xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/IR/Argument.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalAlias.h"
23 #include "llvm/IR/GlobalIFunc.h"
24 #include "llvm/IR/GlobalObject.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Use.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/IR/ValueSymbolTable.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 #include <cstddef>
43 #include <iterator>
44 #include <tuple>
45 
46 using namespace llvm;
47 
48 namespace {
49 
50 struct OrderMap {
51   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
52   unsigned LastGlobalConstantID = 0;
53   unsigned LastGlobalValueID = 0;
54 
55   OrderMap() = default;
56 
isGlobalConstant__anon163096cf0111::OrderMap57   bool isGlobalConstant(unsigned ID) const {
58     return ID <= LastGlobalConstantID;
59   }
60 
isGlobalValue__anon163096cf0111::OrderMap61   bool isGlobalValue(unsigned ID) const {
62     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
63   }
64 
size__anon163096cf0111::OrderMap65   unsigned size() const { return IDs.size(); }
operator []__anon163096cf0111::OrderMap66   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
67 
lookup__anon163096cf0111::OrderMap68   std::pair<unsigned, bool> lookup(const Value *V) const {
69     return IDs.lookup(V);
70   }
71 
index__anon163096cf0111::OrderMap72   void index(const Value *V) {
73     // Explicitly sequence get-size and insert-value operations to avoid UB.
74     unsigned ID = IDs.size() + 1;
75     IDs[V].first = ID;
76   }
77 };
78 
79 } // end anonymous namespace
80 
orderValue(const Value * V,OrderMap & OM)81 static void orderValue(const Value *V, OrderMap &OM) {
82   if (OM.lookup(V).first)
83     return;
84 
85   if (const Constant *C = dyn_cast<Constant>(V)) {
86     if (C->getNumOperands() && !isa<GlobalValue>(C)) {
87       for (const Value *Op : C->operands())
88         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
89           orderValue(Op, OM);
90       if (auto *CE = dyn_cast<ConstantExpr>(C))
91         if (CE->getOpcode() == Instruction::ShuffleVector)
92           orderValue(CE->getShuffleMaskForBitcode(), OM);
93     }
94   }
95 
96   // Note: we cannot cache this lookup above, since inserting into the map
97   // changes the map's size, and thus affects the other IDs.
98   OM.index(V);
99 }
100 
orderModule(const Module & M)101 static OrderMap orderModule(const Module &M) {
102   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
103   // and ValueEnumerator::incorporateFunction().
104   OrderMap OM;
105 
106   // In the reader, initializers of GlobalValues are set *after* all the
107   // globals have been read.  Rather than awkwardly modeling this behaviour
108   // directly in predictValueUseListOrderImpl(), just assign IDs to
109   // initializers of GlobalValues before GlobalValues themselves to model this
110   // implicitly.
111   for (const GlobalVariable &G : M.globals())
112     if (G.hasInitializer())
113       if (!isa<GlobalValue>(G.getInitializer()))
114         orderValue(G.getInitializer(), OM);
115   for (const GlobalAlias &A : M.aliases())
116     if (!isa<GlobalValue>(A.getAliasee()))
117       orderValue(A.getAliasee(), OM);
118   for (const GlobalIFunc &I : M.ifuncs())
119     if (!isa<GlobalValue>(I.getResolver()))
120       orderValue(I.getResolver(), OM);
121   for (const Function &F : M) {
122     for (const Use &U : F.operands())
123       if (!isa<GlobalValue>(U.get()))
124         orderValue(U.get(), OM);
125   }
126 
127   // As constants used in metadata operands are emitted as module-level
128   // constants, we must order them before other operands. Also, we must order
129   // these before global values, as these will be read before setting the
130   // global values' initializers. The latter matters for constants which have
131   // uses towards other constants that are used as initializers.
132   auto orderConstantValue = [&OM](const Value *V) {
133     if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
134       orderValue(V, OM);
135   };
136   for (const Function &F : M) {
137     if (F.isDeclaration())
138       continue;
139     for (const BasicBlock &BB : F)
140       for (const Instruction &I : BB)
141         for (const Value *V : I.operands()) {
142           if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
143             if (const auto *VAM =
144                     dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
145               orderConstantValue(VAM->getValue());
146             } else if (const auto *AL =
147                            dyn_cast<DIArgList>(MAV->getMetadata())) {
148               for (const auto *VAM : AL->getArgs())
149                 orderConstantValue(VAM->getValue());
150             }
151           }
152         }
153   }
154   OM.LastGlobalConstantID = OM.size();
155 
156   // Initializers of GlobalValues are processed in
157   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
158   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
159   // by giving IDs in reverse order.
160   //
161   // Since GlobalValues never reference each other directly (just through
162   // initializers), their relative IDs only matter for determining order of
163   // uses in their initializers.
164   for (const Function &F : M)
165     orderValue(&F, OM);
166   for (const GlobalAlias &A : M.aliases())
167     orderValue(&A, OM);
168   for (const GlobalIFunc &I : M.ifuncs())
169     orderValue(&I, OM);
170   for (const GlobalVariable &G : M.globals())
171     orderValue(&G, OM);
172   OM.LastGlobalValueID = OM.size();
173 
174   for (const Function &F : M) {
175     if (F.isDeclaration())
176       continue;
177     // Here we need to match the union of ValueEnumerator::incorporateFunction()
178     // and WriteFunction().  Basic blocks are implicitly declared before
179     // anything else (by declaring their size).
180     for (const BasicBlock &BB : F)
181       orderValue(&BB, OM);
182     for (const Argument &A : F.args())
183       orderValue(&A, OM);
184     for (const BasicBlock &BB : F)
185       for (const Instruction &I : BB) {
186         for (const Value *Op : I.operands())
187           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
188               isa<InlineAsm>(*Op))
189             orderValue(Op, OM);
190         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
191           orderValue(SVI->getShuffleMaskForBitcode(), OM);
192       }
193     for (const BasicBlock &BB : F)
194       for (const Instruction &I : BB)
195         orderValue(&I, OM);
196   }
197   return OM;
198 }
199 
predictValueUseListOrderImpl(const Value * V,const Function * F,unsigned ID,const OrderMap & OM,UseListOrderStack & Stack)200 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
201                                          unsigned ID, const OrderMap &OM,
202                                          UseListOrderStack &Stack) {
203   // Predict use-list order for this one.
204   using Entry = std::pair<const Use *, unsigned>;
205   SmallVector<Entry, 64> List;
206   for (const Use &U : V->uses())
207     // Check if this user will be serialized.
208     if (OM.lookup(U.getUser()).first)
209       List.push_back(std::make_pair(&U, List.size()));
210 
211   if (List.size() < 2)
212     // We may have lost some users.
213     return;
214 
215   bool IsGlobalValue = OM.isGlobalValue(ID);
216   llvm::sort(List, [&](const Entry &L, const Entry &R) {
217     const Use *LU = L.first;
218     const Use *RU = R.first;
219     if (LU == RU)
220       return false;
221 
222     auto LID = OM.lookup(LU->getUser()).first;
223     auto RID = OM.lookup(RU->getUser()).first;
224 
225     // Global values are processed in reverse order.
226     //
227     // Moreover, initializers of GlobalValues are set *after* all the globals
228     // have been read (despite having earlier IDs).  Rather than awkwardly
229     // modeling this behaviour here, orderModule() has assigned IDs to
230     // initializers of GlobalValues before GlobalValues themselves.
231     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
232       return LID < RID;
233 
234     // If ID is 4, then expect: 7 6 5 1 2 3.
235     if (LID < RID) {
236       if (RID <= ID)
237         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
238           return true;
239       return false;
240     }
241     if (RID < LID) {
242       if (LID <= ID)
243         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
244           return false;
245       return true;
246     }
247 
248     // LID and RID are equal, so we have different operands of the same user.
249     // Assume operands are added in order for all instructions.
250     if (LID <= ID)
251       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
252         return LU->getOperandNo() < RU->getOperandNo();
253     return LU->getOperandNo() > RU->getOperandNo();
254   });
255 
256   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
257         return L.second < R.second;
258       }))
259     // Order is already correct.
260     return;
261 
262   // Store the shuffle.
263   Stack.emplace_back(V, F, List.size());
264   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
265   for (size_t I = 0, E = List.size(); I != E; ++I)
266     Stack.back().Shuffle[I] = List[I].second;
267 }
268 
predictValueUseListOrder(const Value * V,const Function * F,OrderMap & OM,UseListOrderStack & Stack)269 static void predictValueUseListOrder(const Value *V, const Function *F,
270                                      OrderMap &OM, UseListOrderStack &Stack) {
271   auto &IDPair = OM[V];
272   assert(IDPair.first && "Unmapped value");
273   if (IDPair.second)
274     // Already predicted.
275     return;
276 
277   // Do the actual prediction.
278   IDPair.second = true;
279   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
280     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
281 
282   // Recursive descent into constants.
283   if (const Constant *C = dyn_cast<Constant>(V)) {
284     if (C->getNumOperands()) { // Visit GlobalValues.
285       for (const Value *Op : C->operands())
286         if (isa<Constant>(Op)) // Visit GlobalValues.
287           predictValueUseListOrder(Op, F, OM, Stack);
288       if (auto *CE = dyn_cast<ConstantExpr>(C))
289         if (CE->getOpcode() == Instruction::ShuffleVector)
290           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
291                                    Stack);
292     }
293   }
294 }
295 
predictUseListOrder(const Module & M)296 static UseListOrderStack predictUseListOrder(const Module &M) {
297   OrderMap OM = orderModule(M);
298 
299   // Use-list orders need to be serialized after all the users have been added
300   // to a value, or else the shuffles will be incomplete.  Store them per
301   // function in a stack.
302   //
303   // Aside from function order, the order of values doesn't matter much here.
304   UseListOrderStack Stack;
305 
306   // We want to visit the functions backward now so we can list function-local
307   // constants in the last Function they're used in.  Module-level constants
308   // have already been visited above.
309   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
310     const Function &F = *I;
311     if (F.isDeclaration())
312       continue;
313     for (const BasicBlock &BB : F)
314       predictValueUseListOrder(&BB, &F, OM, Stack);
315     for (const Argument &A : F.args())
316       predictValueUseListOrder(&A, &F, OM, Stack);
317     for (const BasicBlock &BB : F)
318       for (const Instruction &I : BB) {
319         for (const Value *Op : I.operands())
320           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
321             predictValueUseListOrder(Op, &F, OM, Stack);
322         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
323           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
324                                    Stack);
325       }
326     for (const BasicBlock &BB : F)
327       for (const Instruction &I : BB)
328         predictValueUseListOrder(&I, &F, OM, Stack);
329   }
330 
331   // Visit globals last, since the module-level use-list block will be seen
332   // before the function bodies are processed.
333   for (const GlobalVariable &G : M.globals())
334     predictValueUseListOrder(&G, nullptr, OM, Stack);
335   for (const Function &F : M)
336     predictValueUseListOrder(&F, nullptr, OM, Stack);
337   for (const GlobalAlias &A : M.aliases())
338     predictValueUseListOrder(&A, nullptr, OM, Stack);
339   for (const GlobalIFunc &I : M.ifuncs())
340     predictValueUseListOrder(&I, nullptr, OM, Stack);
341   for (const GlobalVariable &G : M.globals())
342     if (G.hasInitializer())
343       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
344   for (const GlobalAlias &A : M.aliases())
345     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
346   for (const GlobalIFunc &I : M.ifuncs())
347     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
348   for (const Function &F : M) {
349     for (const Use &U : F.operands())
350       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
351   }
352 
353   return Stack;
354 }
355 
isIntOrIntVectorValue(const std::pair<const Value *,unsigned> & V)356 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
357   return V.first->getType()->isIntOrIntVectorTy();
358 }
359 
ValueEnumerator(const Module & M,bool ShouldPreserveUseListOrder)360 ValueEnumerator::ValueEnumerator(const Module &M,
361                                  bool ShouldPreserveUseListOrder)
362     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
363   if (ShouldPreserveUseListOrder)
364     UseListOrders = predictUseListOrder(M);
365 
366   // Enumerate the global variables.
367   for (const GlobalVariable &GV : M.globals())
368     EnumerateValue(&GV);
369 
370   // Enumerate the functions.
371   for (const Function & F : M) {
372     EnumerateValue(&F);
373     EnumerateAttributes(F.getAttributes());
374   }
375 
376   // Enumerate the aliases.
377   for (const GlobalAlias &GA : M.aliases())
378     EnumerateValue(&GA);
379 
380   // Enumerate the ifuncs.
381   for (const GlobalIFunc &GIF : M.ifuncs())
382     EnumerateValue(&GIF);
383 
384   // Remember what is the cutoff between globalvalue's and other constants.
385   unsigned FirstConstant = Values.size();
386 
387   // Enumerate the global variable initializers and attributes.
388   for (const GlobalVariable &GV : M.globals()) {
389     if (GV.hasInitializer())
390       EnumerateValue(GV.getInitializer());
391     if (GV.hasAttributes())
392       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
393   }
394 
395   // Enumerate the aliasees.
396   for (const GlobalAlias &GA : M.aliases())
397     EnumerateValue(GA.getAliasee());
398 
399   // Enumerate the ifunc resolvers.
400   for (const GlobalIFunc &GIF : M.ifuncs())
401     EnumerateValue(GIF.getResolver());
402 
403   // Enumerate any optional Function data.
404   for (const Function &F : M)
405     for (const Use &U : F.operands())
406       EnumerateValue(U.get());
407 
408   // Enumerate the metadata type.
409   //
410   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
411   // only encodes the metadata type when it's used as a value.
412   EnumerateType(Type::getMetadataTy(M.getContext()));
413 
414   // Insert constants and metadata that are named at module level into the slot
415   // pool so that the module symbol table can refer to them...
416   EnumerateValueSymbolTable(M.getValueSymbolTable());
417   EnumerateNamedMetadata(M);
418 
419   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
420   for (const GlobalVariable &GV : M.globals()) {
421     MDs.clear();
422     GV.getAllMetadata(MDs);
423     for (const auto &I : MDs)
424       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
425       // to write metadata to the global variable's own metadata block
426       // (PR28134).
427       EnumerateMetadata(nullptr, I.second);
428   }
429 
430   // Enumerate types used by function bodies and argument lists.
431   for (const Function &F : M) {
432     for (const Argument &A : F.args())
433       EnumerateType(A.getType());
434 
435     // Enumerate metadata attached to this function.
436     MDs.clear();
437     F.getAllMetadata(MDs);
438     for (const auto &I : MDs)
439       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
440 
441     for (const BasicBlock &BB : F)
442       for (const Instruction &I : BB) {
443         for (const Use &Op : I.operands()) {
444           auto *MD = dyn_cast<MetadataAsValue>(&Op);
445           if (!MD) {
446             EnumerateOperandType(Op);
447             continue;
448           }
449 
450           // Local metadata is enumerated during function-incorporation, but
451           // any ConstantAsMetadata arguments in a DIArgList should be examined
452           // now.
453           if (isa<LocalAsMetadata>(MD->getMetadata()))
454             continue;
455           if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
456             for (auto *VAM : AL->getArgs())
457               if (isa<ConstantAsMetadata>(VAM))
458                 EnumerateMetadata(&F, VAM);
459             continue;
460           }
461 
462           EnumerateMetadata(&F, MD->getMetadata());
463         }
464         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
465           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
466         EnumerateType(I.getType());
467         if (const auto *Call = dyn_cast<CallBase>(&I))
468           EnumerateAttributes(Call->getAttributes());
469 
470         // Enumerate metadata attached with this instruction.
471         MDs.clear();
472         I.getAllMetadataOtherThanDebugLoc(MDs);
473         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
474           EnumerateMetadata(&F, MDs[i].second);
475 
476         // Don't enumerate the location directly -- it has a special record
477         // type -- but enumerate its operands.
478         if (DILocation *L = I.getDebugLoc())
479           for (const Metadata *Op : L->operands())
480             EnumerateMetadata(&F, Op);
481       }
482   }
483 
484   // Optimize constant ordering.
485   OptimizeConstants(FirstConstant, Values.size());
486 
487   // Organize metadata ordering.
488   organizeMetadata();
489 }
490 
getInstructionID(const Instruction * Inst) const491 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
492   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
493   assert(I != InstructionMap.end() && "Instruction is not mapped!");
494   return I->second;
495 }
496 
getComdatID(const Comdat * C) const497 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
498   unsigned ComdatID = Comdats.idFor(C);
499   assert(ComdatID && "Comdat not found!");
500   return ComdatID;
501 }
502 
setInstructionID(const Instruction * I)503 void ValueEnumerator::setInstructionID(const Instruction *I) {
504   InstructionMap[I] = InstructionCount++;
505 }
506 
getValueID(const Value * V) const507 unsigned ValueEnumerator::getValueID(const Value *V) const {
508   if (auto *MD = dyn_cast<MetadataAsValue>(V))
509     return getMetadataID(MD->getMetadata());
510 
511   ValueMapType::const_iterator I = ValueMap.find(V);
512   assert(I != ValueMap.end() && "Value not in slotcalculator!");
513   return I->second-1;
514 }
515 
516 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const517 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
518   print(dbgs(), ValueMap, "Default");
519   dbgs() << '\n';
520   print(dbgs(), MetadataMap, "MetaData");
521   dbgs() << '\n';
522 }
523 #endif
524 
print(raw_ostream & OS,const ValueMapType & Map,const char * Name) const525 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
526                             const char *Name) const {
527   OS << "Map Name: " << Name << "\n";
528   OS << "Size: " << Map.size() << "\n";
529   for (ValueMapType::const_iterator I = Map.begin(),
530          E = Map.end(); I != E; ++I) {
531     const Value *V = I->first;
532     if (V->hasName())
533       OS << "Value: " << V->getName();
534     else
535       OS << "Value: [null]\n";
536     V->print(errs());
537     errs() << '\n';
538 
539     OS << " Uses(" << V->getNumUses() << "):";
540     for (const Use &U : V->uses()) {
541       if (&U != &*V->use_begin())
542         OS << ",";
543       if(U->hasName())
544         OS << " " << U->getName();
545       else
546         OS << " [null]";
547 
548     }
549     OS <<  "\n\n";
550   }
551 }
552 
print(raw_ostream & OS,const MetadataMapType & Map,const char * Name) const553 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
554                             const char *Name) const {
555   OS << "Map Name: " << Name << "\n";
556   OS << "Size: " << Map.size() << "\n";
557   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
558     const Metadata *MD = I->first;
559     OS << "Metadata: slot = " << I->second.ID << "\n";
560     OS << "Metadata: function = " << I->second.F << "\n";
561     MD->print(OS);
562     OS << "\n";
563   }
564 }
565 
566 /// OptimizeConstants - Reorder constant pool for denser encoding.
OptimizeConstants(unsigned CstStart,unsigned CstEnd)567 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
568   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
569 
570   if (ShouldPreserveUseListOrder)
571     // Optimizing constants makes the use-list order difficult to predict.
572     // Disable it for now when trying to preserve the order.
573     return;
574 
575   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
576                    [this](const std::pair<const Value *, unsigned> &LHS,
577                           const std::pair<const Value *, unsigned> &RHS) {
578     // Sort by plane.
579     if (LHS.first->getType() != RHS.first->getType())
580       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
581     // Then by frequency.
582     return LHS.second > RHS.second;
583   });
584 
585   // Ensure that integer and vector of integer constants are at the start of the
586   // constant pool.  This is important so that GEP structure indices come before
587   // gep constant exprs.
588   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
589                         isIntOrIntVectorValue);
590 
591   // Rebuild the modified portion of ValueMap.
592   for (; CstStart != CstEnd; ++CstStart)
593     ValueMap[Values[CstStart].first] = CstStart+1;
594 }
595 
596 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
597 /// table into the values table.
EnumerateValueSymbolTable(const ValueSymbolTable & VST)598 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
599   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
600        VI != VE; ++VI)
601     EnumerateValue(VI->getValue());
602 }
603 
604 /// Insert all of the values referenced by named metadata in the specified
605 /// module.
EnumerateNamedMetadata(const Module & M)606 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
607   for (const auto &I : M.named_metadata())
608     EnumerateNamedMDNode(&I);
609 }
610 
EnumerateNamedMDNode(const NamedMDNode * MD)611 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
612   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
613     EnumerateMetadata(nullptr, MD->getOperand(i));
614 }
615 
getMetadataFunctionID(const Function * F) const616 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
617   return F ? getValueID(F) + 1 : 0;
618 }
619 
EnumerateMetadata(const Function * F,const Metadata * MD)620 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
621   EnumerateMetadata(getMetadataFunctionID(F), MD);
622 }
623 
EnumerateFunctionLocalMetadata(const Function & F,const LocalAsMetadata * Local)624 void ValueEnumerator::EnumerateFunctionLocalMetadata(
625     const Function &F, const LocalAsMetadata *Local) {
626   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
627 }
628 
EnumerateFunctionLocalListMetadata(const Function & F,const DIArgList * ArgList)629 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
630     const Function &F, const DIArgList *ArgList) {
631   EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
632 }
633 
dropFunctionFromMetadata(MetadataMapType::value_type & FirstMD)634 void ValueEnumerator::dropFunctionFromMetadata(
635     MetadataMapType::value_type &FirstMD) {
636   SmallVector<const MDNode *, 64> Worklist;
637   auto push = [&Worklist](MetadataMapType::value_type &MD) {
638     auto &Entry = MD.second;
639 
640     // Nothing to do if this metadata isn't tagged.
641     if (!Entry.F)
642       return;
643 
644     // Drop the function tag.
645     Entry.F = 0;
646 
647     // If this is has an ID and is an MDNode, then its operands have entries as
648     // well.  We need to drop the function from them too.
649     if (Entry.ID)
650       if (auto *N = dyn_cast<MDNode>(MD.first))
651         Worklist.push_back(N);
652   };
653   push(FirstMD);
654   while (!Worklist.empty())
655     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
656       if (!Op)
657         continue;
658       auto MD = MetadataMap.find(Op);
659       if (MD != MetadataMap.end())
660         push(*MD);
661     }
662 }
663 
EnumerateMetadata(unsigned F,const Metadata * MD)664 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
665   // It's vital for reader efficiency that uniqued subgraphs are done in
666   // post-order; it's expensive when their operands have forward references.
667   // If a distinct node is referenced from a uniqued node, it'll be delayed
668   // until the uniqued subgraph has been completely traversed.
669   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
670 
671   // Start by enumerating MD, and then work through its transitive operands in
672   // post-order.  This requires a depth-first search.
673   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
674   if (const MDNode *N = enumerateMetadataImpl(F, MD))
675     Worklist.push_back(std::make_pair(N, N->op_begin()));
676 
677   while (!Worklist.empty()) {
678     const MDNode *N = Worklist.back().first;
679 
680     // Enumerate operands until we hit a new node.  We need to traverse these
681     // nodes' operands before visiting the rest of N's operands.
682     MDNode::op_iterator I = std::find_if(
683         Worklist.back().second, N->op_end(),
684         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
685     if (I != N->op_end()) {
686       auto *Op = cast<MDNode>(*I);
687       Worklist.back().second = ++I;
688 
689       // Delay traversing Op if it's a distinct node and N is uniqued.
690       if (Op->isDistinct() && !N->isDistinct())
691         DelayedDistinctNodes.push_back(Op);
692       else
693         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
694       continue;
695     }
696 
697     // All the operands have been visited.  Now assign an ID.
698     Worklist.pop_back();
699     MDs.push_back(N);
700     MetadataMap[N].ID = MDs.size();
701 
702     // Flush out any delayed distinct nodes; these are all the distinct nodes
703     // that are leaves in last uniqued subgraph.
704     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
705       for (const MDNode *N : DelayedDistinctNodes)
706         Worklist.push_back(std::make_pair(N, N->op_begin()));
707       DelayedDistinctNodes.clear();
708     }
709   }
710 }
711 
enumerateMetadataImpl(unsigned F,const Metadata * MD)712 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
713   if (!MD)
714     return nullptr;
715 
716   assert(
717       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
718       "Invalid metadata kind");
719 
720   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
721   MDIndex &Entry = Insertion.first->second;
722   if (!Insertion.second) {
723     // Already mapped.  If F doesn't match the function tag, drop it.
724     if (Entry.hasDifferentFunction(F))
725       dropFunctionFromMetadata(*Insertion.first);
726     return nullptr;
727   }
728 
729   // Don't assign IDs to metadata nodes.
730   if (auto *N = dyn_cast<MDNode>(MD))
731     return N;
732 
733   // Save the metadata.
734   MDs.push_back(MD);
735   Entry.ID = MDs.size();
736 
737   // Enumerate the constant, if any.
738   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
739     EnumerateValue(C->getValue());
740 
741   return nullptr;
742 }
743 
744 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
745 /// information reachable from the metadata.
EnumerateFunctionLocalMetadata(unsigned F,const LocalAsMetadata * Local)746 void ValueEnumerator::EnumerateFunctionLocalMetadata(
747     unsigned F, const LocalAsMetadata *Local) {
748   assert(F && "Expected a function");
749 
750   // Check to see if it's already in!
751   MDIndex &Index = MetadataMap[Local];
752   if (Index.ID) {
753     assert(Index.F == F && "Expected the same function");
754     return;
755   }
756 
757   MDs.push_back(Local);
758   Index.F = F;
759   Index.ID = MDs.size();
760 
761   EnumerateValue(Local->getValue());
762 }
763 
764 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
765 /// information reachable from the metadata.
EnumerateFunctionLocalListMetadata(unsigned F,const DIArgList * ArgList)766 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
767     unsigned F, const DIArgList *ArgList) {
768   assert(F && "Expected a function");
769 
770   // Check to see if it's already in!
771   MDIndex &Index = MetadataMap[ArgList];
772   if (Index.ID) {
773     assert(Index.F == F && "Expected the same function");
774     return;
775   }
776 
777   for (ValueAsMetadata *VAM : ArgList->getArgs()) {
778     if (isa<LocalAsMetadata>(VAM)) {
779       assert(MetadataMap.count(VAM) &&
780              "LocalAsMetadata should be enumerated before DIArgList");
781       assert(MetadataMap[VAM].F == F &&
782              "Expected LocalAsMetadata in the same function");
783     } else {
784       assert(isa<ConstantAsMetadata>(VAM) &&
785              "Expected LocalAsMetadata or ConstantAsMetadata");
786       assert(ValueMap.count(VAM->getValue()) &&
787              "Constant should be enumerated beforeDIArgList");
788       EnumerateMetadata(F, VAM);
789     }
790   }
791 
792   MDs.push_back(ArgList);
793   Index.F = F;
794   Index.ID = MDs.size();
795 }
796 
getMetadataTypeOrder(const Metadata * MD)797 static unsigned getMetadataTypeOrder(const Metadata *MD) {
798   // Strings are emitted in bulk and must come first.
799   if (isa<MDString>(MD))
800     return 0;
801 
802   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
803   // to the front since we can detect it.
804   auto *N = dyn_cast<MDNode>(MD);
805   if (!N)
806     return 1;
807 
808   // The reader is fast forward references for distinct node operands, but slow
809   // when uniqued operands are unresolved.
810   return N->isDistinct() ? 2 : 3;
811 }
812 
organizeMetadata()813 void ValueEnumerator::organizeMetadata() {
814   assert(MetadataMap.size() == MDs.size() &&
815          "Metadata map and vector out of sync");
816 
817   if (MDs.empty())
818     return;
819 
820   // Copy out the index information from MetadataMap in order to choose a new
821   // order.
822   SmallVector<MDIndex, 64> Order;
823   Order.reserve(MetadataMap.size());
824   for (const Metadata *MD : MDs)
825     Order.push_back(MetadataMap.lookup(MD));
826 
827   // Partition:
828   //   - by function, then
829   //   - by isa<MDString>
830   // and then sort by the original/current ID.  Since the IDs are guaranteed to
831   // be unique, the result of std::sort will be deterministic.  There's no need
832   // for std::stable_sort.
833   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
834     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
835            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
836   });
837 
838   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
839   // and fix up MetadataMap.
840   std::vector<const Metadata *> OldMDs;
841   MDs.swap(OldMDs);
842   MDs.reserve(OldMDs.size());
843   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
844     auto *MD = Order[I].get(OldMDs);
845     MDs.push_back(MD);
846     MetadataMap[MD].ID = I + 1;
847     if (isa<MDString>(MD))
848       ++NumMDStrings;
849   }
850 
851   // Return early if there's nothing for the functions.
852   if (MDs.size() == Order.size())
853     return;
854 
855   // Build the function metadata ranges.
856   MDRange R;
857   FunctionMDs.reserve(OldMDs.size());
858   unsigned PrevF = 0;
859   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
860        ++I) {
861     unsigned F = Order[I].F;
862     if (!PrevF) {
863       PrevF = F;
864     } else if (PrevF != F) {
865       R.Last = FunctionMDs.size();
866       std::swap(R, FunctionMDInfo[PrevF]);
867       R.First = FunctionMDs.size();
868 
869       ID = MDs.size();
870       PrevF = F;
871     }
872 
873     auto *MD = Order[I].get(OldMDs);
874     FunctionMDs.push_back(MD);
875     MetadataMap[MD].ID = ++ID;
876     if (isa<MDString>(MD))
877       ++R.NumStrings;
878   }
879   R.Last = FunctionMDs.size();
880   FunctionMDInfo[PrevF] = R;
881 }
882 
incorporateFunctionMetadata(const Function & F)883 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
884   NumModuleMDs = MDs.size();
885 
886   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
887   NumMDStrings = R.NumStrings;
888   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
889              FunctionMDs.begin() + R.Last);
890 }
891 
EnumerateValue(const Value * V)892 void ValueEnumerator::EnumerateValue(const Value *V) {
893   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
894   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
895 
896   // Check to see if it's already in!
897   unsigned &ValueID = ValueMap[V];
898   if (ValueID) {
899     // Increment use count.
900     Values[ValueID-1].second++;
901     return;
902   }
903 
904   if (auto *GO = dyn_cast<GlobalObject>(V))
905     if (const Comdat *C = GO->getComdat())
906       Comdats.insert(C);
907 
908   // Enumerate the type of this value.
909   EnumerateType(V->getType());
910 
911   if (const Constant *C = dyn_cast<Constant>(V)) {
912     if (isa<GlobalValue>(C)) {
913       // Initializers for globals are handled explicitly elsewhere.
914     } else if (C->getNumOperands()) {
915       // If a constant has operands, enumerate them.  This makes sure that if a
916       // constant has uses (for example an array of const ints), that they are
917       // inserted also.
918 
919       // We prefer to enumerate them with values before we enumerate the user
920       // itself.  This makes it more likely that we can avoid forward references
921       // in the reader.  We know that there can be no cycles in the constants
922       // graph that don't go through a global variable.
923       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
924            I != E; ++I)
925         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
926           EnumerateValue(*I);
927       if (auto *CE = dyn_cast<ConstantExpr>(C))
928         if (CE->getOpcode() == Instruction::ShuffleVector)
929           EnumerateValue(CE->getShuffleMaskForBitcode());
930 
931       // Finally, add the value.  Doing this could make the ValueID reference be
932       // dangling, don't reuse it.
933       Values.push_back(std::make_pair(V, 1U));
934       ValueMap[V] = Values.size();
935       return;
936     }
937   }
938 
939   // Add the value.
940   Values.push_back(std::make_pair(V, 1U));
941   ValueID = Values.size();
942 }
943 
944 
EnumerateType(Type * Ty)945 void ValueEnumerator::EnumerateType(Type *Ty) {
946   unsigned *TypeID = &TypeMap[Ty];
947 
948   // We've already seen this type.
949   if (*TypeID)
950     return;
951 
952   // If it is a non-anonymous struct, mark the type as being visited so that we
953   // don't recursively visit it.  This is safe because we allow forward
954   // references of these in the bitcode reader.
955   if (StructType *STy = dyn_cast<StructType>(Ty))
956     if (!STy->isLiteral())
957       *TypeID = ~0U;
958 
959   // Enumerate all of the subtypes before we enumerate this type.  This ensures
960   // that the type will be enumerated in an order that can be directly built.
961   for (Type *SubTy : Ty->subtypes())
962     EnumerateType(SubTy);
963 
964   // Refresh the TypeID pointer in case the table rehashed.
965   TypeID = &TypeMap[Ty];
966 
967   // Check to see if we got the pointer another way.  This can happen when
968   // enumerating recursive types that hit the base case deeper than they start.
969   //
970   // If this is actually a struct that we are treating as forward ref'able,
971   // then emit the definition now that all of its contents are available.
972   if (*TypeID && *TypeID != ~0U)
973     return;
974 
975   // Add this type now that its contents are all happily enumerated.
976   Types.push_back(Ty);
977 
978   *TypeID = Types.size();
979 }
980 
981 // Enumerate the types for the specified value.  If the value is a constant,
982 // walk through it, enumerating the types of the constant.
EnumerateOperandType(const Value * V)983 void ValueEnumerator::EnumerateOperandType(const Value *V) {
984   EnumerateType(V->getType());
985 
986   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
987 
988   const Constant *C = dyn_cast<Constant>(V);
989   if (!C)
990     return;
991 
992   // If this constant is already enumerated, ignore it, we know its type must
993   // be enumerated.
994   if (ValueMap.count(C))
995     return;
996 
997   // This constant may have operands, make sure to enumerate the types in
998   // them.
999   for (const Value *Op : C->operands()) {
1000     // Don't enumerate basic blocks here, this happens as operands to
1001     // blockaddress.
1002     if (isa<BasicBlock>(Op))
1003       continue;
1004 
1005     EnumerateOperandType(Op);
1006   }
1007   if (auto *CE = dyn_cast<ConstantExpr>(C))
1008     if (CE->getOpcode() == Instruction::ShuffleVector)
1009       EnumerateOperandType(CE->getShuffleMaskForBitcode());
1010 }
1011 
EnumerateAttributes(AttributeList PAL)1012 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
1013   if (PAL.isEmpty()) return;  // null is always 0.
1014 
1015   // Do a lookup.
1016   unsigned &Entry = AttributeListMap[PAL];
1017   if (Entry == 0) {
1018     // Never saw this before, add it.
1019     AttributeLists.push_back(PAL);
1020     Entry = AttributeLists.size();
1021   }
1022 
1023   // Do lookups for all attribute groups.
1024   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
1025     AttributeSet AS = PAL.getAttributes(i);
1026     if (!AS.hasAttributes())
1027       continue;
1028     IndexAndAttrSet Pair = {i, AS};
1029     unsigned &Entry = AttributeGroupMap[Pair];
1030     if (Entry == 0) {
1031       AttributeGroups.push_back(Pair);
1032       Entry = AttributeGroups.size();
1033     }
1034   }
1035 }
1036 
incorporateFunction(const Function & F)1037 void ValueEnumerator::incorporateFunction(const Function &F) {
1038   InstructionCount = 0;
1039   NumModuleValues = Values.size();
1040 
1041   // Add global metadata to the function block.  This doesn't include
1042   // LocalAsMetadata.
1043   incorporateFunctionMetadata(F);
1044 
1045   // Adding function arguments to the value table.
1046   for (const auto &I : F.args()) {
1047     EnumerateValue(&I);
1048     if (I.hasAttribute(Attribute::ByVal))
1049       EnumerateType(I.getParamByValType());
1050     else if (I.hasAttribute(Attribute::StructRet))
1051       EnumerateType(I.getParamStructRetType());
1052     else if (I.hasAttribute(Attribute::ByRef))
1053       EnumerateType(I.getParamByRefType());
1054   }
1055   FirstFuncConstantID = Values.size();
1056 
1057   // Add all function-level constants to the value table.
1058   for (const BasicBlock &BB : F) {
1059     for (const Instruction &I : BB) {
1060       for (const Use &OI : I.operands()) {
1061         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1062           EnumerateValue(OI);
1063       }
1064       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1065         EnumerateValue(SVI->getShuffleMaskForBitcode());
1066     }
1067     BasicBlocks.push_back(&BB);
1068     ValueMap[&BB] = BasicBlocks.size();
1069   }
1070 
1071   // Optimize the constant layout.
1072   OptimizeConstants(FirstFuncConstantID, Values.size());
1073 
1074   // Add the function's parameter attributes so they are available for use in
1075   // the function's instruction.
1076   EnumerateAttributes(F.getAttributes());
1077 
1078   FirstInstID = Values.size();
1079 
1080   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1081   SmallVector<DIArgList *, 8> ArgListMDVector;
1082   // Add all of the instructions.
1083   for (const BasicBlock &BB : F) {
1084     for (const Instruction &I : BB) {
1085       for (const Use &OI : I.operands()) {
1086         if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1087           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1088             // Enumerate metadata after the instructions they might refer to.
1089             FnLocalMDVector.push_back(Local);
1090           } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1091             ArgListMDVector.push_back(ArgList);
1092             for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1093               if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1094                 // Enumerate metadata after the instructions they might refer
1095                 // to.
1096                 FnLocalMDVector.push_back(Local);
1097               }
1098             }
1099           }
1100         }
1101       }
1102 
1103       if (!I.getType()->isVoidTy())
1104         EnumerateValue(&I);
1105     }
1106   }
1107 
1108   // Add all of the function-local metadata.
1109   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1110     // At this point, every local values have been incorporated, we shouldn't
1111     // have a metadata operand that references a value that hasn't been seen.
1112     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1113            "Missing value for metadata operand");
1114     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1115   }
1116   // DIArgList entries must come after function-local metadata, as it is not
1117   // possible to forward-reference them.
1118   for (const DIArgList *ArgList : ArgListMDVector)
1119     EnumerateFunctionLocalListMetadata(F, ArgList);
1120 }
1121 
purgeFunction()1122 void ValueEnumerator::purgeFunction() {
1123   /// Remove purged values from the ValueMap.
1124   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1125     ValueMap.erase(Values[i].first);
1126   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1127     MetadataMap.erase(MDs[i]);
1128   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1129     ValueMap.erase(BasicBlocks[i]);
1130 
1131   Values.resize(NumModuleValues);
1132   MDs.resize(NumModuleMDs);
1133   BasicBlocks.clear();
1134   NumMDStrings = 0;
1135 }
1136 
IncorporateFunctionInfoGlobalBBIDs(const Function * F,DenseMap<const BasicBlock *,unsigned> & IDMap)1137 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1138                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1139   unsigned Counter = 0;
1140   for (const BasicBlock &BB : *F)
1141     IDMap[&BB] = ++Counter;
1142 }
1143 
1144 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1145 /// specified basic block.  This is relatively expensive information, so it
1146 /// should only be used by rare constructs such as address-of-label.
getGlobalBasicBlockID(const BasicBlock * BB) const1147 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1148   unsigned &Idx = GlobalBasicBlockIDs[BB];
1149   if (Idx != 0)
1150     return Idx-1;
1151 
1152   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1153   return getGlobalBasicBlockID(BB);
1154 }
1155 
computeBitsRequiredForTypeIndicies() const1156 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1157   return Log2_32_Ceil(getTypes().size() + 1);
1158 }
1159