xref: /netbsd-src/common/lib/libc/hash/sha3/sha3.c (revision 52c89f62342a8a320839309db764f4620c9edbdb)
1 /*	$NetBSD: sha3.c,v 1.4 2024/01/19 19:32:42 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2015 Taylor R. Campbell
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * SHA-3: FIPS-202, Permutation-Based Hash and Extendable-Output Functions
31  */
32 
33 #if HAVE_NBTOOL_CONFIG_H
34 #include "nbtool_config.h"
35 #endif
36 
37 #include <sys/cdefs.h>
38 
39 #if defined(_KERNEL) || defined(_STANDALONE)
40 
41 __KERNEL_RCSID(0, "$NetBSD: sha3.c,v 1.4 2024/01/19 19:32:42 christos Exp $");
42 #include <lib/libkern/libkern.h>
43 
44 #define	SHA3_ASSERT	KASSERT
45 
46 #else
47 
48 __RCSID("$NetBSD: sha3.c,v 1.4 2024/01/19 19:32:42 christos Exp $");
49 
50 #include "namespace.h"
51 
52 #include <assert.h>
53 #include <string.h>
54 
55 #define	SHA3_ASSERT	_DIAGASSERT
56 
57 #endif
58 
59 #include <sys/endian.h>
60 #include <sys/sha3.h>
61 
62 #include "keccak.h"
63 
64 /* XXX Disabled for now -- these will be libc-private.  */
65 #if 0 && !defined(_KERNEL) && !defined(_STANDALONE)
66 #ifdef __weak_alias
67 __weak_alias(SHA3_224_Init,_SHA3_224_Init)
68 __weak_alias(SHA3_224_Update,_SHA3_224_Update)
69 __weak_alias(SHA3_224_Final,_SHA3_224_Final)
70 __weak_alias(SHA3_256_Init,_SHA3_256_Init)
71 __weak_alias(SHA3_256_Update,_SHA3_256_Update)
72 __weak_alias(SHA3_256_Final,_SHA3_256_Final)
73 __weak_alias(SHA3_384_Init,_SHA3_384_Init)
74 __weak_alias(SHA3_384_Update,_SHA3_384_Update)
75 __weak_alias(SHA3_384_Final,_SHA3_384_Final)
76 __weak_alias(SHA3_512_Init,_SHA3_512_Init)
77 __weak_alias(SHA3_512_Update,_SHA3_512_Update)
78 __weak_alias(SHA3_512_Final,_SHA3_512_Final)
79 __weak_alias(SHA3_Selftest,_SHA3_Selftest)
80 __weak_alias(SHAKE128_Init,_SHAKE128_Init)
81 __weak_alias(SHAKE128_Update,_SHAKE128_Update)
82 __weak_alias(SHAKE128_Final,_SHAKE128_Final)
83 __weak_alias(SHAKE256_Init,_SHAKE256_Init)
84 __weak_alias(SHAKE256_Update,_SHAKE256_Update)
85 __weak_alias(SHAKE256_Final,_SHAKE256_Final)
86 #endif	/* __weak_alias */
87 #endif	/* kernel/standalone */
88 
89 #define	MIN(a,b)	((a) < (b) ? (a) : (b))
90 #define	arraycount(a)	(sizeof(a)/sizeof((a)[0]))
91 
92 /*
93  * Common body.  All the SHA-3 functions share code structure.  They
94  * differ only in the size of the chunks they split the message into:
95  * for digest size d, they are split into chunks of 200 - d bytes.
96  */
97 
98 static inline unsigned
sha3_rate(unsigned d)99 sha3_rate(unsigned d)
100 {
101 	const unsigned cw = 2*d/8;	/* capacity in words */
102 
103 	return 25 - cw;
104 }
105 
106 static void
sha3_init(struct sha3 * C,unsigned rw)107 sha3_init(struct sha3 *C, unsigned rw)
108 {
109 	unsigned iw;
110 
111 	C->nb = 8*rw;
112 	for (iw = 0; iw < 25; iw++)
113 		C->A[iw] = 0;
114 }
115 
116 static void
sha3_update(struct sha3 * C,const uint8_t * data,size_t len,unsigned rw)117 sha3_update(struct sha3 *C, const uint8_t *data, size_t len, unsigned rw)
118 {
119 	uint64_t T;
120 	unsigned ib, iw;		/* index of byte/word */
121 
122 	assert(0 < C->nb);
123 
124 	/* If there's a partial word, try to fill it.  */
125 	if ((C->nb % 8) != 0) {
126 		T = 0;
127 		for (ib = 0; ib < MIN(len, C->nb % 8); ib++)
128 			T |= (uint64_t)data[ib] << (8*ib);
129 		C->A[rw - (C->nb + 7)/8] ^= T << (8*(8 - (C->nb % 8)));
130 		C->nb -= ib;
131 		data += ib;
132 		len -= ib;
133 
134 		/* If we filled the buffer, permute now.  */
135 		if (C->nb == 0) {
136 			keccakf1600(C->A);
137 			C->nb = 8*rw;
138 		}
139 
140 		/* If that exhausted the input, we're done.  */
141 		if (len == 0)
142 			return;
143 	}
144 
145 	/* At a word boundary.  Fill any partial buffer.  */
146 	assert((C->nb % 8) == 0);
147 	if (C->nb < 8*rw) {
148 		for (iw = 0; iw < MIN(len, C->nb)/8; iw++)
149 			C->A[rw - C->nb/8 + iw] ^= le64dec(data + 8*iw);
150 		C->nb -= 8*iw;
151 		data += 8*iw;
152 		len -= 8*iw;
153 
154 		/* If we filled the buffer, permute now.  */
155 		if (C->nb == 0) {
156 			keccakf1600(C->A);
157 			C->nb = 8*rw;
158 		} else {
159 			/* Otherwise, less than a word left.  */
160 			assert(len < 8);
161 			goto partial;
162 		}
163 	}
164 
165 	/* At a buffer boundary.  Absorb input one buffer at a time.  */
166 	assert(C->nb == 8*rw);
167 	while (8*rw <= len) {
168 		for (iw = 0; iw < rw; iw++)
169 			C->A[iw] ^= le64dec(data + 8*iw);
170 		keccakf1600(C->A);
171 		data += 8*rw;
172 		len -= 8*rw;
173 	}
174 
175 	/* Partially fill the buffer with as many words as we can.  */
176 	for (iw = 0; iw < len/8; iw++)
177 		C->A[rw - C->nb/8 + iw] ^= le64dec(data + 8*iw);
178 	C->nb -= 8*iw;
179 	data += 8*iw;
180 	len -= 8*iw;
181 
182 partial:
183 	/* Partially fill the last word with as many bytes as we can.  */
184 	assert(len < 8);
185 	assert(0 < C->nb);
186 	assert((C->nb % 8) == 0);
187 	T = 0;
188 	for (ib = 0; ib < len; ib++)
189 		T |= (uint64_t)data[ib] << (8*ib);
190 	C->A[rw - C->nb/8] ^= T;
191 	C->nb -= ib;
192 	assert(0 < C->nb);
193 }
194 
195 static void
sha3_final(uint8_t * h,unsigned d,struct sha3 * C,unsigned rw)196 sha3_final(uint8_t *h, unsigned d, struct sha3 *C, unsigned rw)
197 {
198 	unsigned nw, iw;
199 
200 	assert(d <= 8*25);
201 	assert(0 < C->nb);
202 
203 	/* Append 01, pad with 10*1 up to buffer boundary, LSB first.  */
204 	nw = (C->nb + 7)/8;
205 	assert(0 < nw);
206 	assert(nw <= rw);
207 	C->A[rw - nw] ^= (uint64_t)0x06 << (8*(8*nw - C->nb));
208 	C->A[rw - 1] ^= 0x8000000000000000ULL;
209 
210 	/* Permute one last time.  */
211 	keccakf1600(C->A);
212 
213 	/* Reveal the first 8d bits of state, forget 1600-8d of them.  */
214 	for (iw = 0; iw < d/8; iw++)
215 		le64enc(h + 8*iw, C->A[iw]);
216 	h += 8*iw;
217 	d -= 8*iw;
218 	if (0 < d) {
219 		/* For SHA3-224, we need to expose a partial word.  */
220 		uint64_t T = C->A[iw];
221 		do {
222 			*h++ = T & 0xff;
223 			T >>= 8;
224 		} while (--d);
225 	}
226 	(void)explicit_memset(C->A, 0, sizeof C->A);
227 	C->nb = 0;
228 }
229 
230 static void
shake_final(uint8_t * h,size_t d,struct sha3 * C,unsigned rw)231 shake_final(uint8_t *h, size_t d, struct sha3 *C, unsigned rw)
232 {
233 	unsigned nw, iw;
234 
235 	assert(0 < C->nb);
236 
237 	/* Append 1111, pad with 10*1 up to buffer boundary, LSB first.  */
238 	nw = (C->nb + 7)/8;
239 	assert(0 < nw);
240 	assert(nw <= rw);
241 	C->A[rw - nw] ^= (uint64_t)0x1f << (8*(8*nw - C->nb));
242 	C->A[rw - 1] ^= 0x8000000000000000ULL;
243 
244 	/* Permute, reveal first rw words of state, repeat.  */
245 	while (8*rw <= d) {
246 		keccakf1600(C->A);
247 		for (iw = 0; iw < rw; iw++)
248 			le64enc(h + 8*iw, C->A[iw]);
249 		h += 8*iw;
250 		d -= 8*iw;
251 	}
252 
253 	/*
254 	 * If 8*rw (the output rate in bytes) does not divide d, more
255 	 * words are wanted: permute again and reveal a little more.
256 	 */
257 	if (0 < d) {
258 		keccakf1600(C->A);
259 		for (iw = 0; iw < d/8; iw++)
260 			le64enc(h + 8*iw, C->A[iw]);
261 		h += 8*iw;
262 		d -= 8*iw;
263 
264 		/*
265 		 * If 8 does not divide d, more bytes are wanted:
266 		 * reveal them.
267 		 */
268 		if (0 < d) {
269 			uint64_t T = C->A[iw];
270 			do {
271 				*h++ = T & 0xff;
272 				T >>= 8;
273 			} while (--d);
274 		}
275 	}
276 
277 	(void)explicit_memset(C->A, 0, sizeof C->A);
278 	C->nb = 0;
279 }
280 
281 void
SHA3_224_Init(SHA3_224_CTX * C)282 SHA3_224_Init(SHA3_224_CTX *C)
283 {
284 
285 	sha3_init(&C->C224, sha3_rate(SHA3_224_DIGEST_LENGTH));
286 }
287 
288 void
SHA3_224_Update(SHA3_224_CTX * C,const uint8_t * data,size_t len)289 SHA3_224_Update(SHA3_224_CTX *C, const uint8_t *data, size_t len)
290 {
291 
292 	sha3_update(&C->C224, data, len, sha3_rate(SHA3_224_DIGEST_LENGTH));
293 }
294 
295 void
SHA3_224_Final(uint8_t h[SHA3_224_DIGEST_LENGTH],SHA3_224_CTX * C)296 SHA3_224_Final(uint8_t h[SHA3_224_DIGEST_LENGTH], SHA3_224_CTX *C)
297 {
298 
299 	sha3_final(h, SHA3_224_DIGEST_LENGTH, &C->C224,
300 	    sha3_rate(SHA3_224_DIGEST_LENGTH));
301 }
302 
303 void
SHA3_256_Init(SHA3_256_CTX * C)304 SHA3_256_Init(SHA3_256_CTX *C)
305 {
306 
307 	sha3_init(&C->C256, sha3_rate(SHA3_256_DIGEST_LENGTH));
308 }
309 
310 void
SHA3_256_Update(SHA3_256_CTX * C,const uint8_t * data,size_t len)311 SHA3_256_Update(SHA3_256_CTX *C, const uint8_t *data, size_t len)
312 {
313 
314 	sha3_update(&C->C256, data, len, sha3_rate(SHA3_256_DIGEST_LENGTH));
315 }
316 
317 void
SHA3_256_Final(uint8_t h[SHA3_256_DIGEST_LENGTH],SHA3_256_CTX * C)318 SHA3_256_Final(uint8_t h[SHA3_256_DIGEST_LENGTH], SHA3_256_CTX *C)
319 {
320 
321 	sha3_final(h, SHA3_256_DIGEST_LENGTH, &C->C256,
322 	    sha3_rate(SHA3_256_DIGEST_LENGTH));
323 }
324 
325 void
SHA3_384_Init(SHA3_384_CTX * C)326 SHA3_384_Init(SHA3_384_CTX *C)
327 {
328 
329 	sha3_init(&C->C384, sha3_rate(SHA3_384_DIGEST_LENGTH));
330 }
331 
332 void
SHA3_384_Update(SHA3_384_CTX * C,const uint8_t * data,size_t len)333 SHA3_384_Update(SHA3_384_CTX *C, const uint8_t *data, size_t len)
334 {
335 
336 	sha3_update(&C->C384, data, len, sha3_rate(SHA3_384_DIGEST_LENGTH));
337 }
338 
339 void
SHA3_384_Final(uint8_t h[SHA3_384_DIGEST_LENGTH],SHA3_384_CTX * C)340 SHA3_384_Final(uint8_t h[SHA3_384_DIGEST_LENGTH], SHA3_384_CTX *C)
341 {
342 
343 	sha3_final(h, SHA3_384_DIGEST_LENGTH, &C->C384,
344 	    sha3_rate(SHA3_384_DIGEST_LENGTH));
345 }
346 
347 void
SHA3_512_Init(SHA3_512_CTX * C)348 SHA3_512_Init(SHA3_512_CTX *C)
349 {
350 
351 	sha3_init(&C->C512, sha3_rate(SHA3_512_DIGEST_LENGTH));
352 }
353 
354 void
SHA3_512_Update(SHA3_512_CTX * C,const uint8_t * data,size_t len)355 SHA3_512_Update(SHA3_512_CTX *C, const uint8_t *data, size_t len)
356 {
357 
358 	sha3_update(&C->C512, data, len, sha3_rate(SHA3_512_DIGEST_LENGTH));
359 }
360 
361 void
SHA3_512_Final(uint8_t h[SHA3_512_DIGEST_LENGTH],SHA3_512_CTX * C)362 SHA3_512_Final(uint8_t h[SHA3_512_DIGEST_LENGTH], SHA3_512_CTX *C)
363 {
364 
365 	sha3_final(h, SHA3_512_DIGEST_LENGTH, &C->C512,
366 	    sha3_rate(SHA3_512_DIGEST_LENGTH));
367 }
368 
369 void
SHAKE128_Init(SHAKE128_CTX * C)370 SHAKE128_Init(SHAKE128_CTX *C)
371 {
372 
373 	sha3_init(&C->C128, sha3_rate(128/8));
374 }
375 
376 void
SHAKE128_Update(SHAKE128_CTX * C,const uint8_t * data,size_t len)377 SHAKE128_Update(SHAKE128_CTX *C, const uint8_t *data, size_t len)
378 {
379 
380 	sha3_update(&C->C128, data, len, sha3_rate(128/8));
381 }
382 
383 void
SHAKE128_Final(uint8_t * h,size_t d,SHAKE128_CTX * C)384 SHAKE128_Final(uint8_t *h, size_t d, SHAKE128_CTX *C)
385 {
386 
387 	shake_final(h, d, &C->C128, sha3_rate(128/8));
388 }
389 
390 void
SHAKE256_Init(SHAKE256_CTX * C)391 SHAKE256_Init(SHAKE256_CTX *C)
392 {
393 
394 	sha3_init(&C->C256, sha3_rate(256/8));
395 }
396 
397 void
SHAKE256_Update(SHAKE256_CTX * C,const uint8_t * data,size_t len)398 SHAKE256_Update(SHAKE256_CTX *C, const uint8_t *data, size_t len)
399 {
400 
401 	sha3_update(&C->C256, data, len, sha3_rate(256/8));
402 }
403 
404 void
SHAKE256_Final(uint8_t * h,size_t d,SHAKE256_CTX * C)405 SHAKE256_Final(uint8_t *h, size_t d, SHAKE256_CTX *C)
406 {
407 
408 	shake_final(h, d, &C->C256, sha3_rate(256/8));
409 }
410 
411 static void
sha3_selftest_prng(void * buf,size_t len,uint32_t seed)412 sha3_selftest_prng(void *buf, size_t len, uint32_t seed)
413 {
414 	uint8_t *p = buf;
415 	size_t n = len;
416 	uint32_t t, a, b;
417 
418 	a = 0xdead4bad * seed;
419 	b = 1;
420 
421 	while (n--) {
422 		t = a + b;
423 		*p++ = t >> 24;
424 		a = b;
425 		b = t;
426 	}
427 }
428 
429 int
SHA3_Selftest(void)430 SHA3_Selftest(void)
431 {
432 	static const uint8_t d224_0[] = { /* SHA3-224(0-bit) */
433 		0x6b,0x4e,0x03,0x42,0x36,0x67,0xdb,0xb7,
434 		0x3b,0x6e,0x15,0x45,0x4f,0x0e,0xb1,0xab,
435 		0xd4,0x59,0x7f,0x9a,0x1b,0x07,0x8e,0x3f,
436 		0x5b,0x5a,0x6b,0xc7,
437 	};
438 	static const uint8_t d256_0[] = { /* SHA3-256(0-bit) */
439 		0xa7,0xff,0xc6,0xf8,0xbf,0x1e,0xd7,0x66,
440 		0x51,0xc1,0x47,0x56,0xa0,0x61,0xd6,0x62,
441 		0xf5,0x80,0xff,0x4d,0xe4,0x3b,0x49,0xfa,
442 		0x82,0xd8,0x0a,0x4b,0x80,0xf8,0x43,0x4a,
443 	};
444 	static const uint8_t d384_0[] = { /* SHA3-384(0-bit) */
445 		0x0c,0x63,0xa7,0x5b,0x84,0x5e,0x4f,0x7d,
446 		0x01,0x10,0x7d,0x85,0x2e,0x4c,0x24,0x85,
447 		0xc5,0x1a,0x50,0xaa,0xaa,0x94,0xfc,0x61,
448 		0x99,0x5e,0x71,0xbb,0xee,0x98,0x3a,0x2a,
449 		0xc3,0x71,0x38,0x31,0x26,0x4a,0xdb,0x47,
450 		0xfb,0x6b,0xd1,0xe0,0x58,0xd5,0xf0,0x04,
451 	};
452 	static const uint8_t d512_0[] = { /* SHA3-512(0-bit) */
453 		0xa6,0x9f,0x73,0xcc,0xa2,0x3a,0x9a,0xc5,
454 		0xc8,0xb5,0x67,0xdc,0x18,0x5a,0x75,0x6e,
455 		0x97,0xc9,0x82,0x16,0x4f,0xe2,0x58,0x59,
456 		0xe0,0xd1,0xdc,0xc1,0x47,0x5c,0x80,0xa6,
457 		0x15,0xb2,0x12,0x3a,0xf1,0xf5,0xf9,0x4c,
458 		0x11,0xe3,0xe9,0x40,0x2c,0x3a,0xc5,0x58,
459 		0xf5,0x00,0x19,0x9d,0x95,0xb6,0xd3,0xe3,
460 		0x01,0x75,0x85,0x86,0x28,0x1d,0xcd,0x26,
461 	};
462 	static const uint8_t shake128_0_41[] = { /* SHAKE128(0-bit, 41) */
463 		0x7f,0x9c,0x2b,0xa4,0xe8,0x8f,0x82,0x7d,
464 		0x61,0x60,0x45,0x50,0x76,0x05,0x85,0x3e,
465 		0xd7,0x3b,0x80,0x93,0xf6,0xef,0xbc,0x88,
466 		0xeb,0x1a,0x6e,0xac,0xfa,0x66,0xef,0x26,
467 		0x3c,0xb1,0xee,0xa9,0x88,0x00,0x4b,0x93,0x10,
468 	};
469 	static const uint8_t shake256_0_73[] = { /* SHAKE256(0-bit, 73) */
470 		0x46,0xb9,0xdd,0x2b,0x0b,0xa8,0x8d,0x13,
471 		0x23,0x3b,0x3f,0xeb,0x74,0x3e,0xeb,0x24,
472 		0x3f,0xcd,0x52,0xea,0x62,0xb8,0x1b,0x82,
473 		0xb5,0x0c,0x27,0x64,0x6e,0xd5,0x76,0x2f,
474 		0xd7,0x5d,0xc4,0xdd,0xd8,0xc0,0xf2,0x00,
475 		0xcb,0x05,0x01,0x9d,0x67,0xb5,0x92,0xf6,
476 		0xfc,0x82,0x1c,0x49,0x47,0x9a,0xb4,0x86,
477 		0x40,0x29,0x2e,0xac,0xb3,0xb7,0xc4,0xbe,
478 		0x14,0x1e,0x96,0x61,0x6f,0xb1,0x39,0x57,0x69,
479 	};
480 	static const uint8_t d224_1600[] = { /* SHA3-224(200 * 0xa3) */
481 		0x93,0x76,0x81,0x6a,0xba,0x50,0x3f,0x72,
482 		0xf9,0x6c,0xe7,0xeb,0x65,0xac,0x09,0x5d,
483 		0xee,0xe3,0xbe,0x4b,0xf9,0xbb,0xc2,0xa1,
484 		0xcb,0x7e,0x11,0xe0,
485 	};
486 	static const uint8_t d256_1600[] = { /* SHA3-256(200 * 0xa3) */
487 		0x79,0xf3,0x8a,0xde,0xc5,0xc2,0x03,0x07,
488 		0xa9,0x8e,0xf7,0x6e,0x83,0x24,0xaf,0xbf,
489 		0xd4,0x6c,0xfd,0x81,0xb2,0x2e,0x39,0x73,
490 		0xc6,0x5f,0xa1,0xbd,0x9d,0xe3,0x17,0x87,
491 	};
492 	static const uint8_t d384_1600[] = { /* SHA3-384(200 * 0xa3) */
493 		0x18,0x81,0xde,0x2c,0xa7,0xe4,0x1e,0xf9,
494 		0x5d,0xc4,0x73,0x2b,0x8f,0x5f,0x00,0x2b,
495 		0x18,0x9c,0xc1,0xe4,0x2b,0x74,0x16,0x8e,
496 		0xd1,0x73,0x26,0x49,0xce,0x1d,0xbc,0xdd,
497 		0x76,0x19,0x7a,0x31,0xfd,0x55,0xee,0x98,
498 		0x9f,0x2d,0x70,0x50,0xdd,0x47,0x3e,0x8f,
499 	};
500 	static const uint8_t d512_1600[] = { /* SHA3-512(200 * 0xa3) */
501 		0xe7,0x6d,0xfa,0xd2,0x20,0x84,0xa8,0xb1,
502 		0x46,0x7f,0xcf,0x2f,0xfa,0x58,0x36,0x1b,
503 		0xec,0x76,0x28,0xed,0xf5,0xf3,0xfd,0xc0,
504 		0xe4,0x80,0x5d,0xc4,0x8c,0xae,0xec,0xa8,
505 		0x1b,0x7c,0x13,0xc3,0x0a,0xdf,0x52,0xa3,
506 		0x65,0x95,0x84,0x73,0x9a,0x2d,0xf4,0x6b,
507 		0xe5,0x89,0xc5,0x1c,0xa1,0xa4,0xa8,0x41,
508 		0x6d,0xf6,0x54,0x5a,0x1c,0xe8,0xba,0x00,
509 	};
510 	static const uint8_t shake128_1600_41[] = {
511 		/* SHAKE128(200 * 0xa3, 41) */
512 		0x13,0x1a,0xb8,0xd2,0xb5,0x94,0x94,0x6b,
513 		0x9c,0x81,0x33,0x3f,0x9b,0xb6,0xe0,0xce,
514 		0x75,0xc3,0xb9,0x31,0x04,0xfa,0x34,0x69,
515 		0xd3,0x91,0x74,0x57,0x38,0x5d,0xa0,0x37,
516 		0xcf,0x23,0x2e,0xf7,0x16,0x4a,0x6d,0x1e,0xb4,
517 	};
518 	static const uint8_t shake256_1600_73[] = {
519 		/* SHAKE256(200 * 0xa3, 73) */
520 		0xcd,0x8a,0x92,0x0e,0xd1,0x41,0xaa,0x04,
521 		0x07,0xa2,0x2d,0x59,0x28,0x86,0x52,0xe9,
522 		0xd9,0xf1,0xa7,0xee,0x0c,0x1e,0x7c,0x1c,
523 		0xa6,0x99,0x42,0x4d,0xa8,0x4a,0x90,0x4d,
524 		0x2d,0x70,0x0c,0xaa,0xe7,0x39,0x6e,0xce,
525 		0x96,0x60,0x44,0x40,0x57,0x7d,0xa4,0xf3,
526 		0xaa,0x22,0xae,0xb8,0x85,0x7f,0x96,0x1c,
527 		0x4c,0xd8,0xe0,0x6f,0x0a,0xe6,0x61,0x0b,
528 		0x10,0x48,0xa7,0xf6,0x4e,0x10,0x74,0xcd,0x62,
529 	};
530 	static const uint8_t d0[] = {
531 		0x5d,0x3e,0x45,0xdd,0x9b,0x6b,0xda,0xf8,
532 		0xe6,0xe6,0xb8,0x72,0xfb,0xc5,0x0d,0x0a,
533 		0x4f,0x52,0x65,0xb4,0x11,0xf1,0xa1,0x0c,
534 		0x00,0xa4,0x74,0x6c,0x0f,0xc0,0xdc,0xe0,
535 		0x97,0x73,0xd6,0x70,0xaf,0xd4,0x64,0x0b,
536 		0x8c,0x52,0x32,0x4c,0x87,0x8c,0xfa,0x4a,
537 		0xdc,0x11,0x66,0x91,0x66,0x5a,0x1e,0xa4,
538 		0xd6,0x69,0x97,0xc7,0xcb,0xe2,0x73,0xca,
539 	};
540 	static const unsigned mlen[] = { 0, 3, 128, 129, 255 };
541 	uint8_t m[255], d[73];
542 	struct sha3 sha3;
543 	SHA3_224_CTX *sha3224 = (SHA3_224_CTX *)&sha3;
544 	SHA3_256_CTX *sha3256 = (SHA3_256_CTX *)&sha3;
545 	SHA3_384_CTX *sha3384 = (SHA3_384_CTX *)&sha3;
546 	SHA3_512_CTX *sha3512 = (SHA3_512_CTX *)&sha3;
547 	SHAKE128_CTX *shake128 = (SHAKE128_CTX *)&sha3;
548 	SHAKE256_CTX *shake256 = (SHAKE256_CTX *)&sha3;
549 	SHA3_512_CTX ctx;
550 	unsigned mi;
551 
552 	/*
553 	 * NIST test vectors from
554 	 * <http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing>:
555 	 * 0-bit, 1600-bit repeated 0xa3 (= 0b10100011).
556 	 */
557 	SHA3_224_Init(sha3224);
558 	SHA3_224_Final(d, sha3224);
559 	if (memcmp(d, d224_0, 28) != 0)
560 		return -1;
561 	SHA3_256_Init(sha3256);
562 	SHA3_256_Final(d, sha3256);
563 	if (memcmp(d, d256_0, 32) != 0)
564 		return -1;
565 	SHA3_384_Init(sha3384);
566 	SHA3_384_Final(d, sha3384);
567 	if (memcmp(d, d384_0, 48) != 0)
568 		return -1;
569 	SHA3_512_Init(sha3512);
570 	SHA3_512_Final(d, sha3512);
571 	if (memcmp(d, d512_0, 64) != 0)
572 		return -1;
573 	SHAKE128_Init(shake128);
574 	SHAKE128_Final(d, 41, shake128);
575 	if (memcmp(d, shake128_0_41, 41) != 0)
576 		return -1;
577 	SHAKE256_Init(shake256);
578 	SHAKE256_Final(d, 73, shake256);
579 	if (memcmp(d, shake256_0_73, 73) != 0)
580 		return -1;
581 
582 	(void)memset(m, 0xa3, 200);
583 	SHA3_224_Init(sha3224);
584 	SHA3_224_Update(sha3224, m, 200);
585 	SHA3_224_Final(d, sha3224);
586 	if (memcmp(d, d224_1600, 28) != 0)
587 		return -1;
588 	SHA3_256_Init(sha3256);
589 	SHA3_256_Update(sha3256, m, 200);
590 	SHA3_256_Final(d, sha3256);
591 	if (memcmp(d, d256_1600, 32) != 0)
592 		return -1;
593 	SHA3_384_Init(sha3384);
594 	SHA3_384_Update(sha3384, m, 200);
595 	SHA3_384_Final(d, sha3384);
596 	if (memcmp(d, d384_1600, 48) != 0)
597 		return -1;
598 	SHA3_512_Init(sha3512);
599 	SHA3_512_Update(sha3512, m, 200);
600 	SHA3_512_Final(d, sha3512);
601 	if (memcmp(d, d512_1600, 64) != 0)
602 		return -1;
603 	SHAKE128_Init(shake128);
604 	SHAKE128_Update(shake128, m, 200);
605 	SHAKE128_Final(d, 41, shake128);
606 	if (memcmp(d, shake128_1600_41, 41) != 0)
607 		return -1;
608 	SHAKE256_Init(shake256);
609 	SHAKE256_Update(shake256, m, 200);
610 	SHAKE256_Final(d, 73, shake256);
611 	if (memcmp(d, shake256_1600_73, 73) != 0)
612 		return -1;
613 
614 	/*
615 	 * Hand-crufted test vectors with unaligned message lengths.
616 	 */
617 	SHA3_512_Init(&ctx);
618 	for (mi = 0; mi < arraycount(mlen); mi++) {
619 		sha3_selftest_prng(m, mlen[mi], (224/8)*mlen[mi]);
620 		SHA3_224_Init(sha3224);
621 		SHA3_224_Update(sha3224, m, mlen[mi]);
622 		SHA3_224_Final(d, sha3224);
623 		SHA3_512_Update(&ctx, d, 224/8);
624 	}
625 	for (mi = 0; mi < arraycount(mlen); mi++) {
626 		sha3_selftest_prng(m, mlen[mi], (256/8)*mlen[mi]);
627 		SHA3_256_Init(sha3256);
628 		SHA3_256_Update(sha3256, m, mlen[mi]);
629 		SHA3_256_Final(d, sha3256);
630 		SHA3_512_Update(&ctx, d, 256/8);
631 	}
632 	for (mi = 0; mi < arraycount(mlen); mi++) {
633 		sha3_selftest_prng(m, mlen[mi], (384/8)*mlen[mi]);
634 		SHA3_384_Init(sha3384);
635 		SHA3_384_Update(sha3384, m, mlen[mi]);
636 		SHA3_384_Final(d, sha3384);
637 		SHA3_512_Update(&ctx, d, 384/8);
638 	}
639 	for (mi = 0; mi < arraycount(mlen); mi++) {
640 		sha3_selftest_prng(m, mlen[mi], (512/8)*mlen[mi]);
641 		SHA3_512_Init(sha3512);
642 		SHA3_512_Update(sha3512, m, mlen[mi]);
643 		SHA3_512_Final(d, sha3512);
644 		SHA3_512_Update(&ctx, d, 512/8);
645 	}
646 	SHA3_512_Final(d, &ctx);
647 	if (memcmp(d, d0, 64) != 0)
648 		return -1;
649 
650 	return 0;
651 }
652