xref: /minix3/lib/libm/noieee_src/n_acosh.c (revision 2fe8fb192fe7e8720e3e7a77f928da545e872a6a)
1 /*	$NetBSD: n_acosh.c,v 1.6 2003/08/07 16:44:50 agc Exp $	*/
2 /*
3  * Copyright (c) 1985, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of the University nor the names of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifndef lint
32 #if 0
33 static char sccsid[] = "@(#)acosh.c	8.1 (Berkeley) 6/4/93";
34 #endif
35 #endif /* not lint */
36 
37 /* ACOSH(X)
38  * RETURN THE INVERSE HYPERBOLIC COSINE OF X
39  * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
40  * CODED IN C BY K.C. NG, 2/16/85;
41  * REVISED BY K.C. NG on 3/6/85, 3/24/85, 4/16/85, 8/17/85.
42  *
43  * Required system supported functions :
44  *	sqrt(x)
45  *
46  * Required kernel function:
47  *	log1p(x) 		...return log(1+x)
48  *
49  * Method :
50  *	Based on
51  *		acosh(x) = log [ x + sqrt(x*x-1) ]
52  *	we have
53  *		acosh(x) := log1p(x)+ln2,	if (x > 1.0E20); else
54  *		acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
55  *	These formulae avoid the over/underflow complication.
56  *
57  * Special cases:
58  *	acosh(x) is NaN with signal if x<1.
59  *	acosh(NaN) is NaN without signal.
60  *
61  * Accuracy:
62  *	acosh(x) returns the exact inverse hyperbolic cosine of x nearly
63  *	rounded. In a test run with 512,000 random arguments on a VAX, the
64  *	maximum observed error was 3.30 ulps (units of the last place) at
65  *	x=1.0070493753568216 .
66  *
67  * Constants:
68  * The hexadecimal values are the intended ones for the following constants.
69  * The decimal values may be used, provided that the compiler will convert
70  * from decimal to binary accurately enough to produce the hexadecimal values
71  * shown.
72  */
73 
74 #define _LIBM_STATIC
75 #include "mathimpl.h"
76 
77 vc(ln2hi, 6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
78 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
79 
80 ic(ln2hi, 6.9314718036912381649E-1,  -1, 1.62E42FEE00000)
81 ic(ln2lo, 1.9082149292705877000E-10,-33, 1.A39EF35793C76)
82 
83 #ifdef vccast
84 #define    ln2hi    vccast(ln2hi)
85 #define    ln2lo    vccast(ln2lo)
86 #endif
87 
88 double
acosh(double x)89 acosh(double x)
90 {
91 	double t,big=1.E20; /* big+1==big */
92 
93 #if !defined(__vax__)&&!defined(tahoe)
94 	if(x!=x) return(x);	/* x is NaN */
95 #endif	/* !defined(__vax__)&&!defined(tahoe) */
96 
97     /* return log1p(x) + log(2) if x is large */
98 	if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);}
99 
100 	t=sqrt(x-1.0);
101 	return(log1p(t*(t+sqrt(x+1.0))));
102 }
103