1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Parse/Parser.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/PrettyStackTrace.h"
18 #include "clang/Lex/LiteralSupport.h"
19 #include "clang/Parse/ParseDiagnostic.h"
20 #include "clang/Parse/RAIIObjectsForParser.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/ParsedTemplate.h"
23 #include "clang/Sema/Scope.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <numeric>
26
27 using namespace clang;
28
SelectDigraphErrorMessage(tok::TokenKind Kind)29 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
30 switch (Kind) {
31 // template name
32 case tok::unknown: return 0;
33 // casts
34 case tok::kw_addrspace_cast: return 1;
35 case tok::kw_const_cast: return 2;
36 case tok::kw_dynamic_cast: return 3;
37 case tok::kw_reinterpret_cast: return 4;
38 case tok::kw_static_cast: return 5;
39 default:
40 llvm_unreachable("Unknown type for digraph error message.");
41 }
42 }
43
44 // Are the two tokens adjacent in the same source file?
areTokensAdjacent(const Token & First,const Token & Second)45 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
46 SourceManager &SM = PP.getSourceManager();
47 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
48 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
49 return FirstEnd == SM.getSpellingLoc(Second.getLocation());
50 }
51
52 // Suggest fixit for "<::" after a cast.
FixDigraph(Parser & P,Preprocessor & PP,Token & DigraphToken,Token & ColonToken,tok::TokenKind Kind,bool AtDigraph)53 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
54 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
55 // Pull '<:' and ':' off token stream.
56 if (!AtDigraph)
57 PP.Lex(DigraphToken);
58 PP.Lex(ColonToken);
59
60 SourceRange Range;
61 Range.setBegin(DigraphToken.getLocation());
62 Range.setEnd(ColonToken.getLocation());
63 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
64 << SelectDigraphErrorMessage(Kind)
65 << FixItHint::CreateReplacement(Range, "< ::");
66
67 // Update token information to reflect their change in token type.
68 ColonToken.setKind(tok::coloncolon);
69 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
70 ColonToken.setLength(2);
71 DigraphToken.setKind(tok::less);
72 DigraphToken.setLength(1);
73
74 // Push new tokens back to token stream.
75 PP.EnterToken(ColonToken, /*IsReinject*/ true);
76 if (!AtDigraph)
77 PP.EnterToken(DigraphToken, /*IsReinject*/ true);
78 }
79
80 // Check for '<::' which should be '< ::' instead of '[:' when following
81 // a template name.
CheckForTemplateAndDigraph(Token & Next,ParsedType ObjectType,bool EnteringContext,IdentifierInfo & II,CXXScopeSpec & SS)82 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
83 bool EnteringContext,
84 IdentifierInfo &II, CXXScopeSpec &SS) {
85 if (!Next.is(tok::l_square) || Next.getLength() != 2)
86 return;
87
88 Token SecondToken = GetLookAheadToken(2);
89 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
90 return;
91
92 TemplateTy Template;
93 UnqualifiedId TemplateName;
94 TemplateName.setIdentifier(&II, Tok.getLocation());
95 bool MemberOfUnknownSpecialization;
96 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
97 TemplateName, ObjectType, EnteringContext,
98 Template, MemberOfUnknownSpecialization))
99 return;
100
101 FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
102 /*AtDigraph*/false);
103 }
104
105 /// Parse global scope or nested-name-specifier if present.
106 ///
107 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
108 /// may be preceded by '::'). Note that this routine will not parse ::new or
109 /// ::delete; it will just leave them in the token stream.
110 ///
111 /// '::'[opt] nested-name-specifier
112 /// '::'
113 ///
114 /// nested-name-specifier:
115 /// type-name '::'
116 /// namespace-name '::'
117 /// nested-name-specifier identifier '::'
118 /// nested-name-specifier 'template'[opt] simple-template-id '::'
119 ///
120 ///
121 /// \param SS the scope specifier that will be set to the parsed
122 /// nested-name-specifier (or empty)
123 ///
124 /// \param ObjectType if this nested-name-specifier is being parsed following
125 /// the "." or "->" of a member access expression, this parameter provides the
126 /// type of the object whose members are being accessed.
127 ///
128 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
129 /// expression, indicates whether the original subexpressions had any errors.
130 /// When true, diagnostics for missing 'template' keyword will be supressed.
131 ///
132 /// \param EnteringContext whether we will be entering into the context of
133 /// the nested-name-specifier after parsing it.
134 ///
135 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
136 /// indicates whether this nested-name-specifier may be part of a
137 /// pseudo-destructor name. In this case, the flag will be set false
138 /// if we don't actually end up parsing a destructor name. Moreover,
139 /// if we do end up determining that we are parsing a destructor name,
140 /// the last component of the nested-name-specifier is not parsed as
141 /// part of the scope specifier.
142 ///
143 /// \param IsTypename If \c true, this nested-name-specifier is known to be
144 /// part of a type name. This is used to improve error recovery.
145 ///
146 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
147 /// filled in with the leading identifier in the last component of the
148 /// nested-name-specifier, if any.
149 ///
150 /// \param OnlyNamespace If true, only considers namespaces in lookup.
151 ///
152 ///
153 /// \returns true if there was an error parsing a scope specifier
ParseOptionalCXXScopeSpecifier(CXXScopeSpec & SS,ParsedType ObjectType,bool ObjectHadErrors,bool EnteringContext,bool * MayBePseudoDestructor,bool IsTypename,IdentifierInfo ** LastII,bool OnlyNamespace,bool InUsingDeclaration)154 bool Parser::ParseOptionalCXXScopeSpecifier(
155 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
156 bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
157 IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
158 assert(getLangOpts().CPlusPlus &&
159 "Call sites of this function should be guarded by checking for C++");
160
161 if (Tok.is(tok::annot_cxxscope)) {
162 assert(!LastII && "want last identifier but have already annotated scope");
163 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
164 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
165 Tok.getAnnotationRange(),
166 SS);
167 ConsumeAnnotationToken();
168 return false;
169 }
170
171 // Has to happen before any "return false"s in this function.
172 bool CheckForDestructor = false;
173 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
174 CheckForDestructor = true;
175 *MayBePseudoDestructor = false;
176 }
177
178 if (LastII)
179 *LastII = nullptr;
180
181 bool HasScopeSpecifier = false;
182
183 if (Tok.is(tok::coloncolon)) {
184 // ::new and ::delete aren't nested-name-specifiers.
185 tok::TokenKind NextKind = NextToken().getKind();
186 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
187 return false;
188
189 if (NextKind == tok::l_brace) {
190 // It is invalid to have :: {, consume the scope qualifier and pretend
191 // like we never saw it.
192 Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
193 } else {
194 // '::' - Global scope qualifier.
195 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
196 return true;
197
198 HasScopeSpecifier = true;
199 }
200 }
201
202 if (Tok.is(tok::kw___super)) {
203 SourceLocation SuperLoc = ConsumeToken();
204 if (!Tok.is(tok::coloncolon)) {
205 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
206 return true;
207 }
208
209 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
210 }
211
212 if (!HasScopeSpecifier &&
213 Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
214 DeclSpec DS(AttrFactory);
215 SourceLocation DeclLoc = Tok.getLocation();
216 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
217
218 SourceLocation CCLoc;
219 // Work around a standard defect: 'decltype(auto)::' is not a
220 // nested-name-specifier.
221 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
222 !TryConsumeToken(tok::coloncolon, CCLoc)) {
223 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
224 return false;
225 }
226
227 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
228 SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
229
230 HasScopeSpecifier = true;
231 }
232
233 // Preferred type might change when parsing qualifiers, we need the original.
234 auto SavedType = PreferredType;
235 while (true) {
236 if (HasScopeSpecifier) {
237 if (Tok.is(tok::code_completion)) {
238 cutOffParsing();
239 // Code completion for a nested-name-specifier, where the code
240 // completion token follows the '::'.
241 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
242 InUsingDeclaration, ObjectType.get(),
243 SavedType.get(SS.getBeginLoc()));
244 // Include code completion token into the range of the scope otherwise
245 // when we try to annotate the scope tokens the dangling code completion
246 // token will cause assertion in
247 // Preprocessor::AnnotatePreviousCachedTokens.
248 SS.setEndLoc(Tok.getLocation());
249 return true;
250 }
251
252 // C++ [basic.lookup.classref]p5:
253 // If the qualified-id has the form
254 //
255 // ::class-name-or-namespace-name::...
256 //
257 // the class-name-or-namespace-name is looked up in global scope as a
258 // class-name or namespace-name.
259 //
260 // To implement this, we clear out the object type as soon as we've
261 // seen a leading '::' or part of a nested-name-specifier.
262 ObjectType = nullptr;
263 }
264
265 // nested-name-specifier:
266 // nested-name-specifier 'template'[opt] simple-template-id '::'
267
268 // Parse the optional 'template' keyword, then make sure we have
269 // 'identifier <' after it.
270 if (Tok.is(tok::kw_template)) {
271 // If we don't have a scope specifier or an object type, this isn't a
272 // nested-name-specifier, since they aren't allowed to start with
273 // 'template'.
274 if (!HasScopeSpecifier && !ObjectType)
275 break;
276
277 TentativeParsingAction TPA(*this);
278 SourceLocation TemplateKWLoc = ConsumeToken();
279
280 UnqualifiedId TemplateName;
281 if (Tok.is(tok::identifier)) {
282 // Consume the identifier.
283 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
284 ConsumeToken();
285 } else if (Tok.is(tok::kw_operator)) {
286 // We don't need to actually parse the unqualified-id in this case,
287 // because a simple-template-id cannot start with 'operator', but
288 // go ahead and parse it anyway for consistency with the case where
289 // we already annotated the template-id.
290 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
291 TemplateName)) {
292 TPA.Commit();
293 break;
294 }
295
296 if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
297 TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
298 Diag(TemplateName.getSourceRange().getBegin(),
299 diag::err_id_after_template_in_nested_name_spec)
300 << TemplateName.getSourceRange();
301 TPA.Commit();
302 break;
303 }
304 } else {
305 TPA.Revert();
306 break;
307 }
308
309 // If the next token is not '<', we have a qualified-id that refers
310 // to a template name, such as T::template apply, but is not a
311 // template-id.
312 if (Tok.isNot(tok::less)) {
313 TPA.Revert();
314 break;
315 }
316
317 // Commit to parsing the template-id.
318 TPA.Commit();
319 TemplateTy Template;
320 TemplateNameKind TNK = Actions.ActOnTemplateName(
321 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
322 EnteringContext, Template, /*AllowInjectedClassName*/ true);
323 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
324 TemplateName, false))
325 return true;
326
327 continue;
328 }
329
330 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
331 // We have
332 //
333 // template-id '::'
334 //
335 // So we need to check whether the template-id is a simple-template-id of
336 // the right kind (it should name a type or be dependent), and then
337 // convert it into a type within the nested-name-specifier.
338 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
339 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
340 *MayBePseudoDestructor = true;
341 return false;
342 }
343
344 if (LastII)
345 *LastII = TemplateId->Name;
346
347 // Consume the template-id token.
348 ConsumeAnnotationToken();
349
350 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
351 SourceLocation CCLoc = ConsumeToken();
352
353 HasScopeSpecifier = true;
354
355 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
356 TemplateId->NumArgs);
357
358 if (TemplateId->isInvalid() ||
359 Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
360 SS,
361 TemplateId->TemplateKWLoc,
362 TemplateId->Template,
363 TemplateId->TemplateNameLoc,
364 TemplateId->LAngleLoc,
365 TemplateArgsPtr,
366 TemplateId->RAngleLoc,
367 CCLoc,
368 EnteringContext)) {
369 SourceLocation StartLoc
370 = SS.getBeginLoc().isValid()? SS.getBeginLoc()
371 : TemplateId->TemplateNameLoc;
372 SS.SetInvalid(SourceRange(StartLoc, CCLoc));
373 }
374
375 continue;
376 }
377
378 // The rest of the nested-name-specifier possibilities start with
379 // tok::identifier.
380 if (Tok.isNot(tok::identifier))
381 break;
382
383 IdentifierInfo &II = *Tok.getIdentifierInfo();
384
385 // nested-name-specifier:
386 // type-name '::'
387 // namespace-name '::'
388 // nested-name-specifier identifier '::'
389 Token Next = NextToken();
390 Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
391 ObjectType);
392
393 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
394 // and emit a fixit hint for it.
395 if (Next.is(tok::colon) && !ColonIsSacred) {
396 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
397 EnteringContext) &&
398 // If the token after the colon isn't an identifier, it's still an
399 // error, but they probably meant something else strange so don't
400 // recover like this.
401 PP.LookAhead(1).is(tok::identifier)) {
402 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
403 << FixItHint::CreateReplacement(Next.getLocation(), "::");
404 // Recover as if the user wrote '::'.
405 Next.setKind(tok::coloncolon);
406 }
407 }
408
409 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
410 // It is invalid to have :: {, consume the scope qualifier and pretend
411 // like we never saw it.
412 Token Identifier = Tok; // Stash away the identifier.
413 ConsumeToken(); // Eat the identifier, current token is now '::'.
414 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
415 << tok::identifier;
416 UnconsumeToken(Identifier); // Stick the identifier back.
417 Next = NextToken(); // Point Next at the '{' token.
418 }
419
420 if (Next.is(tok::coloncolon)) {
421 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
422 *MayBePseudoDestructor = true;
423 return false;
424 }
425
426 if (ColonIsSacred) {
427 const Token &Next2 = GetLookAheadToken(2);
428 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
429 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
430 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
431 << Next2.getName()
432 << FixItHint::CreateReplacement(Next.getLocation(), ":");
433 Token ColonColon;
434 PP.Lex(ColonColon);
435 ColonColon.setKind(tok::colon);
436 PP.EnterToken(ColonColon, /*IsReinject*/ true);
437 break;
438 }
439 }
440
441 if (LastII)
442 *LastII = &II;
443
444 // We have an identifier followed by a '::'. Lookup this name
445 // as the name in a nested-name-specifier.
446 Token Identifier = Tok;
447 SourceLocation IdLoc = ConsumeToken();
448 assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
449 "NextToken() not working properly!");
450 Token ColonColon = Tok;
451 SourceLocation CCLoc = ConsumeToken();
452
453 bool IsCorrectedToColon = false;
454 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
455 if (Actions.ActOnCXXNestedNameSpecifier(
456 getCurScope(), IdInfo, EnteringContext, SS, false,
457 CorrectionFlagPtr, OnlyNamespace)) {
458 // Identifier is not recognized as a nested name, but we can have
459 // mistyped '::' instead of ':'.
460 if (CorrectionFlagPtr && IsCorrectedToColon) {
461 ColonColon.setKind(tok::colon);
462 PP.EnterToken(Tok, /*IsReinject*/ true);
463 PP.EnterToken(ColonColon, /*IsReinject*/ true);
464 Tok = Identifier;
465 break;
466 }
467 SS.SetInvalid(SourceRange(IdLoc, CCLoc));
468 }
469 HasScopeSpecifier = true;
470 continue;
471 }
472
473 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
474
475 // nested-name-specifier:
476 // type-name '<'
477 if (Next.is(tok::less)) {
478
479 TemplateTy Template;
480 UnqualifiedId TemplateName;
481 TemplateName.setIdentifier(&II, Tok.getLocation());
482 bool MemberOfUnknownSpecialization;
483 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
484 /*hasTemplateKeyword=*/false,
485 TemplateName,
486 ObjectType,
487 EnteringContext,
488 Template,
489 MemberOfUnknownSpecialization)) {
490 // If lookup didn't find anything, we treat the name as a template-name
491 // anyway. C++20 requires this, and in prior language modes it improves
492 // error recovery. But before we commit to this, check that we actually
493 // have something that looks like a template-argument-list next.
494 if (!IsTypename && TNK == TNK_Undeclared_template &&
495 isTemplateArgumentList(1) == TPResult::False)
496 break;
497
498 // We have found a template name, so annotate this token
499 // with a template-id annotation. We do not permit the
500 // template-id to be translated into a type annotation,
501 // because some clients (e.g., the parsing of class template
502 // specializations) still want to see the original template-id
503 // token, and it might not be a type at all (e.g. a concept name in a
504 // type-constraint).
505 ConsumeToken();
506 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
507 TemplateName, false))
508 return true;
509 continue;
510 }
511
512 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
513 (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
514 // If we had errors before, ObjectType can be dependent even without any
515 // templates. Do not report missing template keyword in that case.
516 if (!ObjectHadErrors) {
517 // We have something like t::getAs<T>, where getAs is a
518 // member of an unknown specialization. However, this will only
519 // parse correctly as a template, so suggest the keyword 'template'
520 // before 'getAs' and treat this as a dependent template name.
521 unsigned DiagID = diag::err_missing_dependent_template_keyword;
522 if (getLangOpts().MicrosoftExt)
523 DiagID = diag::warn_missing_dependent_template_keyword;
524
525 Diag(Tok.getLocation(), DiagID)
526 << II.getName()
527 << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
528 }
529
530 SourceLocation TemplateNameLoc = ConsumeToken();
531
532 TemplateNameKind TNK = Actions.ActOnTemplateName(
533 getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
534 EnteringContext, Template, /*AllowInjectedClassName*/ true);
535 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
536 TemplateName, false))
537 return true;
538
539 continue;
540 }
541 }
542
543 // We don't have any tokens that form the beginning of a
544 // nested-name-specifier, so we're done.
545 break;
546 }
547
548 // Even if we didn't see any pieces of a nested-name-specifier, we
549 // still check whether there is a tilde in this position, which
550 // indicates a potential pseudo-destructor.
551 if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
552 *MayBePseudoDestructor = true;
553
554 return false;
555 }
556
tryParseCXXIdExpression(CXXScopeSpec & SS,bool isAddressOfOperand,Token & Replacement)557 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
558 bool isAddressOfOperand,
559 Token &Replacement) {
560 ExprResult E;
561
562 // We may have already annotated this id-expression.
563 switch (Tok.getKind()) {
564 case tok::annot_non_type: {
565 NamedDecl *ND = getNonTypeAnnotation(Tok);
566 SourceLocation Loc = ConsumeAnnotationToken();
567 E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
568 break;
569 }
570
571 case tok::annot_non_type_dependent: {
572 IdentifierInfo *II = getIdentifierAnnotation(Tok);
573 SourceLocation Loc = ConsumeAnnotationToken();
574
575 // This is only the direct operand of an & operator if it is not
576 // followed by a postfix-expression suffix.
577 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
578 isAddressOfOperand = false;
579
580 E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
581 isAddressOfOperand);
582 break;
583 }
584
585 case tok::annot_non_type_undeclared: {
586 assert(SS.isEmpty() &&
587 "undeclared non-type annotation should be unqualified");
588 IdentifierInfo *II = getIdentifierAnnotation(Tok);
589 SourceLocation Loc = ConsumeAnnotationToken();
590 E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
591 break;
592 }
593
594 default:
595 SourceLocation TemplateKWLoc;
596 UnqualifiedId Name;
597 if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
598 /*ObjectHadErrors=*/false,
599 /*EnteringContext=*/false,
600 /*AllowDestructorName=*/false,
601 /*AllowConstructorName=*/false,
602 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
603 return ExprError();
604
605 // This is only the direct operand of an & operator if it is not
606 // followed by a postfix-expression suffix.
607 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
608 isAddressOfOperand = false;
609
610 E = Actions.ActOnIdExpression(
611 getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
612 isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
613 &Replacement);
614 break;
615 }
616
617 if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
618 checkPotentialAngleBracket(E);
619 return E;
620 }
621
622 /// ParseCXXIdExpression - Handle id-expression.
623 ///
624 /// id-expression:
625 /// unqualified-id
626 /// qualified-id
627 ///
628 /// qualified-id:
629 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
630 /// '::' identifier
631 /// '::' operator-function-id
632 /// '::' template-id
633 ///
634 /// NOTE: The standard specifies that, for qualified-id, the parser does not
635 /// expect:
636 ///
637 /// '::' conversion-function-id
638 /// '::' '~' class-name
639 ///
640 /// This may cause a slight inconsistency on diagnostics:
641 ///
642 /// class C {};
643 /// namespace A {}
644 /// void f() {
645 /// :: A :: ~ C(); // Some Sema error about using destructor with a
646 /// // namespace.
647 /// :: ~ C(); // Some Parser error like 'unexpected ~'.
648 /// }
649 ///
650 /// We simplify the parser a bit and make it work like:
651 ///
652 /// qualified-id:
653 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
654 /// '::' unqualified-id
655 ///
656 /// That way Sema can handle and report similar errors for namespaces and the
657 /// global scope.
658 ///
659 /// The isAddressOfOperand parameter indicates that this id-expression is a
660 /// direct operand of the address-of operator. This is, besides member contexts,
661 /// the only place where a qualified-id naming a non-static class member may
662 /// appear.
663 ///
ParseCXXIdExpression(bool isAddressOfOperand)664 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
665 // qualified-id:
666 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
667 // '::' unqualified-id
668 //
669 CXXScopeSpec SS;
670 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
671 /*ObjectHadErrors=*/false,
672 /*EnteringContext=*/false);
673
674 Token Replacement;
675 ExprResult Result =
676 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
677 if (Result.isUnset()) {
678 // If the ExprResult is valid but null, then typo correction suggested a
679 // keyword replacement that needs to be reparsed.
680 UnconsumeToken(Replacement);
681 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
682 }
683 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
684 "for a previous keyword suggestion");
685 return Result;
686 }
687
688 /// ParseLambdaExpression - Parse a C++11 lambda expression.
689 ///
690 /// lambda-expression:
691 /// lambda-introducer lambda-declarator compound-statement
692 /// lambda-introducer '<' template-parameter-list '>'
693 /// requires-clause[opt] lambda-declarator compound-statement
694 ///
695 /// lambda-introducer:
696 /// '[' lambda-capture[opt] ']'
697 ///
698 /// lambda-capture:
699 /// capture-default
700 /// capture-list
701 /// capture-default ',' capture-list
702 ///
703 /// capture-default:
704 /// '&'
705 /// '='
706 ///
707 /// capture-list:
708 /// capture
709 /// capture-list ',' capture
710 ///
711 /// capture:
712 /// simple-capture
713 /// init-capture [C++1y]
714 ///
715 /// simple-capture:
716 /// identifier
717 /// '&' identifier
718 /// 'this'
719 ///
720 /// init-capture: [C++1y]
721 /// identifier initializer
722 /// '&' identifier initializer
723 ///
724 /// lambda-declarator:
725 /// lambda-specifiers [C++2b]
726 /// '(' parameter-declaration-clause ')' lambda-specifiers
727 /// requires-clause[opt]
728 ///
729 /// lambda-specifiers:
730 /// decl-specifier-seq[opt] noexcept-specifier[opt]
731 /// attribute-specifier-seq[opt] trailing-return-type[opt]
732 ///
ParseLambdaExpression()733 ExprResult Parser::ParseLambdaExpression() {
734 // Parse lambda-introducer.
735 LambdaIntroducer Intro;
736 if (ParseLambdaIntroducer(Intro)) {
737 SkipUntil(tok::r_square, StopAtSemi);
738 SkipUntil(tok::l_brace, StopAtSemi);
739 SkipUntil(tok::r_brace, StopAtSemi);
740 return ExprError();
741 }
742
743 return ParseLambdaExpressionAfterIntroducer(Intro);
744 }
745
746 /// Use lookahead and potentially tentative parsing to determine if we are
747 /// looking at a C++11 lambda expression, and parse it if we are.
748 ///
749 /// If we are not looking at a lambda expression, returns ExprError().
TryParseLambdaExpression()750 ExprResult Parser::TryParseLambdaExpression() {
751 assert(getLangOpts().CPlusPlus11
752 && Tok.is(tok::l_square)
753 && "Not at the start of a possible lambda expression.");
754
755 const Token Next = NextToken();
756 if (Next.is(tok::eof)) // Nothing else to lookup here...
757 return ExprEmpty();
758
759 const Token After = GetLookAheadToken(2);
760 // If lookahead indicates this is a lambda...
761 if (Next.is(tok::r_square) || // []
762 Next.is(tok::equal) || // [=
763 (Next.is(tok::amp) && // [&] or [&,
764 After.isOneOf(tok::r_square, tok::comma)) ||
765 (Next.is(tok::identifier) && // [identifier]
766 After.is(tok::r_square)) ||
767 Next.is(tok::ellipsis)) { // [...
768 return ParseLambdaExpression();
769 }
770
771 // If lookahead indicates an ObjC message send...
772 // [identifier identifier
773 if (Next.is(tok::identifier) && After.is(tok::identifier))
774 return ExprEmpty();
775
776 // Here, we're stuck: lambda introducers and Objective-C message sends are
777 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
778 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
779 // writing two routines to parse a lambda introducer, just try to parse
780 // a lambda introducer first, and fall back if that fails.
781 LambdaIntroducer Intro;
782 {
783 TentativeParsingAction TPA(*this);
784 LambdaIntroducerTentativeParse Tentative;
785 if (ParseLambdaIntroducer(Intro, &Tentative)) {
786 TPA.Commit();
787 return ExprError();
788 }
789
790 switch (Tentative) {
791 case LambdaIntroducerTentativeParse::Success:
792 TPA.Commit();
793 break;
794
795 case LambdaIntroducerTentativeParse::Incomplete:
796 // Didn't fully parse the lambda-introducer, try again with a
797 // non-tentative parse.
798 TPA.Revert();
799 Intro = LambdaIntroducer();
800 if (ParseLambdaIntroducer(Intro))
801 return ExprError();
802 break;
803
804 case LambdaIntroducerTentativeParse::MessageSend:
805 case LambdaIntroducerTentativeParse::Invalid:
806 // Not a lambda-introducer, might be a message send.
807 TPA.Revert();
808 return ExprEmpty();
809 }
810 }
811
812 return ParseLambdaExpressionAfterIntroducer(Intro);
813 }
814
815 /// Parse a lambda introducer.
816 /// \param Intro A LambdaIntroducer filled in with information about the
817 /// contents of the lambda-introducer.
818 /// \param Tentative If non-null, we are disambiguating between a
819 /// lambda-introducer and some other construct. In this mode, we do not
820 /// produce any diagnostics or take any other irreversible action unless
821 /// we're sure that this is a lambda-expression.
822 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
823 /// the caller should bail out / recover.
ParseLambdaIntroducer(LambdaIntroducer & Intro,LambdaIntroducerTentativeParse * Tentative)824 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
825 LambdaIntroducerTentativeParse *Tentative) {
826 if (Tentative)
827 *Tentative = LambdaIntroducerTentativeParse::Success;
828
829 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
830 BalancedDelimiterTracker T(*this, tok::l_square);
831 T.consumeOpen();
832
833 Intro.Range.setBegin(T.getOpenLocation());
834
835 bool First = true;
836
837 // Produce a diagnostic if we're not tentatively parsing; otherwise track
838 // that our parse has failed.
839 auto Invalid = [&](llvm::function_ref<void()> Action) {
840 if (Tentative) {
841 *Tentative = LambdaIntroducerTentativeParse::Invalid;
842 return false;
843 }
844 Action();
845 return true;
846 };
847
848 // Perform some irreversible action if this is a non-tentative parse;
849 // otherwise note that our actions were incomplete.
850 auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
851 if (Tentative)
852 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
853 else
854 Action();
855 };
856
857 // Parse capture-default.
858 if (Tok.is(tok::amp) &&
859 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
860 Intro.Default = LCD_ByRef;
861 Intro.DefaultLoc = ConsumeToken();
862 First = false;
863 if (!Tok.getIdentifierInfo()) {
864 // This can only be a lambda; no need for tentative parsing any more.
865 // '[[and]]' can still be an attribute, though.
866 Tentative = nullptr;
867 }
868 } else if (Tok.is(tok::equal)) {
869 Intro.Default = LCD_ByCopy;
870 Intro.DefaultLoc = ConsumeToken();
871 First = false;
872 Tentative = nullptr;
873 }
874
875 while (Tok.isNot(tok::r_square)) {
876 if (!First) {
877 if (Tok.isNot(tok::comma)) {
878 // Provide a completion for a lambda introducer here. Except
879 // in Objective-C, where this is Almost Surely meant to be a message
880 // send. In that case, fail here and let the ObjC message
881 // expression parser perform the completion.
882 if (Tok.is(tok::code_completion) &&
883 !(getLangOpts().ObjC && Tentative)) {
884 cutOffParsing();
885 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
886 /*AfterAmpersand=*/false);
887 break;
888 }
889
890 return Invalid([&] {
891 Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
892 });
893 }
894 ConsumeToken();
895 }
896
897 if (Tok.is(tok::code_completion)) {
898 cutOffParsing();
899 // If we're in Objective-C++ and we have a bare '[', then this is more
900 // likely to be a message receiver.
901 if (getLangOpts().ObjC && Tentative && First)
902 Actions.CodeCompleteObjCMessageReceiver(getCurScope());
903 else
904 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
905 /*AfterAmpersand=*/false);
906 break;
907 }
908
909 First = false;
910
911 // Parse capture.
912 LambdaCaptureKind Kind = LCK_ByCopy;
913 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
914 SourceLocation Loc;
915 IdentifierInfo *Id = nullptr;
916 SourceLocation EllipsisLocs[4];
917 ExprResult Init;
918 SourceLocation LocStart = Tok.getLocation();
919
920 if (Tok.is(tok::star)) {
921 Loc = ConsumeToken();
922 if (Tok.is(tok::kw_this)) {
923 ConsumeToken();
924 Kind = LCK_StarThis;
925 } else {
926 return Invalid([&] {
927 Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
928 });
929 }
930 } else if (Tok.is(tok::kw_this)) {
931 Kind = LCK_This;
932 Loc = ConsumeToken();
933 } else if (Tok.isOneOf(tok::amp, tok::equal) &&
934 NextToken().isOneOf(tok::comma, tok::r_square) &&
935 Intro.Default == LCD_None) {
936 // We have a lone "&" or "=" which is either a misplaced capture-default
937 // or the start of a capture (in the "&" case) with the rest of the
938 // capture missing. Both are an error but a misplaced capture-default
939 // is more likely if we don't already have a capture default.
940 return Invalid(
941 [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
942 } else {
943 TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
944
945 if (Tok.is(tok::amp)) {
946 Kind = LCK_ByRef;
947 ConsumeToken();
948
949 if (Tok.is(tok::code_completion)) {
950 cutOffParsing();
951 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
952 /*AfterAmpersand=*/true);
953 break;
954 }
955 }
956
957 TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
958
959 if (Tok.is(tok::identifier)) {
960 Id = Tok.getIdentifierInfo();
961 Loc = ConsumeToken();
962 } else if (Tok.is(tok::kw_this)) {
963 return Invalid([&] {
964 // FIXME: Suggest a fixit here.
965 Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
966 });
967 } else {
968 return Invalid([&] {
969 Diag(Tok.getLocation(), diag::err_expected_capture);
970 });
971 }
972
973 TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
974
975 if (Tok.is(tok::l_paren)) {
976 BalancedDelimiterTracker Parens(*this, tok::l_paren);
977 Parens.consumeOpen();
978
979 InitKind = LambdaCaptureInitKind::DirectInit;
980
981 ExprVector Exprs;
982 CommaLocsTy Commas;
983 if (Tentative) {
984 Parens.skipToEnd();
985 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
986 } else if (ParseExpressionList(Exprs, Commas)) {
987 Parens.skipToEnd();
988 Init = ExprError();
989 } else {
990 Parens.consumeClose();
991 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
992 Parens.getCloseLocation(),
993 Exprs);
994 }
995 } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
996 // Each lambda init-capture forms its own full expression, which clears
997 // Actions.MaybeODRUseExprs. So create an expression evaluation context
998 // to save the necessary state, and restore it later.
999 EnterExpressionEvaluationContext EC(
1000 Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1001
1002 if (TryConsumeToken(tok::equal))
1003 InitKind = LambdaCaptureInitKind::CopyInit;
1004 else
1005 InitKind = LambdaCaptureInitKind::ListInit;
1006
1007 if (!Tentative) {
1008 Init = ParseInitializer();
1009 } else if (Tok.is(tok::l_brace)) {
1010 BalancedDelimiterTracker Braces(*this, tok::l_brace);
1011 Braces.consumeOpen();
1012 Braces.skipToEnd();
1013 *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1014 } else {
1015 // We're disambiguating this:
1016 //
1017 // [..., x = expr
1018 //
1019 // We need to find the end of the following expression in order to
1020 // determine whether this is an Obj-C message send's receiver, a
1021 // C99 designator, or a lambda init-capture.
1022 //
1023 // Parse the expression to find where it ends, and annotate it back
1024 // onto the tokens. We would have parsed this expression the same way
1025 // in either case: both the RHS of an init-capture and the RHS of an
1026 // assignment expression are parsed as an initializer-clause, and in
1027 // neither case can anything be added to the scope between the '[' and
1028 // here.
1029 //
1030 // FIXME: This is horrible. Adding a mechanism to skip an expression
1031 // would be much cleaner.
1032 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1033 // that instead. (And if we see a ':' with no matching '?', we can
1034 // classify this as an Obj-C message send.)
1035 SourceLocation StartLoc = Tok.getLocation();
1036 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1037 Init = ParseInitializer();
1038 if (!Init.isInvalid())
1039 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1040
1041 if (Tok.getLocation() != StartLoc) {
1042 // Back out the lexing of the token after the initializer.
1043 PP.RevertCachedTokens(1);
1044
1045 // Replace the consumed tokens with an appropriate annotation.
1046 Tok.setLocation(StartLoc);
1047 Tok.setKind(tok::annot_primary_expr);
1048 setExprAnnotation(Tok, Init);
1049 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1050 PP.AnnotateCachedTokens(Tok);
1051
1052 // Consume the annotated initializer.
1053 ConsumeAnnotationToken();
1054 }
1055 }
1056 }
1057
1058 TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1059 }
1060
1061 // Check if this is a message send before we act on a possible init-capture.
1062 if (Tentative && Tok.is(tok::identifier) &&
1063 NextToken().isOneOf(tok::colon, tok::r_square)) {
1064 // This can only be a message send. We're done with disambiguation.
1065 *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1066 return false;
1067 }
1068
1069 // Ensure that any ellipsis was in the right place.
1070 SourceLocation EllipsisLoc;
1071 if (std::any_of(std::begin(EllipsisLocs), std::end(EllipsisLocs),
1072 [](SourceLocation Loc) { return Loc.isValid(); })) {
1073 // The '...' should appear before the identifier in an init-capture, and
1074 // after the identifier otherwise.
1075 bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1076 SourceLocation *ExpectedEllipsisLoc =
1077 !InitCapture ? &EllipsisLocs[2] :
1078 Kind == LCK_ByRef ? &EllipsisLocs[1] :
1079 &EllipsisLocs[0];
1080 EllipsisLoc = *ExpectedEllipsisLoc;
1081
1082 unsigned DiagID = 0;
1083 if (EllipsisLoc.isInvalid()) {
1084 DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1085 for (SourceLocation Loc : EllipsisLocs) {
1086 if (Loc.isValid())
1087 EllipsisLoc = Loc;
1088 }
1089 } else {
1090 unsigned NumEllipses = std::accumulate(
1091 std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1092 [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1093 if (NumEllipses > 1)
1094 DiagID = diag::err_lambda_capture_multiple_ellipses;
1095 }
1096 if (DiagID) {
1097 NonTentativeAction([&] {
1098 // Point the diagnostic at the first misplaced ellipsis.
1099 SourceLocation DiagLoc;
1100 for (SourceLocation &Loc : EllipsisLocs) {
1101 if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1102 DiagLoc = Loc;
1103 break;
1104 }
1105 }
1106 assert(DiagLoc.isValid() && "no location for diagnostic");
1107
1108 // Issue the diagnostic and produce fixits showing where the ellipsis
1109 // should have been written.
1110 auto &&D = Diag(DiagLoc, DiagID);
1111 if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1112 SourceLocation ExpectedLoc =
1113 InitCapture ? Loc
1114 : Lexer::getLocForEndOfToken(
1115 Loc, 0, PP.getSourceManager(), getLangOpts());
1116 D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1117 }
1118 for (SourceLocation &Loc : EllipsisLocs) {
1119 if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1120 D << FixItHint::CreateRemoval(Loc);
1121 }
1122 });
1123 }
1124 }
1125
1126 // Process the init-capture initializers now rather than delaying until we
1127 // form the lambda-expression so that they can be handled in the context
1128 // enclosing the lambda-expression, rather than in the context of the
1129 // lambda-expression itself.
1130 ParsedType InitCaptureType;
1131 if (Init.isUsable())
1132 Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1133 if (Init.isUsable()) {
1134 NonTentativeAction([&] {
1135 // Get the pointer and store it in an lvalue, so we can use it as an
1136 // out argument.
1137 Expr *InitExpr = Init.get();
1138 // This performs any lvalue-to-rvalue conversions if necessary, which
1139 // can affect what gets captured in the containing decl-context.
1140 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1141 Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1142 Init = InitExpr;
1143 });
1144 }
1145
1146 SourceLocation LocEnd = PrevTokLocation;
1147
1148 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1149 InitCaptureType, SourceRange(LocStart, LocEnd));
1150 }
1151
1152 T.consumeClose();
1153 Intro.Range.setEnd(T.getCloseLocation());
1154 return false;
1155 }
1156
tryConsumeLambdaSpecifierToken(Parser & P,SourceLocation & MutableLoc,SourceLocation & ConstexprLoc,SourceLocation & ConstevalLoc,SourceLocation & DeclEndLoc)1157 static void tryConsumeLambdaSpecifierToken(Parser &P,
1158 SourceLocation &MutableLoc,
1159 SourceLocation &ConstexprLoc,
1160 SourceLocation &ConstevalLoc,
1161 SourceLocation &DeclEndLoc) {
1162 assert(MutableLoc.isInvalid());
1163 assert(ConstexprLoc.isInvalid());
1164 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1165 // to the final of those locations. Emit an error if we have multiple
1166 // copies of those keywords and recover.
1167
1168 while (true) {
1169 switch (P.getCurToken().getKind()) {
1170 case tok::kw_mutable: {
1171 if (MutableLoc.isValid()) {
1172 P.Diag(P.getCurToken().getLocation(),
1173 diag::err_lambda_decl_specifier_repeated)
1174 << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1175 }
1176 MutableLoc = P.ConsumeToken();
1177 DeclEndLoc = MutableLoc;
1178 break /*switch*/;
1179 }
1180 case tok::kw_constexpr:
1181 if (ConstexprLoc.isValid()) {
1182 P.Diag(P.getCurToken().getLocation(),
1183 diag::err_lambda_decl_specifier_repeated)
1184 << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1185 }
1186 ConstexprLoc = P.ConsumeToken();
1187 DeclEndLoc = ConstexprLoc;
1188 break /*switch*/;
1189 case tok::kw_consteval:
1190 if (ConstevalLoc.isValid()) {
1191 P.Diag(P.getCurToken().getLocation(),
1192 diag::err_lambda_decl_specifier_repeated)
1193 << 2 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1194 }
1195 ConstevalLoc = P.ConsumeToken();
1196 DeclEndLoc = ConstevalLoc;
1197 break /*switch*/;
1198 default:
1199 return;
1200 }
1201 }
1202 }
1203
1204 static void
addConstexprToLambdaDeclSpecifier(Parser & P,SourceLocation ConstexprLoc,DeclSpec & DS)1205 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1206 DeclSpec &DS) {
1207 if (ConstexprLoc.isValid()) {
1208 P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1209 ? diag::ext_constexpr_on_lambda_cxx17
1210 : diag::warn_cxx14_compat_constexpr_on_lambda);
1211 const char *PrevSpec = nullptr;
1212 unsigned DiagID = 0;
1213 DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1214 DiagID);
1215 assert(PrevSpec == nullptr && DiagID == 0 &&
1216 "Constexpr cannot have been set previously!");
1217 }
1218 }
1219
addConstevalToLambdaDeclSpecifier(Parser & P,SourceLocation ConstevalLoc,DeclSpec & DS)1220 static void addConstevalToLambdaDeclSpecifier(Parser &P,
1221 SourceLocation ConstevalLoc,
1222 DeclSpec &DS) {
1223 if (ConstevalLoc.isValid()) {
1224 P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1225 const char *PrevSpec = nullptr;
1226 unsigned DiagID = 0;
1227 DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1228 DiagID);
1229 if (DiagID != 0)
1230 P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1231 }
1232 }
1233
1234 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1235 /// expression.
ParseLambdaExpressionAfterIntroducer(LambdaIntroducer & Intro)1236 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1237 LambdaIntroducer &Intro) {
1238 SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1239 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1240
1241 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1242 "lambda expression parsing");
1243
1244
1245
1246 // FIXME: Call into Actions to add any init-capture declarations to the
1247 // scope while parsing the lambda-declarator and compound-statement.
1248
1249 // Parse lambda-declarator[opt].
1250 DeclSpec DS(AttrFactory);
1251 Declarator D(DS, DeclaratorContext::LambdaExpr);
1252 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1253 Actions.PushLambdaScope();
1254
1255 ParsedAttributes Attr(AttrFactory);
1256 if (getLangOpts().CUDA) {
1257 // In CUDA code, GNU attributes are allowed to appear immediately after the
1258 // "[...]", even if there is no "(...)" before the lambda body.
1259 MaybeParseGNUAttributes(D);
1260 }
1261
1262 // Helper to emit a warning if we see a CUDA host/device/global attribute
1263 // after '(...)'. nvcc doesn't accept this.
1264 auto WarnIfHasCUDATargetAttr = [&] {
1265 if (getLangOpts().CUDA)
1266 for (const ParsedAttr &A : Attr)
1267 if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1268 A.getKind() == ParsedAttr::AT_CUDAHost ||
1269 A.getKind() == ParsedAttr::AT_CUDAGlobal)
1270 Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1271 << A.getAttrName()->getName();
1272 };
1273
1274 MultiParseScope TemplateParamScope(*this);
1275 if (Tok.is(tok::less)) {
1276 Diag(Tok, getLangOpts().CPlusPlus20
1277 ? diag::warn_cxx17_compat_lambda_template_parameter_list
1278 : diag::ext_lambda_template_parameter_list);
1279
1280 SmallVector<NamedDecl*, 4> TemplateParams;
1281 SourceLocation LAngleLoc, RAngleLoc;
1282 if (ParseTemplateParameters(TemplateParamScope,
1283 CurTemplateDepthTracker.getDepth(),
1284 TemplateParams, LAngleLoc, RAngleLoc)) {
1285 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1286 return ExprError();
1287 }
1288
1289 if (TemplateParams.empty()) {
1290 Diag(RAngleLoc,
1291 diag::err_lambda_template_parameter_list_empty);
1292 } else {
1293 ExprResult RequiresClause;
1294 if (TryConsumeToken(tok::kw_requires)) {
1295 RequiresClause =
1296 Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1297 /*IsTrailingRequiresClause=*/false));
1298 if (RequiresClause.isInvalid())
1299 SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1300 }
1301
1302 Actions.ActOnLambdaExplicitTemplateParameterList(
1303 LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1304 ++CurTemplateDepthTracker;
1305 }
1306 }
1307
1308 // Implement WG21 P2173, which allows attributes immediately before the
1309 // lambda declarator and applies them to the corresponding function operator
1310 // or operator template declaration. We accept this as a conforming extension
1311 // in all language modes that support lambdas.
1312 if (isCXX11AttributeSpecifier()) {
1313 Diag(Tok, getLangOpts().CPlusPlus2b
1314 ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1315 : diag::ext_decl_attrs_on_lambda);
1316 MaybeParseCXX11Attributes(D);
1317 }
1318
1319 TypeResult TrailingReturnType;
1320 SourceLocation TrailingReturnTypeLoc;
1321
1322 auto ParseLambdaSpecifiers =
1323 [&](SourceLocation LParenLoc, SourceLocation RParenLoc,
1324 MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1325 SourceLocation EllipsisLoc) {
1326 SourceLocation DeclEndLoc = RParenLoc;
1327
1328 // GNU-style attributes must be parsed before the mutable specifier to
1329 // be compatible with GCC. MSVC-style attributes must be parsed before
1330 // the mutable specifier to be compatible with MSVC.
1331 MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attr);
1332
1333 // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1334 // the DeclEndLoc.
1335 SourceLocation MutableLoc;
1336 SourceLocation ConstexprLoc;
1337 SourceLocation ConstevalLoc;
1338 tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc,
1339 ConstevalLoc, DeclEndLoc);
1340
1341 addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1342 addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1343 // Parse exception-specification[opt].
1344 ExceptionSpecificationType ESpecType = EST_None;
1345 SourceRange ESpecRange;
1346 SmallVector<ParsedType, 2> DynamicExceptions;
1347 SmallVector<SourceRange, 2> DynamicExceptionRanges;
1348 ExprResult NoexceptExpr;
1349 CachedTokens *ExceptionSpecTokens;
1350 ESpecType = tryParseExceptionSpecification(
1351 /*Delayed=*/false, ESpecRange, DynamicExceptions,
1352 DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1353
1354 if (ESpecType != EST_None)
1355 DeclEndLoc = ESpecRange.getEnd();
1356
1357 // Parse attribute-specifier[opt].
1358 MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1359
1360 // Parse OpenCL addr space attribute.
1361 if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1362 tok::kw___constant, tok::kw___generic)) {
1363 ParseOpenCLQualifiers(DS.getAttributes());
1364 ConsumeToken();
1365 }
1366
1367 SourceLocation FunLocalRangeEnd = DeclEndLoc;
1368
1369 // Parse trailing-return-type[opt].
1370 if (Tok.is(tok::arrow)) {
1371 FunLocalRangeEnd = Tok.getLocation();
1372 SourceRange Range;
1373 TrailingReturnType = ParseTrailingReturnType(
1374 Range, /*MayBeFollowedByDirectInit*/ false);
1375 TrailingReturnTypeLoc = Range.getBegin();
1376 if (Range.getEnd().isValid())
1377 DeclEndLoc = Range.getEnd();
1378 }
1379
1380 SourceLocation NoLoc;
1381 D.AddTypeInfo(
1382 DeclaratorChunk::getFunction(
1383 /*HasProto=*/true,
1384 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1385 ParamInfo.size(), EllipsisLoc, RParenLoc,
1386 /*RefQualifierIsLvalueRef=*/true,
1387 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1388 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1389 DynamicExceptions.size(),
1390 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1391 /*ExceptionSpecTokens*/ nullptr,
1392 /*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
1393 TrailingReturnType, TrailingReturnTypeLoc, &DS),
1394 std::move(Attr), DeclEndLoc);
1395 };
1396
1397 if (Tok.is(tok::l_paren)) {
1398 ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
1399 Scope::FunctionDeclarationScope |
1400 Scope::DeclScope);
1401
1402 BalancedDelimiterTracker T(*this, tok::l_paren);
1403 T.consumeOpen();
1404 SourceLocation LParenLoc = T.getOpenLocation();
1405
1406 // Parse parameter-declaration-clause.
1407 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1408 SourceLocation EllipsisLoc;
1409
1410 if (Tok.isNot(tok::r_paren)) {
1411 Actions.RecordParsingTemplateParameterDepth(
1412 CurTemplateDepthTracker.getOriginalDepth());
1413
1414 ParseParameterDeclarationClause(D.getContext(), Attr, ParamInfo,
1415 EllipsisLoc);
1416 // For a generic lambda, each 'auto' within the parameter declaration
1417 // clause creates a template type parameter, so increment the depth.
1418 // If we've parsed any explicit template parameters, then the depth will
1419 // have already been incremented. So we make sure that at most a single
1420 // depth level is added.
1421 if (Actions.getCurGenericLambda())
1422 CurTemplateDepthTracker.setAddedDepth(1);
1423 }
1424
1425 T.consumeClose();
1426
1427 // Parse lambda-specifiers.
1428 ParseLambdaSpecifiers(LParenLoc, /*DeclEndLoc=*/T.getCloseLocation(),
1429 ParamInfo, EllipsisLoc);
1430
1431 // Parse requires-clause[opt].
1432 if (Tok.is(tok::kw_requires))
1433 ParseTrailingRequiresClause(D);
1434 } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1435 tok::kw_constexpr, tok::kw_consteval,
1436 tok::kw___private, tok::kw___global, tok::kw___local,
1437 tok::kw___constant, tok::kw___generic,
1438 tok::kw_requires, tok::kw_noexcept) ||
1439 (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1440 if (!getLangOpts().CPlusPlus2b)
1441 // It's common to forget that one needs '()' before 'mutable', an
1442 // attribute specifier, the result type, or the requires clause. Deal with
1443 // this.
1444 Diag(Tok, diag::ext_lambda_missing_parens)
1445 << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1446
1447 SourceLocation NoLoc;
1448 // Parse lambda-specifiers.
1449 std::vector<DeclaratorChunk::ParamInfo> EmptyParamInfo;
1450 ParseLambdaSpecifiers(/*LParenLoc=*/NoLoc, /*RParenLoc=*/NoLoc,
1451 EmptyParamInfo, /*EllipsisLoc=*/NoLoc);
1452 }
1453
1454 WarnIfHasCUDATargetAttr();
1455
1456 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1457 // it.
1458 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1459 Scope::CompoundStmtScope;
1460 ParseScope BodyScope(this, ScopeFlags);
1461
1462 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1463
1464 // Parse compound-statement.
1465 if (!Tok.is(tok::l_brace)) {
1466 Diag(Tok, diag::err_expected_lambda_body);
1467 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1468 return ExprError();
1469 }
1470
1471 StmtResult Stmt(ParseCompoundStatementBody());
1472 BodyScope.Exit();
1473 TemplateParamScope.Exit();
1474
1475 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1476 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1477
1478 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1479 return ExprError();
1480 }
1481
1482 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1483 /// type.
1484 ///
1485 /// postfix-expression: [C++ 5.2p1]
1486 /// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1487 /// 'static_cast' '<' type-name '>' '(' expression ')'
1488 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1489 /// 'const_cast' '<' type-name '>' '(' expression ')'
1490 ///
1491 /// C++ for OpenCL s2.3.1 adds:
1492 /// 'addrspace_cast' '<' type-name '>' '(' expression ')'
ParseCXXCasts()1493 ExprResult Parser::ParseCXXCasts() {
1494 tok::TokenKind Kind = Tok.getKind();
1495 const char *CastName = nullptr; // For error messages
1496
1497 switch (Kind) {
1498 default: llvm_unreachable("Unknown C++ cast!");
1499 case tok::kw_addrspace_cast: CastName = "addrspace_cast"; break;
1500 case tok::kw_const_cast: CastName = "const_cast"; break;
1501 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1502 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1503 case tok::kw_static_cast: CastName = "static_cast"; break;
1504 }
1505
1506 SourceLocation OpLoc = ConsumeToken();
1507 SourceLocation LAngleBracketLoc = Tok.getLocation();
1508
1509 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1510 // diagnose error, suggest fix, and recover parsing.
1511 if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1512 Token Next = NextToken();
1513 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1514 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1515 }
1516
1517 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1518 return ExprError();
1519
1520 // Parse the common declaration-specifiers piece.
1521 DeclSpec DS(AttrFactory);
1522 ParseSpecifierQualifierList(DS);
1523
1524 // Parse the abstract-declarator, if present.
1525 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
1526 ParseDeclarator(DeclaratorInfo);
1527
1528 SourceLocation RAngleBracketLoc = Tok.getLocation();
1529
1530 if (ExpectAndConsume(tok::greater))
1531 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1532
1533 BalancedDelimiterTracker T(*this, tok::l_paren);
1534
1535 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1536 return ExprError();
1537
1538 ExprResult Result = ParseExpression();
1539
1540 // Match the ')'.
1541 T.consumeClose();
1542
1543 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1544 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1545 LAngleBracketLoc, DeclaratorInfo,
1546 RAngleBracketLoc,
1547 T.getOpenLocation(), Result.get(),
1548 T.getCloseLocation());
1549
1550 return Result;
1551 }
1552
1553 /// ParseCXXTypeid - This handles the C++ typeid expression.
1554 ///
1555 /// postfix-expression: [C++ 5.2p1]
1556 /// 'typeid' '(' expression ')'
1557 /// 'typeid' '(' type-id ')'
1558 ///
ParseCXXTypeid()1559 ExprResult Parser::ParseCXXTypeid() {
1560 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1561
1562 SourceLocation OpLoc = ConsumeToken();
1563 SourceLocation LParenLoc, RParenLoc;
1564 BalancedDelimiterTracker T(*this, tok::l_paren);
1565
1566 // typeid expressions are always parenthesized.
1567 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1568 return ExprError();
1569 LParenLoc = T.getOpenLocation();
1570
1571 ExprResult Result;
1572
1573 // C++0x [expr.typeid]p3:
1574 // When typeid is applied to an expression other than an lvalue of a
1575 // polymorphic class type [...] The expression is an unevaluated
1576 // operand (Clause 5).
1577 //
1578 // Note that we can't tell whether the expression is an lvalue of a
1579 // polymorphic class type until after we've parsed the expression; we
1580 // speculatively assume the subexpression is unevaluated, and fix it up
1581 // later.
1582 //
1583 // We enter the unevaluated context before trying to determine whether we
1584 // have a type-id, because the tentative parse logic will try to resolve
1585 // names, and must treat them as unevaluated.
1586 EnterExpressionEvaluationContext Unevaluated(
1587 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1588 Sema::ReuseLambdaContextDecl);
1589
1590 if (isTypeIdInParens()) {
1591 TypeResult Ty = ParseTypeName();
1592
1593 // Match the ')'.
1594 T.consumeClose();
1595 RParenLoc = T.getCloseLocation();
1596 if (Ty.isInvalid() || RParenLoc.isInvalid())
1597 return ExprError();
1598
1599 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1600 Ty.get().getAsOpaquePtr(), RParenLoc);
1601 } else {
1602 Result = ParseExpression();
1603
1604 // Match the ')'.
1605 if (Result.isInvalid())
1606 SkipUntil(tok::r_paren, StopAtSemi);
1607 else {
1608 T.consumeClose();
1609 RParenLoc = T.getCloseLocation();
1610 if (RParenLoc.isInvalid())
1611 return ExprError();
1612
1613 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1614 Result.get(), RParenLoc);
1615 }
1616 }
1617
1618 return Result;
1619 }
1620
1621 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1622 ///
1623 /// '__uuidof' '(' expression ')'
1624 /// '__uuidof' '(' type-id ')'
1625 ///
ParseCXXUuidof()1626 ExprResult Parser::ParseCXXUuidof() {
1627 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1628
1629 SourceLocation OpLoc = ConsumeToken();
1630 BalancedDelimiterTracker T(*this, tok::l_paren);
1631
1632 // __uuidof expressions are always parenthesized.
1633 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1634 return ExprError();
1635
1636 ExprResult Result;
1637
1638 if (isTypeIdInParens()) {
1639 TypeResult Ty = ParseTypeName();
1640
1641 // Match the ')'.
1642 T.consumeClose();
1643
1644 if (Ty.isInvalid())
1645 return ExprError();
1646
1647 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1648 Ty.get().getAsOpaquePtr(),
1649 T.getCloseLocation());
1650 } else {
1651 EnterExpressionEvaluationContext Unevaluated(
1652 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1653 Result = ParseExpression();
1654
1655 // Match the ')'.
1656 if (Result.isInvalid())
1657 SkipUntil(tok::r_paren, StopAtSemi);
1658 else {
1659 T.consumeClose();
1660
1661 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1662 /*isType=*/false,
1663 Result.get(), T.getCloseLocation());
1664 }
1665 }
1666
1667 return Result;
1668 }
1669
1670 /// Parse a C++ pseudo-destructor expression after the base,
1671 /// . or -> operator, and nested-name-specifier have already been
1672 /// parsed. We're handling this fragment of the grammar:
1673 ///
1674 /// postfix-expression: [C++2a expr.post]
1675 /// postfix-expression . template[opt] id-expression
1676 /// postfix-expression -> template[opt] id-expression
1677 ///
1678 /// id-expression:
1679 /// qualified-id
1680 /// unqualified-id
1681 ///
1682 /// qualified-id:
1683 /// nested-name-specifier template[opt] unqualified-id
1684 ///
1685 /// nested-name-specifier:
1686 /// type-name ::
1687 /// decltype-specifier :: FIXME: not implemented, but probably only
1688 /// allowed in C++ grammar by accident
1689 /// nested-name-specifier identifier ::
1690 /// nested-name-specifier template[opt] simple-template-id ::
1691 /// [...]
1692 ///
1693 /// unqualified-id:
1694 /// ~ type-name
1695 /// ~ decltype-specifier
1696 /// [...]
1697 ///
1698 /// ... where the all but the last component of the nested-name-specifier
1699 /// has already been parsed, and the base expression is not of a non-dependent
1700 /// class type.
1701 ExprResult
ParseCXXPseudoDestructor(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,ParsedType ObjectType)1702 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1703 tok::TokenKind OpKind,
1704 CXXScopeSpec &SS,
1705 ParsedType ObjectType) {
1706 // If the last component of the (optional) nested-name-specifier is
1707 // template[opt] simple-template-id, it has already been annotated.
1708 UnqualifiedId FirstTypeName;
1709 SourceLocation CCLoc;
1710 if (Tok.is(tok::identifier)) {
1711 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1712 ConsumeToken();
1713 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1714 CCLoc = ConsumeToken();
1715 } else if (Tok.is(tok::annot_template_id)) {
1716 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1717 // FIXME: Carry on and build an AST representation for tooling.
1718 if (TemplateId->isInvalid())
1719 return ExprError();
1720 FirstTypeName.setTemplateId(TemplateId);
1721 ConsumeAnnotationToken();
1722 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1723 CCLoc = ConsumeToken();
1724 } else {
1725 assert(SS.isEmpty() && "missing last component of nested name specifier");
1726 FirstTypeName.setIdentifier(nullptr, SourceLocation());
1727 }
1728
1729 // Parse the tilde.
1730 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1731 SourceLocation TildeLoc = ConsumeToken();
1732
1733 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1734 DeclSpec DS(AttrFactory);
1735 ParseDecltypeSpecifier(DS);
1736 if (DS.getTypeSpecType() == TST_error)
1737 return ExprError();
1738 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1739 TildeLoc, DS);
1740 }
1741
1742 if (!Tok.is(tok::identifier)) {
1743 Diag(Tok, diag::err_destructor_tilde_identifier);
1744 return ExprError();
1745 }
1746
1747 // Parse the second type.
1748 UnqualifiedId SecondTypeName;
1749 IdentifierInfo *Name = Tok.getIdentifierInfo();
1750 SourceLocation NameLoc = ConsumeToken();
1751 SecondTypeName.setIdentifier(Name, NameLoc);
1752
1753 // If there is a '<', the second type name is a template-id. Parse
1754 // it as such.
1755 //
1756 // FIXME: This is not a context in which a '<' is assumed to start a template
1757 // argument list. This affects examples such as
1758 // void f(auto *p) { p->~X<int>(); }
1759 // ... but there's no ambiguity, and nowhere to write 'template' in such an
1760 // example, so we accept it anyway.
1761 if (Tok.is(tok::less) &&
1762 ParseUnqualifiedIdTemplateId(
1763 SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1764 Name, NameLoc, false, SecondTypeName,
1765 /*AssumeTemplateId=*/true))
1766 return ExprError();
1767
1768 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1769 SS, FirstTypeName, CCLoc, TildeLoc,
1770 SecondTypeName);
1771 }
1772
1773 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1774 ///
1775 /// boolean-literal: [C++ 2.13.5]
1776 /// 'true'
1777 /// 'false'
ParseCXXBoolLiteral()1778 ExprResult Parser::ParseCXXBoolLiteral() {
1779 tok::TokenKind Kind = Tok.getKind();
1780 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1781 }
1782
1783 /// ParseThrowExpression - This handles the C++ throw expression.
1784 ///
1785 /// throw-expression: [C++ 15]
1786 /// 'throw' assignment-expression[opt]
ParseThrowExpression()1787 ExprResult Parser::ParseThrowExpression() {
1788 assert(Tok.is(tok::kw_throw) && "Not throw!");
1789 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1790
1791 // If the current token isn't the start of an assignment-expression,
1792 // then the expression is not present. This handles things like:
1793 // "C ? throw : (void)42", which is crazy but legal.
1794 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1795 case tok::semi:
1796 case tok::r_paren:
1797 case tok::r_square:
1798 case tok::r_brace:
1799 case tok::colon:
1800 case tok::comma:
1801 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1802
1803 default:
1804 ExprResult Expr(ParseAssignmentExpression());
1805 if (Expr.isInvalid()) return Expr;
1806 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1807 }
1808 }
1809
1810 /// Parse the C++ Coroutines co_yield expression.
1811 ///
1812 /// co_yield-expression:
1813 /// 'co_yield' assignment-expression[opt]
ParseCoyieldExpression()1814 ExprResult Parser::ParseCoyieldExpression() {
1815 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1816
1817 SourceLocation Loc = ConsumeToken();
1818 ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1819 : ParseAssignmentExpression();
1820 if (!Expr.isInvalid())
1821 Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1822 return Expr;
1823 }
1824
1825 /// ParseCXXThis - This handles the C++ 'this' pointer.
1826 ///
1827 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1828 /// a non-lvalue expression whose value is the address of the object for which
1829 /// the function is called.
ParseCXXThis()1830 ExprResult Parser::ParseCXXThis() {
1831 assert(Tok.is(tok::kw_this) && "Not 'this'!");
1832 SourceLocation ThisLoc = ConsumeToken();
1833 return Actions.ActOnCXXThis(ThisLoc);
1834 }
1835
1836 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1837 /// Can be interpreted either as function-style casting ("int(x)")
1838 /// or class type construction ("ClassType(x,y,z)")
1839 /// or creation of a value-initialized type ("int()").
1840 /// See [C++ 5.2.3].
1841 ///
1842 /// postfix-expression: [C++ 5.2p1]
1843 /// simple-type-specifier '(' expression-list[opt] ')'
1844 /// [C++0x] simple-type-specifier braced-init-list
1845 /// typename-specifier '(' expression-list[opt] ')'
1846 /// [C++0x] typename-specifier braced-init-list
1847 ///
1848 /// In C++1z onwards, the type specifier can also be a template-name.
1849 ExprResult
ParseCXXTypeConstructExpression(const DeclSpec & DS)1850 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1851 Declarator DeclaratorInfo(DS, DeclaratorContext::FunctionalCast);
1852 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1853
1854 assert((Tok.is(tok::l_paren) ||
1855 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1856 && "Expected '(' or '{'!");
1857
1858 if (Tok.is(tok::l_brace)) {
1859 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1860 ExprResult Init = ParseBraceInitializer();
1861 if (Init.isInvalid())
1862 return Init;
1863 Expr *InitList = Init.get();
1864 return Actions.ActOnCXXTypeConstructExpr(
1865 TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1866 InitList->getEndLoc(), /*ListInitialization=*/true);
1867 } else {
1868 BalancedDelimiterTracker T(*this, tok::l_paren);
1869 T.consumeOpen();
1870
1871 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1872
1873 ExprVector Exprs;
1874 CommaLocsTy CommaLocs;
1875
1876 auto RunSignatureHelp = [&]() {
1877 QualType PreferredType;
1878 if (TypeRep)
1879 PreferredType = Actions.ProduceConstructorSignatureHelp(
1880 getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
1881 DS.getEndLoc(), Exprs, T.getOpenLocation());
1882 CalledSignatureHelp = true;
1883 return PreferredType;
1884 };
1885
1886 if (Tok.isNot(tok::r_paren)) {
1887 if (ParseExpressionList(Exprs, CommaLocs, [&] {
1888 PreferredType.enterFunctionArgument(Tok.getLocation(),
1889 RunSignatureHelp);
1890 })) {
1891 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1892 RunSignatureHelp();
1893 SkipUntil(tok::r_paren, StopAtSemi);
1894 return ExprError();
1895 }
1896 }
1897
1898 // Match the ')'.
1899 T.consumeClose();
1900
1901 // TypeRep could be null, if it references an invalid typedef.
1902 if (!TypeRep)
1903 return ExprError();
1904
1905 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1906 "Unexpected number of commas!");
1907 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1908 Exprs, T.getCloseLocation(),
1909 /*ListInitialization=*/false);
1910 }
1911 }
1912
1913 /// ParseCXXCondition - if/switch/while condition expression.
1914 ///
1915 /// condition:
1916 /// expression
1917 /// type-specifier-seq declarator '=' assignment-expression
1918 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1919 /// [C++11] type-specifier-seq declarator braced-init-list
1920 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
1921 /// brace-or-equal-initializer
1922 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1923 /// '=' assignment-expression
1924 ///
1925 /// In C++1z, a condition may in some contexts be preceded by an
1926 /// optional init-statement. This function will parse that too.
1927 ///
1928 /// \param InitStmt If non-null, an init-statement is permitted, and if present
1929 /// will be parsed and stored here.
1930 ///
1931 /// \param Loc The location of the start of the statement that requires this
1932 /// condition, e.g., the "for" in a for loop.
1933 ///
1934 /// \param FRI If non-null, a for range declaration is permitted, and if
1935 /// present will be parsed and stored here, and a null result will be returned.
1936 ///
1937 /// \param EnterForConditionScope If true, enter a continue/break scope at the
1938 /// appropriate moment for a 'for' loop.
1939 ///
1940 /// \returns The parsed condition.
ParseCXXCondition(StmtResult * InitStmt,SourceLocation Loc,Sema::ConditionKind CK,ForRangeInfo * FRI,bool EnterForConditionScope)1941 Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt,
1942 SourceLocation Loc,
1943 Sema::ConditionKind CK,
1944 ForRangeInfo *FRI,
1945 bool EnterForConditionScope) {
1946 // Helper to ensure we always enter a continue/break scope if requested.
1947 struct ForConditionScopeRAII {
1948 Scope *S;
1949 void enter(bool IsConditionVariable) {
1950 if (S) {
1951 S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
1952 S->setIsConditionVarScope(IsConditionVariable);
1953 }
1954 }
1955 ~ForConditionScopeRAII() {
1956 if (S)
1957 S->setIsConditionVarScope(false);
1958 }
1959 } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
1960
1961 ParenBraceBracketBalancer BalancerRAIIObj(*this);
1962 PreferredType.enterCondition(Actions, Tok.getLocation());
1963
1964 if (Tok.is(tok::code_completion)) {
1965 cutOffParsing();
1966 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1967 return Sema::ConditionError();
1968 }
1969
1970 ParsedAttributesWithRange attrs(AttrFactory);
1971 MaybeParseCXX11Attributes(attrs);
1972
1973 const auto WarnOnInit = [this, &CK] {
1974 Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
1975 ? diag::warn_cxx14_compat_init_statement
1976 : diag::ext_init_statement)
1977 << (CK == Sema::ConditionKind::Switch);
1978 };
1979
1980 // Determine what kind of thing we have.
1981 switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
1982 case ConditionOrInitStatement::Expression: {
1983 // If this is a for loop, we're entering its condition.
1984 ForConditionScope.enter(/*IsConditionVariable=*/false);
1985
1986 ProhibitAttributes(attrs);
1987
1988 // We can have an empty expression here.
1989 // if (; true);
1990 if (InitStmt && Tok.is(tok::semi)) {
1991 WarnOnInit();
1992 SourceLocation SemiLoc = Tok.getLocation();
1993 if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
1994 Diag(SemiLoc, diag::warn_empty_init_statement)
1995 << (CK == Sema::ConditionKind::Switch)
1996 << FixItHint::CreateRemoval(SemiLoc);
1997 }
1998 ConsumeToken();
1999 *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2000 return ParseCXXCondition(nullptr, Loc, CK);
2001 }
2002
2003 // Parse the expression.
2004 ExprResult Expr = ParseExpression(); // expression
2005 if (Expr.isInvalid())
2006 return Sema::ConditionError();
2007
2008 if (InitStmt && Tok.is(tok::semi)) {
2009 WarnOnInit();
2010 *InitStmt = Actions.ActOnExprStmt(Expr.get());
2011 ConsumeToken();
2012 return ParseCXXCondition(nullptr, Loc, CK);
2013 }
2014
2015 return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK);
2016 }
2017
2018 case ConditionOrInitStatement::InitStmtDecl: {
2019 WarnOnInit();
2020 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2021 DeclGroupPtrTy DG = ParseSimpleDeclaration(
2022 DeclaratorContext::SelectionInit, DeclEnd, attrs, /*RequireSemi=*/true);
2023 *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
2024 return ParseCXXCondition(nullptr, Loc, CK);
2025 }
2026
2027 case ConditionOrInitStatement::ForRangeDecl: {
2028 // This is 'for (init-stmt; for-range-decl : range-expr)'.
2029 // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2030 // permitted here.
2031 assert(FRI && "should not parse a for range declaration here");
2032 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2033 DeclGroupPtrTy DG = ParseSimpleDeclaration(DeclaratorContext::ForInit,
2034 DeclEnd, attrs, false, FRI);
2035 FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2036 assert((FRI->ColonLoc.isValid() || !DG) &&
2037 "cannot find for range declaration");
2038 return Sema::ConditionResult();
2039 }
2040
2041 case ConditionOrInitStatement::ConditionDecl:
2042 case ConditionOrInitStatement::Error:
2043 break;
2044 }
2045
2046 // If this is a for loop, we're entering its condition.
2047 ForConditionScope.enter(/*IsConditionVariable=*/true);
2048
2049 // type-specifier-seq
2050 DeclSpec DS(AttrFactory);
2051 DS.takeAttributesFrom(attrs);
2052 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2053
2054 // declarator
2055 Declarator DeclaratorInfo(DS, DeclaratorContext::Condition);
2056 ParseDeclarator(DeclaratorInfo);
2057
2058 // simple-asm-expr[opt]
2059 if (Tok.is(tok::kw_asm)) {
2060 SourceLocation Loc;
2061 ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2062 if (AsmLabel.isInvalid()) {
2063 SkipUntil(tok::semi, StopAtSemi);
2064 return Sema::ConditionError();
2065 }
2066 DeclaratorInfo.setAsmLabel(AsmLabel.get());
2067 DeclaratorInfo.SetRangeEnd(Loc);
2068 }
2069
2070 // If attributes are present, parse them.
2071 MaybeParseGNUAttributes(DeclaratorInfo);
2072
2073 // Type-check the declaration itself.
2074 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2075 DeclaratorInfo);
2076 if (Dcl.isInvalid())
2077 return Sema::ConditionError();
2078 Decl *DeclOut = Dcl.get();
2079
2080 // '=' assignment-expression
2081 // If a '==' or '+=' is found, suggest a fixit to '='.
2082 bool CopyInitialization = isTokenEqualOrEqualTypo();
2083 if (CopyInitialization)
2084 ConsumeToken();
2085
2086 ExprResult InitExpr = ExprError();
2087 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2088 Diag(Tok.getLocation(),
2089 diag::warn_cxx98_compat_generalized_initializer_lists);
2090 InitExpr = ParseBraceInitializer();
2091 } else if (CopyInitialization) {
2092 PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2093 InitExpr = ParseAssignmentExpression();
2094 } else if (Tok.is(tok::l_paren)) {
2095 // This was probably an attempt to initialize the variable.
2096 SourceLocation LParen = ConsumeParen(), RParen = LParen;
2097 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2098 RParen = ConsumeParen();
2099 Diag(DeclOut->getLocation(),
2100 diag::err_expected_init_in_condition_lparen)
2101 << SourceRange(LParen, RParen);
2102 } else {
2103 Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2104 }
2105
2106 if (!InitExpr.isInvalid())
2107 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2108 else
2109 Actions.ActOnInitializerError(DeclOut);
2110
2111 Actions.FinalizeDeclaration(DeclOut);
2112 return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2113 }
2114
2115 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2116 /// This should only be called when the current token is known to be part of
2117 /// simple-type-specifier.
2118 ///
2119 /// simple-type-specifier:
2120 /// '::'[opt] nested-name-specifier[opt] type-name
2121 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2122 /// char
2123 /// wchar_t
2124 /// bool
2125 /// short
2126 /// int
2127 /// long
2128 /// signed
2129 /// unsigned
2130 /// float
2131 /// double
2132 /// void
2133 /// [GNU] typeof-specifier
2134 /// [C++0x] auto [TODO]
2135 ///
2136 /// type-name:
2137 /// class-name
2138 /// enum-name
2139 /// typedef-name
2140 ///
ParseCXXSimpleTypeSpecifier(DeclSpec & DS)2141 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2142 DS.SetRangeStart(Tok.getLocation());
2143 const char *PrevSpec;
2144 unsigned DiagID;
2145 SourceLocation Loc = Tok.getLocation();
2146 const clang::PrintingPolicy &Policy =
2147 Actions.getASTContext().getPrintingPolicy();
2148
2149 switch (Tok.getKind()) {
2150 case tok::identifier: // foo::bar
2151 case tok::coloncolon: // ::foo::bar
2152 llvm_unreachable("Annotation token should already be formed!");
2153 default:
2154 llvm_unreachable("Not a simple-type-specifier token!");
2155
2156 // type-name
2157 case tok::annot_typename: {
2158 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2159 getTypeAnnotation(Tok), Policy);
2160 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2161 ConsumeAnnotationToken();
2162
2163 DS.Finish(Actions, Policy);
2164 return;
2165 }
2166
2167 case tok::kw__ExtInt: {
2168 ExprResult ER = ParseExtIntegerArgument();
2169 if (ER.isInvalid())
2170 DS.SetTypeSpecError();
2171 else
2172 DS.SetExtIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2173
2174 // Do this here because we have already consumed the close paren.
2175 DS.SetRangeEnd(PrevTokLocation);
2176 DS.Finish(Actions, Policy);
2177 return;
2178 }
2179
2180 // builtin types
2181 case tok::kw_short:
2182 DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2183 Policy);
2184 break;
2185 case tok::kw_long:
2186 DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2187 Policy);
2188 break;
2189 case tok::kw___int64:
2190 DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2191 Policy);
2192 break;
2193 case tok::kw_signed:
2194 DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2195 break;
2196 case tok::kw_unsigned:
2197 DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2198 break;
2199 case tok::kw_void:
2200 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2201 break;
2202 case tok::kw_char:
2203 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2204 break;
2205 case tok::kw_int:
2206 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2207 break;
2208 case tok::kw___int128:
2209 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2210 break;
2211 case tok::kw___bf16:
2212 DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2213 break;
2214 case tok::kw_half:
2215 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2216 break;
2217 case tok::kw_float:
2218 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2219 break;
2220 case tok::kw_double:
2221 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2222 break;
2223 case tok::kw__Float16:
2224 DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2225 break;
2226 case tok::kw___float128:
2227 DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2228 break;
2229 case tok::kw_wchar_t:
2230 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2231 break;
2232 case tok::kw_char8_t:
2233 DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2234 break;
2235 case tok::kw_char16_t:
2236 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2237 break;
2238 case tok::kw_char32_t:
2239 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2240 break;
2241 case tok::kw_bool:
2242 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2243 break;
2244 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
2245 case tok::kw_##ImgType##_t: \
2246 DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
2247 Policy); \
2248 break;
2249 #include "clang/Basic/OpenCLImageTypes.def"
2250
2251 case tok::annot_decltype:
2252 case tok::kw_decltype:
2253 DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2254 return DS.Finish(Actions, Policy);
2255
2256 // GNU typeof support.
2257 case tok::kw_typeof:
2258 ParseTypeofSpecifier(DS);
2259 DS.Finish(Actions, Policy);
2260 return;
2261 }
2262 ConsumeAnyToken();
2263 DS.SetRangeEnd(PrevTokLocation);
2264 DS.Finish(Actions, Policy);
2265 }
2266
2267 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2268 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2269 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2270 /// by parsing the type-specifier-seq, because these sequences are
2271 /// typically followed by some form of declarator. Returns true and
2272 /// emits diagnostics if this is not a type-specifier-seq, false
2273 /// otherwise.
2274 ///
2275 /// type-specifier-seq: [C++ 8.1]
2276 /// type-specifier type-specifier-seq[opt]
2277 ///
ParseCXXTypeSpecifierSeq(DeclSpec & DS)2278 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
2279 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
2280 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2281 return false;
2282 }
2283
2284 /// Finish parsing a C++ unqualified-id that is a template-id of
2285 /// some form.
2286 ///
2287 /// This routine is invoked when a '<' is encountered after an identifier or
2288 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2289 /// whether the unqualified-id is actually a template-id. This routine will
2290 /// then parse the template arguments and form the appropriate template-id to
2291 /// return to the caller.
2292 ///
2293 /// \param SS the nested-name-specifier that precedes this template-id, if
2294 /// we're actually parsing a qualified-id.
2295 ///
2296 /// \param ObjectType if this unqualified-id occurs within a member access
2297 /// expression, the type of the base object whose member is being accessed.
2298 ///
2299 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2300 /// expression, indicates whether the original subexpressions had any errors.
2301 ///
2302 /// \param Name for constructor and destructor names, this is the actual
2303 /// identifier that may be a template-name.
2304 ///
2305 /// \param NameLoc the location of the class-name in a constructor or
2306 /// destructor.
2307 ///
2308 /// \param EnteringContext whether we're entering the scope of the
2309 /// nested-name-specifier.
2310 ///
2311 /// \param Id as input, describes the template-name or operator-function-id
2312 /// that precedes the '<'. If template arguments were parsed successfully,
2313 /// will be updated with the template-id.
2314 ///
2315 /// \param AssumeTemplateId When true, this routine will assume that the name
2316 /// refers to a template without performing name lookup to verify.
2317 ///
2318 /// \returns true if a parse error occurred, false otherwise.
ParseUnqualifiedIdTemplateId(CXXScopeSpec & SS,ParsedType ObjectType,bool ObjectHadErrors,SourceLocation TemplateKWLoc,IdentifierInfo * Name,SourceLocation NameLoc,bool EnteringContext,UnqualifiedId & Id,bool AssumeTemplateId)2319 bool Parser::ParseUnqualifiedIdTemplateId(
2320 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2321 SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2322 bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2323 assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2324
2325 TemplateTy Template;
2326 TemplateNameKind TNK = TNK_Non_template;
2327 switch (Id.getKind()) {
2328 case UnqualifiedIdKind::IK_Identifier:
2329 case UnqualifiedIdKind::IK_OperatorFunctionId:
2330 case UnqualifiedIdKind::IK_LiteralOperatorId:
2331 if (AssumeTemplateId) {
2332 // We defer the injected-class-name checks until we've found whether
2333 // this template-id is used to form a nested-name-specifier or not.
2334 TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2335 ObjectType, EnteringContext, Template,
2336 /*AllowInjectedClassName*/ true);
2337 } else {
2338 bool MemberOfUnknownSpecialization;
2339 TNK = Actions.isTemplateName(getCurScope(), SS,
2340 TemplateKWLoc.isValid(), Id,
2341 ObjectType, EnteringContext, Template,
2342 MemberOfUnknownSpecialization);
2343 // If lookup found nothing but we're assuming that this is a template
2344 // name, double-check that makes sense syntactically before committing
2345 // to it.
2346 if (TNK == TNK_Undeclared_template &&
2347 isTemplateArgumentList(0) == TPResult::False)
2348 return false;
2349
2350 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2351 ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2352 // If we had errors before, ObjectType can be dependent even without any
2353 // templates, do not report missing template keyword in that case.
2354 if (!ObjectHadErrors) {
2355 // We have something like t->getAs<T>(), where getAs is a
2356 // member of an unknown specialization. However, this will only
2357 // parse correctly as a template, so suggest the keyword 'template'
2358 // before 'getAs' and treat this as a dependent template name.
2359 std::string Name;
2360 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2361 Name = std::string(Id.Identifier->getName());
2362 else {
2363 Name = "operator ";
2364 if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2365 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2366 else
2367 Name += Id.Identifier->getName();
2368 }
2369 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2370 << Name
2371 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2372 }
2373 TNK = Actions.ActOnTemplateName(
2374 getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2375 Template, /*AllowInjectedClassName*/ true);
2376 } else if (TNK == TNK_Non_template) {
2377 return false;
2378 }
2379 }
2380 break;
2381
2382 case UnqualifiedIdKind::IK_ConstructorName: {
2383 UnqualifiedId TemplateName;
2384 bool MemberOfUnknownSpecialization;
2385 TemplateName.setIdentifier(Name, NameLoc);
2386 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2387 TemplateName, ObjectType,
2388 EnteringContext, Template,
2389 MemberOfUnknownSpecialization);
2390 if (TNK == TNK_Non_template)
2391 return false;
2392 break;
2393 }
2394
2395 case UnqualifiedIdKind::IK_DestructorName: {
2396 UnqualifiedId TemplateName;
2397 bool MemberOfUnknownSpecialization;
2398 TemplateName.setIdentifier(Name, NameLoc);
2399 if (ObjectType) {
2400 TNK = Actions.ActOnTemplateName(
2401 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2402 EnteringContext, Template, /*AllowInjectedClassName*/ true);
2403 } else {
2404 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2405 TemplateName, ObjectType,
2406 EnteringContext, Template,
2407 MemberOfUnknownSpecialization);
2408
2409 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2410 Diag(NameLoc, diag::err_destructor_template_id)
2411 << Name << SS.getRange();
2412 // Carry on to parse the template arguments before bailing out.
2413 }
2414 }
2415 break;
2416 }
2417
2418 default:
2419 return false;
2420 }
2421
2422 // Parse the enclosed template argument list.
2423 SourceLocation LAngleLoc, RAngleLoc;
2424 TemplateArgList TemplateArgs;
2425 if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs,
2426 RAngleLoc))
2427 return true;
2428
2429 // If this is a non-template, we already issued a diagnostic.
2430 if (TNK == TNK_Non_template)
2431 return true;
2432
2433 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2434 Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2435 Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2436 // Form a parsed representation of the template-id to be stored in the
2437 // UnqualifiedId.
2438
2439 // FIXME: Store name for literal operator too.
2440 IdentifierInfo *TemplateII =
2441 Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2442 : nullptr;
2443 OverloadedOperatorKind OpKind =
2444 Id.getKind() == UnqualifiedIdKind::IK_Identifier
2445 ? OO_None
2446 : Id.OperatorFunctionId.Operator;
2447
2448 TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2449 TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2450 LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2451
2452 Id.setTemplateId(TemplateId);
2453 return false;
2454 }
2455
2456 // Bundle the template arguments together.
2457 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2458
2459 // Constructor and destructor names.
2460 TypeResult Type = Actions.ActOnTemplateIdType(
2461 getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2462 TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2463 if (Type.isInvalid())
2464 return true;
2465
2466 if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2467 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2468 else
2469 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2470
2471 return false;
2472 }
2473
2474 /// Parse an operator-function-id or conversion-function-id as part
2475 /// of a C++ unqualified-id.
2476 ///
2477 /// This routine is responsible only for parsing the operator-function-id or
2478 /// conversion-function-id; it does not handle template arguments in any way.
2479 ///
2480 /// \code
2481 /// operator-function-id: [C++ 13.5]
2482 /// 'operator' operator
2483 ///
2484 /// operator: one of
2485 /// new delete new[] delete[]
2486 /// + - * / % ^ & | ~
2487 /// ! = < > += -= *= /= %=
2488 /// ^= &= |= << >> >>= <<= == !=
2489 /// <= >= && || ++ -- , ->* ->
2490 /// () [] <=>
2491 ///
2492 /// conversion-function-id: [C++ 12.3.2]
2493 /// operator conversion-type-id
2494 ///
2495 /// conversion-type-id:
2496 /// type-specifier-seq conversion-declarator[opt]
2497 ///
2498 /// conversion-declarator:
2499 /// ptr-operator conversion-declarator[opt]
2500 /// \endcode
2501 ///
2502 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2503 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2504 ///
2505 /// \param EnteringContext whether we are entering the scope of the
2506 /// nested-name-specifier.
2507 ///
2508 /// \param ObjectType if this unqualified-id occurs within a member access
2509 /// expression, the type of the base object whose member is being accessed.
2510 ///
2511 /// \param Result on a successful parse, contains the parsed unqualified-id.
2512 ///
2513 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedIdOperator(CXXScopeSpec & SS,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Result)2514 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2515 ParsedType ObjectType,
2516 UnqualifiedId &Result) {
2517 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2518
2519 // Consume the 'operator' keyword.
2520 SourceLocation KeywordLoc = ConsumeToken();
2521
2522 // Determine what kind of operator name we have.
2523 unsigned SymbolIdx = 0;
2524 SourceLocation SymbolLocations[3];
2525 OverloadedOperatorKind Op = OO_None;
2526 switch (Tok.getKind()) {
2527 case tok::kw_new:
2528 case tok::kw_delete: {
2529 bool isNew = Tok.getKind() == tok::kw_new;
2530 // Consume the 'new' or 'delete'.
2531 SymbolLocations[SymbolIdx++] = ConsumeToken();
2532 // Check for array new/delete.
2533 if (Tok.is(tok::l_square) &&
2534 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2535 // Consume the '[' and ']'.
2536 BalancedDelimiterTracker T(*this, tok::l_square);
2537 T.consumeOpen();
2538 T.consumeClose();
2539 if (T.getCloseLocation().isInvalid())
2540 return true;
2541
2542 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2543 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2544 Op = isNew? OO_Array_New : OO_Array_Delete;
2545 } else {
2546 Op = isNew? OO_New : OO_Delete;
2547 }
2548 break;
2549 }
2550
2551 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2552 case tok::Token: \
2553 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2554 Op = OO_##Name; \
2555 break;
2556 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2557 #include "clang/Basic/OperatorKinds.def"
2558
2559 case tok::l_paren: {
2560 // Consume the '(' and ')'.
2561 BalancedDelimiterTracker T(*this, tok::l_paren);
2562 T.consumeOpen();
2563 T.consumeClose();
2564 if (T.getCloseLocation().isInvalid())
2565 return true;
2566
2567 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2568 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2569 Op = OO_Call;
2570 break;
2571 }
2572
2573 case tok::l_square: {
2574 // Consume the '[' and ']'.
2575 BalancedDelimiterTracker T(*this, tok::l_square);
2576 T.consumeOpen();
2577 T.consumeClose();
2578 if (T.getCloseLocation().isInvalid())
2579 return true;
2580
2581 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2582 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2583 Op = OO_Subscript;
2584 break;
2585 }
2586
2587 case tok::code_completion: {
2588 // Don't try to parse any further.
2589 cutOffParsing();
2590 // Code completion for the operator name.
2591 Actions.CodeCompleteOperatorName(getCurScope());
2592 return true;
2593 }
2594
2595 default:
2596 break;
2597 }
2598
2599 if (Op != OO_None) {
2600 // We have parsed an operator-function-id.
2601 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2602 return false;
2603 }
2604
2605 // Parse a literal-operator-id.
2606 //
2607 // literal-operator-id: C++11 [over.literal]
2608 // operator string-literal identifier
2609 // operator user-defined-string-literal
2610
2611 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2612 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2613
2614 SourceLocation DiagLoc;
2615 unsigned DiagId = 0;
2616
2617 // We're past translation phase 6, so perform string literal concatenation
2618 // before checking for "".
2619 SmallVector<Token, 4> Toks;
2620 SmallVector<SourceLocation, 4> TokLocs;
2621 while (isTokenStringLiteral()) {
2622 if (!Tok.is(tok::string_literal) && !DiagId) {
2623 // C++11 [over.literal]p1:
2624 // The string-literal or user-defined-string-literal in a
2625 // literal-operator-id shall have no encoding-prefix [...].
2626 DiagLoc = Tok.getLocation();
2627 DiagId = diag::err_literal_operator_string_prefix;
2628 }
2629 Toks.push_back(Tok);
2630 TokLocs.push_back(ConsumeStringToken());
2631 }
2632
2633 StringLiteralParser Literal(Toks, PP);
2634 if (Literal.hadError)
2635 return true;
2636
2637 // Grab the literal operator's suffix, which will be either the next token
2638 // or a ud-suffix from the string literal.
2639 IdentifierInfo *II = nullptr;
2640 SourceLocation SuffixLoc;
2641 if (!Literal.getUDSuffix().empty()) {
2642 II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2643 SuffixLoc =
2644 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2645 Literal.getUDSuffixOffset(),
2646 PP.getSourceManager(), getLangOpts());
2647 } else if (Tok.is(tok::identifier)) {
2648 II = Tok.getIdentifierInfo();
2649 SuffixLoc = ConsumeToken();
2650 TokLocs.push_back(SuffixLoc);
2651 } else {
2652 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2653 return true;
2654 }
2655
2656 // The string literal must be empty.
2657 if (!Literal.GetString().empty() || Literal.Pascal) {
2658 // C++11 [over.literal]p1:
2659 // The string-literal or user-defined-string-literal in a
2660 // literal-operator-id shall [...] contain no characters
2661 // other than the implicit terminating '\0'.
2662 DiagLoc = TokLocs.front();
2663 DiagId = diag::err_literal_operator_string_not_empty;
2664 }
2665
2666 if (DiagId) {
2667 // This isn't a valid literal-operator-id, but we think we know
2668 // what the user meant. Tell them what they should have written.
2669 SmallString<32> Str;
2670 Str += "\"\"";
2671 Str += II->getName();
2672 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2673 SourceRange(TokLocs.front(), TokLocs.back()), Str);
2674 }
2675
2676 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2677
2678 return Actions.checkLiteralOperatorId(SS, Result);
2679 }
2680
2681 // Parse a conversion-function-id.
2682 //
2683 // conversion-function-id: [C++ 12.3.2]
2684 // operator conversion-type-id
2685 //
2686 // conversion-type-id:
2687 // type-specifier-seq conversion-declarator[opt]
2688 //
2689 // conversion-declarator:
2690 // ptr-operator conversion-declarator[opt]
2691
2692 // Parse the type-specifier-seq.
2693 DeclSpec DS(AttrFactory);
2694 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2695 return true;
2696
2697 // Parse the conversion-declarator, which is merely a sequence of
2698 // ptr-operators.
2699 Declarator D(DS, DeclaratorContext::ConversionId);
2700 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2701
2702 // Finish up the type.
2703 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2704 if (Ty.isInvalid())
2705 return true;
2706
2707 // Note that this is a conversion-function-id.
2708 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2709 D.getSourceRange().getEnd());
2710 return false;
2711 }
2712
2713 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2714 /// name of an entity.
2715 ///
2716 /// \code
2717 /// unqualified-id: [C++ expr.prim.general]
2718 /// identifier
2719 /// operator-function-id
2720 /// conversion-function-id
2721 /// [C++0x] literal-operator-id [TODO]
2722 /// ~ class-name
2723 /// template-id
2724 ///
2725 /// \endcode
2726 ///
2727 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2728 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2729 ///
2730 /// \param ObjectType if this unqualified-id occurs within a member access
2731 /// expression, the type of the base object whose member is being accessed.
2732 ///
2733 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2734 /// expression, indicates whether the original subexpressions had any errors.
2735 /// When true, diagnostics for missing 'template' keyword will be supressed.
2736 ///
2737 /// \param EnteringContext whether we are entering the scope of the
2738 /// nested-name-specifier.
2739 ///
2740 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2741 ///
2742 /// \param AllowConstructorName whether we allow parsing a constructor name.
2743 ///
2744 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2745 ///
2746 /// \param Result on a successful parse, contains the parsed unqualified-id.
2747 ///
2748 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedId(CXXScopeSpec & SS,ParsedType ObjectType,bool ObjectHadErrors,bool EnteringContext,bool AllowDestructorName,bool AllowConstructorName,bool AllowDeductionGuide,SourceLocation * TemplateKWLoc,UnqualifiedId & Result)2749 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2750 bool ObjectHadErrors, bool EnteringContext,
2751 bool AllowDestructorName,
2752 bool AllowConstructorName,
2753 bool AllowDeductionGuide,
2754 SourceLocation *TemplateKWLoc,
2755 UnqualifiedId &Result) {
2756 if (TemplateKWLoc)
2757 *TemplateKWLoc = SourceLocation();
2758
2759 // Handle 'A::template B'. This is for template-ids which have not
2760 // already been annotated by ParseOptionalCXXScopeSpecifier().
2761 bool TemplateSpecified = false;
2762 if (Tok.is(tok::kw_template)) {
2763 if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2764 TemplateSpecified = true;
2765 *TemplateKWLoc = ConsumeToken();
2766 } else {
2767 SourceLocation TemplateLoc = ConsumeToken();
2768 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2769 << FixItHint::CreateRemoval(TemplateLoc);
2770 }
2771 }
2772
2773 // unqualified-id:
2774 // identifier
2775 // template-id (when it hasn't already been annotated)
2776 if (Tok.is(tok::identifier)) {
2777 // Consume the identifier.
2778 IdentifierInfo *Id = Tok.getIdentifierInfo();
2779 SourceLocation IdLoc = ConsumeToken();
2780
2781 if (!getLangOpts().CPlusPlus) {
2782 // If we're not in C++, only identifiers matter. Record the
2783 // identifier and return.
2784 Result.setIdentifier(Id, IdLoc);
2785 return false;
2786 }
2787
2788 ParsedTemplateTy TemplateName;
2789 if (AllowConstructorName &&
2790 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2791 // We have parsed a constructor name.
2792 ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2793 EnteringContext);
2794 if (!Ty)
2795 return true;
2796 Result.setConstructorName(Ty, IdLoc, IdLoc);
2797 } else if (getLangOpts().CPlusPlus17 &&
2798 AllowDeductionGuide && SS.isEmpty() &&
2799 Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
2800 &TemplateName)) {
2801 // We have parsed a template-name naming a deduction guide.
2802 Result.setDeductionGuideName(TemplateName, IdLoc);
2803 } else {
2804 // We have parsed an identifier.
2805 Result.setIdentifier(Id, IdLoc);
2806 }
2807
2808 // If the next token is a '<', we may have a template.
2809 TemplateTy Template;
2810 if (Tok.is(tok::less))
2811 return ParseUnqualifiedIdTemplateId(
2812 SS, ObjectType, ObjectHadErrors,
2813 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2814 EnteringContext, Result, TemplateSpecified);
2815 else if (TemplateSpecified &&
2816 Actions.ActOnTemplateName(
2817 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2818 EnteringContext, Template,
2819 /*AllowInjectedClassName*/ true) == TNK_Non_template)
2820 return true;
2821
2822 return false;
2823 }
2824
2825 // unqualified-id:
2826 // template-id (already parsed and annotated)
2827 if (Tok.is(tok::annot_template_id)) {
2828 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2829
2830 // FIXME: Consider passing invalid template-ids on to callers; they may
2831 // be able to recover better than we can.
2832 if (TemplateId->isInvalid()) {
2833 ConsumeAnnotationToken();
2834 return true;
2835 }
2836
2837 // If the template-name names the current class, then this is a constructor
2838 if (AllowConstructorName && TemplateId->Name &&
2839 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2840 if (SS.isSet()) {
2841 // C++ [class.qual]p2 specifies that a qualified template-name
2842 // is taken as the constructor name where a constructor can be
2843 // declared. Thus, the template arguments are extraneous, so
2844 // complain about them and remove them entirely.
2845 Diag(TemplateId->TemplateNameLoc,
2846 diag::err_out_of_line_constructor_template_id)
2847 << TemplateId->Name
2848 << FixItHint::CreateRemoval(
2849 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2850 ParsedType Ty = Actions.getConstructorName(
2851 *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2852 EnteringContext);
2853 if (!Ty)
2854 return true;
2855 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2856 TemplateId->RAngleLoc);
2857 ConsumeAnnotationToken();
2858 return false;
2859 }
2860
2861 Result.setConstructorTemplateId(TemplateId);
2862 ConsumeAnnotationToken();
2863 return false;
2864 }
2865
2866 // We have already parsed a template-id; consume the annotation token as
2867 // our unqualified-id.
2868 Result.setTemplateId(TemplateId);
2869 SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2870 if (TemplateLoc.isValid()) {
2871 if (TemplateKWLoc && (ObjectType || SS.isSet()))
2872 *TemplateKWLoc = TemplateLoc;
2873 else
2874 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2875 << FixItHint::CreateRemoval(TemplateLoc);
2876 }
2877 ConsumeAnnotationToken();
2878 return false;
2879 }
2880
2881 // unqualified-id:
2882 // operator-function-id
2883 // conversion-function-id
2884 if (Tok.is(tok::kw_operator)) {
2885 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2886 return true;
2887
2888 // If we have an operator-function-id or a literal-operator-id and the next
2889 // token is a '<', we may have a
2890 //
2891 // template-id:
2892 // operator-function-id < template-argument-list[opt] >
2893 TemplateTy Template;
2894 if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2895 Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
2896 Tok.is(tok::less))
2897 return ParseUnqualifiedIdTemplateId(
2898 SS, ObjectType, ObjectHadErrors,
2899 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
2900 SourceLocation(), EnteringContext, Result, TemplateSpecified);
2901 else if (TemplateSpecified &&
2902 Actions.ActOnTemplateName(
2903 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2904 EnteringContext, Template,
2905 /*AllowInjectedClassName*/ true) == TNK_Non_template)
2906 return true;
2907
2908 return false;
2909 }
2910
2911 if (getLangOpts().CPlusPlus &&
2912 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2913 // C++ [expr.unary.op]p10:
2914 // There is an ambiguity in the unary-expression ~X(), where X is a
2915 // class-name. The ambiguity is resolved in favor of treating ~ as a
2916 // unary complement rather than treating ~X as referring to a destructor.
2917
2918 // Parse the '~'.
2919 SourceLocation TildeLoc = ConsumeToken();
2920
2921 if (TemplateSpecified) {
2922 // C++ [temp.names]p3:
2923 // A name prefixed by the keyword template shall be a template-id [...]
2924 //
2925 // A template-id cannot begin with a '~' token. This would never work
2926 // anyway: x.~A<int>() would specify that the destructor is a template,
2927 // not that 'A' is a template.
2928 //
2929 // FIXME: Suggest replacing the attempted destructor name with a correct
2930 // destructor name and recover. (This is not trivial if this would become
2931 // a pseudo-destructor name).
2932 Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
2933 << Tok.getLocation();
2934 return true;
2935 }
2936
2937 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2938 DeclSpec DS(AttrFactory);
2939 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2940 if (ParsedType Type =
2941 Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
2942 Result.setDestructorName(TildeLoc, Type, EndLoc);
2943 return false;
2944 }
2945 return true;
2946 }
2947
2948 // Parse the class-name.
2949 if (Tok.isNot(tok::identifier)) {
2950 Diag(Tok, diag::err_destructor_tilde_identifier);
2951 return true;
2952 }
2953
2954 // If the user wrote ~T::T, correct it to T::~T.
2955 DeclaratorScopeObj DeclScopeObj(*this, SS);
2956 if (NextToken().is(tok::coloncolon)) {
2957 // Don't let ParseOptionalCXXScopeSpecifier() "correct"
2958 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
2959 // it will confuse this recovery logic.
2960 ColonProtectionRAIIObject ColonRAII(*this, false);
2961
2962 if (SS.isSet()) {
2963 AnnotateScopeToken(SS, /*NewAnnotation*/true);
2964 SS.clear();
2965 }
2966 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
2967 EnteringContext))
2968 return true;
2969 if (SS.isNotEmpty())
2970 ObjectType = nullptr;
2971 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
2972 !SS.isSet()) {
2973 Diag(TildeLoc, diag::err_destructor_tilde_scope);
2974 return true;
2975 }
2976
2977 // Recover as if the tilde had been written before the identifier.
2978 Diag(TildeLoc, diag::err_destructor_tilde_scope)
2979 << FixItHint::CreateRemoval(TildeLoc)
2980 << FixItHint::CreateInsertion(Tok.getLocation(), "~");
2981
2982 // Temporarily enter the scope for the rest of this function.
2983 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2984 DeclScopeObj.EnterDeclaratorScope();
2985 }
2986
2987 // Parse the class-name (or template-name in a simple-template-id).
2988 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2989 SourceLocation ClassNameLoc = ConsumeToken();
2990
2991 if (Tok.is(tok::less)) {
2992 Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
2993 return ParseUnqualifiedIdTemplateId(
2994 SS, ObjectType, ObjectHadErrors,
2995 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
2996 ClassNameLoc, EnteringContext, Result, TemplateSpecified);
2997 }
2998
2999 // Note that this is a destructor name.
3000 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
3001 ClassNameLoc, getCurScope(),
3002 SS, ObjectType,
3003 EnteringContext);
3004 if (!Ty)
3005 return true;
3006
3007 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3008 return false;
3009 }
3010
3011 Diag(Tok, diag::err_expected_unqualified_id)
3012 << getLangOpts().CPlusPlus;
3013 return true;
3014 }
3015
3016 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3017 /// memory in a typesafe manner and call constructors.
3018 ///
3019 /// This method is called to parse the new expression after the optional :: has
3020 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
3021 /// is its location. Otherwise, "Start" is the location of the 'new' token.
3022 ///
3023 /// new-expression:
3024 /// '::'[opt] 'new' new-placement[opt] new-type-id
3025 /// new-initializer[opt]
3026 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3027 /// new-initializer[opt]
3028 ///
3029 /// new-placement:
3030 /// '(' expression-list ')'
3031 ///
3032 /// new-type-id:
3033 /// type-specifier-seq new-declarator[opt]
3034 /// [GNU] attributes type-specifier-seq new-declarator[opt]
3035 ///
3036 /// new-declarator:
3037 /// ptr-operator new-declarator[opt]
3038 /// direct-new-declarator
3039 ///
3040 /// new-initializer:
3041 /// '(' expression-list[opt] ')'
3042 /// [C++0x] braced-init-list
3043 ///
3044 ExprResult
ParseCXXNewExpression(bool UseGlobal,SourceLocation Start)3045 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3046 assert(Tok.is(tok::kw_new) && "expected 'new' token");
3047 ConsumeToken(); // Consume 'new'
3048
3049 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3050 // second form of new-expression. It can't be a new-type-id.
3051
3052 ExprVector PlacementArgs;
3053 SourceLocation PlacementLParen, PlacementRParen;
3054
3055 SourceRange TypeIdParens;
3056 DeclSpec DS(AttrFactory);
3057 Declarator DeclaratorInfo(DS, DeclaratorContext::CXXNew);
3058 if (Tok.is(tok::l_paren)) {
3059 // If it turns out to be a placement, we change the type location.
3060 BalancedDelimiterTracker T(*this, tok::l_paren);
3061 T.consumeOpen();
3062 PlacementLParen = T.getOpenLocation();
3063 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3064 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3065 return ExprError();
3066 }
3067
3068 T.consumeClose();
3069 PlacementRParen = T.getCloseLocation();
3070 if (PlacementRParen.isInvalid()) {
3071 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3072 return ExprError();
3073 }
3074
3075 if (PlacementArgs.empty()) {
3076 // Reset the placement locations. There was no placement.
3077 TypeIdParens = T.getRange();
3078 PlacementLParen = PlacementRParen = SourceLocation();
3079 } else {
3080 // We still need the type.
3081 if (Tok.is(tok::l_paren)) {
3082 BalancedDelimiterTracker T(*this, tok::l_paren);
3083 T.consumeOpen();
3084 MaybeParseGNUAttributes(DeclaratorInfo);
3085 ParseSpecifierQualifierList(DS);
3086 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3087 ParseDeclarator(DeclaratorInfo);
3088 T.consumeClose();
3089 TypeIdParens = T.getRange();
3090 } else {
3091 MaybeParseGNUAttributes(DeclaratorInfo);
3092 if (ParseCXXTypeSpecifierSeq(DS))
3093 DeclaratorInfo.setInvalidType(true);
3094 else {
3095 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3096 ParseDeclaratorInternal(DeclaratorInfo,
3097 &Parser::ParseDirectNewDeclarator);
3098 }
3099 }
3100 }
3101 } else {
3102 // A new-type-id is a simplified type-id, where essentially the
3103 // direct-declarator is replaced by a direct-new-declarator.
3104 MaybeParseGNUAttributes(DeclaratorInfo);
3105 if (ParseCXXTypeSpecifierSeq(DS))
3106 DeclaratorInfo.setInvalidType(true);
3107 else {
3108 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3109 ParseDeclaratorInternal(DeclaratorInfo,
3110 &Parser::ParseDirectNewDeclarator);
3111 }
3112 }
3113 if (DeclaratorInfo.isInvalidType()) {
3114 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3115 return ExprError();
3116 }
3117
3118 ExprResult Initializer;
3119
3120 if (Tok.is(tok::l_paren)) {
3121 SourceLocation ConstructorLParen, ConstructorRParen;
3122 ExprVector ConstructorArgs;
3123 BalancedDelimiterTracker T(*this, tok::l_paren);
3124 T.consumeOpen();
3125 ConstructorLParen = T.getOpenLocation();
3126 if (Tok.isNot(tok::r_paren)) {
3127 CommaLocsTy CommaLocs;
3128 auto RunSignatureHelp = [&]() {
3129 ParsedType TypeRep =
3130 Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3131 QualType PreferredType;
3132 // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3133 // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3134 // `new decltype(invalid) (^)`.
3135 if (TypeRep)
3136 PreferredType = Actions.ProduceConstructorSignatureHelp(
3137 getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
3138 DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen);
3139 CalledSignatureHelp = true;
3140 return PreferredType;
3141 };
3142 if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
3143 PreferredType.enterFunctionArgument(Tok.getLocation(),
3144 RunSignatureHelp);
3145 })) {
3146 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3147 RunSignatureHelp();
3148 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3149 return ExprError();
3150 }
3151 }
3152 T.consumeClose();
3153 ConstructorRParen = T.getCloseLocation();
3154 if (ConstructorRParen.isInvalid()) {
3155 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3156 return ExprError();
3157 }
3158 Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3159 ConstructorRParen,
3160 ConstructorArgs);
3161 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3162 Diag(Tok.getLocation(),
3163 diag::warn_cxx98_compat_generalized_initializer_lists);
3164 Initializer = ParseBraceInitializer();
3165 }
3166 if (Initializer.isInvalid())
3167 return Initializer;
3168
3169 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3170 PlacementArgs, PlacementRParen,
3171 TypeIdParens, DeclaratorInfo, Initializer.get());
3172 }
3173
3174 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3175 /// passed to ParseDeclaratorInternal.
3176 ///
3177 /// direct-new-declarator:
3178 /// '[' expression[opt] ']'
3179 /// direct-new-declarator '[' constant-expression ']'
3180 ///
ParseDirectNewDeclarator(Declarator & D)3181 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3182 // Parse the array dimensions.
3183 bool First = true;
3184 while (Tok.is(tok::l_square)) {
3185 // An array-size expression can't start with a lambda.
3186 if (CheckProhibitedCXX11Attribute())
3187 continue;
3188
3189 BalancedDelimiterTracker T(*this, tok::l_square);
3190 T.consumeOpen();
3191
3192 ExprResult Size =
3193 First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3194 : ParseConstantExpression();
3195 if (Size.isInvalid()) {
3196 // Recover
3197 SkipUntil(tok::r_square, StopAtSemi);
3198 return;
3199 }
3200 First = false;
3201
3202 T.consumeClose();
3203
3204 // Attributes here appertain to the array type. C++11 [expr.new]p5.
3205 ParsedAttributes Attrs(AttrFactory);
3206 MaybeParseCXX11Attributes(Attrs);
3207
3208 D.AddTypeInfo(DeclaratorChunk::getArray(0,
3209 /*isStatic=*/false, /*isStar=*/false,
3210 Size.get(), T.getOpenLocation(),
3211 T.getCloseLocation()),
3212 std::move(Attrs), T.getCloseLocation());
3213
3214 if (T.getCloseLocation().isInvalid())
3215 return;
3216 }
3217 }
3218
3219 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3220 /// This ambiguity appears in the syntax of the C++ new operator.
3221 ///
3222 /// new-expression:
3223 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3224 /// new-initializer[opt]
3225 ///
3226 /// new-placement:
3227 /// '(' expression-list ')'
3228 ///
ParseExpressionListOrTypeId(SmallVectorImpl<Expr * > & PlacementArgs,Declarator & D)3229 bool Parser::ParseExpressionListOrTypeId(
3230 SmallVectorImpl<Expr*> &PlacementArgs,
3231 Declarator &D) {
3232 // The '(' was already consumed.
3233 if (isTypeIdInParens()) {
3234 ParseSpecifierQualifierList(D.getMutableDeclSpec());
3235 D.SetSourceRange(D.getDeclSpec().getSourceRange());
3236 ParseDeclarator(D);
3237 return D.isInvalidType();
3238 }
3239
3240 // It's not a type, it has to be an expression list.
3241 // Discard the comma locations - ActOnCXXNew has enough parameters.
3242 CommaLocsTy CommaLocs;
3243 return ParseExpressionList(PlacementArgs, CommaLocs);
3244 }
3245
3246 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3247 /// to free memory allocated by new.
3248 ///
3249 /// This method is called to parse the 'delete' expression after the optional
3250 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
3251 /// and "Start" is its location. Otherwise, "Start" is the location of the
3252 /// 'delete' token.
3253 ///
3254 /// delete-expression:
3255 /// '::'[opt] 'delete' cast-expression
3256 /// '::'[opt] 'delete' '[' ']' cast-expression
3257 ExprResult
ParseCXXDeleteExpression(bool UseGlobal,SourceLocation Start)3258 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3259 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3260 ConsumeToken(); // Consume 'delete'
3261
3262 // Array delete?
3263 bool ArrayDelete = false;
3264 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3265 // C++11 [expr.delete]p1:
3266 // Whenever the delete keyword is followed by empty square brackets, it
3267 // shall be interpreted as [array delete].
3268 // [Footnote: A lambda expression with a lambda-introducer that consists
3269 // of empty square brackets can follow the delete keyword if
3270 // the lambda expression is enclosed in parentheses.]
3271
3272 const Token Next = GetLookAheadToken(2);
3273
3274 // Basic lookahead to check if we have a lambda expression.
3275 if (Next.isOneOf(tok::l_brace, tok::less) ||
3276 (Next.is(tok::l_paren) &&
3277 (GetLookAheadToken(3).is(tok::r_paren) ||
3278 (GetLookAheadToken(3).is(tok::identifier) &&
3279 GetLookAheadToken(4).is(tok::identifier))))) {
3280 TentativeParsingAction TPA(*this);
3281 SourceLocation LSquareLoc = Tok.getLocation();
3282 SourceLocation RSquareLoc = NextToken().getLocation();
3283
3284 // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3285 // case.
3286 SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3287 SourceLocation RBraceLoc;
3288 bool EmitFixIt = false;
3289 if (Tok.is(tok::l_brace)) {
3290 ConsumeBrace();
3291 SkipUntil(tok::r_brace, StopBeforeMatch);
3292 RBraceLoc = Tok.getLocation();
3293 EmitFixIt = true;
3294 }
3295
3296 TPA.Revert();
3297
3298 if (EmitFixIt)
3299 Diag(Start, diag::err_lambda_after_delete)
3300 << SourceRange(Start, RSquareLoc)
3301 << FixItHint::CreateInsertion(LSquareLoc, "(")
3302 << FixItHint::CreateInsertion(
3303 Lexer::getLocForEndOfToken(
3304 RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3305 ")");
3306 else
3307 Diag(Start, diag::err_lambda_after_delete)
3308 << SourceRange(Start, RSquareLoc);
3309
3310 // Warn that the non-capturing lambda isn't surrounded by parentheses
3311 // to disambiguate it from 'delete[]'.
3312 ExprResult Lambda = ParseLambdaExpression();
3313 if (Lambda.isInvalid())
3314 return ExprError();
3315
3316 // Evaluate any postfix expressions used on the lambda.
3317 Lambda = ParsePostfixExpressionSuffix(Lambda);
3318 if (Lambda.isInvalid())
3319 return ExprError();
3320 return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3321 Lambda.get());
3322 }
3323
3324 ArrayDelete = true;
3325 BalancedDelimiterTracker T(*this, tok::l_square);
3326
3327 T.consumeOpen();
3328 T.consumeClose();
3329 if (T.getCloseLocation().isInvalid())
3330 return ExprError();
3331 }
3332
3333 ExprResult Operand(ParseCastExpression(AnyCastExpr));
3334 if (Operand.isInvalid())
3335 return Operand;
3336
3337 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3338 }
3339
3340 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3341 /// C++2a [expr.prim.req]p1
3342 /// A requires-expression provides a concise way to express requirements on
3343 /// template arguments. A requirement is one that can be checked by name
3344 /// lookup (6.4) or by checking properties of types and expressions.
3345 ///
3346 /// requires-expression:
3347 /// 'requires' requirement-parameter-list[opt] requirement-body
3348 ///
3349 /// requirement-parameter-list:
3350 /// '(' parameter-declaration-clause[opt] ')'
3351 ///
3352 /// requirement-body:
3353 /// '{' requirement-seq '}'
3354 ///
3355 /// requirement-seq:
3356 /// requirement
3357 /// requirement-seq requirement
3358 ///
3359 /// requirement:
3360 /// simple-requirement
3361 /// type-requirement
3362 /// compound-requirement
3363 /// nested-requirement
ParseRequiresExpression()3364 ExprResult Parser::ParseRequiresExpression() {
3365 assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3366 SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3367
3368 llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3369 if (Tok.is(tok::l_paren)) {
3370 // requirement parameter list is present.
3371 ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3372 Scope::DeclScope);
3373 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3374 Parens.consumeOpen();
3375 if (!Tok.is(tok::r_paren)) {
3376 ParsedAttributes FirstArgAttrs(getAttrFactory());
3377 SourceLocation EllipsisLoc;
3378 llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3379 ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3380 FirstArgAttrs, LocalParameters,
3381 EllipsisLoc);
3382 if (EllipsisLoc.isValid())
3383 Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3384 for (auto &ParamInfo : LocalParameters)
3385 LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3386 }
3387 Parens.consumeClose();
3388 }
3389
3390 BalancedDelimiterTracker Braces(*this, tok::l_brace);
3391 if (Braces.expectAndConsume())
3392 return ExprError();
3393
3394 // Start of requirement list
3395 llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3396
3397 // C++2a [expr.prim.req]p2
3398 // Expressions appearing within a requirement-body are unevaluated operands.
3399 EnterExpressionEvaluationContext Ctx(
3400 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3401
3402 ParseScope BodyScope(this, Scope::DeclScope);
3403 RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3404 RequiresKWLoc, LocalParameterDecls, getCurScope());
3405
3406 if (Tok.is(tok::r_brace)) {
3407 // Grammar does not allow an empty body.
3408 // requirement-body:
3409 // { requirement-seq }
3410 // requirement-seq:
3411 // requirement
3412 // requirement-seq requirement
3413 Diag(Tok, diag::err_empty_requires_expr);
3414 // Continue anyway and produce a requires expr with no requirements.
3415 } else {
3416 while (!Tok.is(tok::r_brace)) {
3417 switch (Tok.getKind()) {
3418 case tok::l_brace: {
3419 // Compound requirement
3420 // C++ [expr.prim.req.compound]
3421 // compound-requirement:
3422 // '{' expression '}' 'noexcept'[opt]
3423 // return-type-requirement[opt] ';'
3424 // return-type-requirement:
3425 // trailing-return-type
3426 // '->' cv-qualifier-seq[opt] constrained-parameter
3427 // cv-qualifier-seq[opt] abstract-declarator[opt]
3428 BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3429 ExprBraces.consumeOpen();
3430 ExprResult Expression =
3431 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3432 if (!Expression.isUsable()) {
3433 ExprBraces.skipToEnd();
3434 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3435 break;
3436 }
3437 if (ExprBraces.consumeClose())
3438 ExprBraces.skipToEnd();
3439
3440 concepts::Requirement *Req = nullptr;
3441 SourceLocation NoexceptLoc;
3442 TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3443 if (Tok.is(tok::semi)) {
3444 Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3445 if (Req)
3446 Requirements.push_back(Req);
3447 break;
3448 }
3449 if (!TryConsumeToken(tok::arrow))
3450 // User probably forgot the arrow, remind them and try to continue.
3451 Diag(Tok, diag::err_requires_expr_missing_arrow)
3452 << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3453 // Try to parse a 'type-constraint'
3454 if (TryAnnotateTypeConstraint()) {
3455 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3456 break;
3457 }
3458 if (!isTypeConstraintAnnotation()) {
3459 Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3460 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3461 break;
3462 }
3463 CXXScopeSpec SS;
3464 if (Tok.is(tok::annot_cxxscope)) {
3465 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3466 Tok.getAnnotationRange(),
3467 SS);
3468 ConsumeAnnotationToken();
3469 }
3470
3471 Req = Actions.ActOnCompoundRequirement(
3472 Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3473 TemplateParameterDepth);
3474 ConsumeAnnotationToken();
3475 if (Req)
3476 Requirements.push_back(Req);
3477 break;
3478 }
3479 default: {
3480 bool PossibleRequiresExprInSimpleRequirement = false;
3481 if (Tok.is(tok::kw_requires)) {
3482 auto IsNestedRequirement = [&] {
3483 RevertingTentativeParsingAction TPA(*this);
3484 ConsumeToken(); // 'requires'
3485 if (Tok.is(tok::l_brace))
3486 // This is a requires expression
3487 // requires (T t) {
3488 // requires { t++; };
3489 // ... ^
3490 // }
3491 return false;
3492 if (Tok.is(tok::l_paren)) {
3493 // This might be the parameter list of a requires expression
3494 ConsumeParen();
3495 auto Res = TryParseParameterDeclarationClause();
3496 if (Res != TPResult::False) {
3497 // Skip to the closing parenthesis
3498 // FIXME: Don't traverse these tokens twice (here and in
3499 // TryParseParameterDeclarationClause).
3500 unsigned Depth = 1;
3501 while (Depth != 0) {
3502 if (Tok.is(tok::l_paren))
3503 Depth++;
3504 else if (Tok.is(tok::r_paren))
3505 Depth--;
3506 ConsumeAnyToken();
3507 }
3508 // requires (T t) {
3509 // requires () ?
3510 // ... ^
3511 // - OR -
3512 // requires (int x) ?
3513 // ... ^
3514 // }
3515 if (Tok.is(tok::l_brace))
3516 // requires (...) {
3517 // ^ - a requires expression as a
3518 // simple-requirement.
3519 return false;
3520 }
3521 }
3522 return true;
3523 };
3524 if (IsNestedRequirement()) {
3525 ConsumeToken();
3526 // Nested requirement
3527 // C++ [expr.prim.req.nested]
3528 // nested-requirement:
3529 // 'requires' constraint-expression ';'
3530 ExprResult ConstraintExpr =
3531 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3532 if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3533 SkipUntil(tok::semi, tok::r_brace,
3534 SkipUntilFlags::StopBeforeMatch);
3535 break;
3536 }
3537 if (auto *Req =
3538 Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3539 Requirements.push_back(Req);
3540 else {
3541 SkipUntil(tok::semi, tok::r_brace,
3542 SkipUntilFlags::StopBeforeMatch);
3543 break;
3544 }
3545 break;
3546 } else
3547 PossibleRequiresExprInSimpleRequirement = true;
3548 } else if (Tok.is(tok::kw_typename)) {
3549 // This might be 'typename T::value_type;' (a type requirement) or
3550 // 'typename T::value_type{};' (a simple requirement).
3551 TentativeParsingAction TPA(*this);
3552
3553 // We need to consume the typename to allow 'requires { typename a; }'
3554 SourceLocation TypenameKWLoc = ConsumeToken();
3555 if (TryAnnotateCXXScopeToken()) {
3556 TPA.Commit();
3557 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3558 break;
3559 }
3560 CXXScopeSpec SS;
3561 if (Tok.is(tok::annot_cxxscope)) {
3562 Actions.RestoreNestedNameSpecifierAnnotation(
3563 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3564 ConsumeAnnotationToken();
3565 }
3566
3567 if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3568 !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3569 TPA.Commit();
3570 SourceLocation NameLoc = Tok.getLocation();
3571 IdentifierInfo *II = nullptr;
3572 TemplateIdAnnotation *TemplateId = nullptr;
3573 if (Tok.is(tok::identifier)) {
3574 II = Tok.getIdentifierInfo();
3575 ConsumeToken();
3576 } else {
3577 TemplateId = takeTemplateIdAnnotation(Tok);
3578 ConsumeAnnotationToken();
3579 if (TemplateId->isInvalid())
3580 break;
3581 }
3582
3583 if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3584 NameLoc, II,
3585 TemplateId)) {
3586 Requirements.push_back(Req);
3587 }
3588 break;
3589 }
3590 TPA.Revert();
3591 }
3592 // Simple requirement
3593 // C++ [expr.prim.req.simple]
3594 // simple-requirement:
3595 // expression ';'
3596 SourceLocation StartLoc = Tok.getLocation();
3597 ExprResult Expression =
3598 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3599 if (!Expression.isUsable()) {
3600 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3601 break;
3602 }
3603 if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3604 Diag(StartLoc, diag::warn_requires_expr_in_simple_requirement)
3605 << FixItHint::CreateInsertion(StartLoc, "requires");
3606 if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3607 Requirements.push_back(Req);
3608 else {
3609 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3610 break;
3611 }
3612 // User may have tried to put some compound requirement stuff here
3613 if (Tok.is(tok::kw_noexcept)) {
3614 Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3615 << FixItHint::CreateInsertion(StartLoc, "{")
3616 << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3617 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3618 break;
3619 }
3620 break;
3621 }
3622 }
3623 if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3624 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3625 TryConsumeToken(tok::semi);
3626 break;
3627 }
3628 }
3629 if (Requirements.empty()) {
3630 // Don't emit an empty requires expr here to avoid confusing the user with
3631 // other diagnostics quoting an empty requires expression they never
3632 // wrote.
3633 Braces.consumeClose();
3634 Actions.ActOnFinishRequiresExpr();
3635 return ExprError();
3636 }
3637 }
3638 Braces.consumeClose();
3639 Actions.ActOnFinishRequiresExpr();
3640 return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
3641 Requirements, Braces.getCloseLocation());
3642 }
3643
TypeTraitFromTokKind(tok::TokenKind kind)3644 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3645 switch (kind) {
3646 default: llvm_unreachable("Not a known type trait");
3647 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3648 case tok::kw_ ## Spelling: return UTT_ ## Name;
3649 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3650 case tok::kw_ ## Spelling: return BTT_ ## Name;
3651 #include "clang/Basic/TokenKinds.def"
3652 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3653 case tok::kw_ ## Spelling: return TT_ ## Name;
3654 #include "clang/Basic/TokenKinds.def"
3655 }
3656 }
3657
ArrayTypeTraitFromTokKind(tok::TokenKind kind)3658 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3659 switch (kind) {
3660 default:
3661 llvm_unreachable("Not a known array type trait");
3662 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \
3663 case tok::kw_##Spelling: \
3664 return ATT_##Name;
3665 #include "clang/Basic/TokenKinds.def"
3666 }
3667 }
3668
ExpressionTraitFromTokKind(tok::TokenKind kind)3669 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3670 switch (kind) {
3671 default:
3672 llvm_unreachable("Not a known unary expression trait.");
3673 #define EXPRESSION_TRAIT(Spelling, Name, Key) \
3674 case tok::kw_##Spelling: \
3675 return ET_##Name;
3676 #include "clang/Basic/TokenKinds.def"
3677 }
3678 }
3679
TypeTraitArity(tok::TokenKind kind)3680 static unsigned TypeTraitArity(tok::TokenKind kind) {
3681 switch (kind) {
3682 default: llvm_unreachable("Not a known type trait");
3683 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
3684 #include "clang/Basic/TokenKinds.def"
3685 }
3686 }
3687
3688 /// Parse the built-in type-trait pseudo-functions that allow
3689 /// implementation of the TR1/C++11 type traits templates.
3690 ///
3691 /// primary-expression:
3692 /// unary-type-trait '(' type-id ')'
3693 /// binary-type-trait '(' type-id ',' type-id ')'
3694 /// type-trait '(' type-id-seq ')'
3695 ///
3696 /// type-id-seq:
3697 /// type-id ...[opt] type-id-seq[opt]
3698 ///
ParseTypeTrait()3699 ExprResult Parser::ParseTypeTrait() {
3700 tok::TokenKind Kind = Tok.getKind();
3701 unsigned Arity = TypeTraitArity(Kind);
3702
3703 SourceLocation Loc = ConsumeToken();
3704
3705 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3706 if (Parens.expectAndConsume())
3707 return ExprError();
3708
3709 SmallVector<ParsedType, 2> Args;
3710 do {
3711 // Parse the next type.
3712 TypeResult Ty = ParseTypeName();
3713 if (Ty.isInvalid()) {
3714 Parens.skipToEnd();
3715 return ExprError();
3716 }
3717
3718 // Parse the ellipsis, if present.
3719 if (Tok.is(tok::ellipsis)) {
3720 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3721 if (Ty.isInvalid()) {
3722 Parens.skipToEnd();
3723 return ExprError();
3724 }
3725 }
3726
3727 // Add this type to the list of arguments.
3728 Args.push_back(Ty.get());
3729 } while (TryConsumeToken(tok::comma));
3730
3731 if (Parens.consumeClose())
3732 return ExprError();
3733
3734 SourceLocation EndLoc = Parens.getCloseLocation();
3735
3736 if (Arity && Args.size() != Arity) {
3737 Diag(EndLoc, diag::err_type_trait_arity)
3738 << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
3739 return ExprError();
3740 }
3741
3742 if (!Arity && Args.empty()) {
3743 Diag(EndLoc, diag::err_type_trait_arity)
3744 << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
3745 return ExprError();
3746 }
3747
3748 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3749 }
3750
3751 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3752 /// pseudo-functions.
3753 ///
3754 /// primary-expression:
3755 /// [Embarcadero] '__array_rank' '(' type-id ')'
3756 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
3757 ///
ParseArrayTypeTrait()3758 ExprResult Parser::ParseArrayTypeTrait() {
3759 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3760 SourceLocation Loc = ConsumeToken();
3761
3762 BalancedDelimiterTracker T(*this, tok::l_paren);
3763 if (T.expectAndConsume())
3764 return ExprError();
3765
3766 TypeResult Ty = ParseTypeName();
3767 if (Ty.isInvalid()) {
3768 SkipUntil(tok::comma, StopAtSemi);
3769 SkipUntil(tok::r_paren, StopAtSemi);
3770 return ExprError();
3771 }
3772
3773 switch (ATT) {
3774 case ATT_ArrayRank: {
3775 T.consumeClose();
3776 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3777 T.getCloseLocation());
3778 }
3779 case ATT_ArrayExtent: {
3780 if (ExpectAndConsume(tok::comma)) {
3781 SkipUntil(tok::r_paren, StopAtSemi);
3782 return ExprError();
3783 }
3784
3785 ExprResult DimExpr = ParseExpression();
3786 T.consumeClose();
3787
3788 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3789 T.getCloseLocation());
3790 }
3791 }
3792 llvm_unreachable("Invalid ArrayTypeTrait!");
3793 }
3794
3795 /// ParseExpressionTrait - Parse built-in expression-trait
3796 /// pseudo-functions like __is_lvalue_expr( xxx ).
3797 ///
3798 /// primary-expression:
3799 /// [Embarcadero] expression-trait '(' expression ')'
3800 ///
ParseExpressionTrait()3801 ExprResult Parser::ParseExpressionTrait() {
3802 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3803 SourceLocation Loc = ConsumeToken();
3804
3805 BalancedDelimiterTracker T(*this, tok::l_paren);
3806 if (T.expectAndConsume())
3807 return ExprError();
3808
3809 ExprResult Expr = ParseExpression();
3810
3811 T.consumeClose();
3812
3813 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3814 T.getCloseLocation());
3815 }
3816
3817
3818 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3819 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3820 /// based on the context past the parens.
3821 ExprResult
ParseCXXAmbiguousParenExpression(ParenParseOption & ExprType,ParsedType & CastTy,BalancedDelimiterTracker & Tracker,ColonProtectionRAIIObject & ColonProt)3822 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3823 ParsedType &CastTy,
3824 BalancedDelimiterTracker &Tracker,
3825 ColonProtectionRAIIObject &ColonProt) {
3826 assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3827 assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3828 assert(isTypeIdInParens() && "Not a type-id!");
3829
3830 ExprResult Result(true);
3831 CastTy = nullptr;
3832
3833 // We need to disambiguate a very ugly part of the C++ syntax:
3834 //
3835 // (T())x; - type-id
3836 // (T())*x; - type-id
3837 // (T())/x; - expression
3838 // (T()); - expression
3839 //
3840 // The bad news is that we cannot use the specialized tentative parser, since
3841 // it can only verify that the thing inside the parens can be parsed as
3842 // type-id, it is not useful for determining the context past the parens.
3843 //
3844 // The good news is that the parser can disambiguate this part without
3845 // making any unnecessary Action calls.
3846 //
3847 // It uses a scheme similar to parsing inline methods. The parenthesized
3848 // tokens are cached, the context that follows is determined (possibly by
3849 // parsing a cast-expression), and then we re-introduce the cached tokens
3850 // into the token stream and parse them appropriately.
3851
3852 ParenParseOption ParseAs;
3853 CachedTokens Toks;
3854
3855 // Store the tokens of the parentheses. We will parse them after we determine
3856 // the context that follows them.
3857 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3858 // We didn't find the ')' we expected.
3859 Tracker.consumeClose();
3860 return ExprError();
3861 }
3862
3863 if (Tok.is(tok::l_brace)) {
3864 ParseAs = CompoundLiteral;
3865 } else {
3866 bool NotCastExpr;
3867 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3868 NotCastExpr = true;
3869 } else {
3870 // Try parsing the cast-expression that may follow.
3871 // If it is not a cast-expression, NotCastExpr will be true and no token
3872 // will be consumed.
3873 ColonProt.restore();
3874 Result = ParseCastExpression(AnyCastExpr,
3875 false/*isAddressofOperand*/,
3876 NotCastExpr,
3877 // type-id has priority.
3878 IsTypeCast);
3879 }
3880
3881 // If we parsed a cast-expression, it's really a type-id, otherwise it's
3882 // an expression.
3883 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3884 }
3885
3886 // Create a fake EOF to mark end of Toks buffer.
3887 Token AttrEnd;
3888 AttrEnd.startToken();
3889 AttrEnd.setKind(tok::eof);
3890 AttrEnd.setLocation(Tok.getLocation());
3891 AttrEnd.setEofData(Toks.data());
3892 Toks.push_back(AttrEnd);
3893
3894 // The current token should go after the cached tokens.
3895 Toks.push_back(Tok);
3896 // Re-enter the stored parenthesized tokens into the token stream, so we may
3897 // parse them now.
3898 PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
3899 /*IsReinject*/ true);
3900 // Drop the current token and bring the first cached one. It's the same token
3901 // as when we entered this function.
3902 ConsumeAnyToken();
3903
3904 if (ParseAs >= CompoundLiteral) {
3905 // Parse the type declarator.
3906 DeclSpec DS(AttrFactory);
3907 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
3908 {
3909 ColonProtectionRAIIObject InnerColonProtection(*this);
3910 ParseSpecifierQualifierList(DS);
3911 ParseDeclarator(DeclaratorInfo);
3912 }
3913
3914 // Match the ')'.
3915 Tracker.consumeClose();
3916 ColonProt.restore();
3917
3918 // Consume EOF marker for Toks buffer.
3919 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3920 ConsumeAnyToken();
3921
3922 if (ParseAs == CompoundLiteral) {
3923 ExprType = CompoundLiteral;
3924 if (DeclaratorInfo.isInvalidType())
3925 return ExprError();
3926
3927 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3928 return ParseCompoundLiteralExpression(Ty.get(),
3929 Tracker.getOpenLocation(),
3930 Tracker.getCloseLocation());
3931 }
3932
3933 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3934 assert(ParseAs == CastExpr);
3935
3936 if (DeclaratorInfo.isInvalidType())
3937 return ExprError();
3938
3939 // Result is what ParseCastExpression returned earlier.
3940 if (!Result.isInvalid())
3941 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3942 DeclaratorInfo, CastTy,
3943 Tracker.getCloseLocation(), Result.get());
3944 return Result;
3945 }
3946
3947 // Not a compound literal, and not followed by a cast-expression.
3948 assert(ParseAs == SimpleExpr);
3949
3950 ExprType = SimpleExpr;
3951 Result = ParseExpression();
3952 if (!Result.isInvalid() && Tok.is(tok::r_paren))
3953 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
3954 Tok.getLocation(), Result.get());
3955
3956 // Match the ')'.
3957 if (Result.isInvalid()) {
3958 while (Tok.isNot(tok::eof))
3959 ConsumeAnyToken();
3960 assert(Tok.getEofData() == AttrEnd.getEofData());
3961 ConsumeAnyToken();
3962 return ExprError();
3963 }
3964
3965 Tracker.consumeClose();
3966 // Consume EOF marker for Toks buffer.
3967 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3968 ConsumeAnyToken();
3969 return Result;
3970 }
3971
3972 /// Parse a __builtin_bit_cast(T, E).
ParseBuiltinBitCast()3973 ExprResult Parser::ParseBuiltinBitCast() {
3974 SourceLocation KWLoc = ConsumeToken();
3975
3976 BalancedDelimiterTracker T(*this, tok::l_paren);
3977 if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
3978 return ExprError();
3979
3980 // Parse the common declaration-specifiers piece.
3981 DeclSpec DS(AttrFactory);
3982 ParseSpecifierQualifierList(DS);
3983
3984 // Parse the abstract-declarator, if present.
3985 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
3986 ParseDeclarator(DeclaratorInfo);
3987
3988 if (ExpectAndConsume(tok::comma)) {
3989 Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
3990 SkipUntil(tok::r_paren, StopAtSemi);
3991 return ExprError();
3992 }
3993
3994 ExprResult Operand = ParseExpression();
3995
3996 if (T.consumeClose())
3997 return ExprError();
3998
3999 if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4000 return ExprError();
4001
4002 return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4003 T.getCloseLocation());
4004 }
4005