SubVecVT =
3692 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3693 SubVecVT.isScalableVector());
3694 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3695 VecVT.isScalableVector());
3696 Vec = DAG.getBitcast(VecVT, Vec);
3697 SubVec = DAG.getBitcast(SubVecVT, SubVec);
3698 } else {
3699 // We can't slide this mask vector up indexed by its i1 elements.
3700 // This poses a problem when we wish to insert a scalable vector which
3701 // can't be re-expressed as a larger type. Just choose the slow path and
3702 // extend to a larger type, then truncate back down.
3703 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3704 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3705 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3706 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
3707 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
3708 Op.getOperand(2));
3709 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
3710 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
3711 }
3712 }
3713
3714 // If the subvector vector is a fixed-length type, we cannot use subregister
3715 // manipulation to simplify the codegen; we don't know which register of a
3716 // LMUL group contains the specific subvector as we only know the minimum
3717 // register size. Therefore we must slide the vector group up the full
3718 // amount.
3719 if (SubVecVT.isFixedLengthVector()) {
3720 if (OrigIdx == 0 && Vec.isUndef())
3721 return Op;
3722 MVT ContainerVT = VecVT;
3723 if (VecVT.isFixedLengthVector()) {
3724 ContainerVT = getContainerForFixedLengthVector(VecVT);
3725 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3726 }
3727 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
3728 DAG.getUNDEF(ContainerVT), SubVec,
3729 DAG.getConstant(0, DL, XLenVT));
3730 SDValue Mask =
3731 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3732 // Set the vector length to only the number of elements we care about. Note
3733 // that for slideup this includes the offset.
3734 SDValue VL =
3735 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
3736 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3737 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3738 SubVec, SlideupAmt, Mask, VL);
3739 if (VecVT.isFixedLengthVector())
3740 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3741 return DAG.getBitcast(Op.getValueType(), Slideup);
3742 }
3743
3744 unsigned SubRegIdx, RemIdx;
3745 std::tie(SubRegIdx, RemIdx) =
3746 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3747 VecVT, SubVecVT, OrigIdx, TRI);
3748
3749 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
3750 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
3751 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
3752 SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
3753
3754 // 1. If the Idx has been completely eliminated and this subvector's size is
3755 // a vector register or a multiple thereof, or the surrounding elements are
3756 // undef, then this is a subvector insert which naturally aligns to a vector
3757 // register. These can easily be handled using subregister manipulation.
3758 // 2. If the subvector is smaller than a vector register, then the insertion
3759 // must preserve the undisturbed elements of the register. We do this by
3760 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
3761 // (which resolves to a subregister copy), performing a VSLIDEUP to place the
3762 // subvector within the vector register, and an INSERT_SUBVECTOR of that
3763 // LMUL=1 type back into the larger vector (resolving to another subregister
3764 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
3765 // to avoid allocating a large register group to hold our subvector.
3766 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
3767 return Op;
3768
3769 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
3770 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
3771 // (in our case undisturbed). This means we can set up a subvector insertion
3772 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
3773 // size of the subvector.
3774 MVT InterSubVT = VecVT;
3775 SDValue AlignedExtract = Vec;
3776 unsigned AlignedIdx = OrigIdx - RemIdx;
3777 if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3778 InterSubVT = getLMUL1VT(VecVT);
3779 // Extract a subvector equal to the nearest full vector register type. This
3780 // should resolve to a EXTRACT_SUBREG instruction.
3781 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3782 DAG.getConstant(AlignedIdx, DL, XLenVT));
3783 }
3784
3785 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3786 // For scalable vectors this must be further multiplied by vscale.
3787 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
3788
3789 SDValue Mask, VL;
3790 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
3791
3792 // Construct the vector length corresponding to RemIdx + length(SubVecVT).
3793 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
3794 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
3795 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
3796
3797 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
3798 DAG.getUNDEF(InterSubVT), SubVec,
3799 DAG.getConstant(0, DL, XLenVT));
3800
3801 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
3802 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
3803
3804 // If required, insert this subvector back into the correct vector register.
3805 // This should resolve to an INSERT_SUBREG instruction.
3806 if (VecVT.bitsGT(InterSubVT))
3807 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
3808 DAG.getConstant(AlignedIdx, DL, XLenVT));
3809
3810 // We might have bitcast from a mask type: cast back to the original type if
3811 // required.
3812 return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
3813 }
3814
lowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const3815 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
3816 SelectionDAG &DAG) const {
3817 SDValue Vec = Op.getOperand(0);
3818 MVT SubVecVT = Op.getSimpleValueType();
3819 MVT VecVT = Vec.getSimpleValueType();
3820
3821 SDLoc DL(Op);
3822 MVT XLenVT = Subtarget.getXLenVT();
3823 unsigned OrigIdx = Op.getConstantOperandVal(1);
3824 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3825
3826 // We don't have the ability to slide mask vectors down indexed by their i1
3827 // elements; the smallest we can do is i8. Often we are able to bitcast to
3828 // equivalent i8 vectors. Note that when extracting a fixed-length vector
3829 // from a scalable one, we might not necessarily have enough scalable
3830 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
3831 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
3832 if (VecVT.getVectorMinNumElements() >= 8 &&
3833 SubVecVT.getVectorMinNumElements() >= 8) {
3834 assert(OrigIdx % 8 == 0 && "Invalid index");
3835 assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3836 SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3837 "Unexpected mask vector lowering");
3838 OrigIdx /= 8;
3839 SubVecVT =
3840 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3841 SubVecVT.isScalableVector());
3842 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3843 VecVT.isScalableVector());
3844 Vec = DAG.getBitcast(VecVT, Vec);
3845 } else {
3846 // We can't slide this mask vector down, indexed by its i1 elements.
3847 // This poses a problem when we wish to extract a scalable vector which
3848 // can't be re-expressed as a larger type. Just choose the slow path and
3849 // extend to a larger type, then truncate back down.
3850 // TODO: We could probably improve this when extracting certain fixed
3851 // from fixed, where we can extract as i8 and shift the correct element
3852 // right to reach the desired subvector?
3853 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3854 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3855 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3856 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
3857 Op.getOperand(1));
3858 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
3859 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
3860 }
3861 }
3862
3863 // If the subvector vector is a fixed-length type, we cannot use subregister
3864 // manipulation to simplify the codegen; we don't know which register of a
3865 // LMUL group contains the specific subvector as we only know the minimum
3866 // register size. Therefore we must slide the vector group down the full
3867 // amount.
3868 if (SubVecVT.isFixedLengthVector()) {
3869 // With an index of 0 this is a cast-like subvector, which can be performed
3870 // with subregister operations.
3871 if (OrigIdx == 0)
3872 return Op;
3873 MVT ContainerVT = VecVT;
3874 if (VecVT.isFixedLengthVector()) {
3875 ContainerVT = getContainerForFixedLengthVector(VecVT);
3876 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3877 }
3878 SDValue Mask =
3879 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3880 // Set the vector length to only the number of elements we care about. This
3881 // avoids sliding down elements we're going to discard straight away.
3882 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
3883 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3884 SDValue Slidedown =
3885 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3886 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
3887 // Now we can use a cast-like subvector extract to get the result.
3888 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3889 DAG.getConstant(0, DL, XLenVT));
3890 return DAG.getBitcast(Op.getValueType(), Slidedown);
3891 }
3892
3893 unsigned SubRegIdx, RemIdx;
3894 std::tie(SubRegIdx, RemIdx) =
3895 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3896 VecVT, SubVecVT, OrigIdx, TRI);
3897
3898 // If the Idx has been completely eliminated then this is a subvector extract
3899 // which naturally aligns to a vector register. These can easily be handled
3900 // using subregister manipulation.
3901 if (RemIdx == 0)
3902 return Op;
3903
3904 // Else we must shift our vector register directly to extract the subvector.
3905 // Do this using VSLIDEDOWN.
3906
3907 // If the vector type is an LMUL-group type, extract a subvector equal to the
3908 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
3909 // instruction.
3910 MVT InterSubVT = VecVT;
3911 if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
3912 InterSubVT = getLMUL1VT(VecVT);
3913 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
3914 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
3915 }
3916
3917 // Slide this vector register down by the desired number of elements in order
3918 // to place the desired subvector starting at element 0.
3919 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
3920 // For scalable vectors this must be further multiplied by vscale.
3921 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
3922
3923 SDValue Mask, VL;
3924 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
3925 SDValue Slidedown =
3926 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
3927 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
3928
3929 // Now the vector is in the right position, extract our final subvector. This
3930 // should resolve to a COPY.
3931 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
3932 DAG.getConstant(0, DL, XLenVT));
3933
3934 // We might have bitcast from a mask type: cast back to the original type if
3935 // required.
3936 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
3937 }
3938
3939 // Lower step_vector to the vid instruction. Any non-identity step value must
3940 // be accounted for my manual expansion.
lowerSTEP_VECTOR(SDValue Op,SelectionDAG & DAG) const3941 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
3942 SelectionDAG &DAG) const {
3943 SDLoc DL(Op);
3944 MVT VT = Op.getSimpleValueType();
3945 MVT XLenVT = Subtarget.getXLenVT();
3946 SDValue Mask, VL;
3947 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
3948 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3949 uint64_t StepValImm = Op.getConstantOperandVal(0);
3950 if (StepValImm != 1) {
3951 assert(Op.getOperand(0).getValueType() == XLenVT &&
3952 "Unexpected step value type");
3953 if (isPowerOf2_64(StepValImm)) {
3954 SDValue StepVal =
3955 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3956 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
3957 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
3958 } else {
3959 SDValue StepVal =
3960 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Op.getOperand(0));
3961 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
3962 }
3963 }
3964 return StepVec;
3965 }
3966
3967 // Implement vector_reverse using vrgather.vv with indices determined by
3968 // subtracting the id of each element from (VLMAX-1). This will convert
3969 // the indices like so:
3970 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
3971 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
lowerVECTOR_REVERSE(SDValue Op,SelectionDAG & DAG) const3972 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
3973 SelectionDAG &DAG) const {
3974 SDLoc DL(Op);
3975 MVT VecVT = Op.getSimpleValueType();
3976 unsigned EltSize = VecVT.getScalarSizeInBits();
3977 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
3978
3979 unsigned MaxVLMAX = 0;
3980 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
3981 if (VectorBitsMax != 0)
3982 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
3983
3984 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
3985 MVT IntVT = VecVT.changeVectorElementTypeToInteger();
3986
3987 // If this is SEW=8 and VLMAX is unknown or more than 256, we need
3988 // to use vrgatherei16.vv.
3989 // TODO: It's also possible to use vrgatherei16.vv for other types to
3990 // decrease register width for the index calculation.
3991 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
3992 // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
3993 // Reverse each half, then reassemble them in reverse order.
3994 // NOTE: It's also possible that after splitting that VLMAX no longer
3995 // requires vrgatherei16.vv.
3996 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
3997 SDValue Lo, Hi;
3998 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3999 EVT LoVT, HiVT;
4000 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4001 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4002 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4003 // Reassemble the low and high pieces reversed.
4004 // FIXME: This is a CONCAT_VECTORS.
4005 SDValue Res =
4006 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4007 DAG.getIntPtrConstant(0, DL));
4008 return DAG.getNode(
4009 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4010 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4011 }
4012
4013 // Just promote the int type to i16 which will double the LMUL.
4014 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4015 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4016 }
4017
4018 MVT XLenVT = Subtarget.getXLenVT();
4019 SDValue Mask, VL;
4020 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4021
4022 // Calculate VLMAX-1 for the desired SEW.
4023 unsigned MinElts = VecVT.getVectorMinNumElements();
4024 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4025 DAG.getConstant(MinElts, DL, XLenVT));
4026 SDValue VLMinus1 =
4027 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4028
4029 // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4030 bool IsRV32E64 =
4031 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4032 SDValue SplatVL;
4033 if (!IsRV32E64)
4034 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4035 else
4036 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4037
4038 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4039 SDValue Indices =
4040 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4041
4042 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4043 }
4044
4045 SDValue
lowerFixedLengthVectorLoadToRVV(SDValue Op,SelectionDAG & DAG) const4046 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4047 SelectionDAG &DAG) const {
4048 auto *Load = cast<LoadSDNode>(Op);
4049
4050 SDLoc DL(Op);
4051 MVT VT = Op.getSimpleValueType();
4052 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4053
4054 SDValue VL =
4055 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4056
4057 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4058 SDValue NewLoad = DAG.getMemIntrinsicNode(
4059 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4060 Load->getMemoryVT(), Load->getMemOperand());
4061
4062 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4063 return DAG.getMergeValues({Result, Load->getChain()}, DL);
4064 }
4065
4066 SDValue
lowerFixedLengthVectorStoreToRVV(SDValue Op,SelectionDAG & DAG) const4067 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4068 SelectionDAG &DAG) const {
4069 auto *Store = cast<StoreSDNode>(Op);
4070
4071 SDLoc DL(Op);
4072 SDValue StoreVal = Store->getValue();
4073 MVT VT = StoreVal.getSimpleValueType();
4074
4075 // If the size less than a byte, we need to pad with zeros to make a byte.
4076 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4077 VT = MVT::v8i1;
4078 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4079 DAG.getConstant(0, DL, VT), StoreVal,
4080 DAG.getIntPtrConstant(0, DL));
4081 }
4082
4083 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4084
4085 SDValue VL =
4086 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4087
4088 SDValue NewValue =
4089 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4090 return DAG.getMemIntrinsicNode(
4091 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4092 {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4093 Store->getMemoryVT(), Store->getMemOperand());
4094 }
4095
lowerMLOAD(SDValue Op,SelectionDAG & DAG) const4096 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
4097 auto *Load = cast<MaskedLoadSDNode>(Op);
4098
4099 SDLoc DL(Op);
4100 MVT VT = Op.getSimpleValueType();
4101 MVT XLenVT = Subtarget.getXLenVT();
4102
4103 SDValue Mask = Load->getMask();
4104 SDValue PassThru = Load->getPassThru();
4105 SDValue VL;
4106
4107 MVT ContainerVT = VT;
4108 if (VT.isFixedLengthVector()) {
4109 ContainerVT = getContainerForFixedLengthVector(VT);
4110 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4111
4112 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4113 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4114 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4115 } else
4116 VL = DAG.getRegister(RISCV::X0, XLenVT);
4117
4118 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4119 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
4120 SDValue Ops[] = {Load->getChain(), IntID, PassThru,
4121 Load->getBasePtr(), Mask, VL};
4122 SDValue Result =
4123 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4124 Load->getMemoryVT(), Load->getMemOperand());
4125 SDValue Chain = Result.getValue(1);
4126
4127 if (VT.isFixedLengthVector())
4128 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4129
4130 return DAG.getMergeValues({Result, Chain}, DL);
4131 }
4132
lowerMSTORE(SDValue Op,SelectionDAG & DAG) const4133 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
4134 auto *Store = cast<MaskedStoreSDNode>(Op);
4135
4136 SDLoc DL(Op);
4137 SDValue Val = Store->getValue();
4138 SDValue Mask = Store->getMask();
4139 MVT VT = Val.getSimpleValueType();
4140 MVT XLenVT = Subtarget.getXLenVT();
4141 SDValue VL;
4142
4143 MVT ContainerVT = VT;
4144 if (VT.isFixedLengthVector()) {
4145 ContainerVT = getContainerForFixedLengthVector(VT);
4146 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4147
4148 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4149 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4150 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4151 } else
4152 VL = DAG.getRegister(RISCV::X0, XLenVT);
4153
4154 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
4155 return DAG.getMemIntrinsicNode(
4156 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
4157 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
4158 Store->getMemoryVT(), Store->getMemOperand());
4159 }
4160
4161 SDValue
lowerFixedLengthVectorSetccToRVV(SDValue Op,SelectionDAG & DAG) const4162 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4163 SelectionDAG &DAG) const {
4164 MVT InVT = Op.getOperand(0).getSimpleValueType();
4165 MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4166
4167 MVT VT = Op.getSimpleValueType();
4168
4169 SDValue Op1 =
4170 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4171 SDValue Op2 =
4172 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4173
4174 SDLoc DL(Op);
4175 SDValue VL =
4176 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4177
4178 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4179 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4180
4181 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4182 Op.getOperand(2), Mask, VL);
4183
4184 return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4185 }
4186
lowerFixedLengthVectorLogicOpToRVV(SDValue Op,SelectionDAG & DAG,unsigned MaskOpc,unsigned VecOpc) const4187 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4188 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4189 MVT VT = Op.getSimpleValueType();
4190
4191 if (VT.getVectorElementType() == MVT::i1)
4192 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4193
4194 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4195 }
4196
4197 // Lower vector ABS to smax(X, sub(0, X)).
lowerABS(SDValue Op,SelectionDAG & DAG) const4198 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4199 SDLoc DL(Op);
4200 MVT VT = Op.getSimpleValueType();
4201 SDValue X = Op.getOperand(0);
4202
4203 assert(VT.isFixedLengthVector() && "Unexpected type");
4204
4205 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4206 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4207
4208 SDValue Mask, VL;
4209 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4210
4211 SDValue SplatZero =
4212 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4213 DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4214 SDValue NegX =
4215 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
4216 SDValue Max =
4217 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
4218
4219 return convertFromScalableVector(VT, Max, DAG, Subtarget);
4220 }
4221
lowerFixedLengthVectorFCOPYSIGNToRVV(SDValue Op,SelectionDAG & DAG) const4222 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4223 SDValue Op, SelectionDAG &DAG) const {
4224 SDLoc DL(Op);
4225 MVT VT = Op.getSimpleValueType();
4226 SDValue Mag = Op.getOperand(0);
4227 SDValue Sign = Op.getOperand(1);
4228 assert(Mag.getValueType() == Sign.getValueType() &&
4229 "Can only handle COPYSIGN with matching types.");
4230
4231 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4232 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
4233 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
4234
4235 SDValue Mask, VL;
4236 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4237
4238 SDValue CopySign =
4239 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
4240
4241 return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
4242 }
4243
lowerFixedLengthVectorSelectToRVV(SDValue Op,SelectionDAG & DAG) const4244 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4245 SDValue Op, SelectionDAG &DAG) const {
4246 MVT VT = Op.getSimpleValueType();
4247 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4248
4249 MVT I1ContainerVT =
4250 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4251
4252 SDValue CC =
4253 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
4254 SDValue Op1 =
4255 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4256 SDValue Op2 =
4257 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
4258
4259 SDLoc DL(Op);
4260 SDValue Mask, VL;
4261 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4262
4263 SDValue Select =
4264 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
4265
4266 return convertFromScalableVector(VT, Select, DAG, Subtarget);
4267 }
4268
lowerToScalableOp(SDValue Op,SelectionDAG & DAG,unsigned NewOpc,bool HasMask) const4269 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
4270 unsigned NewOpc,
4271 bool HasMask) const {
4272 MVT VT = Op.getSimpleValueType();
4273 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4274
4275 // Create list of operands by converting existing ones to scalable types.
4276 SmallVector<SDValue, 6> Ops;
4277 for (const SDValue &V : Op->op_values()) {
4278 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4279
4280 // Pass through non-vector operands.
4281 if (!V.getValueType().isVector()) {
4282 Ops.push_back(V);
4283 continue;
4284 }
4285
4286 // "cast" fixed length vector to a scalable vector.
4287 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
4288 "Only fixed length vectors are supported!");
4289 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4290 }
4291
4292 SDLoc DL(Op);
4293 SDValue Mask, VL;
4294 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4295 if (HasMask)
4296 Ops.push_back(Mask);
4297 Ops.push_back(VL);
4298
4299 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
4300 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
4301 }
4302
4303 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
4304 // * Operands of each node are assumed to be in the same order.
4305 // * The EVL operand is promoted from i32 to i64 on RV64.
4306 // * Fixed-length vectors are converted to their scalable-vector container
4307 // types.
lowerVPOp(SDValue Op,SelectionDAG & DAG,unsigned RISCVISDOpc) const4308 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
4309 unsigned RISCVISDOpc) const {
4310 SDLoc DL(Op);
4311 MVT VT = Op.getSimpleValueType();
4312 Optional<unsigned> EVLIdx = ISD::getVPExplicitVectorLengthIdx(Op.getOpcode());
4313
4314 SmallVector<SDValue, 4> Ops;
4315 MVT XLenVT = Subtarget.getXLenVT();
4316
4317 for (const auto &OpIdx : enumerate(Op->ops())) {
4318 SDValue V = OpIdx.value();
4319 if ((unsigned)OpIdx.index() == EVLIdx) {
4320 Ops.push_back(DAG.getZExtOrTrunc(V, DL, XLenVT));
4321 continue;
4322 }
4323 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4324 // Pass through operands which aren't fixed-length vectors.
4325 if (!V.getValueType().isFixedLengthVector()) {
4326 Ops.push_back(V);
4327 continue;
4328 }
4329 // "cast" fixed length vector to a scalable vector.
4330 MVT OpVT = V.getSimpleValueType();
4331 MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
4332 assert(useRVVForFixedLengthVectorVT(OpVT) &&
4333 "Only fixed length vectors are supported!");
4334 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4335 }
4336
4337 if (!VT.isFixedLengthVector())
4338 return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
4339
4340 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4341
4342 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
4343
4344 return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
4345 }
4346
4347 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4348 // a RVV indexed load. The RVV indexed load instructions only support the
4349 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4350 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4351 // indexing is extended to the XLEN value type and scaled accordingly.
lowerMGATHER(SDValue Op,SelectionDAG & DAG) const4352 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
4353 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
4354 SDLoc DL(Op);
4355
4356 SDValue Index = MGN->getIndex();
4357 SDValue Mask = MGN->getMask();
4358 SDValue PassThru = MGN->getPassThru();
4359
4360 MVT VT = Op.getSimpleValueType();
4361 MVT IndexVT = Index.getSimpleValueType();
4362 MVT XLenVT = Subtarget.getXLenVT();
4363
4364 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4365 "Unexpected VTs!");
4366 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
4367 "Unexpected pointer type");
4368 // Targets have to explicitly opt-in for extending vector loads.
4369 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
4370 "Unexpected extending MGATHER");
4371
4372 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4373 // the selection of the masked intrinsics doesn't do this for us.
4374 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4375
4376 SDValue VL;
4377 MVT ContainerVT = VT;
4378 if (VT.isFixedLengthVector()) {
4379 // We need to use the larger of the result and index type to determine the
4380 // scalable type to use so we don't increase LMUL for any operand/result.
4381 if (VT.bitsGE(IndexVT)) {
4382 ContainerVT = getContainerForFixedLengthVector(VT);
4383 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4384 ContainerVT.getVectorElementCount());
4385 } else {
4386 IndexVT = getContainerForFixedLengthVector(IndexVT);
4387 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
4388 IndexVT.getVectorElementCount());
4389 }
4390
4391 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4392
4393 if (!IsUnmasked) {
4394 MVT MaskVT =
4395 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4396 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4397 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4398 }
4399
4400 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4401 } else
4402 VL = DAG.getRegister(RISCV::X0, XLenVT);
4403
4404 unsigned IntID =
4405 IsUnmasked ? Intrinsic::riscv_vloxei : Intrinsic::riscv_vloxei_mask;
4406 SmallVector<SDValue, 8> Ops{MGN->getChain(),
4407 DAG.getTargetConstant(IntID, DL, XLenVT)};
4408 if (!IsUnmasked)
4409 Ops.push_back(PassThru);
4410 Ops.push_back(MGN->getBasePtr());
4411 Ops.push_back(Index);
4412 if (!IsUnmasked)
4413 Ops.push_back(Mask);
4414 Ops.push_back(VL);
4415
4416 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4417 SDValue Result =
4418 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4419 MGN->getMemoryVT(), MGN->getMemOperand());
4420 SDValue Chain = Result.getValue(1);
4421
4422 if (VT.isFixedLengthVector())
4423 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4424
4425 return DAG.getMergeValues({Result, Chain}, DL);
4426 }
4427
4428 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4429 // a RVV indexed store. The RVV indexed store instructions only support the
4430 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4431 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4432 // indexing is extended to the XLEN value type and scaled accordingly.
lowerMSCATTER(SDValue Op,SelectionDAG & DAG) const4433 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
4434 SelectionDAG &DAG) const {
4435 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
4436 SDLoc DL(Op);
4437 SDValue Index = MSN->getIndex();
4438 SDValue Mask = MSN->getMask();
4439 SDValue Val = MSN->getValue();
4440
4441 MVT VT = Val.getSimpleValueType();
4442 MVT IndexVT = Index.getSimpleValueType();
4443 MVT XLenVT = Subtarget.getXLenVT();
4444
4445 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4446 "Unexpected VTs!");
4447 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
4448 "Unexpected pointer type");
4449 // Targets have to explicitly opt-in for extending vector loads and
4450 // truncating vector stores.
4451 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
4452
4453 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4454 // the selection of the masked intrinsics doesn't do this for us.
4455 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4456
4457 SDValue VL;
4458 if (VT.isFixedLengthVector()) {
4459 // We need to use the larger of the value and index type to determine the
4460 // scalable type to use so we don't increase LMUL for any operand/result.
4461 MVT ContainerVT;
4462 if (VT.bitsGE(IndexVT)) {
4463 ContainerVT = getContainerForFixedLengthVector(VT);
4464 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4465 ContainerVT.getVectorElementCount());
4466 } else {
4467 IndexVT = getContainerForFixedLengthVector(IndexVT);
4468 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4469 IndexVT.getVectorElementCount());
4470 }
4471
4472 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4473 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4474
4475 if (!IsUnmasked) {
4476 MVT MaskVT =
4477 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4478 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4479 }
4480
4481 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4482 } else
4483 VL = DAG.getRegister(RISCV::X0, XLenVT);
4484
4485 unsigned IntID =
4486 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
4487 SmallVector<SDValue, 8> Ops{MSN->getChain(),
4488 DAG.getTargetConstant(IntID, DL, XLenVT)};
4489 Ops.push_back(Val);
4490 Ops.push_back(MSN->getBasePtr());
4491 Ops.push_back(Index);
4492 if (!IsUnmasked)
4493 Ops.push_back(Mask);
4494 Ops.push_back(VL);
4495
4496 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
4497 MSN->getMemoryVT(), MSN->getMemOperand());
4498 }
4499
lowerGET_ROUNDING(SDValue Op,SelectionDAG & DAG) const4500 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
4501 SelectionDAG &DAG) const {
4502 const MVT XLenVT = Subtarget.getXLenVT();
4503 SDLoc DL(Op);
4504 SDValue Chain = Op->getOperand(0);
4505 SDValue SysRegNo = DAG.getConstant(
4506 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4507 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
4508 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
4509
4510 // Encoding used for rounding mode in RISCV differs from that used in
4511 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4512 // table, which consists of a sequence of 4-bit fields, each representing
4513 // corresponding FLT_ROUNDS mode.
4514 static const int Table =
4515 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
4516 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
4517 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
4518 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
4519 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
4520
4521 SDValue Shift =
4522 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
4523 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4524 DAG.getConstant(Table, DL, XLenVT), Shift);
4525 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4526 DAG.getConstant(7, DL, XLenVT));
4527
4528 return DAG.getMergeValues({Masked, Chain}, DL);
4529 }
4530
lowerSET_ROUNDING(SDValue Op,SelectionDAG & DAG) const4531 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
4532 SelectionDAG &DAG) const {
4533 const MVT XLenVT = Subtarget.getXLenVT();
4534 SDLoc DL(Op);
4535 SDValue Chain = Op->getOperand(0);
4536 SDValue RMValue = Op->getOperand(1);
4537 SDValue SysRegNo = DAG.getConstant(
4538 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4539
4540 // Encoding used for rounding mode in RISCV differs from that used in
4541 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4542 // a table, which consists of a sequence of 4-bit fields, each representing
4543 // corresponding RISCV mode.
4544 static const unsigned Table =
4545 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
4546 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
4547 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
4548 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
4549 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
4550
4551 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
4552 DAG.getConstant(2, DL, XLenVT));
4553 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4554 DAG.getConstant(Table, DL, XLenVT), Shift);
4555 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4556 DAG.getConstant(0x7, DL, XLenVT));
4557 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
4558 RMValue);
4559 }
4560
4561 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4562 // form of the given Opcode.
getRISCVWOpcode(unsigned Opcode)4563 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4564 switch (Opcode) {
4565 default:
4566 llvm_unreachable("Unexpected opcode");
4567 case ISD::SHL:
4568 return RISCVISD::SLLW;
4569 case ISD::SRA:
4570 return RISCVISD::SRAW;
4571 case ISD::SRL:
4572 return RISCVISD::SRLW;
4573 case ISD::SDIV:
4574 return RISCVISD::DIVW;
4575 case ISD::UDIV:
4576 return RISCVISD::DIVUW;
4577 case ISD::UREM:
4578 return RISCVISD::REMUW;
4579 case ISD::ROTL:
4580 return RISCVISD::ROLW;
4581 case ISD::ROTR:
4582 return RISCVISD::RORW;
4583 case RISCVISD::GREV:
4584 return RISCVISD::GREVW;
4585 case RISCVISD::GORC:
4586 return RISCVISD::GORCW;
4587 }
4588 }
4589
4590 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
4591 // Because i32 isn't a legal type for RV64, these operations would otherwise
4592 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
4593 // later one because the fact the operation was originally of type i32 is
4594 // lost.
customLegalizeToWOp(SDNode * N,SelectionDAG & DAG,unsigned ExtOpc=ISD::ANY_EXTEND)4595 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4596 unsigned ExtOpc = ISD::ANY_EXTEND) {
4597 SDLoc DL(N);
4598 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4599 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4600 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4601 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4602 // ReplaceNodeResults requires we maintain the same type for the return value.
4603 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4604 }
4605
4606 // Converts the given 32-bit operation to a i64 operation with signed extension
4607 // semantic to reduce the signed extension instructions.
customLegalizeToWOpWithSExt(SDNode * N,SelectionDAG & DAG)4608 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4609 SDLoc DL(N);
4610 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4611 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4612 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4613 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4614 DAG.getValueType(MVT::i32));
4615 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4616 }
4617
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4618 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4619 SmallVectorImpl<SDValue> &Results,
4620 SelectionDAG &DAG) const {
4621 SDLoc DL(N);
4622 switch (N->getOpcode()) {
4623 default:
4624 llvm_unreachable("Don't know how to custom type legalize this operation!");
4625 case ISD::STRICT_FP_TO_SINT:
4626 case ISD::STRICT_FP_TO_UINT:
4627 case ISD::FP_TO_SINT:
4628 case ISD::FP_TO_UINT: {
4629 bool IsStrict = N->isStrictFPOpcode();
4630 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4631 "Unexpected custom legalisation");
4632 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4633 // If the FP type needs to be softened, emit a library call using the 'si'
4634 // version. If we left it to default legalization we'd end up with 'di'. If
4635 // the FP type doesn't need to be softened just let generic type
4636 // legalization promote the result type.
4637 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4638 TargetLowering::TypeSoftenFloat)
4639 return;
4640 RTLIB::Libcall LC;
4641 if (N->getOpcode() == ISD::FP_TO_SINT ||
4642 N->getOpcode() == ISD::STRICT_FP_TO_SINT)
4643 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4644 else
4645 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4646 MakeLibCallOptions CallOptions;
4647 EVT OpVT = Op0.getValueType();
4648 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4649 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4650 SDValue Result;
4651 std::tie(Result, Chain) =
4652 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4653 Results.push_back(Result);
4654 if (IsStrict)
4655 Results.push_back(Chain);
4656 break;
4657 }
4658 case ISD::READCYCLECOUNTER: {
4659 assert(!Subtarget.is64Bit() &&
4660 "READCYCLECOUNTER only has custom type legalization on riscv32");
4661
4662 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4663 SDValue RCW =
4664 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
4665
4666 Results.push_back(
4667 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
4668 Results.push_back(RCW.getValue(2));
4669 break;
4670 }
4671 case ISD::MUL: {
4672 unsigned Size = N->getSimpleValueType(0).getSizeInBits();
4673 unsigned XLen = Subtarget.getXLen();
4674 // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
4675 if (Size > XLen) {
4676 assert(Size == (XLen * 2) && "Unexpected custom legalisation");
4677 SDValue LHS = N->getOperand(0);
4678 SDValue RHS = N->getOperand(1);
4679 APInt HighMask = APInt::getHighBitsSet(Size, XLen);
4680
4681 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
4682 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
4683 // We need exactly one side to be unsigned.
4684 if (LHSIsU == RHSIsU)
4685 return;
4686
4687 auto MakeMULPair = [&](SDValue S, SDValue U) {
4688 MVT XLenVT = Subtarget.getXLenVT();
4689 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
4690 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
4691 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
4692 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
4693 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
4694 };
4695
4696 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
4697 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
4698
4699 // The other operand should be signed, but still prefer MULH when
4700 // possible.
4701 if (RHSIsU && LHSIsS && !RHSIsS)
4702 Results.push_back(MakeMULPair(LHS, RHS));
4703 else if (LHSIsU && RHSIsS && !LHSIsS)
4704 Results.push_back(MakeMULPair(RHS, LHS));
4705
4706 return;
4707 }
4708 LLVM_FALLTHROUGH;
4709 }
4710 case ISD::ADD:
4711 case ISD::SUB:
4712 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4713 "Unexpected custom legalisation");
4714 if (N->getOperand(1).getOpcode() == ISD::Constant)
4715 return;
4716 Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
4717 break;
4718 case ISD::SHL:
4719 case ISD::SRA:
4720 case ISD::SRL:
4721 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4722 "Unexpected custom legalisation");
4723 if (N->getOperand(1).getOpcode() == ISD::Constant)
4724 return;
4725 Results.push_back(customLegalizeToWOp(N, DAG));
4726 break;
4727 case ISD::ROTL:
4728 case ISD::ROTR:
4729 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4730 "Unexpected custom legalisation");
4731 Results.push_back(customLegalizeToWOp(N, DAG));
4732 break;
4733 case ISD::CTTZ:
4734 case ISD::CTTZ_ZERO_UNDEF:
4735 case ISD::CTLZ:
4736 case ISD::CTLZ_ZERO_UNDEF: {
4737 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4738 "Unexpected custom legalisation");
4739
4740 SDValue NewOp0 =
4741 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4742 bool IsCTZ =
4743 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
4744 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
4745 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
4746 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4747 return;
4748 }
4749 case ISD::SDIV:
4750 case ISD::UDIV:
4751 case ISD::UREM: {
4752 MVT VT = N->getSimpleValueType(0);
4753 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
4754 Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
4755 "Unexpected custom legalisation");
4756 if (N->getOperand(0).getOpcode() == ISD::Constant ||
4757 N->getOperand(1).getOpcode() == ISD::Constant)
4758 return;
4759
4760 // If the input is i32, use ANY_EXTEND since the W instructions don't read
4761 // the upper 32 bits. For other types we need to sign or zero extend
4762 // based on the opcode.
4763 unsigned ExtOpc = ISD::ANY_EXTEND;
4764 if (VT != MVT::i32)
4765 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
4766 : ISD::ZERO_EXTEND;
4767
4768 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
4769 break;
4770 }
4771 case ISD::UADDO:
4772 case ISD::USUBO: {
4773 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4774 "Unexpected custom legalisation");
4775 bool IsAdd = N->getOpcode() == ISD::UADDO;
4776 // Create an ADDW or SUBW.
4777 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4778 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4779 SDValue Res =
4780 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
4781 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
4782 DAG.getValueType(MVT::i32));
4783
4784 // Sign extend the LHS and perform an unsigned compare with the ADDW result.
4785 // Since the inputs are sign extended from i32, this is equivalent to
4786 // comparing the lower 32 bits.
4787 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4788 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
4789 IsAdd ? ISD::SETULT : ISD::SETUGT);
4790
4791 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4792 Results.push_back(Overflow);
4793 return;
4794 }
4795 case ISD::UADDSAT:
4796 case ISD::USUBSAT: {
4797 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4798 "Unexpected custom legalisation");
4799 if (Subtarget.hasStdExtZbb()) {
4800 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
4801 // sign extend allows overflow of the lower 32 bits to be detected on
4802 // the promoted size.
4803 SDValue LHS =
4804 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
4805 SDValue RHS =
4806 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
4807 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
4808 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4809 return;
4810 }
4811
4812 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
4813 // promotion for UADDO/USUBO.
4814 Results.push_back(expandAddSubSat(N, DAG));
4815 return;
4816 }
4817 case ISD::BITCAST: {
4818 EVT VT = N->getValueType(0);
4819 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
4820 SDValue Op0 = N->getOperand(0);
4821 EVT Op0VT = Op0.getValueType();
4822 MVT XLenVT = Subtarget.getXLenVT();
4823 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
4824 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
4825 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
4826 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
4827 Subtarget.hasStdExtF()) {
4828 SDValue FPConv =
4829 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
4830 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
4831 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
4832 isTypeLegal(Op0VT)) {
4833 // Custom-legalize bitcasts from fixed-length vector types to illegal
4834 // scalar types in order to improve codegen. Bitcast the vector to a
4835 // one-element vector type whose element type is the same as the result
4836 // type, and extract the first element.
4837 LLVMContext &Context = *DAG.getContext();
4838 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
4839 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
4840 DAG.getConstant(0, DL, XLenVT)));
4841 }
4842 break;
4843 }
4844 case RISCVISD::GREV:
4845 case RISCVISD::GORC: {
4846 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4847 "Unexpected custom legalisation");
4848 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4849 // This is similar to customLegalizeToWOp, except that we pass the second
4850 // operand (a TargetConstant) straight through: it is already of type
4851 // XLenVT.
4852 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4853 SDValue NewOp0 =
4854 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4855 SDValue NewOp1 =
4856 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4857 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4858 // ReplaceNodeResults requires we maintain the same type for the return
4859 // value.
4860 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4861 break;
4862 }
4863 case RISCVISD::SHFL: {
4864 // There is no SHFLIW instruction, but we can just promote the operation.
4865 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4866 "Unexpected custom legalisation");
4867 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
4868 SDValue NewOp0 =
4869 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4870 SDValue NewOp1 =
4871 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4872 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
4873 // ReplaceNodeResults requires we maintain the same type for the return
4874 // value.
4875 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
4876 break;
4877 }
4878 case ISD::BSWAP:
4879 case ISD::BITREVERSE: {
4880 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4881 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
4882 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
4883 N->getOperand(0));
4884 unsigned Imm = N->getOpcode() == ISD::BITREVERSE ? 31 : 24;
4885 SDValue GREVIW = DAG.getNode(RISCVISD::GREVW, DL, MVT::i64, NewOp0,
4886 DAG.getConstant(Imm, DL, MVT::i64));
4887 // ReplaceNodeResults requires we maintain the same type for the return
4888 // value.
4889 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, GREVIW));
4890 break;
4891 }
4892 case ISD::FSHL:
4893 case ISD::FSHR: {
4894 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4895 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
4896 SDValue NewOp0 =
4897 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4898 SDValue NewOp1 =
4899 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4900 SDValue NewOp2 =
4901 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4902 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
4903 // Mask the shift amount to 5 bits.
4904 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
4905 DAG.getConstant(0x1f, DL, MVT::i64));
4906 unsigned Opc =
4907 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
4908 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
4909 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
4910 break;
4911 }
4912 case ISD::EXTRACT_VECTOR_ELT: {
4913 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
4914 // type is illegal (currently only vXi64 RV32).
4915 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
4916 // transferred to the destination register. We issue two of these from the
4917 // upper- and lower- halves of the SEW-bit vector element, slid down to the
4918 // first element.
4919 SDValue Vec = N->getOperand(0);
4920 SDValue Idx = N->getOperand(1);
4921
4922 // The vector type hasn't been legalized yet so we can't issue target
4923 // specific nodes if it needs legalization.
4924 // FIXME: We would manually legalize if it's important.
4925 if (!isTypeLegal(Vec.getValueType()))
4926 return;
4927
4928 MVT VecVT = Vec.getSimpleValueType();
4929
4930 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
4931 VecVT.getVectorElementType() == MVT::i64 &&
4932 "Unexpected EXTRACT_VECTOR_ELT legalization");
4933
4934 // If this is a fixed vector, we need to convert it to a scalable vector.
4935 MVT ContainerVT = VecVT;
4936 if (VecVT.isFixedLengthVector()) {
4937 ContainerVT = getContainerForFixedLengthVector(VecVT);
4938 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4939 }
4940
4941 MVT XLenVT = Subtarget.getXLenVT();
4942
4943 // Use a VL of 1 to avoid processing more elements than we need.
4944 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
4945 SDValue VL = DAG.getConstant(1, DL, XLenVT);
4946 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4947
4948 // Unless the index is known to be 0, we must slide the vector down to get
4949 // the desired element into index 0.
4950 if (!isNullConstant(Idx)) {
4951 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4952 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4953 }
4954
4955 // Extract the lower XLEN bits of the correct vector element.
4956 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4957
4958 // To extract the upper XLEN bits of the vector element, shift the first
4959 // element right by 32 bits and re-extract the lower XLEN bits.
4960 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4961 DAG.getConstant(32, DL, XLenVT), VL);
4962 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
4963 ThirtyTwoV, Mask, VL);
4964
4965 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
4966
4967 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
4968 break;
4969 }
4970 case ISD::INTRINSIC_WO_CHAIN: {
4971 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4972 switch (IntNo) {
4973 default:
4974 llvm_unreachable(
4975 "Don't know how to custom type legalize this intrinsic!");
4976 case Intrinsic::riscv_orc_b: {
4977 // Lower to the GORCI encoding for orc.b with the operand extended.
4978 SDValue NewOp =
4979 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4980 // If Zbp is enabled, use GORCIW which will sign extend the result.
4981 unsigned Opc =
4982 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
4983 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
4984 DAG.getConstant(7, DL, MVT::i64));
4985 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4986 return;
4987 }
4988 case Intrinsic::riscv_grev:
4989 case Intrinsic::riscv_gorc: {
4990 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4991 "Unexpected custom legalisation");
4992 SDValue NewOp1 =
4993 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4994 SDValue NewOp2 =
4995 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
4996 unsigned Opc =
4997 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
4998 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
4999 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5000 break;
5001 }
5002 case Intrinsic::riscv_shfl:
5003 case Intrinsic::riscv_unshfl: {
5004 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5005 "Unexpected custom legalisation");
5006 SDValue NewOp1 =
5007 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5008 SDValue NewOp2 =
5009 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5010 unsigned Opc =
5011 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5012 if (isa<ConstantSDNode>(N->getOperand(2))) {
5013 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5014 DAG.getConstant(0xf, DL, MVT::i64));
5015 Opc =
5016 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5017 }
5018 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5019 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5020 break;
5021 }
5022 case Intrinsic::riscv_bcompress:
5023 case Intrinsic::riscv_bdecompress: {
5024 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5025 "Unexpected custom legalisation");
5026 SDValue NewOp1 =
5027 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5028 SDValue NewOp2 =
5029 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5030 unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5031 ? RISCVISD::BCOMPRESSW
5032 : RISCVISD::BDECOMPRESSW;
5033 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5034 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5035 break;
5036 }
5037 case Intrinsic::riscv_vmv_x_s: {
5038 EVT VT = N->getValueType(0);
5039 MVT XLenVT = Subtarget.getXLenVT();
5040 if (VT.bitsLT(XLenVT)) {
5041 // Simple case just extract using vmv.x.s and truncate.
5042 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5043 Subtarget.getXLenVT(), N->getOperand(1));
5044 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5045 return;
5046 }
5047
5048 assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5049 "Unexpected custom legalization");
5050
5051 // We need to do the move in two steps.
5052 SDValue Vec = N->getOperand(1);
5053 MVT VecVT = Vec.getSimpleValueType();
5054
5055 // First extract the lower XLEN bits of the element.
5056 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5057
5058 // To extract the upper XLEN bits of the vector element, shift the first
5059 // element right by 32 bits and re-extract the lower XLEN bits.
5060 SDValue VL = DAG.getConstant(1, DL, XLenVT);
5061 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5062 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5063 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5064 DAG.getConstant(32, DL, XLenVT), VL);
5065 SDValue LShr32 =
5066 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5067 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5068
5069 Results.push_back(
5070 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5071 break;
5072 }
5073 }
5074 break;
5075 }
5076 case ISD::VECREDUCE_ADD:
5077 case ISD::VECREDUCE_AND:
5078 case ISD::VECREDUCE_OR:
5079 case ISD::VECREDUCE_XOR:
5080 case ISD::VECREDUCE_SMAX:
5081 case ISD::VECREDUCE_UMAX:
5082 case ISD::VECREDUCE_SMIN:
5083 case ISD::VECREDUCE_UMIN:
5084 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5085 Results.push_back(V);
5086 break;
5087 case ISD::FLT_ROUNDS_: {
5088 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
5089 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
5090 Results.push_back(Res.getValue(0));
5091 Results.push_back(Res.getValue(1));
5092 break;
5093 }
5094 }
5095 }
5096
5097 // A structure to hold one of the bit-manipulation patterns below. Together, a
5098 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5099 // (or (and (shl x, 1), 0xAAAAAAAA),
5100 // (and (srl x, 1), 0x55555555))
5101 struct RISCVBitmanipPat {
5102 SDValue Op;
5103 unsigned ShAmt;
5104 bool IsSHL;
5105
formsPairWithRISCVBitmanipPat5106 bool formsPairWith(const RISCVBitmanipPat &Other) const {
5107 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
5108 }
5109 };
5110
5111 // Matches patterns of the form
5112 // (and (shl x, C2), (C1 << C2))
5113 // (and (srl x, C2), C1)
5114 // (shl (and x, C1), C2)
5115 // (srl (and x, (C1 << C2)), C2)
5116 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5117 // The expected masks for each shift amount are specified in BitmanipMasks where
5118 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5119 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5120 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5121 // XLen is 64.
5122 static Optional<RISCVBitmanipPat>
matchRISCVBitmanipPat(SDValue Op,ArrayRef<uint64_t> BitmanipMasks)5123 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
5124 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
5125 "Unexpected number of masks");
5126 Optional<uint64_t> Mask;
5127 // Optionally consume a mask around the shift operation.
5128 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
5129 Mask = Op.getConstantOperandVal(1);
5130 Op = Op.getOperand(0);
5131 }
5132 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
5133 return None;
5134 bool IsSHL = Op.getOpcode() == ISD::SHL;
5135
5136 if (!isa<ConstantSDNode>(Op.getOperand(1)))
5137 return None;
5138 uint64_t ShAmt = Op.getConstantOperandVal(1);
5139
5140 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5141 if (ShAmt >= Width && !isPowerOf2_64(ShAmt))
5142 return None;
5143 // If we don't have enough masks for 64 bit, then we must be trying to
5144 // match SHFL so we're only allowed to shift 1/4 of the width.
5145 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
5146 return None;
5147
5148 SDValue Src = Op.getOperand(0);
5149
5150 // The expected mask is shifted left when the AND is found around SHL
5151 // patterns.
5152 // ((x >> 1) & 0x55555555)
5153 // ((x << 1) & 0xAAAAAAAA)
5154 bool SHLExpMask = IsSHL;
5155
5156 if (!Mask) {
5157 // Sometimes LLVM keeps the mask as an operand of the shift, typically when
5158 // the mask is all ones: consume that now.
5159 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
5160 Mask = Src.getConstantOperandVal(1);
5161 Src = Src.getOperand(0);
5162 // The expected mask is now in fact shifted left for SRL, so reverse the
5163 // decision.
5164 // ((x & 0xAAAAAAAA) >> 1)
5165 // ((x & 0x55555555) << 1)
5166 SHLExpMask = !SHLExpMask;
5167 } else {
5168 // Use a default shifted mask of all-ones if there's no AND, truncated
5169 // down to the expected width. This simplifies the logic later on.
5170 Mask = maskTrailingOnes<uint64_t>(Width);
5171 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
5172 }
5173 }
5174
5175 unsigned MaskIdx = Log2_32(ShAmt);
5176 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5177
5178 if (SHLExpMask)
5179 ExpMask <<= ShAmt;
5180
5181 if (Mask != ExpMask)
5182 return None;
5183
5184 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
5185 }
5186
5187 // Matches any of the following bit-manipulation patterns:
5188 // (and (shl x, 1), (0x55555555 << 1))
5189 // (and (srl x, 1), 0x55555555)
5190 // (shl (and x, 0x55555555), 1)
5191 // (srl (and x, (0x55555555 << 1)), 1)
5192 // where the shift amount and mask may vary thus:
5193 // [1] = 0x55555555 / 0xAAAAAAAA
5194 // [2] = 0x33333333 / 0xCCCCCCCC
5195 // [4] = 0x0F0F0F0F / 0xF0F0F0F0
5196 // [8] = 0x00FF00FF / 0xFF00FF00
5197 // [16] = 0x0000FFFF / 0xFFFFFFFF
5198 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
matchGREVIPat(SDValue Op)5199 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
5200 // These are the unshifted masks which we use to match bit-manipulation
5201 // patterns. They may be shifted left in certain circumstances.
5202 static const uint64_t BitmanipMasks[] = {
5203 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
5204 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
5205
5206 return matchRISCVBitmanipPat(Op, BitmanipMasks);
5207 }
5208
5209 // Match the following pattern as a GREVI(W) operation
5210 // (or (BITMANIP_SHL x), (BITMANIP_SRL x))
combineORToGREV(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)5211 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
5212 const RISCVSubtarget &Subtarget) {
5213 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5214 EVT VT = Op.getValueType();
5215
5216 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5217 auto LHS = matchGREVIPat(Op.getOperand(0));
5218 auto RHS = matchGREVIPat(Op.getOperand(1));
5219 if (LHS && RHS && LHS->formsPairWith(*RHS)) {
5220 SDLoc DL(Op);
5221 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
5222 DAG.getConstant(LHS->ShAmt, DL, VT));
5223 }
5224 }
5225 return SDValue();
5226 }
5227
5228 // Matches any the following pattern as a GORCI(W) operation
5229 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2
5230 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2
5231 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
5232 // Note that with the variant of 3.,
5233 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
5234 // the inner pattern will first be matched as GREVI and then the outer
5235 // pattern will be matched to GORC via the first rule above.
5236 // 4. (or (rotl/rotr x, bitwidth/2), x)
combineORToGORC(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)5237 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
5238 const RISCVSubtarget &Subtarget) {
5239 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5240 EVT VT = Op.getValueType();
5241
5242 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5243 SDLoc DL(Op);
5244 SDValue Op0 = Op.getOperand(0);
5245 SDValue Op1 = Op.getOperand(1);
5246
5247 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
5248 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
5249 isa<ConstantSDNode>(Reverse.getOperand(1)) &&
5250 isPowerOf2_32(Reverse.getConstantOperandVal(1)))
5251 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
5252 // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5253 if ((Reverse.getOpcode() == ISD::ROTL ||
5254 Reverse.getOpcode() == ISD::ROTR) &&
5255 Reverse.getOperand(0) == X &&
5256 isa<ConstantSDNode>(Reverse.getOperand(1))) {
5257 uint64_t RotAmt = Reverse.getConstantOperandVal(1);
5258 if (RotAmt == (VT.getSizeInBits() / 2))
5259 return DAG.getNode(RISCVISD::GORC, DL, VT, X,
5260 DAG.getConstant(RotAmt, DL, VT));
5261 }
5262 return SDValue();
5263 };
5264
5265 // Check for either commutable permutation of (or (GREVI x, shamt), x)
5266 if (SDValue V = MatchOROfReverse(Op0, Op1))
5267 return V;
5268 if (SDValue V = MatchOROfReverse(Op1, Op0))
5269 return V;
5270
5271 // OR is commutable so canonicalize its OR operand to the left
5272 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
5273 std::swap(Op0, Op1);
5274 if (Op0.getOpcode() != ISD::OR)
5275 return SDValue();
5276 SDValue OrOp0 = Op0.getOperand(0);
5277 SDValue OrOp1 = Op0.getOperand(1);
5278 auto LHS = matchGREVIPat(OrOp0);
5279 // OR is commutable so swap the operands and try again: x might have been
5280 // on the left
5281 if (!LHS) {
5282 std::swap(OrOp0, OrOp1);
5283 LHS = matchGREVIPat(OrOp0);
5284 }
5285 auto RHS = matchGREVIPat(Op1);
5286 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
5287 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
5288 DAG.getConstant(LHS->ShAmt, DL, VT));
5289 }
5290 }
5291 return SDValue();
5292 }
5293
5294 // Matches any of the following bit-manipulation patterns:
5295 // (and (shl x, 1), (0x22222222 << 1))
5296 // (and (srl x, 1), 0x22222222)
5297 // (shl (and x, 0x22222222), 1)
5298 // (srl (and x, (0x22222222 << 1)), 1)
5299 // where the shift amount and mask may vary thus:
5300 // [1] = 0x22222222 / 0x44444444
5301 // [2] = 0x0C0C0C0C / 0x3C3C3C3C
5302 // [4] = 0x00F000F0 / 0x0F000F00
5303 // [8] = 0x0000FF00 / 0x00FF0000
5304 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
matchSHFLPat(SDValue Op)5305 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
5306 // These are the unshifted masks which we use to match bit-manipulation
5307 // patterns. They may be shifted left in certain circumstances.
5308 static const uint64_t BitmanipMasks[] = {
5309 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
5310 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
5311
5312 return matchRISCVBitmanipPat(Op, BitmanipMasks);
5313 }
5314
5315 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
combineORToSHFL(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)5316 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
5317 const RISCVSubtarget &Subtarget) {
5318 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5319 EVT VT = Op.getValueType();
5320
5321 if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
5322 return SDValue();
5323
5324 SDValue Op0 = Op.getOperand(0);
5325 SDValue Op1 = Op.getOperand(1);
5326
5327 // Or is commutable so canonicalize the second OR to the LHS.
5328 if (Op0.getOpcode() != ISD::OR)
5329 std::swap(Op0, Op1);
5330 if (Op0.getOpcode() != ISD::OR)
5331 return SDValue();
5332
5333 // We found an inner OR, so our operands are the operands of the inner OR
5334 // and the other operand of the outer OR.
5335 SDValue A = Op0.getOperand(0);
5336 SDValue B = Op0.getOperand(1);
5337 SDValue C = Op1;
5338
5339 auto Match1 = matchSHFLPat(A);
5340 auto Match2 = matchSHFLPat(B);
5341
5342 // If neither matched, we failed.
5343 if (!Match1 && !Match2)
5344 return SDValue();
5345
5346 // We had at least one match. if one failed, try the remaining C operand.
5347 if (!Match1) {
5348 std::swap(A, C);
5349 Match1 = matchSHFLPat(A);
5350 if (!Match1)
5351 return SDValue();
5352 } else if (!Match2) {
5353 std::swap(B, C);
5354 Match2 = matchSHFLPat(B);
5355 if (!Match2)
5356 return SDValue();
5357 }
5358 assert(Match1 && Match2);
5359
5360 // Make sure our matches pair up.
5361 if (!Match1->formsPairWith(*Match2))
5362 return SDValue();
5363
5364 // All the remains is to make sure C is an AND with the same input, that masks
5365 // out the bits that are being shuffled.
5366 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
5367 C.getOperand(0) != Match1->Op)
5368 return SDValue();
5369
5370 uint64_t Mask = C.getConstantOperandVal(1);
5371
5372 static const uint64_t BitmanipMasks[] = {
5373 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
5374 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
5375 };
5376
5377 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5378 unsigned MaskIdx = Log2_32(Match1->ShAmt);
5379 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5380
5381 if (Mask != ExpMask)
5382 return SDValue();
5383
5384 SDLoc DL(Op);
5385 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
5386 DAG.getConstant(Match1->ShAmt, DL, VT));
5387 }
5388
5389 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5390 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5391 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5392 // not undo itself, but they are redundant.
combineGREVI_GORCI(SDNode * N,SelectionDAG & DAG)5393 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
5394 SDValue Src = N->getOperand(0);
5395
5396 if (Src.getOpcode() != N->getOpcode())
5397 return SDValue();
5398
5399 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
5400 !isa<ConstantSDNode>(Src.getOperand(1)))
5401 return SDValue();
5402
5403 unsigned ShAmt1 = N->getConstantOperandVal(1);
5404 unsigned ShAmt2 = Src.getConstantOperandVal(1);
5405 Src = Src.getOperand(0);
5406
5407 unsigned CombinedShAmt;
5408 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
5409 CombinedShAmt = ShAmt1 | ShAmt2;
5410 else
5411 CombinedShAmt = ShAmt1 ^ ShAmt2;
5412
5413 if (CombinedShAmt == 0)
5414 return Src;
5415
5416 SDLoc DL(N);
5417 return DAG.getNode(
5418 N->getOpcode(), DL, N->getValueType(0), Src,
5419 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
5420 }
5421
5422 // Combine a constant select operand into its use:
5423 //
5424 // (and (select_cc lhs, rhs, cc, -1, c), x)
5425 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1]
5426 // (or (select_cc lhs, rhs, cc, 0, c), x)
5427 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0]
5428 // (xor (select_cc lhs, rhs, cc, 0, c), x)
5429 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0]
combineSelectCCAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,SelectionDAG & DAG,bool AllOnes)5430 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5431 SelectionDAG &DAG, bool AllOnes) {
5432 EVT VT = N->getValueType(0);
5433
5434 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse())
5435 return SDValue();
5436
5437 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
5438 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
5439 };
5440
5441 bool SwapSelectOps;
5442 SDValue TrueVal = Slct.getOperand(3);
5443 SDValue FalseVal = Slct.getOperand(4);
5444 SDValue NonConstantVal;
5445 if (isZeroOrAllOnes(TrueVal, AllOnes)) {
5446 SwapSelectOps = false;
5447 NonConstantVal = FalseVal;
5448 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
5449 SwapSelectOps = true;
5450 NonConstantVal = TrueVal;
5451 } else
5452 return SDValue();
5453
5454 // Slct is now know to be the desired identity constant when CC is true.
5455 TrueVal = OtherOp;
5456 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
5457 // Unless SwapSelectOps says CC should be false.
5458 if (SwapSelectOps)
5459 std::swap(TrueVal, FalseVal);
5460
5461 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
5462 {Slct.getOperand(0), Slct.getOperand(1),
5463 Slct.getOperand(2), TrueVal, FalseVal});
5464 }
5465
5466 // Attempt combineSelectAndUse on each operand of a commutative operator N.
combineSelectCCAndUseCommutative(SDNode * N,SelectionDAG & DAG,bool AllOnes)5467 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG,
5468 bool AllOnes) {
5469 SDValue N0 = N->getOperand(0);
5470 SDValue N1 = N->getOperand(1);
5471 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes))
5472 return Result;
5473 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes))
5474 return Result;
5475 return SDValue();
5476 }
5477
performANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)5478 static SDValue performANDCombine(SDNode *N,
5479 TargetLowering::DAGCombinerInfo &DCI,
5480 const RISCVSubtarget &Subtarget) {
5481 SelectionDAG &DAG = DCI.DAG;
5482
5483 // fold (and (select_cc lhs, rhs, cc, -1, y), x) ->
5484 // (select lhs, rhs, cc, x, (and x, y))
5485 return combineSelectCCAndUseCommutative(N, DAG, true);
5486 }
5487
performORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)5488 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
5489 const RISCVSubtarget &Subtarget) {
5490 SelectionDAG &DAG = DCI.DAG;
5491 if (Subtarget.hasStdExtZbp()) {
5492 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
5493 return GREV;
5494 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
5495 return GORC;
5496 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
5497 return SHFL;
5498 }
5499
5500 // fold (or (select_cc lhs, rhs, cc, 0, y), x) ->
5501 // (select lhs, rhs, cc, x, (or x, y))
5502 return combineSelectCCAndUseCommutative(N, DAG, false);
5503 }
5504
performXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)5505 static SDValue performXORCombine(SDNode *N,
5506 TargetLowering::DAGCombinerInfo &DCI,
5507 const RISCVSubtarget &Subtarget) {
5508 SelectionDAG &DAG = DCI.DAG;
5509
5510 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) ->
5511 // (select lhs, rhs, cc, x, (xor x, y))
5512 return combineSelectCCAndUseCommutative(N, DAG, false);
5513 }
5514
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5515 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
5516 DAGCombinerInfo &DCI) const {
5517 SelectionDAG &DAG = DCI.DAG;
5518
5519 switch (N->getOpcode()) {
5520 default:
5521 break;
5522 case RISCVISD::SplitF64: {
5523 SDValue Op0 = N->getOperand(0);
5524 // If the input to SplitF64 is just BuildPairF64 then the operation is
5525 // redundant. Instead, use BuildPairF64's operands directly.
5526 if (Op0->getOpcode() == RISCVISD::BuildPairF64)
5527 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
5528
5529 SDLoc DL(N);
5530
5531 // It's cheaper to materialise two 32-bit integers than to load a double
5532 // from the constant pool and transfer it to integer registers through the
5533 // stack.
5534 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
5535 APInt V = C->getValueAPF().bitcastToAPInt();
5536 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
5537 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
5538 return DCI.CombineTo(N, Lo, Hi);
5539 }
5540
5541 // This is a target-specific version of a DAGCombine performed in
5542 // DAGCombiner::visitBITCAST. It performs the equivalent of:
5543 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5544 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5545 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5546 !Op0.getNode()->hasOneUse())
5547 break;
5548 SDValue NewSplitF64 =
5549 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
5550 Op0.getOperand(0));
5551 SDValue Lo = NewSplitF64.getValue(0);
5552 SDValue Hi = NewSplitF64.getValue(1);
5553 APInt SignBit = APInt::getSignMask(32);
5554 if (Op0.getOpcode() == ISD::FNEG) {
5555 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
5556 DAG.getConstant(SignBit, DL, MVT::i32));
5557 return DCI.CombineTo(N, Lo, NewHi);
5558 }
5559 assert(Op0.getOpcode() == ISD::FABS);
5560 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
5561 DAG.getConstant(~SignBit, DL, MVT::i32));
5562 return DCI.CombineTo(N, Lo, NewHi);
5563 }
5564 case RISCVISD::SLLW:
5565 case RISCVISD::SRAW:
5566 case RISCVISD::SRLW:
5567 case RISCVISD::ROLW:
5568 case RISCVISD::RORW: {
5569 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5570 SDValue LHS = N->getOperand(0);
5571 SDValue RHS = N->getOperand(1);
5572 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5573 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5574 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
5575 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
5576 if (N->getOpcode() != ISD::DELETED_NODE)
5577 DCI.AddToWorklist(N);
5578 return SDValue(N, 0);
5579 }
5580 break;
5581 }
5582 case RISCVISD::CLZW:
5583 case RISCVISD::CTZW: {
5584 // Only the lower 32 bits of the first operand are read
5585 SDValue Op0 = N->getOperand(0);
5586 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5587 if (SimplifyDemandedBits(Op0, Mask, DCI)) {
5588 if (N->getOpcode() != ISD::DELETED_NODE)
5589 DCI.AddToWorklist(N);
5590 return SDValue(N, 0);
5591 }
5592 break;
5593 }
5594 case RISCVISD::FSL:
5595 case RISCVISD::FSR: {
5596 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
5597 SDValue ShAmt = N->getOperand(2);
5598 unsigned BitWidth = ShAmt.getValueSizeInBits();
5599 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5600 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
5601 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5602 if (N->getOpcode() != ISD::DELETED_NODE)
5603 DCI.AddToWorklist(N);
5604 return SDValue(N, 0);
5605 }
5606 break;
5607 }
5608 case RISCVISD::FSLW:
5609 case RISCVISD::FSRW: {
5610 // Only the lower 32 bits of Values and lower 6 bits of shift amount are
5611 // read.
5612 SDValue Op0 = N->getOperand(0);
5613 SDValue Op1 = N->getOperand(1);
5614 SDValue ShAmt = N->getOperand(2);
5615 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5616 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
5617 if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
5618 SimplifyDemandedBits(Op1, OpMask, DCI) ||
5619 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5620 if (N->getOpcode() != ISD::DELETED_NODE)
5621 DCI.AddToWorklist(N);
5622 return SDValue(N, 0);
5623 }
5624 break;
5625 }
5626 case RISCVISD::GREV:
5627 case RISCVISD::GORC: {
5628 // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5629 SDValue ShAmt = N->getOperand(1);
5630 unsigned BitWidth = ShAmt.getValueSizeInBits();
5631 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5632 APInt ShAmtMask(BitWidth, BitWidth - 1);
5633 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5634 if (N->getOpcode() != ISD::DELETED_NODE)
5635 DCI.AddToWorklist(N);
5636 return SDValue(N, 0);
5637 }
5638
5639 return combineGREVI_GORCI(N, DCI.DAG);
5640 }
5641 case RISCVISD::GREVW:
5642 case RISCVISD::GORCW: {
5643 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5644 SDValue LHS = N->getOperand(0);
5645 SDValue RHS = N->getOperand(1);
5646 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5647 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5648 if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5649 SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5650 if (N->getOpcode() != ISD::DELETED_NODE)
5651 DCI.AddToWorklist(N);
5652 return SDValue(N, 0);
5653 }
5654
5655 return combineGREVI_GORCI(N, DCI.DAG);
5656 }
5657 case RISCVISD::SHFL:
5658 case RISCVISD::UNSHFL: {
5659 // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5660 SDValue ShAmt = N->getOperand(1);
5661 unsigned BitWidth = ShAmt.getValueSizeInBits();
5662 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5663 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1);
5664 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5665 if (N->getOpcode() != ISD::DELETED_NODE)
5666 DCI.AddToWorklist(N);
5667 return SDValue(N, 0);
5668 }
5669
5670 break;
5671 }
5672 case RISCVISD::SHFLW:
5673 case RISCVISD::UNSHFLW: {
5674 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5675 SDValue LHS = N->getOperand(0);
5676 SDValue RHS = N->getOperand(1);
5677 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5678 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
5679 if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
5680 SimplifyDemandedBits(RHS, RHSMask, DCI)) {
5681 if (N->getOpcode() != ISD::DELETED_NODE)
5682 DCI.AddToWorklist(N);
5683 return SDValue(N, 0);
5684 }
5685
5686 break;
5687 }
5688 case RISCVISD::BCOMPRESSW:
5689 case RISCVISD::BDECOMPRESSW: {
5690 // Only the lower 32 bits of LHS and RHS are read.
5691 SDValue LHS = N->getOperand(0);
5692 SDValue RHS = N->getOperand(1);
5693 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5694 if (SimplifyDemandedBits(LHS, Mask, DCI) ||
5695 SimplifyDemandedBits(RHS, Mask, DCI)) {
5696 if (N->getOpcode() != ISD::DELETED_NODE)
5697 DCI.AddToWorklist(N);
5698 return SDValue(N, 0);
5699 }
5700
5701 break;
5702 }
5703 case RISCVISD::FMV_X_ANYEXTW_RV64: {
5704 SDLoc DL(N);
5705 SDValue Op0 = N->getOperand(0);
5706 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
5707 // conversion is unnecessary and can be replaced with an ANY_EXTEND
5708 // of the FMV_W_X_RV64 operand.
5709 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
5710 assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
5711 "Unexpected value type!");
5712 return Op0.getOperand(0);
5713 }
5714
5715 // This is a target-specific version of a DAGCombine performed in
5716 // DAGCombiner::visitBITCAST. It performs the equivalent of:
5717 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5718 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5719 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5720 !Op0.getNode()->hasOneUse())
5721 break;
5722 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
5723 Op0.getOperand(0));
5724 APInt SignBit = APInt::getSignMask(32).sext(64);
5725 if (Op0.getOpcode() == ISD::FNEG)
5726 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
5727 DAG.getConstant(SignBit, DL, MVT::i64));
5728
5729 assert(Op0.getOpcode() == ISD::FABS);
5730 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
5731 DAG.getConstant(~SignBit, DL, MVT::i64));
5732 }
5733 case ISD::AND:
5734 return performANDCombine(N, DCI, Subtarget);
5735 case ISD::OR:
5736 return performORCombine(N, DCI, Subtarget);
5737 case ISD::XOR:
5738 return performXORCombine(N, DCI, Subtarget);
5739 case RISCVISD::SELECT_CC: {
5740 // Transform
5741 SDValue LHS = N->getOperand(0);
5742 SDValue RHS = N->getOperand(1);
5743 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
5744 if (!ISD::isIntEqualitySetCC(CCVal))
5745 break;
5746
5747 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
5748 // (select_cc X, Y, lt, trueV, falseV)
5749 // Sometimes the setcc is introduced after select_cc has been formed.
5750 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5751 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5752 // If we're looking for eq 0 instead of ne 0, we need to invert the
5753 // condition.
5754 bool Invert = CCVal == ISD::SETEQ;
5755 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5756 if (Invert)
5757 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5758
5759 SDLoc DL(N);
5760 RHS = LHS.getOperand(1);
5761 LHS = LHS.getOperand(0);
5762 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5763
5764 SDValue TargetCC =
5765 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5766 return DAG.getNode(
5767 RISCVISD::SELECT_CC, DL, N->getValueType(0),
5768 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5769 }
5770
5771 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
5772 // (select_cc X, Y, eq/ne, trueV, falseV)
5773 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5774 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
5775 {LHS.getOperand(0), LHS.getOperand(1),
5776 N->getOperand(2), N->getOperand(3),
5777 N->getOperand(4)});
5778 // (select_cc X, 1, setne, trueV, falseV) ->
5779 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
5780 // This can occur when legalizing some floating point comparisons.
5781 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5782 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5783 SDLoc DL(N);
5784 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5785 SDValue TargetCC =
5786 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
5787 RHS = DAG.getConstant(0, DL, LHS.getValueType());
5788 return DAG.getNode(
5789 RISCVISD::SELECT_CC, DL, N->getValueType(0),
5790 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
5791 }
5792
5793 break;
5794 }
5795 case RISCVISD::BR_CC: {
5796 SDValue LHS = N->getOperand(1);
5797 SDValue RHS = N->getOperand(2);
5798 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
5799 if (!ISD::isIntEqualitySetCC(CCVal))
5800 break;
5801
5802 // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
5803 // (br_cc X, Y, lt, dest)
5804 // Sometimes the setcc is introduced after br_cc has been formed.
5805 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
5806 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
5807 // If we're looking for eq 0 instead of ne 0, we need to invert the
5808 // condition.
5809 bool Invert = CCVal == ISD::SETEQ;
5810 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
5811 if (Invert)
5812 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5813
5814 SDLoc DL(N);
5815 RHS = LHS.getOperand(1);
5816 LHS = LHS.getOperand(0);
5817 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
5818
5819 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5820 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
5821 N->getOperand(4));
5822 }
5823
5824 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
5825 // (br_cc X, Y, eq/ne, trueV, falseV)
5826 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
5827 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
5828 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
5829 N->getOperand(3), N->getOperand(4));
5830
5831 // (br_cc X, 1, setne, br_cc) ->
5832 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
5833 // This can occur when legalizing some floating point comparisons.
5834 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
5835 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
5836 SDLoc DL(N);
5837 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
5838 SDValue TargetCC = DAG.getCondCode(CCVal);
5839 RHS = DAG.getConstant(0, DL, LHS.getValueType());
5840 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
5841 N->getOperand(0), LHS, RHS, TargetCC,
5842 N->getOperand(4));
5843 }
5844 break;
5845 }
5846 case ISD::FCOPYSIGN: {
5847 EVT VT = N->getValueType(0);
5848 if (!VT.isVector())
5849 break;
5850 // There is a form of VFSGNJ which injects the negated sign of its second
5851 // operand. Try and bubble any FNEG up after the extend/round to produce
5852 // this optimized pattern. Avoid modifying cases where FP_ROUND and
5853 // TRUNC=1.
5854 SDValue In2 = N->getOperand(1);
5855 // Avoid cases where the extend/round has multiple uses, as duplicating
5856 // those is typically more expensive than removing a fneg.
5857 if (!In2.hasOneUse())
5858 break;
5859 if (In2.getOpcode() != ISD::FP_EXTEND &&
5860 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
5861 break;
5862 In2 = In2.getOperand(0);
5863 if (In2.getOpcode() != ISD::FNEG)
5864 break;
5865 SDLoc DL(N);
5866 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
5867 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
5868 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
5869 }
5870 case ISD::MGATHER:
5871 case ISD::MSCATTER: {
5872 if (!DCI.isBeforeLegalize())
5873 break;
5874 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
5875 SDValue Index = MGSN->getIndex();
5876 EVT IndexVT = Index.getValueType();
5877 MVT XLenVT = Subtarget.getXLenVT();
5878 // RISCV indexed loads only support the "unsigned unscaled" addressing
5879 // mode, so anything else must be manually legalized.
5880 bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
5881 (MGSN->isIndexSigned() &&
5882 IndexVT.getVectorElementType().bitsLT(XLenVT));
5883 if (!NeedsIdxLegalization)
5884 break;
5885
5886 SDLoc DL(N);
5887
5888 // Any index legalization should first promote to XLenVT, so we don't lose
5889 // bits when scaling. This may create an illegal index type so we let
5890 // LLVM's legalization take care of the splitting.
5891 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
5892 IndexVT = IndexVT.changeVectorElementType(XLenVT);
5893 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
5894 : ISD::ZERO_EXTEND,
5895 DL, IndexVT, Index);
5896 }
5897
5898 unsigned Scale = N->getConstantOperandVal(5);
5899 if (MGSN->isIndexScaled() && Scale != 1) {
5900 // Manually scale the indices by the element size.
5901 // TODO: Sanitize the scale operand here?
5902 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
5903 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
5904 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
5905 }
5906
5907 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
5908 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
5909 return DAG.getMaskedGather(
5910 N->getVTList(), MGSN->getMemoryVT(), DL,
5911 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
5912 MGSN->getBasePtr(), Index, MGN->getScale()},
5913 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
5914 }
5915 const auto *MSN = cast<MaskedScatterSDNode>(N);
5916 return DAG.getMaskedScatter(
5917 N->getVTList(), MGSN->getMemoryVT(), DL,
5918 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
5919 Index, MGSN->getScale()},
5920 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
5921 }
5922 }
5923
5924 return SDValue();
5925 }
5926
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const5927 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
5928 const SDNode *N, CombineLevel Level) const {
5929 // The following folds are only desirable if `(OP _, c1 << c2)` can be
5930 // materialised in fewer instructions than `(OP _, c1)`:
5931 //
5932 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
5933 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
5934 SDValue N0 = N->getOperand(0);
5935 EVT Ty = N0.getValueType();
5936 if (Ty.isScalarInteger() &&
5937 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
5938 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
5939 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
5940 if (C1 && C2) {
5941 const APInt &C1Int = C1->getAPIntValue();
5942 APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
5943
5944 // We can materialise `c1 << c2` into an add immediate, so it's "free",
5945 // and the combine should happen, to potentially allow further combines
5946 // later.
5947 if (ShiftedC1Int.getMinSignedBits() <= 64 &&
5948 isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
5949 return true;
5950
5951 // We can materialise `c1` in an add immediate, so it's "free", and the
5952 // combine should be prevented.
5953 if (C1Int.getMinSignedBits() <= 64 &&
5954 isLegalAddImmediate(C1Int.getSExtValue()))
5955 return false;
5956
5957 // Neither constant will fit into an immediate, so find materialisation
5958 // costs.
5959 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
5960 Subtarget.is64Bit());
5961 int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
5962 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
5963
5964 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
5965 // combine should be prevented.
5966 if (C1Cost < ShiftedC1Cost)
5967 return false;
5968 }
5969 }
5970 return true;
5971 }
5972
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const5973 bool RISCVTargetLowering::targetShrinkDemandedConstant(
5974 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
5975 TargetLoweringOpt &TLO) const {
5976 // Delay this optimization as late as possible.
5977 if (!TLO.LegalOps)
5978 return false;
5979
5980 EVT VT = Op.getValueType();
5981 if (VT.isVector())
5982 return false;
5983
5984 // Only handle AND for now.
5985 if (Op.getOpcode() != ISD::AND)
5986 return false;
5987
5988 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5989 if (!C)
5990 return false;
5991
5992 const APInt &Mask = C->getAPIntValue();
5993
5994 // Clear all non-demanded bits initially.
5995 APInt ShrunkMask = Mask & DemandedBits;
5996
5997 // Try to make a smaller immediate by setting undemanded bits.
5998
5999 APInt ExpandedMask = Mask | ~DemandedBits;
6000
6001 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
6002 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
6003 };
6004 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
6005 if (NewMask == Mask)
6006 return true;
6007 SDLoc DL(Op);
6008 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
6009 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
6010 return TLO.CombineTo(Op, NewOp);
6011 };
6012
6013 // If the shrunk mask fits in sign extended 12 bits, let the target
6014 // independent code apply it.
6015 if (ShrunkMask.isSignedIntN(12))
6016 return false;
6017
6018 // Preserve (and X, 0xffff) when zext.h is supported.
6019 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
6020 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
6021 if (IsLegalMask(NewMask))
6022 return UseMask(NewMask);
6023 }
6024
6025 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
6026 if (VT == MVT::i64) {
6027 APInt NewMask = APInt(64, 0xffffffff);
6028 if (IsLegalMask(NewMask))
6029 return UseMask(NewMask);
6030 }
6031
6032 // For the remaining optimizations, we need to be able to make a negative
6033 // number through a combination of mask and undemanded bits.
6034 if (!ExpandedMask.isNegative())
6035 return false;
6036
6037 // What is the fewest number of bits we need to represent the negative number.
6038 unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
6039
6040 // Try to make a 12 bit negative immediate. If that fails try to make a 32
6041 // bit negative immediate unless the shrunk immediate already fits in 32 bits.
6042 APInt NewMask = ShrunkMask;
6043 if (MinSignedBits <= 12)
6044 NewMask.setBitsFrom(11);
6045 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
6046 NewMask.setBitsFrom(31);
6047 else
6048 return false;
6049
6050 // Sanity check that our new mask is a subset of the demanded mask.
6051 assert(IsLegalMask(NewMask));
6052 return UseMask(NewMask);
6053 }
6054
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const6055 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6056 KnownBits &Known,
6057 const APInt &DemandedElts,
6058 const SelectionDAG &DAG,
6059 unsigned Depth) const {
6060 unsigned BitWidth = Known.getBitWidth();
6061 unsigned Opc = Op.getOpcode();
6062 assert((Opc >= ISD::BUILTIN_OP_END ||
6063 Opc == ISD::INTRINSIC_WO_CHAIN ||
6064 Opc == ISD::INTRINSIC_W_CHAIN ||
6065 Opc == ISD::INTRINSIC_VOID) &&
6066 "Should use MaskedValueIsZero if you don't know whether Op"
6067 " is a target node!");
6068
6069 Known.resetAll();
6070 switch (Opc) {
6071 default: break;
6072 case RISCVISD::SELECT_CC: {
6073 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
6074 // If we don't know any bits, early out.
6075 if (Known.isUnknown())
6076 break;
6077 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
6078
6079 // Only known if known in both the LHS and RHS.
6080 Known = KnownBits::commonBits(Known, Known2);
6081 break;
6082 }
6083 case RISCVISD::REMUW: {
6084 KnownBits Known2;
6085 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6086 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6087 // We only care about the lower 32 bits.
6088 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
6089 // Restore the original width by sign extending.
6090 Known = Known.sext(BitWidth);
6091 break;
6092 }
6093 case RISCVISD::DIVUW: {
6094 KnownBits Known2;
6095 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6096 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6097 // We only care about the lower 32 bits.
6098 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
6099 // Restore the original width by sign extending.
6100 Known = Known.sext(BitWidth);
6101 break;
6102 }
6103 case RISCVISD::CTZW: {
6104 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6105 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
6106 unsigned LowBits = Log2_32(PossibleTZ) + 1;
6107 Known.Zero.setBitsFrom(LowBits);
6108 break;
6109 }
6110 case RISCVISD::CLZW: {
6111 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6112 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
6113 unsigned LowBits = Log2_32(PossibleLZ) + 1;
6114 Known.Zero.setBitsFrom(LowBits);
6115 break;
6116 }
6117 case RISCVISD::READ_VLENB:
6118 // We assume VLENB is at least 16 bytes.
6119 Known.Zero.setLowBits(4);
6120 break;
6121 case ISD::INTRINSIC_W_CHAIN: {
6122 unsigned IntNo = Op.getConstantOperandVal(1);
6123 switch (IntNo) {
6124 default:
6125 // We can't do anything for most intrinsics.
6126 break;
6127 case Intrinsic::riscv_vsetvli:
6128 case Intrinsic::riscv_vsetvlimax:
6129 // Assume that VL output is positive and would fit in an int32_t.
6130 // TODO: VLEN might be capped at 16 bits in a future V spec update.
6131 if (BitWidth >= 32)
6132 Known.Zero.setBitsFrom(31);
6133 break;
6134 }
6135 break;
6136 }
6137 }
6138 }
6139
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const6140 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
6141 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6142 unsigned Depth) const {
6143 switch (Op.getOpcode()) {
6144 default:
6145 break;
6146 case RISCVISD::SLLW:
6147 case RISCVISD::SRAW:
6148 case RISCVISD::SRLW:
6149 case RISCVISD::DIVW:
6150 case RISCVISD::DIVUW:
6151 case RISCVISD::REMUW:
6152 case RISCVISD::ROLW:
6153 case RISCVISD::RORW:
6154 case RISCVISD::GREVW:
6155 case RISCVISD::GORCW:
6156 case RISCVISD::FSLW:
6157 case RISCVISD::FSRW:
6158 case RISCVISD::SHFLW:
6159 case RISCVISD::UNSHFLW:
6160 case RISCVISD::BCOMPRESSW:
6161 case RISCVISD::BDECOMPRESSW:
6162 // TODO: As the result is sign-extended, this is conservatively correct. A
6163 // more precise answer could be calculated for SRAW depending on known
6164 // bits in the shift amount.
6165 return 33;
6166 case RISCVISD::SHFL:
6167 case RISCVISD::UNSHFL: {
6168 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
6169 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
6170 // will stay within the upper 32 bits. If there were more than 32 sign bits
6171 // before there will be at least 33 sign bits after.
6172 if (Op.getValueType() == MVT::i64 &&
6173 isa<ConstantSDNode>(Op.getOperand(1)) &&
6174 (Op.getConstantOperandVal(1) & 0x10) == 0) {
6175 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
6176 if (Tmp > 32)
6177 return 33;
6178 }
6179 break;
6180 }
6181 case RISCVISD::VMV_X_S:
6182 // The number of sign bits of the scalar result is computed by obtaining the
6183 // element type of the input vector operand, subtracting its width from the
6184 // XLEN, and then adding one (sign bit within the element type). If the
6185 // element type is wider than XLen, the least-significant XLEN bits are
6186 // taken.
6187 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
6188 return 1;
6189 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
6190 }
6191
6192 return 1;
6193 }
6194
emitReadCycleWidePseudo(MachineInstr & MI,MachineBasicBlock * BB)6195 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
6196 MachineBasicBlock *BB) {
6197 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
6198
6199 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
6200 // Should the count have wrapped while it was being read, we need to try
6201 // again.
6202 // ...
6203 // read:
6204 // rdcycleh x3 # load high word of cycle
6205 // rdcycle x2 # load low word of cycle
6206 // rdcycleh x4 # load high word of cycle
6207 // bne x3, x4, read # check if high word reads match, otherwise try again
6208 // ...
6209
6210 MachineFunction &MF = *BB->getParent();
6211 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6212 MachineFunction::iterator It = ++BB->getIterator();
6213
6214 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6215 MF.insert(It, LoopMBB);
6216
6217 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6218 MF.insert(It, DoneMBB);
6219
6220 // Transfer the remainder of BB and its successor edges to DoneMBB.
6221 DoneMBB->splice(DoneMBB->begin(), BB,
6222 std::next(MachineBasicBlock::iterator(MI)), BB->end());
6223 DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
6224
6225 BB->addSuccessor(LoopMBB);
6226
6227 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6228 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6229 Register LoReg = MI.getOperand(0).getReg();
6230 Register HiReg = MI.getOperand(1).getReg();
6231 DebugLoc DL = MI.getDebugLoc();
6232
6233 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
6234 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
6235 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6236 .addReg(RISCV::X0);
6237 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
6238 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
6239 .addReg(RISCV::X0);
6240 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
6241 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6242 .addReg(RISCV::X0);
6243
6244 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
6245 .addReg(HiReg)
6246 .addReg(ReadAgainReg)
6247 .addMBB(LoopMBB);
6248
6249 LoopMBB->addSuccessor(LoopMBB);
6250 LoopMBB->addSuccessor(DoneMBB);
6251
6252 MI.eraseFromParent();
6253
6254 return DoneMBB;
6255 }
6256
emitSplitF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)6257 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
6258 MachineBasicBlock *BB) {
6259 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
6260
6261 MachineFunction &MF = *BB->getParent();
6262 DebugLoc DL = MI.getDebugLoc();
6263 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6264 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6265 Register LoReg = MI.getOperand(0).getReg();
6266 Register HiReg = MI.getOperand(1).getReg();
6267 Register SrcReg = MI.getOperand(2).getReg();
6268 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
6269 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6270
6271 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
6272 RI);
6273 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6274 MachineMemOperand *MMOLo =
6275 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
6276 MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6277 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
6278 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
6279 .addFrameIndex(FI)
6280 .addImm(0)
6281 .addMemOperand(MMOLo);
6282 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
6283 .addFrameIndex(FI)
6284 .addImm(4)
6285 .addMemOperand(MMOHi);
6286 MI.eraseFromParent(); // The pseudo instruction is gone now.
6287 return BB;
6288 }
6289
emitBuildPairF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)6290 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
6291 MachineBasicBlock *BB) {
6292 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
6293 "Unexpected instruction");
6294
6295 MachineFunction &MF = *BB->getParent();
6296 DebugLoc DL = MI.getDebugLoc();
6297 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6298 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6299 Register DstReg = MI.getOperand(0).getReg();
6300 Register LoReg = MI.getOperand(1).getReg();
6301 Register HiReg = MI.getOperand(2).getReg();
6302 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
6303 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6304
6305 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6306 MachineMemOperand *MMOLo =
6307 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
6308 MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6309 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
6310 BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6311 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
6312 .addFrameIndex(FI)
6313 .addImm(0)
6314 .addMemOperand(MMOLo);
6315 BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6316 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
6317 .addFrameIndex(FI)
6318 .addImm(4)
6319 .addMemOperand(MMOHi);
6320 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
6321 MI.eraseFromParent(); // The pseudo instruction is gone now.
6322 return BB;
6323 }
6324
isSelectPseudo(MachineInstr & MI)6325 static bool isSelectPseudo(MachineInstr &MI) {
6326 switch (MI.getOpcode()) {
6327 default:
6328 return false;
6329 case RISCV::Select_GPR_Using_CC_GPR:
6330 case RISCV::Select_FPR16_Using_CC_GPR:
6331 case RISCV::Select_FPR32_Using_CC_GPR:
6332 case RISCV::Select_FPR64_Using_CC_GPR:
6333 return true;
6334 }
6335 }
6336
emitSelectPseudo(MachineInstr & MI,MachineBasicBlock * BB)6337 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
6338 MachineBasicBlock *BB) {
6339 // To "insert" Select_* instructions, we actually have to insert the triangle
6340 // control-flow pattern. The incoming instructions know the destination vreg
6341 // to set, the condition code register to branch on, the true/false values to
6342 // select between, and the condcode to use to select the appropriate branch.
6343 //
6344 // We produce the following control flow:
6345 // HeadMBB
6346 // | \
6347 // | IfFalseMBB
6348 // | /
6349 // TailMBB
6350 //
6351 // When we find a sequence of selects we attempt to optimize their emission
6352 // by sharing the control flow. Currently we only handle cases where we have
6353 // multiple selects with the exact same condition (same LHS, RHS and CC).
6354 // The selects may be interleaved with other instructions if the other
6355 // instructions meet some requirements we deem safe:
6356 // - They are debug instructions. Otherwise,
6357 // - They do not have side-effects, do not access memory and their inputs do
6358 // not depend on the results of the select pseudo-instructions.
6359 // The TrueV/FalseV operands of the selects cannot depend on the result of
6360 // previous selects in the sequence.
6361 // These conditions could be further relaxed. See the X86 target for a
6362 // related approach and more information.
6363 Register LHS = MI.getOperand(1).getReg();
6364 Register RHS = MI.getOperand(2).getReg();
6365 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
6366
6367 SmallVector<MachineInstr *, 4> SelectDebugValues;
6368 SmallSet<Register, 4> SelectDests;
6369 SelectDests.insert(MI.getOperand(0).getReg());
6370
6371 MachineInstr *LastSelectPseudo = &MI;
6372
6373 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
6374 SequenceMBBI != E; ++SequenceMBBI) {
6375 if (SequenceMBBI->isDebugInstr())
6376 continue;
6377 else if (isSelectPseudo(*SequenceMBBI)) {
6378 if (SequenceMBBI->getOperand(1).getReg() != LHS ||
6379 SequenceMBBI->getOperand(2).getReg() != RHS ||
6380 SequenceMBBI->getOperand(3).getImm() != CC ||
6381 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
6382 SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
6383 break;
6384 LastSelectPseudo = &*SequenceMBBI;
6385 SequenceMBBI->collectDebugValues(SelectDebugValues);
6386 SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
6387 } else {
6388 if (SequenceMBBI->hasUnmodeledSideEffects() ||
6389 SequenceMBBI->mayLoadOrStore())
6390 break;
6391 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
6392 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6393 }))
6394 break;
6395 }
6396 }
6397
6398 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
6399 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6400 DebugLoc DL = MI.getDebugLoc();
6401 MachineFunction::iterator I = ++BB->getIterator();
6402
6403 MachineBasicBlock *HeadMBB = BB;
6404 MachineFunction *F = BB->getParent();
6405 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
6406 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
6407
6408 F->insert(I, IfFalseMBB);
6409 F->insert(I, TailMBB);
6410
6411 // Transfer debug instructions associated with the selects to TailMBB.
6412 for (MachineInstr *DebugInstr : SelectDebugValues) {
6413 TailMBB->push_back(DebugInstr->removeFromParent());
6414 }
6415
6416 // Move all instructions after the sequence to TailMBB.
6417 TailMBB->splice(TailMBB->end(), HeadMBB,
6418 std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
6419 // Update machine-CFG edges by transferring all successors of the current
6420 // block to the new block which will contain the Phi nodes for the selects.
6421 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
6422 // Set the successors for HeadMBB.
6423 HeadMBB->addSuccessor(IfFalseMBB);
6424 HeadMBB->addSuccessor(TailMBB);
6425
6426 // Insert appropriate branch.
6427 unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
6428
6429 BuildMI(HeadMBB, DL, TII.get(Opcode))
6430 .addReg(LHS)
6431 .addReg(RHS)
6432 .addMBB(TailMBB);
6433
6434 // IfFalseMBB just falls through to TailMBB.
6435 IfFalseMBB->addSuccessor(TailMBB);
6436
6437 // Create PHIs for all of the select pseudo-instructions.
6438 auto SelectMBBI = MI.getIterator();
6439 auto SelectEnd = std::next(LastSelectPseudo->getIterator());
6440 auto InsertionPoint = TailMBB->begin();
6441 while (SelectMBBI != SelectEnd) {
6442 auto Next = std::next(SelectMBBI);
6443 if (isSelectPseudo(*SelectMBBI)) {
6444 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
6445 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
6446 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
6447 .addReg(SelectMBBI->getOperand(4).getReg())
6448 .addMBB(HeadMBB)
6449 .addReg(SelectMBBI->getOperand(5).getReg())
6450 .addMBB(IfFalseMBB);
6451 SelectMBBI->eraseFromParent();
6452 }
6453 SelectMBBI = Next;
6454 }
6455
6456 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6457 return TailMBB;
6458 }
6459
elideCopies(MachineInstr * MI,const MachineRegisterInfo & MRI)6460 static MachineInstr *elideCopies(MachineInstr *MI,
6461 const MachineRegisterInfo &MRI) {
6462 while (true) {
6463 if (!MI->isFullCopy())
6464 return MI;
6465 if (!Register::isVirtualRegister(MI->getOperand(1).getReg()))
6466 return nullptr;
6467 MI = MRI.getVRegDef(MI->getOperand(1).getReg());
6468 if (!MI)
6469 return nullptr;
6470 }
6471 }
6472
addVSetVL(MachineInstr & MI,MachineBasicBlock * BB,int VLIndex,unsigned SEWIndex,RISCVII::VLMUL VLMul,bool ForceTailAgnostic)6473 static MachineBasicBlock *addVSetVL(MachineInstr &MI, MachineBasicBlock *BB,
6474 int VLIndex, unsigned SEWIndex,
6475 RISCVII::VLMUL VLMul,
6476 bool ForceTailAgnostic) {
6477 MachineFunction &MF = *BB->getParent();
6478 DebugLoc DL = MI.getDebugLoc();
6479 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6480
6481 unsigned Log2SEW = MI.getOperand(SEWIndex).getImm();
6482 unsigned SEW = 1 << Log2SEW;
6483 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
6484
6485 MachineRegisterInfo &MRI = MF.getRegInfo();
6486
6487 auto BuildVSETVLI = [&]() {
6488 if (VLIndex >= 0) {
6489 Register DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
6490 const MachineOperand &VLOp = MI.getOperand(VLIndex);
6491
6492 // VL can be a register or an immediate.
6493 if (VLOp.isImm())
6494 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETIVLI))
6495 .addReg(DestReg, RegState::Define | RegState::Dead)
6496 .addImm(VLOp.getImm());
6497
6498 Register VLReg = MI.getOperand(VLIndex).getReg();
6499 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
6500 .addReg(DestReg, RegState::Define | RegState::Dead)
6501 .addReg(VLReg);
6502 }
6503
6504 // With no VL operator in the pseudo, do not modify VL (rd = X0, rs1 = X0).
6505 return BuildMI(*BB, MI, DL, TII.get(RISCV::PseudoVSETVLI))
6506 .addReg(RISCV::X0, RegState::Define | RegState::Dead)
6507 .addReg(RISCV::X0, RegState::Kill);
6508 };
6509
6510 MachineInstrBuilder MIB = BuildVSETVLI();
6511
6512 // Default to tail agnostic unless the destination is tied to a source. In
6513 // that case the user would have some control over the tail values. The tail
6514 // policy is also ignored on instructions that only update element 0 like
6515 // vmv.s.x or reductions so use agnostic there to match the common case.
6516 // FIXME: This is conservatively correct, but we might want to detect that
6517 // the input is undefined.
6518 bool TailAgnostic = true;
6519 unsigned UseOpIdx;
6520 if (!ForceTailAgnostic && MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
6521 TailAgnostic = false;
6522 // If the tied operand is an IMPLICIT_DEF we can keep TailAgnostic.
6523 const MachineOperand &UseMO = MI.getOperand(UseOpIdx);
6524 MachineInstr *UseMI = MRI.getVRegDef(UseMO.getReg());
6525 if (UseMI) {
6526 UseMI = elideCopies(UseMI, MRI);
6527 if (UseMI && UseMI->isImplicitDef())
6528 TailAgnostic = true;
6529 }
6530 }
6531
6532 // For simplicity we reuse the vtype representation here.
6533 MIB.addImm(RISCVVType::encodeVTYPE(VLMul, SEW,
6534 /*TailAgnostic*/ TailAgnostic,
6535 /*MaskAgnostic*/ false));
6536
6537 // Remove (now) redundant operands from pseudo
6538 if (VLIndex >= 0 && MI.getOperand(VLIndex).isReg()) {
6539 MI.getOperand(VLIndex).setReg(RISCV::NoRegister);
6540 MI.getOperand(VLIndex).setIsKill(false);
6541 }
6542
6543 return BB;
6544 }
6545
6546 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const6547 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
6548 MachineBasicBlock *BB) const {
6549 uint64_t TSFlags = MI.getDesc().TSFlags;
6550
6551 if (RISCVII::hasSEWOp(TSFlags)) {
6552 unsigned NumOperands = MI.getNumExplicitOperands();
6553 int VLIndex = RISCVII::hasVLOp(TSFlags) ? NumOperands - 2 : -1;
6554 unsigned SEWIndex = NumOperands - 1;
6555 bool ForceTailAgnostic = RISCVII::doesForceTailAgnostic(TSFlags);
6556
6557 RISCVII::VLMUL VLMul = RISCVII::getLMul(TSFlags);
6558 return addVSetVL(MI, BB, VLIndex, SEWIndex, VLMul, ForceTailAgnostic);
6559 }
6560
6561 switch (MI.getOpcode()) {
6562 default:
6563 llvm_unreachable("Unexpected instr type to insert");
6564 case RISCV::ReadCycleWide:
6565 assert(!Subtarget.is64Bit() &&
6566 "ReadCycleWrite is only to be used on riscv32");
6567 return emitReadCycleWidePseudo(MI, BB);
6568 case RISCV::Select_GPR_Using_CC_GPR:
6569 case RISCV::Select_FPR16_Using_CC_GPR:
6570 case RISCV::Select_FPR32_Using_CC_GPR:
6571 case RISCV::Select_FPR64_Using_CC_GPR:
6572 return emitSelectPseudo(MI, BB);
6573 case RISCV::BuildPairF64Pseudo:
6574 return emitBuildPairF64Pseudo(MI, BB);
6575 case RISCV::SplitF64Pseudo:
6576 return emitSplitF64Pseudo(MI, BB);
6577 }
6578 }
6579
6580 // Calling Convention Implementation.
6581 // The expectations for frontend ABI lowering vary from target to target.
6582 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
6583 // details, but this is a longer term goal. For now, we simply try to keep the
6584 // role of the frontend as simple and well-defined as possible. The rules can
6585 // be summarised as:
6586 // * Never split up large scalar arguments. We handle them here.
6587 // * If a hardfloat calling convention is being used, and the struct may be
6588 // passed in a pair of registers (fp+fp, int+fp), and both registers are
6589 // available, then pass as two separate arguments. If either the GPRs or FPRs
6590 // are exhausted, then pass according to the rule below.
6591 // * If a struct could never be passed in registers or directly in a stack
6592 // slot (as it is larger than 2*XLEN and the floating point rules don't
6593 // apply), then pass it using a pointer with the byval attribute.
6594 // * If a struct is less than 2*XLEN, then coerce to either a two-element
6595 // word-sized array or a 2*XLEN scalar (depending on alignment).
6596 // * The frontend can determine whether a struct is returned by reference or
6597 // not based on its size and fields. If it will be returned by reference, the
6598 // frontend must modify the prototype so a pointer with the sret annotation is
6599 // passed as the first argument. This is not necessary for large scalar
6600 // returns.
6601 // * Struct return values and varargs should be coerced to structs containing
6602 // register-size fields in the same situations they would be for fixed
6603 // arguments.
6604
6605 static const MCPhysReg ArgGPRs[] = {
6606 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
6607 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
6608 };
6609 static const MCPhysReg ArgFPR16s[] = {
6610 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
6611 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
6612 };
6613 static const MCPhysReg ArgFPR32s[] = {
6614 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
6615 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
6616 };
6617 static const MCPhysReg ArgFPR64s[] = {
6618 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
6619 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
6620 };
6621 // This is an interim calling convention and it may be changed in the future.
6622 static const MCPhysReg ArgVRs[] = {
6623 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
6624 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
6625 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
6626 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2,
6627 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
6628 RISCV::V20M2, RISCV::V22M2};
6629 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
6630 RISCV::V20M4};
6631 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
6632
6633 // Pass a 2*XLEN argument that has been split into two XLEN values through
6634 // registers or the stack as necessary.
CC_RISCVAssign2XLen(unsigned XLen,CCState & State,CCValAssign VA1,ISD::ArgFlagsTy ArgFlags1,unsigned ValNo2,MVT ValVT2,MVT LocVT2,ISD::ArgFlagsTy ArgFlags2)6635 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
6636 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
6637 MVT ValVT2, MVT LocVT2,
6638 ISD::ArgFlagsTy ArgFlags2) {
6639 unsigned XLenInBytes = XLen / 8;
6640 if (Register Reg = State.AllocateReg(ArgGPRs)) {
6641 // At least one half can be passed via register.
6642 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
6643 VA1.getLocVT(), CCValAssign::Full));
6644 } else {
6645 // Both halves must be passed on the stack, with proper alignment.
6646 Align StackAlign =
6647 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
6648 State.addLoc(
6649 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
6650 State.AllocateStack(XLenInBytes, StackAlign),
6651 VA1.getLocVT(), CCValAssign::Full));
6652 State.addLoc(CCValAssign::getMem(
6653 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6654 LocVT2, CCValAssign::Full));
6655 return false;
6656 }
6657
6658 if (Register Reg = State.AllocateReg(ArgGPRs)) {
6659 // The second half can also be passed via register.
6660 State.addLoc(
6661 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
6662 } else {
6663 // The second half is passed via the stack, without additional alignment.
6664 State.addLoc(CCValAssign::getMem(
6665 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
6666 LocVT2, CCValAssign::Full));
6667 }
6668
6669 return false;
6670 }
6671
6672 // Implements the RISC-V calling convention. Returns true upon failure.
CC_RISCV(const DataLayout & DL,RISCVABI::ABI ABI,unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,bool IsFixed,bool IsRet,Type * OrigTy,const RISCVTargetLowering & TLI,Optional<unsigned> FirstMaskArgument)6673 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
6674 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
6675 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
6676 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
6677 Optional<unsigned> FirstMaskArgument) {
6678 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
6679 assert(XLen == 32 || XLen == 64);
6680 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
6681
6682 // Any return value split in to more than two values can't be returned
6683 // directly. Vectors are returned via the available vector registers.
6684 if (!LocVT.isVector() && IsRet && ValNo > 1)
6685 return true;
6686
6687 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
6688 // variadic argument, or if no F16/F32 argument registers are available.
6689 bool UseGPRForF16_F32 = true;
6690 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
6691 // variadic argument, or if no F64 argument registers are available.
6692 bool UseGPRForF64 = true;
6693
6694 switch (ABI) {
6695 default:
6696 llvm_unreachable("Unexpected ABI");
6697 case RISCVABI::ABI_ILP32:
6698 case RISCVABI::ABI_LP64:
6699 break;
6700 case RISCVABI::ABI_ILP32F:
6701 case RISCVABI::ABI_LP64F:
6702 UseGPRForF16_F32 = !IsFixed;
6703 break;
6704 case RISCVABI::ABI_ILP32D:
6705 case RISCVABI::ABI_LP64D:
6706 UseGPRForF16_F32 = !IsFixed;
6707 UseGPRForF64 = !IsFixed;
6708 break;
6709 }
6710
6711 // FPR16, FPR32, and FPR64 alias each other.
6712 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
6713 UseGPRForF16_F32 = true;
6714 UseGPRForF64 = true;
6715 }
6716
6717 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
6718 // similar local variables rather than directly checking against the target
6719 // ABI.
6720
6721 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
6722 LocVT = XLenVT;
6723 LocInfo = CCValAssign::BCvt;
6724 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
6725 LocVT = MVT::i64;
6726 LocInfo = CCValAssign::BCvt;
6727 }
6728
6729 // If this is a variadic argument, the RISC-V calling convention requires
6730 // that it is assigned an 'even' or 'aligned' register if it has 8-byte
6731 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
6732 // be used regardless of whether the original argument was split during
6733 // legalisation or not. The argument will not be passed by registers if the
6734 // original type is larger than 2*XLEN, so the register alignment rule does
6735 // not apply.
6736 unsigned TwoXLenInBytes = (2 * XLen) / 8;
6737 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
6738 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
6739 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
6740 // Skip 'odd' register if necessary.
6741 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
6742 State.AllocateReg(ArgGPRs);
6743 }
6744
6745 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
6746 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
6747 State.getPendingArgFlags();
6748
6749 assert(PendingLocs.size() == PendingArgFlags.size() &&
6750 "PendingLocs and PendingArgFlags out of sync");
6751
6752 // Handle passing f64 on RV32D with a soft float ABI or when floating point
6753 // registers are exhausted.
6754 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
6755 assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
6756 "Can't lower f64 if it is split");
6757 // Depending on available argument GPRS, f64 may be passed in a pair of
6758 // GPRs, split between a GPR and the stack, or passed completely on the
6759 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
6760 // cases.
6761 Register Reg = State.AllocateReg(ArgGPRs);
6762 LocVT = MVT::i32;
6763 if (!Reg) {
6764 unsigned StackOffset = State.AllocateStack(8, Align(8));
6765 State.addLoc(
6766 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6767 return false;
6768 }
6769 if (!State.AllocateReg(ArgGPRs))
6770 State.AllocateStack(4, Align(4));
6771 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6772 return false;
6773 }
6774
6775 // Fixed-length vectors are located in the corresponding scalable-vector
6776 // container types.
6777 if (ValVT.isFixedLengthVector())
6778 LocVT = TLI.getContainerForFixedLengthVector(LocVT);
6779
6780 // Split arguments might be passed indirectly, so keep track of the pending
6781 // values. Split vectors are passed via a mix of registers and indirectly, so
6782 // treat them as we would any other argument.
6783 if (!LocVT.isVector() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
6784 LocVT = XLenVT;
6785 LocInfo = CCValAssign::Indirect;
6786 PendingLocs.push_back(
6787 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
6788 PendingArgFlags.push_back(ArgFlags);
6789 if (!ArgFlags.isSplitEnd()) {
6790 return false;
6791 }
6792 }
6793
6794 // If the split argument only had two elements, it should be passed directly
6795 // in registers or on the stack.
6796 if (!LocVT.isVector() && ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
6797 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
6798 // Apply the normal calling convention rules to the first half of the
6799 // split argument.
6800 CCValAssign VA = PendingLocs[0];
6801 ISD::ArgFlagsTy AF = PendingArgFlags[0];
6802 PendingLocs.clear();
6803 PendingArgFlags.clear();
6804 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
6805 ArgFlags);
6806 }
6807
6808 // Allocate to a register if possible, or else a stack slot.
6809 Register Reg;
6810 if (ValVT == MVT::f16 && !UseGPRForF16_F32)
6811 Reg = State.AllocateReg(ArgFPR16s);
6812 else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
6813 Reg = State.AllocateReg(ArgFPR32s);
6814 else if (ValVT == MVT::f64 && !UseGPRForF64)
6815 Reg = State.AllocateReg(ArgFPR64s);
6816 else if (ValVT.isVector()) {
6817 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
6818 if (RC == &RISCV::VRRegClass) {
6819 // Assign the first mask argument to V0.
6820 // This is an interim calling convention and it may be changed in the
6821 // future.
6822 if (FirstMaskArgument.hasValue() &&
6823 ValNo == FirstMaskArgument.getValue()) {
6824 Reg = State.AllocateReg(RISCV::V0);
6825 } else {
6826 Reg = State.AllocateReg(ArgVRs);
6827 }
6828 } else if (RC == &RISCV::VRM2RegClass) {
6829 Reg = State.AllocateReg(ArgVRM2s);
6830 } else if (RC == &RISCV::VRM4RegClass) {
6831 Reg = State.AllocateReg(ArgVRM4s);
6832 } else if (RC == &RISCV::VRM8RegClass) {
6833 Reg = State.AllocateReg(ArgVRM8s);
6834 } else {
6835 llvm_unreachable("Unhandled class register for ValueType");
6836 }
6837 if (!Reg) {
6838 // For return values, the vector must be passed fully via registers or
6839 // via the stack.
6840 // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
6841 // but we're using all of them.
6842 if (IsRet)
6843 return true;
6844 LocInfo = CCValAssign::Indirect;
6845 // Try using a GPR to pass the address
6846 Reg = State.AllocateReg(ArgGPRs);
6847 LocVT = XLenVT;
6848 }
6849 } else
6850 Reg = State.AllocateReg(ArgGPRs);
6851 unsigned StackOffset =
6852 Reg ? 0 : State.AllocateStack(XLen / 8, Align(XLen / 8));
6853
6854 // If we reach this point and PendingLocs is non-empty, we must be at the
6855 // end of a split argument that must be passed indirectly.
6856 if (!PendingLocs.empty()) {
6857 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
6858 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
6859
6860 for (auto &It : PendingLocs) {
6861 if (Reg)
6862 It.convertToReg(Reg);
6863 else
6864 It.convertToMem(StackOffset);
6865 State.addLoc(It);
6866 }
6867 PendingLocs.clear();
6868 PendingArgFlags.clear();
6869 return false;
6870 }
6871
6872 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
6873 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
6874 "Expected an XLenVT or vector types at this stage");
6875
6876 if (Reg) {
6877 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6878 return false;
6879 }
6880
6881 // When a floating-point value is passed on the stack, no bit-conversion is
6882 // needed.
6883 if (ValVT.isFloatingPoint()) {
6884 LocVT = ValVT;
6885 LocInfo = CCValAssign::Full;
6886 }
6887 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
6888 return false;
6889 }
6890
6891 template <typename ArgTy>
preAssignMask(const ArgTy & Args)6892 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
6893 for (const auto &ArgIdx : enumerate(Args)) {
6894 MVT ArgVT = ArgIdx.value().VT;
6895 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
6896 return ArgIdx.index();
6897 }
6898 return None;
6899 }
6900
analyzeInputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::InputArg> & Ins,bool IsRet) const6901 void RISCVTargetLowering::analyzeInputArgs(
6902 MachineFunction &MF, CCState &CCInfo,
6903 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
6904 unsigned NumArgs = Ins.size();
6905 FunctionType *FType = MF.getFunction().getFunctionType();
6906
6907 Optional<unsigned> FirstMaskArgument;
6908 if (Subtarget.hasStdExtV())
6909 FirstMaskArgument = preAssignMask(Ins);
6910
6911 for (unsigned i = 0; i != NumArgs; ++i) {
6912 MVT ArgVT = Ins[i].VT;
6913 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
6914
6915 Type *ArgTy = nullptr;
6916 if (IsRet)
6917 ArgTy = FType->getReturnType();
6918 else if (Ins[i].isOrigArg())
6919 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
6920
6921 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6922 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6923 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
6924 FirstMaskArgument)) {
6925 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
6926 << EVT(ArgVT).getEVTString() << '\n');
6927 llvm_unreachable(nullptr);
6928 }
6929 }
6930 }
6931
analyzeOutputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::OutputArg> & Outs,bool IsRet,CallLoweringInfo * CLI) const6932 void RISCVTargetLowering::analyzeOutputArgs(
6933 MachineFunction &MF, CCState &CCInfo,
6934 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
6935 CallLoweringInfo *CLI) const {
6936 unsigned NumArgs = Outs.size();
6937
6938 Optional<unsigned> FirstMaskArgument;
6939 if (Subtarget.hasStdExtV())
6940 FirstMaskArgument = preAssignMask(Outs);
6941
6942 for (unsigned i = 0; i != NumArgs; i++) {
6943 MVT ArgVT = Outs[i].VT;
6944 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
6945 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
6946
6947 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
6948 if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
6949 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
6950 FirstMaskArgument)) {
6951 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
6952 << EVT(ArgVT).getEVTString() << "\n");
6953 llvm_unreachable(nullptr);
6954 }
6955 }
6956 }
6957
6958 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
6959 // values.
convertLocVTToValVT(SelectionDAG & DAG,SDValue Val,const CCValAssign & VA,const SDLoc & DL,const RISCVSubtarget & Subtarget)6960 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
6961 const CCValAssign &VA, const SDLoc &DL,
6962 const RISCVSubtarget &Subtarget) {
6963 switch (VA.getLocInfo()) {
6964 default:
6965 llvm_unreachable("Unexpected CCValAssign::LocInfo");
6966 case CCValAssign::Full:
6967 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
6968 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
6969 break;
6970 case CCValAssign::BCvt:
6971 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
6972 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
6973 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
6974 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
6975 else
6976 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
6977 break;
6978 }
6979 return Val;
6980 }
6981
6982 // The caller is responsible for loading the full value if the argument is
6983 // passed with CCValAssign::Indirect.
unpackFromRegLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL,const RISCVTargetLowering & TLI)6984 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
6985 const CCValAssign &VA, const SDLoc &DL,
6986 const RISCVTargetLowering &TLI) {
6987 MachineFunction &MF = DAG.getMachineFunction();
6988 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6989 EVT LocVT = VA.getLocVT();
6990 SDValue Val;
6991 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
6992 Register VReg = RegInfo.createVirtualRegister(RC);
6993 RegInfo.addLiveIn(VA.getLocReg(), VReg);
6994 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
6995
6996 if (VA.getLocInfo() == CCValAssign::Indirect)
6997 return Val;
6998
6999 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
7000 }
7001
convertValVTToLocVT(SelectionDAG & DAG,SDValue Val,const CCValAssign & VA,const SDLoc & DL,const RISCVSubtarget & Subtarget)7002 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
7003 const CCValAssign &VA, const SDLoc &DL,
7004 const RISCVSubtarget &Subtarget) {
7005 EVT LocVT = VA.getLocVT();
7006
7007 switch (VA.getLocInfo()) {
7008 default:
7009 llvm_unreachable("Unexpected CCValAssign::LocInfo");
7010 case CCValAssign::Full:
7011 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
7012 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
7013 break;
7014 case CCValAssign::BCvt:
7015 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
7016 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
7017 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
7018 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
7019 else
7020 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
7021 break;
7022 }
7023 return Val;
7024 }
7025
7026 // The caller is responsible for loading the full value if the argument is
7027 // passed with CCValAssign::Indirect.
unpackFromMemLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)7028 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
7029 const CCValAssign &VA, const SDLoc &DL) {
7030 MachineFunction &MF = DAG.getMachineFunction();
7031 MachineFrameInfo &MFI = MF.getFrameInfo();
7032 EVT LocVT = VA.getLocVT();
7033 EVT ValVT = VA.getValVT();
7034 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
7035 int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
7036 VA.getLocMemOffset(), /*Immutable=*/true);
7037 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7038 SDValue Val;
7039
7040 ISD::LoadExtType ExtType;
7041 switch (VA.getLocInfo()) {
7042 default:
7043 llvm_unreachable("Unexpected CCValAssign::LocInfo");
7044 case CCValAssign::Full:
7045 case CCValAssign::Indirect:
7046 case CCValAssign::BCvt:
7047 ExtType = ISD::NON_EXTLOAD;
7048 break;
7049 }
7050 Val = DAG.getExtLoad(
7051 ExtType, DL, LocVT, Chain, FIN,
7052 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
7053 return Val;
7054 }
7055
unpackF64OnRV32DSoftABI(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)7056 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
7057 const CCValAssign &VA, const SDLoc &DL) {
7058 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
7059 "Unexpected VA");
7060 MachineFunction &MF = DAG.getMachineFunction();
7061 MachineFrameInfo &MFI = MF.getFrameInfo();
7062 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7063
7064 if (VA.isMemLoc()) {
7065 // f64 is passed on the stack.
7066 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
7067 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7068 return DAG.getLoad(MVT::f64, DL, Chain, FIN,
7069 MachinePointerInfo::getFixedStack(MF, FI));
7070 }
7071
7072 assert(VA.isRegLoc() && "Expected register VA assignment");
7073
7074 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7075 RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
7076 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
7077 SDValue Hi;
7078 if (VA.getLocReg() == RISCV::X17) {
7079 // Second half of f64 is passed on the stack.
7080 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
7081 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7082 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
7083 MachinePointerInfo::getFixedStack(MF, FI));
7084 } else {
7085 // Second half of f64 is passed in another GPR.
7086 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7087 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
7088 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
7089 }
7090 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
7091 }
7092
7093 // FastCC has less than 1% performance improvement for some particular
7094 // benchmark. But theoretically, it may has benenfit for some cases.
CC_RISCV_FastCC(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)7095 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
7096 CCValAssign::LocInfo LocInfo,
7097 ISD::ArgFlagsTy ArgFlags, CCState &State) {
7098
7099 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7100 // X5 and X6 might be used for save-restore libcall.
7101 static const MCPhysReg GPRList[] = {
7102 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
7103 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28,
7104 RISCV::X29, RISCV::X30, RISCV::X31};
7105 if (unsigned Reg = State.AllocateReg(GPRList)) {
7106 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7107 return false;
7108 }
7109 }
7110
7111 if (LocVT == MVT::f16) {
7112 static const MCPhysReg FPR16List[] = {
7113 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
7114 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H,
7115 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H,
7116 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
7117 if (unsigned Reg = State.AllocateReg(FPR16List)) {
7118 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7119 return false;
7120 }
7121 }
7122
7123 if (LocVT == MVT::f32) {
7124 static const MCPhysReg FPR32List[] = {
7125 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
7126 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F,
7127 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F,
7128 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
7129 if (unsigned Reg = State.AllocateReg(FPR32List)) {
7130 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7131 return false;
7132 }
7133 }
7134
7135 if (LocVT == MVT::f64) {
7136 static const MCPhysReg FPR64List[] = {
7137 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
7138 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D,
7139 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D,
7140 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
7141 if (unsigned Reg = State.AllocateReg(FPR64List)) {
7142 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7143 return false;
7144 }
7145 }
7146
7147 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
7148 unsigned Offset4 = State.AllocateStack(4, Align(4));
7149 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
7150 return false;
7151 }
7152
7153 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
7154 unsigned Offset5 = State.AllocateStack(8, Align(8));
7155 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
7156 return false;
7157 }
7158
7159 return true; // CC didn't match.
7160 }
7161
CC_RISCV_GHC(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)7162 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
7163 CCValAssign::LocInfo LocInfo,
7164 ISD::ArgFlagsTy ArgFlags, CCState &State) {
7165
7166 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7167 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
7168 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
7169 static const MCPhysReg GPRList[] = {
7170 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
7171 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
7172 if (unsigned Reg = State.AllocateReg(GPRList)) {
7173 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7174 return false;
7175 }
7176 }
7177
7178 if (LocVT == MVT::f32) {
7179 // Pass in STG registers: F1, ..., F6
7180 // fs0 ... fs5
7181 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
7182 RISCV::F18_F, RISCV::F19_F,
7183 RISCV::F20_F, RISCV::F21_F};
7184 if (unsigned Reg = State.AllocateReg(FPR32List)) {
7185 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7186 return false;
7187 }
7188 }
7189
7190 if (LocVT == MVT::f64) {
7191 // Pass in STG registers: D1, ..., D6
7192 // fs6 ... fs11
7193 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
7194 RISCV::F24_D, RISCV::F25_D,
7195 RISCV::F26_D, RISCV::F27_D};
7196 if (unsigned Reg = State.AllocateReg(FPR64List)) {
7197 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7198 return false;
7199 }
7200 }
7201
7202 report_fatal_error("No registers left in GHC calling convention");
7203 return true;
7204 }
7205
7206 // Transform physical registers into virtual registers.
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const7207 SDValue RISCVTargetLowering::LowerFormalArguments(
7208 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
7209 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
7210 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7211
7212 MachineFunction &MF = DAG.getMachineFunction();
7213
7214 switch (CallConv) {
7215 default:
7216 report_fatal_error("Unsupported calling convention");
7217 case CallingConv::C:
7218 case CallingConv::Fast:
7219 break;
7220 case CallingConv::GHC:
7221 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
7222 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
7223 report_fatal_error(
7224 "GHC calling convention requires the F and D instruction set extensions");
7225 }
7226
7227 const Function &Func = MF.getFunction();
7228 if (Func.hasFnAttribute("interrupt")) {
7229 if (!Func.arg_empty())
7230 report_fatal_error(
7231 "Functions with the interrupt attribute cannot have arguments!");
7232
7233 StringRef Kind =
7234 MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7235
7236 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
7237 report_fatal_error(
7238 "Function interrupt attribute argument not supported!");
7239 }
7240
7241 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7242 MVT XLenVT = Subtarget.getXLenVT();
7243 unsigned XLenInBytes = Subtarget.getXLen() / 8;
7244 // Used with vargs to acumulate store chains.
7245 std::vector<SDValue> OutChains;
7246
7247 // Assign locations to all of the incoming arguments.
7248 SmallVector<CCValAssign, 16> ArgLocs;
7249 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7250
7251 if (CallConv == CallingConv::Fast)
7252 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
7253 else if (CallConv == CallingConv::GHC)
7254 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
7255 else
7256 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
7257
7258 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7259 CCValAssign &VA = ArgLocs[i];
7260 SDValue ArgValue;
7261 // Passing f64 on RV32D with a soft float ABI must be handled as a special
7262 // case.
7263 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
7264 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
7265 else if (VA.isRegLoc())
7266 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
7267 else
7268 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
7269
7270 if (VA.getLocInfo() == CCValAssign::Indirect) {
7271 // If the original argument was split and passed by reference (e.g. i128
7272 // on RV32), we need to load all parts of it here (using the same
7273 // address). Vectors may be partly split to registers and partly to the
7274 // stack, in which case the base address is partly offset and subsequent
7275 // stores are relative to that.
7276 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
7277 MachinePointerInfo()));
7278 unsigned ArgIndex = Ins[i].OrigArgIndex;
7279 unsigned ArgPartOffset = Ins[i].PartOffset;
7280 assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7281 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
7282 CCValAssign &PartVA = ArgLocs[i + 1];
7283 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
7284 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
7285 DAG.getIntPtrConstant(PartOffset, DL));
7286 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
7287 MachinePointerInfo()));
7288 ++i;
7289 }
7290 continue;
7291 }
7292 InVals.push_back(ArgValue);
7293 }
7294
7295 if (IsVarArg) {
7296 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
7297 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
7298 const TargetRegisterClass *RC = &RISCV::GPRRegClass;
7299 MachineFrameInfo &MFI = MF.getFrameInfo();
7300 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7301 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
7302
7303 // Offset of the first variable argument from stack pointer, and size of
7304 // the vararg save area. For now, the varargs save area is either zero or
7305 // large enough to hold a0-a7.
7306 int VaArgOffset, VarArgsSaveSize;
7307
7308 // If all registers are allocated, then all varargs must be passed on the
7309 // stack and we don't need to save any argregs.
7310 if (ArgRegs.size() == Idx) {
7311 VaArgOffset = CCInfo.getNextStackOffset();
7312 VarArgsSaveSize = 0;
7313 } else {
7314 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
7315 VaArgOffset = -VarArgsSaveSize;
7316 }
7317
7318 // Record the frame index of the first variable argument
7319 // which is a value necessary to VASTART.
7320 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7321 RVFI->setVarArgsFrameIndex(FI);
7322
7323 // If saving an odd number of registers then create an extra stack slot to
7324 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
7325 // offsets to even-numbered registered remain 2*XLEN-aligned.
7326 if (Idx % 2) {
7327 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
7328 VarArgsSaveSize += XLenInBytes;
7329 }
7330
7331 // Copy the integer registers that may have been used for passing varargs
7332 // to the vararg save area.
7333 for (unsigned I = Idx; I < ArgRegs.size();
7334 ++I, VaArgOffset += XLenInBytes) {
7335 const Register Reg = RegInfo.createVirtualRegister(RC);
7336 RegInfo.addLiveIn(ArgRegs[I], Reg);
7337 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
7338 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7339 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7340 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
7341 MachinePointerInfo::getFixedStack(MF, FI));
7342 cast<StoreSDNode>(Store.getNode())
7343 ->getMemOperand()
7344 ->setValue((Value *)nullptr);
7345 OutChains.push_back(Store);
7346 }
7347 RVFI->setVarArgsSaveSize(VarArgsSaveSize);
7348 }
7349
7350 // All stores are grouped in one node to allow the matching between
7351 // the size of Ins and InVals. This only happens for vararg functions.
7352 if (!OutChains.empty()) {
7353 OutChains.push_back(Chain);
7354 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
7355 }
7356
7357 return Chain;
7358 }
7359
7360 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7361 /// for tail call optimization.
7362 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
isEligibleForTailCallOptimization(CCState & CCInfo,CallLoweringInfo & CLI,MachineFunction & MF,const SmallVector<CCValAssign,16> & ArgLocs) const7363 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7364 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
7365 const SmallVector<CCValAssign, 16> &ArgLocs) const {
7366
7367 auto &Callee = CLI.Callee;
7368 auto CalleeCC = CLI.CallConv;
7369 auto &Outs = CLI.Outs;
7370 auto &Caller = MF.getFunction();
7371 auto CallerCC = Caller.getCallingConv();
7372
7373 // Exception-handling functions need a special set of instructions to
7374 // indicate a return to the hardware. Tail-calling another function would
7375 // probably break this.
7376 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7377 // should be expanded as new function attributes are introduced.
7378 if (Caller.hasFnAttribute("interrupt"))
7379 return false;
7380
7381 // Do not tail call opt if the stack is used to pass parameters.
7382 if (CCInfo.getNextStackOffset() != 0)
7383 return false;
7384
7385 // Do not tail call opt if any parameters need to be passed indirectly.
7386 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7387 // passed indirectly. So the address of the value will be passed in a
7388 // register, or if not available, then the address is put on the stack. In
7389 // order to pass indirectly, space on the stack often needs to be allocated
7390 // in order to store the value. In this case the CCInfo.getNextStackOffset()
7391 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7392 // are passed CCValAssign::Indirect.
7393 for (auto &VA : ArgLocs)
7394 if (VA.getLocInfo() == CCValAssign::Indirect)
7395 return false;
7396
7397 // Do not tail call opt if either caller or callee uses struct return
7398 // semantics.
7399 auto IsCallerStructRet = Caller.hasStructRetAttr();
7400 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
7401 if (IsCallerStructRet || IsCalleeStructRet)
7402 return false;
7403
7404 // Externally-defined functions with weak linkage should not be
7405 // tail-called. The behaviour of branch instructions in this situation (as
7406 // used for tail calls) is implementation-defined, so we cannot rely on the
7407 // linker replacing the tail call with a return.
7408 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
7409 const GlobalValue *GV = G->getGlobal();
7410 if (GV->hasExternalWeakLinkage())
7411 return false;
7412 }
7413
7414 // The callee has to preserve all registers the caller needs to preserve.
7415 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
7416 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
7417 if (CalleeCC != CallerCC) {
7418 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
7419 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7420 return false;
7421 }
7422
7423 // Byval parameters hand the function a pointer directly into the stack area
7424 // we want to reuse during a tail call. Working around this *is* possible
7425 // but less efficient and uglier in LowerCall.
7426 for (auto &Arg : Outs)
7427 if (Arg.Flags.isByVal())
7428 return false;
7429
7430 return true;
7431 }
7432
getPrefTypeAlign(EVT VT,SelectionDAG & DAG)7433 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
7434 return DAG.getDataLayout().getPrefTypeAlign(
7435 VT.getTypeForEVT(*DAG.getContext()));
7436 }
7437
7438 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7439 // and output parameter nodes.
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const7440 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
7441 SmallVectorImpl<SDValue> &InVals) const {
7442 SelectionDAG &DAG = CLI.DAG;
7443 SDLoc &DL = CLI.DL;
7444 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
7445 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
7446 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
7447 SDValue Chain = CLI.Chain;
7448 SDValue Callee = CLI.Callee;
7449 bool &IsTailCall = CLI.IsTailCall;
7450 CallingConv::ID CallConv = CLI.CallConv;
7451 bool IsVarArg = CLI.IsVarArg;
7452 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7453 MVT XLenVT = Subtarget.getXLenVT();
7454
7455 MachineFunction &MF = DAG.getMachineFunction();
7456
7457 // Analyze the operands of the call, assigning locations to each operand.
7458 SmallVector<CCValAssign, 16> ArgLocs;
7459 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7460
7461 if (CallConv == CallingConv::Fast)
7462 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
7463 else if (CallConv == CallingConv::GHC)
7464 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
7465 else
7466 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
7467
7468 // Check if it's really possible to do a tail call.
7469 if (IsTailCall)
7470 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
7471
7472 if (IsTailCall)
7473 ++NumTailCalls;
7474 else if (CLI.CB && CLI.CB->isMustTailCall())
7475 report_fatal_error("failed to perform tail call elimination on a call "
7476 "site marked musttail");
7477
7478 // Get a count of how many bytes are to be pushed on the stack.
7479 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
7480
7481 // Create local copies for byval args
7482 SmallVector<SDValue, 8> ByValArgs;
7483 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7484 ISD::ArgFlagsTy Flags = Outs[i].Flags;
7485 if (!Flags.isByVal())
7486 continue;
7487
7488 SDValue Arg = OutVals[i];
7489 unsigned Size = Flags.getByValSize();
7490 Align Alignment = Flags.getNonZeroByValAlign();
7491
7492 int FI =
7493 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
7494 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7495 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
7496
7497 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
7498 /*IsVolatile=*/false,
7499 /*AlwaysInline=*/false, IsTailCall,
7500 MachinePointerInfo(), MachinePointerInfo());
7501 ByValArgs.push_back(FIPtr);
7502 }
7503
7504 if (!IsTailCall)
7505 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
7506
7507 // Copy argument values to their designated locations.
7508 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
7509 SmallVector<SDValue, 8> MemOpChains;
7510 SDValue StackPtr;
7511 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
7512 CCValAssign &VA = ArgLocs[i];
7513 SDValue ArgValue = OutVals[i];
7514 ISD::ArgFlagsTy Flags = Outs[i].Flags;
7515
7516 // Handle passing f64 on RV32D with a soft float ABI as a special case.
7517 bool IsF64OnRV32DSoftABI =
7518 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
7519 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
7520 SDValue SplitF64 = DAG.getNode(
7521 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
7522 SDValue Lo = SplitF64.getValue(0);
7523 SDValue Hi = SplitF64.getValue(1);
7524
7525 Register RegLo = VA.getLocReg();
7526 RegsToPass.push_back(std::make_pair(RegLo, Lo));
7527
7528 if (RegLo == RISCV::X17) {
7529 // Second half of f64 is passed on the stack.
7530 // Work out the address of the stack slot.
7531 if (!StackPtr.getNode())
7532 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7533 // Emit the store.
7534 MemOpChains.push_back(
7535 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
7536 } else {
7537 // Second half of f64 is passed in another GPR.
7538 assert(RegLo < RISCV::X31 && "Invalid register pair");
7539 Register RegHigh = RegLo + 1;
7540 RegsToPass.push_back(std::make_pair(RegHigh, Hi));
7541 }
7542 continue;
7543 }
7544
7545 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
7546 // as any other MemLoc.
7547
7548 // Promote the value if needed.
7549 // For now, only handle fully promoted and indirect arguments.
7550 if (VA.getLocInfo() == CCValAssign::Indirect) {
7551 // Store the argument in a stack slot and pass its address.
7552 Align StackAlign =
7553 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
7554 getPrefTypeAlign(ArgValue.getValueType(), DAG));
7555 TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
7556 // If the original argument was split (e.g. i128), we need
7557 // to store the required parts of it here (and pass just one address).
7558 // Vectors may be partly split to registers and partly to the stack, in
7559 // which case the base address is partly offset and subsequent stores are
7560 // relative to that.
7561 unsigned ArgIndex = Outs[i].OrigArgIndex;
7562 unsigned ArgPartOffset = Outs[i].PartOffset;
7563 assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7564 // Calculate the total size to store. We don't have access to what we're
7565 // actually storing other than performing the loop and collecting the
7566 // info.
7567 SmallVector<std::pair<SDValue, unsigned>> Parts;
7568 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
7569 SDValue PartValue = OutVals[i + 1];
7570 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
7571 EVT PartVT = PartValue.getValueType();
7572 StoredSize += PartVT.getStoreSize();
7573 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
7574 Parts.push_back(std::make_pair(PartValue, PartOffset));
7575 ++i;
7576 }
7577 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
7578 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
7579 MemOpChains.push_back(
7580 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
7581 MachinePointerInfo::getFixedStack(MF, FI)));
7582 for (const auto &Part : Parts) {
7583 SDValue PartValue = Part.first;
7584 unsigned PartOffset = Part.second;
7585 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
7586 DAG.getIntPtrConstant(PartOffset, DL));
7587 MemOpChains.push_back(
7588 DAG.getStore(Chain, DL, PartValue, Address,
7589 MachinePointerInfo::getFixedStack(MF, FI)));
7590 }
7591 ArgValue = SpillSlot;
7592 } else {
7593 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
7594 }
7595
7596 // Use local copy if it is a byval arg.
7597 if (Flags.isByVal())
7598 ArgValue = ByValArgs[j++];
7599
7600 if (VA.isRegLoc()) {
7601 // Queue up the argument copies and emit them at the end.
7602 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
7603 } else {
7604 assert(VA.isMemLoc() && "Argument not register or memory");
7605 assert(!IsTailCall && "Tail call not allowed if stack is used "
7606 "for passing parameters");
7607
7608 // Work out the address of the stack slot.
7609 if (!StackPtr.getNode())
7610 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7611 SDValue Address =
7612 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
7613 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
7614
7615 // Emit the store.
7616 MemOpChains.push_back(
7617 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
7618 }
7619 }
7620
7621 // Join the stores, which are independent of one another.
7622 if (!MemOpChains.empty())
7623 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
7624
7625 SDValue Glue;
7626
7627 // Build a sequence of copy-to-reg nodes, chained and glued together.
7628 for (auto &Reg : RegsToPass) {
7629 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
7630 Glue = Chain.getValue(1);
7631 }
7632
7633 // Validate that none of the argument registers have been marked as
7634 // reserved, if so report an error. Do the same for the return address if this
7635 // is not a tailcall.
7636 validateCCReservedRegs(RegsToPass, MF);
7637 if (!IsTailCall &&
7638 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
7639 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7640 MF.getFunction(),
7641 "Return address register required, but has been reserved."});
7642
7643 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
7644 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
7645 // split it and then direct call can be matched by PseudoCALL.
7646 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
7647 const GlobalValue *GV = S->getGlobal();
7648
7649 unsigned OpFlags = RISCVII::MO_CALL;
7650 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
7651 OpFlags = RISCVII::MO_PLT;
7652
7653 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
7654 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
7655 unsigned OpFlags = RISCVII::MO_CALL;
7656
7657 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
7658 nullptr))
7659 OpFlags = RISCVII::MO_PLT;
7660
7661 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
7662 }
7663
7664 // The first call operand is the chain and the second is the target address.
7665 SmallVector<SDValue, 8> Ops;
7666 Ops.push_back(Chain);
7667 Ops.push_back(Callee);
7668
7669 // Add argument registers to the end of the list so that they are
7670 // known live into the call.
7671 for (auto &Reg : RegsToPass)
7672 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
7673
7674 if (!IsTailCall) {
7675 // Add a register mask operand representing the call-preserved registers.
7676 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
7677 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
7678 assert(Mask && "Missing call preserved mask for calling convention");
7679 Ops.push_back(DAG.getRegisterMask(Mask));
7680 }
7681
7682 // Glue the call to the argument copies, if any.
7683 if (Glue.getNode())
7684 Ops.push_back(Glue);
7685
7686 // Emit the call.
7687 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7688
7689 if (IsTailCall) {
7690 MF.getFrameInfo().setHasTailCall();
7691 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
7692 }
7693
7694 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
7695 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
7696 Glue = Chain.getValue(1);
7697
7698 // Mark the end of the call, which is glued to the call itself.
7699 Chain = DAG.getCALLSEQ_END(Chain,
7700 DAG.getConstant(NumBytes, DL, PtrVT, true),
7701 DAG.getConstant(0, DL, PtrVT, true),
7702 Glue, DL);
7703 Glue = Chain.getValue(1);
7704
7705 // Assign locations to each value returned by this call.
7706 SmallVector<CCValAssign, 16> RVLocs;
7707 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
7708 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
7709
7710 // Copy all of the result registers out of their specified physreg.
7711 for (auto &VA : RVLocs) {
7712 // Copy the value out
7713 SDValue RetValue =
7714 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
7715 // Glue the RetValue to the end of the call sequence
7716 Chain = RetValue.getValue(1);
7717 Glue = RetValue.getValue(2);
7718
7719 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7720 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
7721 SDValue RetValue2 =
7722 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
7723 Chain = RetValue2.getValue(1);
7724 Glue = RetValue2.getValue(2);
7725 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
7726 RetValue2);
7727 }
7728
7729 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
7730
7731 InVals.push_back(RetValue);
7732 }
7733
7734 return Chain;
7735 }
7736
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const7737 bool RISCVTargetLowering::CanLowerReturn(
7738 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
7739 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
7740 SmallVector<CCValAssign, 16> RVLocs;
7741 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
7742
7743 Optional<unsigned> FirstMaskArgument;
7744 if (Subtarget.hasStdExtV())
7745 FirstMaskArgument = preAssignMask(Outs);
7746
7747 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7748 MVT VT = Outs[i].VT;
7749 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
7750 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7751 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
7752 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
7753 *this, FirstMaskArgument))
7754 return false;
7755 }
7756 return true;
7757 }
7758
7759 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const7760 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7761 bool IsVarArg,
7762 const SmallVectorImpl<ISD::OutputArg> &Outs,
7763 const SmallVectorImpl<SDValue> &OutVals,
7764 const SDLoc &DL, SelectionDAG &DAG) const {
7765 const MachineFunction &MF = DAG.getMachineFunction();
7766 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7767
7768 // Stores the assignment of the return value to a location.
7769 SmallVector<CCValAssign, 16> RVLocs;
7770
7771 // Info about the registers and stack slot.
7772 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
7773 *DAG.getContext());
7774
7775 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
7776 nullptr);
7777
7778 if (CallConv == CallingConv::GHC && !RVLocs.empty())
7779 report_fatal_error("GHC functions return void only");
7780
7781 SDValue Glue;
7782 SmallVector<SDValue, 4> RetOps(1, Chain);
7783
7784 // Copy the result values into the output registers.
7785 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
7786 SDValue Val = OutVals[i];
7787 CCValAssign &VA = RVLocs[i];
7788 assert(VA.isRegLoc() && "Can only return in registers!");
7789
7790 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
7791 // Handle returning f64 on RV32D with a soft float ABI.
7792 assert(VA.isRegLoc() && "Expected return via registers");
7793 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
7794 DAG.getVTList(MVT::i32, MVT::i32), Val);
7795 SDValue Lo = SplitF64.getValue(0);
7796 SDValue Hi = SplitF64.getValue(1);
7797 Register RegLo = VA.getLocReg();
7798 assert(RegLo < RISCV::X31 && "Invalid register pair");
7799 Register RegHi = RegLo + 1;
7800
7801 if (STI.isRegisterReservedByUser(RegLo) ||
7802 STI.isRegisterReservedByUser(RegHi))
7803 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7804 MF.getFunction(),
7805 "Return value register required, but has been reserved."});
7806
7807 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
7808 Glue = Chain.getValue(1);
7809 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
7810 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
7811 Glue = Chain.getValue(1);
7812 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
7813 } else {
7814 // Handle a 'normal' return.
7815 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
7816 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
7817
7818 if (STI.isRegisterReservedByUser(VA.getLocReg()))
7819 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
7820 MF.getFunction(),
7821 "Return value register required, but has been reserved."});
7822
7823 // Guarantee that all emitted copies are stuck together.
7824 Glue = Chain.getValue(1);
7825 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7826 }
7827 }
7828
7829 RetOps[0] = Chain; // Update chain.
7830
7831 // Add the glue node if we have it.
7832 if (Glue.getNode()) {
7833 RetOps.push_back(Glue);
7834 }
7835
7836 // Interrupt service routines use different return instructions.
7837 const Function &Func = DAG.getMachineFunction().getFunction();
7838 if (Func.hasFnAttribute("interrupt")) {
7839 if (!Func.getReturnType()->isVoidTy())
7840 report_fatal_error(
7841 "Functions with the interrupt attribute must have void return type!");
7842
7843 MachineFunction &MF = DAG.getMachineFunction();
7844 StringRef Kind =
7845 MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7846
7847 unsigned RetOpc;
7848 if (Kind == "user")
7849 RetOpc = RISCVISD::URET_FLAG;
7850 else if (Kind == "supervisor")
7851 RetOpc = RISCVISD::SRET_FLAG;
7852 else
7853 RetOpc = RISCVISD::MRET_FLAG;
7854
7855 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
7856 }
7857
7858 return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
7859 }
7860
validateCCReservedRegs(const SmallVectorImpl<std::pair<llvm::Register,llvm::SDValue>> & Regs,MachineFunction & MF) const7861 void RISCVTargetLowering::validateCCReservedRegs(
7862 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
7863 MachineFunction &MF) const {
7864 const Function &F = MF.getFunction();
7865 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
7866
7867 if (llvm::any_of(Regs, [&STI](auto Reg) {
7868 return STI.isRegisterReservedByUser(Reg.first);
7869 }))
7870 F.getContext().diagnose(DiagnosticInfoUnsupported{
7871 F, "Argument register required, but has been reserved."});
7872 }
7873
mayBeEmittedAsTailCall(const CallInst * CI) const7874 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
7875 return CI->isTailCall();
7876 }
7877
getTargetNodeName(unsigned Opcode) const7878 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
7879 #define NODE_NAME_CASE(NODE) \
7880 case RISCVISD::NODE: \
7881 return "RISCVISD::" #NODE;
7882 // clang-format off
7883 switch ((RISCVISD::NodeType)Opcode) {
7884 case RISCVISD::FIRST_NUMBER:
7885 break;
7886 NODE_NAME_CASE(RET_FLAG)
7887 NODE_NAME_CASE(URET_FLAG)
7888 NODE_NAME_CASE(SRET_FLAG)
7889 NODE_NAME_CASE(MRET_FLAG)
7890 NODE_NAME_CASE(CALL)
7891 NODE_NAME_CASE(SELECT_CC)
7892 NODE_NAME_CASE(BR_CC)
7893 NODE_NAME_CASE(BuildPairF64)
7894 NODE_NAME_CASE(SplitF64)
7895 NODE_NAME_CASE(TAIL)
7896 NODE_NAME_CASE(MULHSU)
7897 NODE_NAME_CASE(SLLW)
7898 NODE_NAME_CASE(SRAW)
7899 NODE_NAME_CASE(SRLW)
7900 NODE_NAME_CASE(DIVW)
7901 NODE_NAME_CASE(DIVUW)
7902 NODE_NAME_CASE(REMUW)
7903 NODE_NAME_CASE(ROLW)
7904 NODE_NAME_CASE(RORW)
7905 NODE_NAME_CASE(CLZW)
7906 NODE_NAME_CASE(CTZW)
7907 NODE_NAME_CASE(FSLW)
7908 NODE_NAME_CASE(FSRW)
7909 NODE_NAME_CASE(FSL)
7910 NODE_NAME_CASE(FSR)
7911 NODE_NAME_CASE(FMV_H_X)
7912 NODE_NAME_CASE(FMV_X_ANYEXTH)
7913 NODE_NAME_CASE(FMV_W_X_RV64)
7914 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
7915 NODE_NAME_CASE(READ_CYCLE_WIDE)
7916 NODE_NAME_CASE(GREV)
7917 NODE_NAME_CASE(GREVW)
7918 NODE_NAME_CASE(GORC)
7919 NODE_NAME_CASE(GORCW)
7920 NODE_NAME_CASE(SHFL)
7921 NODE_NAME_CASE(SHFLW)
7922 NODE_NAME_CASE(UNSHFL)
7923 NODE_NAME_CASE(UNSHFLW)
7924 NODE_NAME_CASE(BCOMPRESS)
7925 NODE_NAME_CASE(BCOMPRESSW)
7926 NODE_NAME_CASE(BDECOMPRESS)
7927 NODE_NAME_CASE(BDECOMPRESSW)
7928 NODE_NAME_CASE(VMV_V_X_VL)
7929 NODE_NAME_CASE(VFMV_V_F_VL)
7930 NODE_NAME_CASE(VMV_X_S)
7931 NODE_NAME_CASE(VMV_S_X_VL)
7932 NODE_NAME_CASE(VFMV_S_F_VL)
7933 NODE_NAME_CASE(SPLAT_VECTOR_I64)
7934 NODE_NAME_CASE(READ_VLENB)
7935 NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
7936 NODE_NAME_CASE(VSLIDEUP_VL)
7937 NODE_NAME_CASE(VSLIDE1UP_VL)
7938 NODE_NAME_CASE(VSLIDEDOWN_VL)
7939 NODE_NAME_CASE(VSLIDE1DOWN_VL)
7940 NODE_NAME_CASE(VID_VL)
7941 NODE_NAME_CASE(VFNCVT_ROD_VL)
7942 NODE_NAME_CASE(VECREDUCE_ADD_VL)
7943 NODE_NAME_CASE(VECREDUCE_UMAX_VL)
7944 NODE_NAME_CASE(VECREDUCE_SMAX_VL)
7945 NODE_NAME_CASE(VECREDUCE_UMIN_VL)
7946 NODE_NAME_CASE(VECREDUCE_SMIN_VL)
7947 NODE_NAME_CASE(VECREDUCE_AND_VL)
7948 NODE_NAME_CASE(VECREDUCE_OR_VL)
7949 NODE_NAME_CASE(VECREDUCE_XOR_VL)
7950 NODE_NAME_CASE(VECREDUCE_FADD_VL)
7951 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
7952 NODE_NAME_CASE(VECREDUCE_FMIN_VL)
7953 NODE_NAME_CASE(VECREDUCE_FMAX_VL)
7954 NODE_NAME_CASE(ADD_VL)
7955 NODE_NAME_CASE(AND_VL)
7956 NODE_NAME_CASE(MUL_VL)
7957 NODE_NAME_CASE(OR_VL)
7958 NODE_NAME_CASE(SDIV_VL)
7959 NODE_NAME_CASE(SHL_VL)
7960 NODE_NAME_CASE(SREM_VL)
7961 NODE_NAME_CASE(SRA_VL)
7962 NODE_NAME_CASE(SRL_VL)
7963 NODE_NAME_CASE(SUB_VL)
7964 NODE_NAME_CASE(UDIV_VL)
7965 NODE_NAME_CASE(UREM_VL)
7966 NODE_NAME_CASE(XOR_VL)
7967 NODE_NAME_CASE(FADD_VL)
7968 NODE_NAME_CASE(FSUB_VL)
7969 NODE_NAME_CASE(FMUL_VL)
7970 NODE_NAME_CASE(FDIV_VL)
7971 NODE_NAME_CASE(FNEG_VL)
7972 NODE_NAME_CASE(FABS_VL)
7973 NODE_NAME_CASE(FSQRT_VL)
7974 NODE_NAME_CASE(FMA_VL)
7975 NODE_NAME_CASE(FCOPYSIGN_VL)
7976 NODE_NAME_CASE(SMIN_VL)
7977 NODE_NAME_CASE(SMAX_VL)
7978 NODE_NAME_CASE(UMIN_VL)
7979 NODE_NAME_CASE(UMAX_VL)
7980 NODE_NAME_CASE(FMINNUM_VL)
7981 NODE_NAME_CASE(FMAXNUM_VL)
7982 NODE_NAME_CASE(MULHS_VL)
7983 NODE_NAME_CASE(MULHU_VL)
7984 NODE_NAME_CASE(FP_TO_SINT_VL)
7985 NODE_NAME_CASE(FP_TO_UINT_VL)
7986 NODE_NAME_CASE(SINT_TO_FP_VL)
7987 NODE_NAME_CASE(UINT_TO_FP_VL)
7988 NODE_NAME_CASE(FP_EXTEND_VL)
7989 NODE_NAME_CASE(FP_ROUND_VL)
7990 NODE_NAME_CASE(SETCC_VL)
7991 NODE_NAME_CASE(VSELECT_VL)
7992 NODE_NAME_CASE(VMAND_VL)
7993 NODE_NAME_CASE(VMOR_VL)
7994 NODE_NAME_CASE(VMXOR_VL)
7995 NODE_NAME_CASE(VMCLR_VL)
7996 NODE_NAME_CASE(VMSET_VL)
7997 NODE_NAME_CASE(VRGATHER_VX_VL)
7998 NODE_NAME_CASE(VRGATHER_VV_VL)
7999 NODE_NAME_CASE(VRGATHEREI16_VV_VL)
8000 NODE_NAME_CASE(VSEXT_VL)
8001 NODE_NAME_CASE(VZEXT_VL)
8002 NODE_NAME_CASE(VPOPC_VL)
8003 NODE_NAME_CASE(VLE_VL)
8004 NODE_NAME_CASE(VSE_VL)
8005 NODE_NAME_CASE(READ_CSR)
8006 NODE_NAME_CASE(WRITE_CSR)
8007 NODE_NAME_CASE(SWAP_CSR)
8008 }
8009 // clang-format on
8010 return nullptr;
8011 #undef NODE_NAME_CASE
8012 }
8013
8014 /// getConstraintType - Given a constraint letter, return the type of
8015 /// constraint it is for this target.
8016 RISCVTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const8017 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
8018 if (Constraint.size() == 1) {
8019 switch (Constraint[0]) {
8020 default:
8021 break;
8022 case 'f':
8023 case 'v':
8024 return C_RegisterClass;
8025 case 'I':
8026 case 'J':
8027 case 'K':
8028 return C_Immediate;
8029 case 'A':
8030 return C_Memory;
8031 }
8032 }
8033 return TargetLowering::getConstraintType(Constraint);
8034 }
8035
8036 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const8037 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
8038 StringRef Constraint,
8039 MVT VT) const {
8040 // First, see if this is a constraint that directly corresponds to a
8041 // RISCV register class.
8042 if (Constraint.size() == 1) {
8043 switch (Constraint[0]) {
8044 case 'r':
8045 return std::make_pair(0U, &RISCV::GPRRegClass);
8046 case 'f':
8047 if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
8048 return std::make_pair(0U, &RISCV::FPR16RegClass);
8049 if (Subtarget.hasStdExtF() && VT == MVT::f32)
8050 return std::make_pair(0U, &RISCV::FPR32RegClass);
8051 if (Subtarget.hasStdExtD() && VT == MVT::f64)
8052 return std::make_pair(0U, &RISCV::FPR64RegClass);
8053 break;
8054 case 'v':
8055 for (const auto *RC :
8056 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
8057 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8058 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
8059 return std::make_pair(0U, RC);
8060 }
8061 break;
8062 default:
8063 break;
8064 }
8065 }
8066
8067 // Clang will correctly decode the usage of register name aliases into their
8068 // official names. However, other frontends like `rustc` do not. This allows
8069 // users of these frontends to use the ABI names for registers in LLVM-style
8070 // register constraints.
8071 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
8072 .Case("{zero}", RISCV::X0)
8073 .Case("{ra}", RISCV::X1)
8074 .Case("{sp}", RISCV::X2)
8075 .Case("{gp}", RISCV::X3)
8076 .Case("{tp}", RISCV::X4)
8077 .Case("{t0}", RISCV::X5)
8078 .Case("{t1}", RISCV::X6)
8079 .Case("{t2}", RISCV::X7)
8080 .Cases("{s0}", "{fp}", RISCV::X8)
8081 .Case("{s1}", RISCV::X9)
8082 .Case("{a0}", RISCV::X10)
8083 .Case("{a1}", RISCV::X11)
8084 .Case("{a2}", RISCV::X12)
8085 .Case("{a3}", RISCV::X13)
8086 .Case("{a4}", RISCV::X14)
8087 .Case("{a5}", RISCV::X15)
8088 .Case("{a6}", RISCV::X16)
8089 .Case("{a7}", RISCV::X17)
8090 .Case("{s2}", RISCV::X18)
8091 .Case("{s3}", RISCV::X19)
8092 .Case("{s4}", RISCV::X20)
8093 .Case("{s5}", RISCV::X21)
8094 .Case("{s6}", RISCV::X22)
8095 .Case("{s7}", RISCV::X23)
8096 .Case("{s8}", RISCV::X24)
8097 .Case("{s9}", RISCV::X25)
8098 .Case("{s10}", RISCV::X26)
8099 .Case("{s11}", RISCV::X27)
8100 .Case("{t3}", RISCV::X28)
8101 .Case("{t4}", RISCV::X29)
8102 .Case("{t5}", RISCV::X30)
8103 .Case("{t6}", RISCV::X31)
8104 .Default(RISCV::NoRegister);
8105 if (XRegFromAlias != RISCV::NoRegister)
8106 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
8107
8108 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
8109 // TableGen record rather than the AsmName to choose registers for InlineAsm
8110 // constraints, plus we want to match those names to the widest floating point
8111 // register type available, manually select floating point registers here.
8112 //
8113 // The second case is the ABI name of the register, so that frontends can also
8114 // use the ABI names in register constraint lists.
8115 if (Subtarget.hasStdExtF()) {
8116 unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
8117 .Cases("{f0}", "{ft0}", RISCV::F0_F)
8118 .Cases("{f1}", "{ft1}", RISCV::F1_F)
8119 .Cases("{f2}", "{ft2}", RISCV::F2_F)
8120 .Cases("{f3}", "{ft3}", RISCV::F3_F)
8121 .Cases("{f4}", "{ft4}", RISCV::F4_F)
8122 .Cases("{f5}", "{ft5}", RISCV::F5_F)
8123 .Cases("{f6}", "{ft6}", RISCV::F6_F)
8124 .Cases("{f7}", "{ft7}", RISCV::F7_F)
8125 .Cases("{f8}", "{fs0}", RISCV::F8_F)
8126 .Cases("{f9}", "{fs1}", RISCV::F9_F)
8127 .Cases("{f10}", "{fa0}", RISCV::F10_F)
8128 .Cases("{f11}", "{fa1}", RISCV::F11_F)
8129 .Cases("{f12}", "{fa2}", RISCV::F12_F)
8130 .Cases("{f13}", "{fa3}", RISCV::F13_F)
8131 .Cases("{f14}", "{fa4}", RISCV::F14_F)
8132 .Cases("{f15}", "{fa5}", RISCV::F15_F)
8133 .Cases("{f16}", "{fa6}", RISCV::F16_F)
8134 .Cases("{f17}", "{fa7}", RISCV::F17_F)
8135 .Cases("{f18}", "{fs2}", RISCV::F18_F)
8136 .Cases("{f19}", "{fs3}", RISCV::F19_F)
8137 .Cases("{f20}", "{fs4}", RISCV::F20_F)
8138 .Cases("{f21}", "{fs5}", RISCV::F21_F)
8139 .Cases("{f22}", "{fs6}", RISCV::F22_F)
8140 .Cases("{f23}", "{fs7}", RISCV::F23_F)
8141 .Cases("{f24}", "{fs8}", RISCV::F24_F)
8142 .Cases("{f25}", "{fs9}", RISCV::F25_F)
8143 .Cases("{f26}", "{fs10}", RISCV::F26_F)
8144 .Cases("{f27}", "{fs11}", RISCV::F27_F)
8145 .Cases("{f28}", "{ft8}", RISCV::F28_F)
8146 .Cases("{f29}", "{ft9}", RISCV::F29_F)
8147 .Cases("{f30}", "{ft10}", RISCV::F30_F)
8148 .Cases("{f31}", "{ft11}", RISCV::F31_F)
8149 .Default(RISCV::NoRegister);
8150 if (FReg != RISCV::NoRegister) {
8151 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
8152 if (Subtarget.hasStdExtD()) {
8153 unsigned RegNo = FReg - RISCV::F0_F;
8154 unsigned DReg = RISCV::F0_D + RegNo;
8155 return std::make_pair(DReg, &RISCV::FPR64RegClass);
8156 }
8157 return std::make_pair(FReg, &RISCV::FPR32RegClass);
8158 }
8159 }
8160
8161 if (Subtarget.hasStdExtV()) {
8162 Register VReg = StringSwitch<Register>(Constraint.lower())
8163 .Case("{v0}", RISCV::V0)
8164 .Case("{v1}", RISCV::V1)
8165 .Case("{v2}", RISCV::V2)
8166 .Case("{v3}", RISCV::V3)
8167 .Case("{v4}", RISCV::V4)
8168 .Case("{v5}", RISCV::V5)
8169 .Case("{v6}", RISCV::V6)
8170 .Case("{v7}", RISCV::V7)
8171 .Case("{v8}", RISCV::V8)
8172 .Case("{v9}", RISCV::V9)
8173 .Case("{v10}", RISCV::V10)
8174 .Case("{v11}", RISCV::V11)
8175 .Case("{v12}", RISCV::V12)
8176 .Case("{v13}", RISCV::V13)
8177 .Case("{v14}", RISCV::V14)
8178 .Case("{v15}", RISCV::V15)
8179 .Case("{v16}", RISCV::V16)
8180 .Case("{v17}", RISCV::V17)
8181 .Case("{v18}", RISCV::V18)
8182 .Case("{v19}", RISCV::V19)
8183 .Case("{v20}", RISCV::V20)
8184 .Case("{v21}", RISCV::V21)
8185 .Case("{v22}", RISCV::V22)
8186 .Case("{v23}", RISCV::V23)
8187 .Case("{v24}", RISCV::V24)
8188 .Case("{v25}", RISCV::V25)
8189 .Case("{v26}", RISCV::V26)
8190 .Case("{v27}", RISCV::V27)
8191 .Case("{v28}", RISCV::V28)
8192 .Case("{v29}", RISCV::V29)
8193 .Case("{v30}", RISCV::V30)
8194 .Case("{v31}", RISCV::V31)
8195 .Default(RISCV::NoRegister);
8196 if (VReg != RISCV::NoRegister) {
8197 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8198 return std::make_pair(VReg, &RISCV::VMRegClass);
8199 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
8200 return std::make_pair(VReg, &RISCV::VRRegClass);
8201 for (const auto *RC :
8202 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8203 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
8204 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
8205 return std::make_pair(VReg, RC);
8206 }
8207 }
8208 }
8209 }
8210
8211 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
8212 }
8213
8214 unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode) const8215 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
8216 // Currently only support length 1 constraints.
8217 if (ConstraintCode.size() == 1) {
8218 switch (ConstraintCode[0]) {
8219 case 'A':
8220 return InlineAsm::Constraint_A;
8221 default:
8222 break;
8223 }
8224 }
8225
8226 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
8227 }
8228
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const8229 void RISCVTargetLowering::LowerAsmOperandForConstraint(
8230 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
8231 SelectionDAG &DAG) const {
8232 // Currently only support length 1 constraints.
8233 if (Constraint.length() == 1) {
8234 switch (Constraint[0]) {
8235 case 'I':
8236 // Validate & create a 12-bit signed immediate operand.
8237 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8238 uint64_t CVal = C->getSExtValue();
8239 if (isInt<12>(CVal))
8240 Ops.push_back(
8241 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8242 }
8243 return;
8244 case 'J':
8245 // Validate & create an integer zero operand.
8246 if (auto *C = dyn_cast<ConstantSDNode>(Op))
8247 if (C->getZExtValue() == 0)
8248 Ops.push_back(
8249 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
8250 return;
8251 case 'K':
8252 // Validate & create a 5-bit unsigned immediate operand.
8253 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8254 uint64_t CVal = C->getZExtValue();
8255 if (isUInt<5>(CVal))
8256 Ops.push_back(
8257 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8258 }
8259 return;
8260 default:
8261 break;
8262 }
8263 }
8264 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8265 }
8266
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const8267 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
8268 Instruction *Inst,
8269 AtomicOrdering Ord) const {
8270 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
8271 return Builder.CreateFence(Ord);
8272 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
8273 return Builder.CreateFence(AtomicOrdering::Release);
8274 return nullptr;
8275 }
8276
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const8277 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
8278 Instruction *Inst,
8279 AtomicOrdering Ord) const {
8280 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
8281 return Builder.CreateFence(AtomicOrdering::Acquire);
8282 return nullptr;
8283 }
8284
8285 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const8286 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8287 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
8288 // point operations can't be used in an lr/sc sequence without breaking the
8289 // forward-progress guarantee.
8290 if (AI->isFloatingPointOperation())
8291 return AtomicExpansionKind::CmpXChg;
8292
8293 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8294 if (Size == 8 || Size == 16)
8295 return AtomicExpansionKind::MaskedIntrinsic;
8296 return AtomicExpansionKind::None;
8297 }
8298
8299 static Intrinsic::ID
getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen,AtomicRMWInst::BinOp BinOp)8300 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
8301 if (XLen == 32) {
8302 switch (BinOp) {
8303 default:
8304 llvm_unreachable("Unexpected AtomicRMW BinOp");
8305 case AtomicRMWInst::Xchg:
8306 return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
8307 case AtomicRMWInst::Add:
8308 return Intrinsic::riscv_masked_atomicrmw_add_i32;
8309 case AtomicRMWInst::Sub:
8310 return Intrinsic::riscv_masked_atomicrmw_sub_i32;
8311 case AtomicRMWInst::Nand:
8312 return Intrinsic::riscv_masked_atomicrmw_nand_i32;
8313 case AtomicRMWInst::Max:
8314 return Intrinsic::riscv_masked_atomicrmw_max_i32;
8315 case AtomicRMWInst::Min:
8316 return Intrinsic::riscv_masked_atomicrmw_min_i32;
8317 case AtomicRMWInst::UMax:
8318 return Intrinsic::riscv_masked_atomicrmw_umax_i32;
8319 case AtomicRMWInst::UMin:
8320 return Intrinsic::riscv_masked_atomicrmw_umin_i32;
8321 }
8322 }
8323
8324 if (XLen == 64) {
8325 switch (BinOp) {
8326 default:
8327 llvm_unreachable("Unexpected AtomicRMW BinOp");
8328 case AtomicRMWInst::Xchg:
8329 return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
8330 case AtomicRMWInst::Add:
8331 return Intrinsic::riscv_masked_atomicrmw_add_i64;
8332 case AtomicRMWInst::Sub:
8333 return Intrinsic::riscv_masked_atomicrmw_sub_i64;
8334 case AtomicRMWInst::Nand:
8335 return Intrinsic::riscv_masked_atomicrmw_nand_i64;
8336 case AtomicRMWInst::Max:
8337 return Intrinsic::riscv_masked_atomicrmw_max_i64;
8338 case AtomicRMWInst::Min:
8339 return Intrinsic::riscv_masked_atomicrmw_min_i64;
8340 case AtomicRMWInst::UMax:
8341 return Intrinsic::riscv_masked_atomicrmw_umax_i64;
8342 case AtomicRMWInst::UMin:
8343 return Intrinsic::riscv_masked_atomicrmw_umin_i64;
8344 }
8345 }
8346
8347 llvm_unreachable("Unexpected XLen\n");
8348 }
8349
emitMaskedAtomicRMWIntrinsic(IRBuilder<> & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord) const8350 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
8351 IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
8352 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
8353 unsigned XLen = Subtarget.getXLen();
8354 Value *Ordering =
8355 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
8356 Type *Tys[] = {AlignedAddr->getType()};
8357 Function *LrwOpScwLoop = Intrinsic::getDeclaration(
8358 AI->getModule(),
8359 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
8360
8361 if (XLen == 64) {
8362 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8363 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8364 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8365 }
8366
8367 Value *Result;
8368
8369 // Must pass the shift amount needed to sign extend the loaded value prior
8370 // to performing a signed comparison for min/max. ShiftAmt is the number of
8371 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8372 // is the number of bits to left+right shift the value in order to
8373 // sign-extend.
8374 if (AI->getOperation() == AtomicRMWInst::Min ||
8375 AI->getOperation() == AtomicRMWInst::Max) {
8376 const DataLayout &DL = AI->getModule()->getDataLayout();
8377 unsigned ValWidth =
8378 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
8379 Value *SextShamt =
8380 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
8381 Result = Builder.CreateCall(LrwOpScwLoop,
8382 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8383 } else {
8384 Result =
8385 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8386 }
8387
8388 if (XLen == 64)
8389 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8390 return Result;
8391 }
8392
8393 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * CI) const8394 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8395 AtomicCmpXchgInst *CI) const {
8396 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8397 if (Size == 8 || Size == 16)
8398 return AtomicExpansionKind::MaskedIntrinsic;
8399 return AtomicExpansionKind::None;
8400 }
8401
emitMaskedAtomicCmpXchgIntrinsic(IRBuilder<> & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord) const8402 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8403 IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
8404 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
8405 unsigned XLen = Subtarget.getXLen();
8406 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
8407 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
8408 if (XLen == 64) {
8409 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8410 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8411 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8412 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
8413 }
8414 Type *Tys[] = {AlignedAddr->getType()};
8415 Function *MaskedCmpXchg =
8416 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
8417 Value *Result = Builder.CreateCall(
8418 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
8419 if (XLen == 64)
8420 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8421 return Result;
8422 }
8423
shouldRemoveExtendFromGSIndex(EVT VT) const8424 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
8425 return false;
8426 }
8427
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const8428 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
8429 EVT VT) const {
8430 VT = VT.getScalarType();
8431
8432 if (!VT.isSimple())
8433 return false;
8434
8435 switch (VT.getSimpleVT().SimpleTy) {
8436 case MVT::f16:
8437 return Subtarget.hasStdExtZfh();
8438 case MVT::f32:
8439 return Subtarget.hasStdExtF();
8440 case MVT::f64:
8441 return Subtarget.hasStdExtD();
8442 default:
8443 break;
8444 }
8445
8446 return false;
8447 }
8448
getExceptionPointerRegister(const Constant * PersonalityFn) const8449 Register RISCVTargetLowering::getExceptionPointerRegister(
8450 const Constant *PersonalityFn) const {
8451 return RISCV::X10;
8452 }
8453
getExceptionSelectorRegister(const Constant * PersonalityFn) const8454 Register RISCVTargetLowering::getExceptionSelectorRegister(
8455 const Constant *PersonalityFn) const {
8456 return RISCV::X11;
8457 }
8458
shouldExtendTypeInLibCall(EVT Type) const8459 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
8460 // Return false to suppress the unnecessary extensions if the LibCall
8461 // arguments or return value is f32 type for LP64 ABI.
8462 RISCVABI::ABI ABI = Subtarget.getTargetABI();
8463 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
8464 return false;
8465
8466 return true;
8467 }
8468
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned) const8469 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
8470 if (Subtarget.is64Bit() && Type == MVT::i32)
8471 return true;
8472
8473 return IsSigned;
8474 }
8475
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C) const8476 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
8477 SDValue C) const {
8478 // Check integral scalar types.
8479 if (VT.isScalarInteger()) {
8480 // Omit the optimization if the sub target has the M extension and the data
8481 // size exceeds XLen.
8482 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
8483 return false;
8484 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
8485 // Break the MUL to a SLLI and an ADD/SUB.
8486 const APInt &Imm = ConstNode->getAPIntValue();
8487 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
8488 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
8489 return true;
8490 // Omit the following optimization if the sub target has the M extension
8491 // and the data size >= XLen.
8492 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
8493 return false;
8494 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
8495 // a pair of LUI/ADDI.
8496 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
8497 APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
8498 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
8499 (1 - ImmS).isPowerOf2())
8500 return true;
8501 }
8502 }
8503 }
8504
8505 return false;
8506 }
8507
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const8508 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
8509 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
8510 bool *Fast) const {
8511 if (!VT.isScalableVector())
8512 return false;
8513
8514 EVT ElemVT = VT.getVectorElementType();
8515 if (Alignment >= ElemVT.getStoreSize()) {
8516 if (Fast)
8517 *Fast = true;
8518 return true;
8519 }
8520
8521 return false;
8522 }
8523
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,Optional<CallingConv::ID> CC) const8524 bool RISCVTargetLowering::splitValueIntoRegisterParts(
8525 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
8526 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
8527 bool IsABIRegCopy = CC.hasValue();
8528 EVT ValueVT = Val.getValueType();
8529 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8530 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
8531 // and cast to f32.
8532 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
8533 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
8534 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
8535 DAG.getConstant(0xFFFF0000, DL, MVT::i32));
8536 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
8537 Parts[0] = Val;
8538 return true;
8539 }
8540
8541 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8542 LLVMContext &Context = *DAG.getContext();
8543 EVT ValueEltVT = ValueVT.getVectorElementType();
8544 EVT PartEltVT = PartVT.getVectorElementType();
8545 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8546 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8547 if (PartVTBitSize % ValueVTBitSize == 0) {
8548 // If the element types are different, bitcast to the same element type of
8549 // PartVT first.
8550 if (ValueEltVT != PartEltVT) {
8551 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8552 assert(Count != 0 && "The number of element should not be zero.");
8553 EVT SameEltTypeVT =
8554 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8555 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
8556 }
8557 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
8558 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8559 Parts[0] = Val;
8560 return true;
8561 }
8562 }
8563 return false;
8564 }
8565
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,Optional<CallingConv::ID> CC) const8566 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
8567 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
8568 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
8569 bool IsABIRegCopy = CC.hasValue();
8570 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8571 SDValue Val = Parts[0];
8572
8573 // Cast the f32 to i32, truncate to i16, and cast back to f16.
8574 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
8575 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
8576 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
8577 return Val;
8578 }
8579
8580 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8581 LLVMContext &Context = *DAG.getContext();
8582 SDValue Val = Parts[0];
8583 EVT ValueEltVT = ValueVT.getVectorElementType();
8584 EVT PartEltVT = PartVT.getVectorElementType();
8585 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
8586 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
8587 if (PartVTBitSize % ValueVTBitSize == 0) {
8588 EVT SameEltTypeVT = ValueVT;
8589 // If the element types are different, convert it to the same element type
8590 // of PartVT.
8591 if (ValueEltVT != PartEltVT) {
8592 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
8593 assert(Count != 0 && "The number of element should not be zero.");
8594 SameEltTypeVT =
8595 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
8596 }
8597 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
8598 DAG.getConstant(0, DL, Subtarget.getXLenVT()));
8599 if (ValueEltVT != PartEltVT)
8600 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
8601 return Val;
8602 }
8603 }
8604 return SDValue();
8605 }
8606
8607 #define GET_REGISTER_MATCHER
8608 #include "RISCVGenAsmMatcher.inc"
8609
8610 Register
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const8611 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
8612 const MachineFunction &MF) const {
8613 Register Reg = MatchRegisterAltName(RegName);
8614 if (Reg == RISCV::NoRegister)
8615 Reg = MatchRegisterName(RegName);
8616 if (Reg == RISCV::NoRegister)
8617 report_fatal_error(
8618 Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
8619 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
8620 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
8621 report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
8622 StringRef(RegName) + "\"."));
8623 return Reg;
8624 }
8625
8626 namespace llvm {
8627 namespace RISCVVIntrinsicsTable {
8628
8629 #define GET_RISCVVIntrinsicsTable_IMPL
8630 #include "RISCVGenSearchableTables.inc"
8631
8632 } // namespace RISCVVIntrinsicsTable
8633
8634 } // namespace llvm
8635