xref: /minix3/sys/arch/x86/include/cpu_extended_state.h (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1 /*	$NetBSD: cpu_extended_state.h,v 1.9 2014/02/25 22:16:52 dsl Exp $	*/
2 
3 #ifndef _X86_CPU_EXTENDED_STATE_H_
4 #define _X86_CPU_EXTENDED_STATE_H_
5 
6 /*
7  * This file contains definitions of structures that match the memory
8  * layouts used x86 processors to save floating point registers and other
9  * extended cpu state.
10  * This includes registers (etc) used by SSE/SSE2/SSE3/SSSE3/SSE4 and
11  * the later AVX instructions.
12  * The definitions are such that any future 'extended state' should
13  * be handled (provided the kernel doesn't need to know the actual contents.
14  *
15  * The actual structures the cpu accesses must be aligned to 16 for
16  * FXSAVE and 64 for XSAVE. The types aren't aligned because copies
17  * do not need extra alignment.
18  *
19  * The slightly different layout saved by the i387 fsave in also defined.
20  * This is only normally written by pre Pentium II type cpus that don't
21  * support the fxsave instruction.
22  *
23  * Associated save instructions:
24  * FNSAVE:  Saves x87 state in 108 bytes (original i387 layout).
25  *          Then reinitialies the fpu.
26  * FSAVE:   Encodes to FWAIT followed by FNSAVE.
27  * FXSAVE:  Saves the x87 state and XMM (aka SSE) registers to the
28  *          first 448 (max) bytes of a 512 byte area.
29  *          This layout does not match that written by FNSAVE.
30  * XSAVE:   Uses the same layout for the x87 and XMM registers,
31  *          followed by a 64byte header and separate save areas
32  *          for additional extended cpu state.
33  *          The x87 state is always saved, the others conditionally.
34  * XSAVEOPT: As XSAVE but (IIRC) only writes the registers blocks
35  *          that have been modified.
36  */
37 
38 #ifdef __lint__
39 /* Lint has different packing rules and doesn't understand __aligned() */
40 #define __CTASSERT_NOLINT(x) __CTASSERT(1)
41 #else
42 #define __CTASSERT_NOLINT(x) __CTASSERT(x)
43 #endif
44 
45 /*
46  * Layout for code/data pointers relating to FP exceptions.
47  * Marked 'packed' because they aren't always 64bit aligned.
48  * Since the x86 cpu supports misaligned accesses it isn't
49  * worth avoiding the 'packed' attribute.
50  */
51 union fp_addr {
52 	uint64_t fa_64;	/* Linear address for 64bit systems */
53 	struct {
54 		uint32_t fa_off;	/* linear address for 32 bit */
55 		uint16_t fa_seg;	/* code/data (etc) segment */
56 		uint16_t fa_opcode;	/* last opcode (sometimes) */
57 	} fa_32;
58 } __packed __aligned(4);
59 
60 /* The x87 registers are 80 bits */
61 struct fpacc87 {
62 	uint64_t	f87_mantissa;	/* mantissa */
63 	uint16_t	f87_exp_sign;	/* exponent and sign */
64 } __packed __aligned(2);
65 
66 /* The x87 registers padded out to 16 bytes for fxsave */
67 struct fpaccfx {
68 	struct fpacc87 r __aligned(16);
69 };
70 
71 /* The SSE/SSE2 registers are 128 bits */
72 struct xmmreg {
73 	uint8_t xmm_bytes[16];
74 };
75 
76 /* The AVX registers are 256 bits, but the low bits are the xmmregs */
77 struct ymmreg {
78 	uint8_t ymm_bytes[16];
79 };
80 
81 /*
82  * Floating point unit registers (fsave instruction).
83  * The s87_ac[] and fx_87_ac[] are relative to the stack top.
84  * The 'tag word' contains 2 bits per register and refers to
85  * absolute register numbers.
86  * The cpu sets the tag values 0b01 (zero) and 0b10 (special) when a value
87  * is loaded. The software need only set 0b00 (used) and 0xb11 (unused).
88  * The fxsave 'Abridged tag word' in inverted.
89  */
90 struct save87 {
91 	uint16_t	s87_cw __aligned(4);	/* control word (16bits) */
92 	uint16_t	s87_sw __aligned(4);	/* status word (16bits) */
93 	uint16_t	s87_tw __aligned(4);	/* tag word (16bits) */
94 	union fp_addr	s87_ip;		/* floating point instruction pointer */
95 #define s87_opcode s87_ip.fa_32.fa_opcode	/* opcode last executed (11bits) */
96 	union fp_addr	s87_dp;		/* floating operand offset */
97 	struct fpacc87	s87_ac[8];	/* accumulator contents, 0-7 */
98 };
99 __CTASSERT_NOLINT(sizeof (struct save87) == 108);
100 
101 /* FPU/MMX/SSE/SSE2 context */
102 struct fxsave {
103 /*0*/	uint16_t	fx_cw;		/* FPU Control Word */
104 	uint16_t	fx_sw;		/* FPU Status Word */
105 	uint8_t		fx_tw;		/* FPU Tag Word (abridged) */
106 	uint16_t	fx_opcode;	/* FPU Opcode */
107 	union fp_addr	fx_ip;		/* FPU Instruction Pointer */
108 /*16*/	union fp_addr	fx_dp;		/* FPU Data pointer */
109 	uint32_t	fx_mxcsr;	/* MXCSR Register State */
110 	uint32_t	fx_mxcsr_mask;
111 	struct fpaccfx	fx_87_ac[8];	/* 8 x87 registers */
112 	struct xmmreg	fx_xmm[16];	/* XMM regs (8 in 32bit modes) */
113 	uint8_t		fx_rsvd[48];
114 	uint8_t		fx_kernel[48];	/* Not written by the hardware */
115 } __aligned(16);
116 __CTASSERT_NOLINT(sizeof (struct fxsave) == 512);
117 
118 /* The end of the fsave buffer can be used by the operating system */
119 struct fxsave_os {
120 	uint8_t		fxo_fxsave[512 - 48];
121 	/* 48 bytes available, NB copied to/from userspace */
122 	uint16_t	fxo_dflt_cw;	/* Control word for signal handlers */
123 };
124 
125 /*
126  * For XSAVE a 64byte header follows the fxsave data.
127  * Currently it only contains one field of which only 3 bits are defined.
128  * Some other parts must be zero - zero it all.
129  *
130  * The xsh_xstate_bv bits match those of XCR0:
131  *   XCR0_X87        0x00000001      x87 FPU/MMX state
132  *   XCR0_SSE        0x00000002      SSE state
133  *   XCR0_AVX        0x00000004      AVX state (ymmn registers)
134  *
135  * The offsets and sizes of any save areas can be found by reading
136  * the correct control registers.
137  */
138 
139 struct xsave_header {
140 	uint64_t	xsh_fxsave[64];	/* to align in the union */
141 	uint64_t	xsh_xstate_bv;	/* bitmap of saved sub structures */
142 	uint64_t	xsh_rsrvd[2];	/* must be zero */
143 	uint64_t	xsh_reserved[5];/* best if zero */
144 };
145 __CTASSERT(sizeof (struct xsave_header) == 512 + 64);
146 
147 /*
148  * The ymm save area actually follows the xsave_header.
149  */
150 struct xsave_ymm {
151 	struct ymmreg	xs_ymm[16];	/* High bits of YMM registers */
152 };
153 __CTASSERT(sizeof (struct xsave_ymm) == 256);
154 
155 /*
156  * The following union is placed at the end of the pcb.
157  * It is defined this way to separate the definitions and to
158  * minimise the number of union/struct selectors.
159  * NB: Some userspace stuff (eg firefox) uses it to parse ucontext.
160  */
161 union savefpu {
162 	struct save87		sv_87;
163 	struct fxsave		sv_xmm;
164 #ifdef _KERNEL
165 	struct fxsave_os	sv_os;
166 	struct xsave_header	sv_xsave_hdr;
167 #endif
168 };
169 
170 /*
171  * 80387 control and status word bits
172  *
173  * The only reference I can find to bits 0x40 and 0x80 in the control word
174  * is for the Weitek 1167/3167.
175  * I (dsl) can't find why the default word has 0x40 set.
176  *
177  * A stack error is signalled as an INVOP that also sets STACK_FAULT
178  * (other INVOP do not clear STACK_FAULT).
179  */
180 /* Interrupt masks (set masks interrupt) and status bits */
181 #define EN_SW_INVOP		0x0001  /* Invalid operation */
182 #define EN_SW_DENORM		0x0002  /* Denormalized operand */
183 #define EN_SW_ZERODIV		0x0004  /* Divide by zero */
184 #define EN_SW_OVERFLOW		0x0008  /* Overflow */
185 #define EN_SW_UNDERFLOW		0x0010  /* Underflow */
186 #define EN_SW_PRECLOSS		0x0020  /* Loss of precision */
187 /* Status word bits (reserved in control word) */
188 #define EN_SW_STACK_FAULT	0x0040	/* Stack under/overflow */
189 #define EN_SW_ERROR_SUMMARY	0x0080	/* Unmasked error has ocurred */
190 /* Control bits (badly named) */
191 #define EN_SW_CTL_PREC		0x0300	/* Precision control */
192 #define EN_SW_PREC_24		0x0000	/* Single precision */
193 #define EN_SW_PREC_53		0x0200	/* Double precision */
194 #define EN_SW_PREC_64		0x0300	/* Extended precision */
195 #define EN_SW_CTL_ROUND		0x0c00	/* Rounding control */
196 #define EN_SW_ROUND_EVEN	0x0000	/* Round to nearest even */
197 #define EN_SW_ROUND_DOWN	0x0400	/* Round towards minus infinity */
198 #define EN_SW_ROUND_UP		0x0800	/* Round towards plus infinity */
199 #define EN_SW_ROUND_ZERO	0x0c00	/* Round towards zero (truncates) */
200 #define EN_SW_CTL_INF		0x1000	/* Infinity control, not used  */
201 
202 /*
203  * The standard 0x87 control word from finit is 0x37F, giving:
204  *	round to nearest
205  *	64-bit precision
206  *	all exceptions masked.
207  *
208  * NetBSD used to select:
209  *	round to nearest
210  *	53-bit precision
211  *	all exceptions masked.
212  * Stating: 64-bit precision often gives bad results with high level
213  * languages because it makes the results of calculations depend on whether
214  * intermediate values are stored in memory or in FPU registers.
215  * Also some 'pathological divisions' give an error in the LSB because
216  * the value is first rounded up when the 64bit mantissa is generated,
217  * and then again when it is truncated to 53 bits.
218  *
219  * However the C language explicitly allows the extra precision.
220  *
221  * The iBCS control word has underflow, overflow, zero divide, and invalid
222  * operation exceptions unmasked.  But that causes an unexpected exception
223  * in the test program 'paranoia' and makes denormals useless (DBL_MIN / 2
224  * underflows).  It doesn't make a lot of sense to trap underflow without
225  * trapping denormals.
226  */
227 #define	__INITIAL_NPXCW__	0x037f
228 /* Modern NetBSD uses the default control word.. */
229 #define	__NetBSD_NPXCW__	__INITIAL_NPXCW__
230 /* NetBSD before 6.99.26 forced IEEE double precision. */
231 #define	__NetBSD_COMPAT_NPXCW__	0x127f
232 /* FreeBSD leaves some exceptions unmasked as well. */
233 #define	__FreeBSD_NPXCW__	0x1272
234 /* iBCS2 goes a bit further and leaves the underflow exception unmasked. */
235 #define	__iBCS2_NPXCW__		0x0262
236 /* Linux just uses the default control word. */
237 #define	__Linux_NPXCW__		__INITIAL_NPXCW__
238 /* SVR4 uses the same control word as iBCS2. */
239 #define	__SVR4_NPXCW__		0x0262
240 
241 /*
242  * The default MXCSR value at reset is 0x1f80, IA-32 Instruction
243  * Set Reference, pg. 3-369.
244  *
245  * The low 6 bits of the mxcsr are the fp status bits (same order as x87).
246  * Bit 6 is 'denormals are zero' (speeds up calculations).
247  * Bits 7-16 are the interrupt mask bits (same order, 1 to mask).
248  * Bits 13 and 14 are rounding control.
249  * Bit 15 is 'flush to zero' - affects underflow.
250  * Bits 16-31 must be zero.
251  */
252 #define	__INITIAL_MXCSR__	0x1f80
253 #define	__INITIAL_MXCSR_MASK__	0xffbf
254 
255 #endif /* _X86_CPU_EXTENDED_STATE_H_ */
256