xref: /minix3/lib/libm/src/s_fma.c (revision 84d9c625bfea59e274550651111ae9edfdc40fbd)
1 /*	$NetBSD: s_fma.c,v 1.6 2013/02/14 09:24:50 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #if 0
31 __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.8 2011/10/21 06:30:43 das Exp $");
32 #else
33 __RCSID("$NetBSD: s_fma.c,v 1.6 2013/02/14 09:24:50 matt Exp $");
34 #endif
35 
36 #include <machine/ieee.h>
37 #include <fenv.h>
38 #include <float.h>
39 #include <math.h>
40 
41 #include "math_private.h"
42 
43 #ifndef __HAVE_LONG_DOUBLE
44 __strong_alias(fmal, fma)
45 #endif
46 
47 /*
48  * A struct dd represents a floating-point number with twice the precision
49  * of a double.  We maintain the invariant that "hi" stores the 53 high-order
50  * bits of the result.
51  */
52 struct dd {
53 	double hi;
54 	double lo;
55 };
56 
57 /*
58  * Compute a+b exactly, returning the exact result in a struct dd.  We assume
59  * that both a and b are finite, but make no assumptions about their relative
60  * magnitudes.
61  */
62 static inline struct dd
dd_add(double a,double b)63 dd_add(double a, double b)
64 {
65 	struct dd ret;
66 	double s;
67 
68 	ret.hi = a + b;
69 	s = ret.hi - a;
70 	ret.lo = (a - (ret.hi - s)) + (b - s);
71 	return (ret);
72 }
73 
74 /*
75  * Compute a+b, with a small tweak:  The least significant bit of the
76  * result is adjusted into a sticky bit summarizing all the bits that
77  * were lost to rounding.  This adjustment negates the effects of double
78  * rounding when the result is added to another number with a higher
79  * exponent.  For an explanation of round and sticky bits, see any reference
80  * on FPU design, e.g.,
81  *
82  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
83  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
84  */
85 static inline double
add_adjusted(double a,double b)86 add_adjusted(double a, double b)
87 {
88 	struct dd sum;
89 	uint64_t hibits, lobits;
90 
91 	sum = dd_add(a, b);
92 	if (sum.lo != 0) {
93 		EXTRACT_WORD64(hibits, sum.hi);
94 		if ((hibits & 1) == 0) {
95 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
96 			EXTRACT_WORD64(lobits, sum.lo);
97 			hibits += 1 - ((hibits ^ lobits) >> 62);
98 			INSERT_WORD64(sum.hi, hibits);
99 		}
100 	}
101 	return (sum.hi);
102 }
103 
104 /*
105  * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
106  * that the result will be subnormal, and care is taken to ensure that
107  * double rounding does not occur.
108  */
109 static inline double
add_and_denormalize(double a,double b,int scale)110 add_and_denormalize(double a, double b, int scale)
111 {
112 	struct dd sum;
113 	uint64_t hibits, lobits;
114 	int bits_lost;
115 
116 	sum = dd_add(a, b);
117 
118 	/*
119 	 * If we are losing at least two bits of accuracy to denormalization,
120 	 * then the first lost bit becomes a round bit, and we adjust the
121 	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
122 	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
123 	 * break any ties in the correct direction.
124 	 *
125 	 * If we are losing only one bit to denormalization, however, we must
126 	 * break the ties manually.
127 	 */
128 	if (sum.lo != 0) {
129 		EXTRACT_WORD64(hibits, sum.hi);
130 		bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
131 		if ((bits_lost != 1) ^ (int)(hibits & 1)) {
132 			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
133 			EXTRACT_WORD64(lobits, sum.lo);
134 			hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
135 			INSERT_WORD64(sum.hi, hibits);
136 		}
137 	}
138 	return (ldexp(sum.hi, scale));
139 }
140 
141 /*
142  * Compute a*b exactly, returning the exact result in a struct dd.  We assume
143  * that both a and b are normalized, so no underflow or overflow will occur.
144  * The current rounding mode must be round-to-nearest.
145  */
146 static inline struct dd
dd_mul(double a,double b)147 dd_mul(double a, double b)
148 {
149 	static const double split = 0x1p27 + 1.0;
150 	struct dd ret;
151 	double ha, hb, la, lb, p, q;
152 
153 	p = a * split;
154 	ha = a - p;
155 	ha += p;
156 	la = a - ha;
157 
158 	p = b * split;
159 	hb = b - p;
160 	hb += p;
161 	lb = b - hb;
162 
163 	p = ha * hb;
164 	q = ha * lb + la * hb;
165 
166 	ret.hi = p + q;
167 	ret.lo = p - ret.hi + q + la * lb;
168 	return (ret);
169 }
170 
171 /*
172  * Fused multiply-add: Compute x * y + z with a single rounding error.
173  *
174  * We use scaling to avoid overflow/underflow, along with the
175  * canonical precision-doubling technique adapted from:
176  *
177  *	Dekker, T.  A Floating-Point Technique for Extending the
178  *	Available Precision.  Numer. Math. 18, 224-242 (1971).
179  *
180  * This algorithm is sensitive to the rounding precision.  FPUs such
181  * as the i387 must be set in double-precision mode if variables are
182  * to be stored in FP registers in order to avoid incorrect results.
183  * This is the default on FreeBSD, but not on many other systems.
184  *
185  * Hardware instructions should be used on architectures that support it,
186  * since this implementation will likely be several times slower.
187  */
188 double
fma(double x,double y,double z)189 fma(double x, double y, double z)
190 {
191 	double xs, ys, zs, adj;
192 	struct dd xy, r;
193 	int oround;
194 	int ex, ey, ez;
195 	int spread;
196 
197 	/*
198 	 * Handle special cases. The order of operations and the particular
199 	 * return values here are crucial in handling special cases involving
200 	 * infinities, NaNs, overflows, and signed zeroes correctly.
201 	 */
202 	if (x == 0.0 || y == 0.0)
203 		return (x * y + z);
204 	if (z == 0.0)
205 		return (x * y);
206 	if (!isfinite(x) || !isfinite(y))
207 		return (x * y + z);
208 	if (!isfinite(z))
209 		return (z);
210 
211 	xs = frexp(x, &ex);
212 	ys = frexp(y, &ey);
213 	zs = frexp(z, &ez);
214 	oround = fegetround();
215 	spread = ex + ey - ez;
216 
217 	/*
218 	 * If x * y and z are many orders of magnitude apart, the scaling
219 	 * will overflow, so we handle these cases specially.  Rounding
220 	 * modes other than FE_TONEAREST are painful.
221 	 */
222 	if (spread < -DBL_MANT_DIG) {
223 		feraiseexcept(FE_INEXACT);
224 		if (!isnormal(z))
225 			feraiseexcept(FE_UNDERFLOW);
226 		switch (oround) {
227 		case FE_TONEAREST:
228 			return (z);
229 		case FE_TOWARDZERO:
230 			if ((x > 0.0) ^ (y < 0.0) ^ (z < 0.0))
231 				return (z);
232 			else
233 				return (nextafter(z, 0));
234 		case FE_DOWNWARD:
235 			if ((x > 0.0) ^ (y < 0.0))
236 				return (z);
237 			else
238 				return (nextafter(z, -INFINITY));
239 		default:	/* FE_UPWARD */
240 			if ((x > 0.0) ^ (y < 0.0))
241 				return (nextafter(z, INFINITY));
242 			else
243 				return (z);
244 		}
245 	}
246 	if (spread <= DBL_MANT_DIG * 2)
247 		zs = ldexp(zs, -spread);
248 	else
249 		zs = copysign(DBL_MIN, zs);
250 
251 	fesetround(FE_TONEAREST);
252 
253 	/*
254 	 * Basic approach for round-to-nearest:
255 	 *
256 	 *     (xy.hi, xy.lo) = x * y		(exact)
257 	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
258 	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
259 	 *     result = r.hi + adj		(correctly rounded)
260 	 */
261 	xy = dd_mul(xs, ys);
262 	r = dd_add(xy.hi, zs);
263 
264 	spread = ex + ey;
265 
266 	if (r.hi == 0.0) {
267 		/*
268 		 * When the addends cancel to 0, ensure that the result has
269 		 * the correct sign.
270 		 */
271 		fesetround(oround);
272 		{
273 		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
274 		return (xy.hi + vzs + ldexp(xy.lo, spread));
275 		}
276 	}
277 
278 	if (oround != FE_TONEAREST) {
279 		/*
280 		 * There is no need to worry about double rounding in directed
281 		 * rounding modes.
282 		 */
283 		fesetround(oround);
284 		adj = r.lo + xy.lo;
285 		return (ldexp(r.hi + adj, spread));
286 	}
287 
288 	adj = add_adjusted(r.lo, xy.lo);
289 	if (spread + ilogb(r.hi) > -1023)
290 		return (ldexp(r.hi + adj, spread));
291 	else
292 		return (add_and_denormalize(r.hi, adj, spread));
293 }
294