xref: /netbsd-src/crypto/external/bsd/openssl/lib/libcrypto/man/EVP_BytesToKey.3 (revision 7d9ffdb3e9da593a05c5e2169f72fc7bada08bc9)
$NetBSD: EVP_BytesToKey.3,v 1.25 2024/09/08 13:08:20 christos Exp $

-*- mode: troff; coding: utf-8 -*-
Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)

Standard preamble:
========================================================================
..
..
.. \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
. ds C` "" . ds C' "" 'br\} . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.

If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.

Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF ========================================================================

Title "EVP_BytesToKey 3"
EVP_BytesToKey 3 2024-09-03 3.0.15 OpenSSL
For nroff, turn off justification. Always turn off hyphenation; it makes
way too many mistakes in technical documents.
NAME
EVP_BytesToKey - password based encryption routine
SYNOPSIS
Header "SYNOPSIS" .Vb 1 #include <openssl/evp.h> \& int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md, const unsigned char *salt, const unsigned char *data, int datal, int count, unsigned char *key, unsigned char *iv); .Ve
DESCRIPTION
Header "DESCRIPTION" \fBEVP_BytesToKey() derives a key and IV from various parameters. type is the cipher to derive the key and IV for. md is the message digest to use. The salt parameter is used as a salt in the derivation: it should point to an 8 byte buffer or NULL if no salt is used. data is a buffer containing \fBdatal bytes which is used to derive the keying data. count is the iteration count to use. The derived key and IV will be written to key and iv respectively.
NOTES
Header "NOTES" A typical application of this function is to derive keying material for an encryption algorithm from a password in the data parameter.

Increasing the count parameter slows down the algorithm which makes it harder for an attacker to perform a brute force attack using a large number of candidate passwords.

If the total key and IV length is less than the digest length and \fBMD5 is used then the derivation algorithm is compatible with PKCS#5 v1.5 otherwise a non standard extension is used to derive the extra data.

Newer applications should use a more modern algorithm such as PBKDF2 as defined in PKCS#5v2.1 and provided by PKCS5_PBKDF2_HMAC.

"KEY DERIVATION ALGORITHM"
Header "KEY DERIVATION ALGORITHM" The key and IV is derived by concatenating D_1, D_2, etc until enough data is available for the key and IV. D_i is defined as:

.Vb 1 D_i = HASH^count(D_(i-1) || data || salt) .Ve

where || denotes concatenation, D_0 is empty, HASH is the digest algorithm in use, HASH^1(data) is simply HASH(data), HASH^2(data) is HASH(HASH(data)) and so on.

The initial bytes are used for the key and the subsequent bytes for the IV.

"RETURN VALUES"
Header "RETURN VALUES" If data is NULL, then EVP_BytesToKey() returns the number of bytes needed to store the derived key. Otherwise, EVP_BytesToKey() returns the size of the derived key in bytes, or 0 on error.
"SEE ALSO"
Header "SEE ALSO" \fBevp\|(7), RAND_bytes\|(3), \fBPKCS5_PBKDF2_HMAC\|(3), \fBEVP_EncryptInit\|(3)
COPYRIGHT
Header "COPYRIGHT" Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at <https://www.openssl.org/source/license.html>.