xref: /minix3/lib/libm/src/s_fmal.c (revision 84d9c625bfea59e274550651111ae9edfdc40fbd)
1 /*	$NetBSD: s_fmal.c,v 1.3 2013/02/12 21:40:19 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #if 0
31 __FBSDID("$FreeBSD: src/lib/msun/src/s_fmal.c,v 1.7 2011/10/21 06:30:43 das Exp $");
32 #else
33 __RCSID("$NetBSD: s_fmal.c,v 1.3 2013/02/12 21:40:19 martin Exp $");
34 #endif
35 
36 #include <machine/ieee.h>
37 #include <fenv.h>
38 #include <float.h>
39 #include <math.h>
40 
41 #include "math_private.h"
42 
43 #ifdef __HAVE_LONG_DOUBLE
44 /*
45  * A struct dd represents a floating-point number with twice the precision
46  * of a long double.  We maintain the invariant that "hi" stores the high-order
47  * bits of the result.
48  */
49 struct dd {
50 	long double hi;
51 	long double lo;
52 };
53 
54 /*
55  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
56  * that both a and b are finite, but make no assumptions about their relative
57  * magnitudes.
58  */
59 static inline struct dd
dd_add(long double a,long double b)60 dd_add(long double a, long double b)
61 {
62 	struct dd ret;
63 	long double s;
64 
65 	ret.hi = a + b;
66 	s = ret.hi - a;
67 	ret.lo = (a - (ret.hi - s)) + (b - s);
68 	return (ret);
69 }
70 
71 /*
72  * Compute a+b, with a small tweak:  The least significant bit of the
73  * result is adjusted into a sticky bit summarizing all the bits that
74  * were lost to rounding.  This adjustment negates the effects of double
75  * rounding when the result is added to another number with a higher
76  * exponent.  For an explanation of round and sticky bits, see any reference
77  * on FPU design, e.g.,
78  *
79  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
80  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
81  */
82 static inline long double
add_adjusted(long double a,long double b)83 add_adjusted(long double a, long double b)
84 {
85 	struct dd sum;
86 	union ieee_ext_u u;
87 
88 	sum = dd_add(a, b);
89 	if (sum.lo != 0) {
90 		u.extu_ld = sum.hi;
91 		if ((u.extu_ext.ext_fracl & 1) == 0)
92 			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
93 	}
94 	return (sum.hi);
95 }
96 
97 /*
98  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
99  * that the result will be subnormal, and care is taken to ensure that
100  * double rounding does not occur.
101  */
102 static inline long double
add_and_denormalize(long double a,long double b,int scale)103 add_and_denormalize(long double a, long double b, int scale)
104 {
105 	struct dd sum;
106 	int bits_lost;
107 	union ieee_ext_u u;
108 
109 	sum = dd_add(a, b);
110 
111 	/*
112 	 * If we are losing at least two bits of accuracy to denormalization,
113 	 * then the first lost bit becomes a round bit, and we adjust the
114 	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
115 	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
116 	 * break any ties in the correct direction.
117 	 *
118 	 * If we are losing only one bit to denormalization, however, we must
119 	 * break the ties manually.
120 	 */
121 	if (sum.lo != 0) {
122 		u.extu_ld = sum.hi;
123 		bits_lost = -u.extu_ext.ext_exp - scale + 1;
124 		if ((bits_lost != 1) ^ (int)(u.extu_ext.ext_fracl & 1))
125 			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
126 	}
127 	return (ldexp((double)sum.hi, scale));
128 }
129 
130 /*
131  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
132  * that both a and b are normalized, so no underflow or overflow will occur.
133  * The current rounding mode must be round-to-nearest.
134  */
135 static inline struct dd
dd_mul(long double a,long double b)136 dd_mul(long double a, long double b)
137 {
138 #if LDBL_MANT_DIG == 64
139 	static const long double split = 0x1p32L + 1.0;
140 #elif LDBL_MANT_DIG == 113
141 	static const long double split = 0x1p57L + 1.0;
142 #endif
143 	struct dd ret;
144 	long double ha, hb, la, lb, p, q;
145 
146 	p = a * split;
147 	ha = a - p;
148 	ha += p;
149 	la = a - ha;
150 
151 	p = b * split;
152 	hb = b - p;
153 	hb += p;
154 	lb = b - hb;
155 
156 	p = ha * hb;
157 	q = ha * lb + la * hb;
158 
159 	ret.hi = p + q;
160 	ret.lo = p - ret.hi + q + la * lb;
161 	return (ret);
162 }
163 
164 /*
165  * Fused multiply-add: Compute x * y + z with a single rounding error.
166  *
167  * We use scaling to avoid overflow/underflow, along with the
168  * canonical precision-doubling technique adapted from:
169  *
170  *	Dekker, T.  A Floating-Point Technique for Extending the
171  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
172  */
173 long double
fmal(long double x,long double y,long double z)174 fmal(long double x, long double y, long double z)
175 {
176 	long double xs, ys, zs, adj;
177 	struct dd xy, r;
178 	int oround;
179 	int ex, ey, ez;
180 	int spread;
181 
182 	/*
183 	 * Handle special cases. The order of operations and the particular
184 	 * return values here are crucial in handling special cases involving
185 	 * infinities, NaNs, overflows, and signed zeroes correctly.
186 	 */
187 	if (x == 0.0 || y == 0.0)
188 		return (x * y + z);
189 	if (z == 0.0)
190 		return (x * y);
191 	if (!isfinite(x) || !isfinite(y))
192 		return (x * y + z);
193 	if (!isfinite(z))
194 		return (z);
195 
196 	xs = frexpl(x, &ex);
197 	ys = frexpl(y, &ey);
198 	zs = frexpl(z, &ez);
199 	oround = fegetround();
200 	spread = ex + ey - ez;
201 
202 	/*
203 	 * If x * y and z are many orders of magnitude apart, the scaling
204 	 * will overflow, so we handle these cases specially.  Rounding
205 	 * modes other than FE_TONEAREST are painful.
206 	 */
207 	if (spread < -LDBL_MANT_DIG) {
208 		feraiseexcept(FE_INEXACT);
209 		if (!isnormal(z))
210 			feraiseexcept(FE_UNDERFLOW);
211 		switch (oround) {
212 		case FE_TONEAREST:
213 			return (z);
214 		case FE_TOWARDZERO:
215 			if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
216 				return (z);
217 			else
218 				return (nextafterl(z, 0));
219 		case FE_DOWNWARD:
220 			if ((x > 0.0) ^ (y < 0.0))
221 				return (z);
222 			else
223 				return (nextafterl(z, (long double)-INFINITY));
224 		default:	/* FE_UPWARD */
225 			if ((x > 0.0) ^ (y < 0.0))
226 				return (nextafterl(z, (long double)INFINITY));
227 			else
228 				return (z);
229 		}
230 	}
231 	if (spread <= LDBL_MANT_DIG * 2)
232 		zs = ldexpl(zs, -spread);
233 	else
234 		zs = copysignl(LDBL_MIN, zs);
235 
236 	fesetround(FE_TONEAREST);
237 
238 	/*
239 	 * Basic approach for round-to-nearest:
240 	 *
241 	 *     (xy.hi, xy.lo) = x * y		(exact)
242 	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
243 	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
244 	 *     result = r.hi + adj		(correctly rounded)
245 	 */
246 	xy = dd_mul(xs, ys);
247 	r = dd_add(xy.hi, zs);
248 
249 	spread = ex + ey;
250 
251 	if (r.hi == 0.0) {
252 		/*
253 		 * When the addends cancel to 0, ensure that the result has
254 		 * the correct sign.
255 		 */
256 		fesetround(oround);
257 		{
258 		volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
259 		return (xy.hi + vzs + ldexpl(xy.lo, spread));
260 		}
261 	}
262 
263 	if (oround != FE_TONEAREST) {
264 		/*
265 		 * There is no need to worry about double rounding in directed
266 		 * rounding modes.
267 		 */
268 		fesetround(oround);
269 		adj = r.lo + xy.lo;
270 		return (ldexpl(r.hi + adj, spread));
271 	}
272 
273 	adj = add_adjusted(r.lo, xy.lo);
274 	if (spread + ilogbl(r.hi) > -16383)
275 		return (ldexpl(r.hi + adj, spread));
276 	else
277 		return (add_and_denormalize(r.hi, adj, spread));
278 }
279 #endif
280