1 //===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass identifies loops where we can generate the PPC branch instructions
11 // that decrement and test the count register (CTR) (bdnz and friends).
12 //
13 // The pattern that defines the induction variable can changed depending on
14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt'
15 // normalizes induction variables, and the Loop Strength Reduction pass
16 // run by 'llc' may also make changes to the induction variable.
17 //
18 // Criteria for CTR loops:
19 // - Countable loops (w/ ind. var for a trip count)
20 // - Try inner-most loops first
21 // - No nested CTR loops.
22 // - No function calls in loops.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/Transforms/Scalar.h"
27 #include "PPC.h"
28 #include "PPCTargetMachine.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/ScalarEvolutionExpander.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/PassSupport.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetLibraryInfo.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49
50 #ifndef NDEBUG
51 #include "llvm/CodeGen/MachineDominators.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #endif
56
57 #include <algorithm>
58 #include <vector>
59
60 using namespace llvm;
61
62 #define DEBUG_TYPE "ctrloops"
63
64 #ifndef NDEBUG
65 static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1));
66 #endif
67
68 STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
69
70 namespace llvm {
71 void initializePPCCTRLoopsPass(PassRegistry&);
72 #ifndef NDEBUG
73 void initializePPCCTRLoopsVerifyPass(PassRegistry&);
74 #endif
75 }
76
77 namespace {
78 struct PPCCTRLoops : public FunctionPass {
79
80 #ifndef NDEBUG
81 static int Counter;
82 #endif
83
84 public:
85 static char ID;
86
PPCCTRLoops__anon5f4cbdc10111::PPCCTRLoops87 PPCCTRLoops() : FunctionPass(ID), TM(nullptr) {
88 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
89 }
PPCCTRLoops__anon5f4cbdc10111::PPCCTRLoops90 PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
91 initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
92 }
93
94 bool runOnFunction(Function &F) override;
95
getAnalysisUsage__anon5f4cbdc10111::PPCCTRLoops96 void getAnalysisUsage(AnalysisUsage &AU) const override {
97 AU.addRequired<LoopInfo>();
98 AU.addPreserved<LoopInfo>();
99 AU.addRequired<DominatorTreeWrapperPass>();
100 AU.addPreserved<DominatorTreeWrapperPass>();
101 AU.addRequired<ScalarEvolution>();
102 }
103
104 private:
105 bool mightUseCTR(const Triple &TT, BasicBlock *BB);
106 bool convertToCTRLoop(Loop *L);
107
108 private:
109 PPCTargetMachine *TM;
110 LoopInfo *LI;
111 ScalarEvolution *SE;
112 const DataLayout *DL;
113 DominatorTree *DT;
114 const TargetLibraryInfo *LibInfo;
115 };
116
117 char PPCCTRLoops::ID = 0;
118 #ifndef NDEBUG
119 int PPCCTRLoops::Counter = 0;
120 #endif
121
122 #ifndef NDEBUG
123 struct PPCCTRLoopsVerify : public MachineFunctionPass {
124 public:
125 static char ID;
126
PPCCTRLoopsVerify__anon5f4cbdc10111::PPCCTRLoopsVerify127 PPCCTRLoopsVerify() : MachineFunctionPass(ID) {
128 initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry());
129 }
130
getAnalysisUsage__anon5f4cbdc10111::PPCCTRLoopsVerify131 void getAnalysisUsage(AnalysisUsage &AU) const override {
132 AU.addRequired<MachineDominatorTree>();
133 MachineFunctionPass::getAnalysisUsage(AU);
134 }
135
136 bool runOnMachineFunction(MachineFunction &MF) override;
137
138 private:
139 MachineDominatorTree *MDT;
140 };
141
142 char PPCCTRLoopsVerify::ID = 0;
143 #endif // NDEBUG
144 } // end anonymous namespace
145
146 INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
147 false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)148 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
149 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
150 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
151 INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
152 false, false)
153
154 FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) {
155 return new PPCCTRLoops(TM);
156 }
157
158 #ifndef NDEBUG
159 INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
160 "PowerPC CTR Loops Verify", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)161 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
162 INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify",
163 "PowerPC CTR Loops Verify", false, false)
164
165 FunctionPass *llvm::createPPCCTRLoopsVerify() {
166 return new PPCCTRLoopsVerify();
167 }
168 #endif // NDEBUG
169
runOnFunction(Function & F)170 bool PPCCTRLoops::runOnFunction(Function &F) {
171 LI = &getAnalysis<LoopInfo>();
172 SE = &getAnalysis<ScalarEvolution>();
173 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
174 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
175 DL = DLP ? &DLP->getDataLayout() : nullptr;
176 LibInfo = getAnalysisIfAvailable<TargetLibraryInfo>();
177
178 bool MadeChange = false;
179
180 for (LoopInfo::iterator I = LI->begin(), E = LI->end();
181 I != E; ++I) {
182 Loop *L = *I;
183 if (!L->getParentLoop())
184 MadeChange |= convertToCTRLoop(L);
185 }
186
187 return MadeChange;
188 }
189
isLargeIntegerTy(bool Is32Bit,Type * Ty)190 static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) {
191 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
192 return ITy->getBitWidth() > (Is32Bit ? 32U : 64U);
193
194 return false;
195 }
196
197 // Determining the address of a TLS variable results in a function call in
198 // certain TLS models.
memAddrUsesCTR(const PPCTargetMachine * TM,const llvm::Value * MemAddr)199 static bool memAddrUsesCTR(const PPCTargetMachine *TM,
200 const llvm::Value *MemAddr) {
201 const auto *GV = dyn_cast<GlobalValue>(MemAddr);
202 if (!GV)
203 return false;
204 if (!GV->isThreadLocal())
205 return false;
206 if (!TM)
207 return true;
208 TLSModel::Model Model = TM->getTLSModel(GV);
209 return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic;
210 }
211
mightUseCTR(const Triple & TT,BasicBlock * BB)212 bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
213 for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
214 J != JE; ++J) {
215 if (CallInst *CI = dyn_cast<CallInst>(J)) {
216 if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
217 // Inline ASM is okay, unless it clobbers the ctr register.
218 InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
219 for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
220 InlineAsm::ConstraintInfo &C = CIV[i];
221 if (C.Type != InlineAsm::isInput)
222 for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
223 if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
224 return true;
225 }
226
227 continue;
228 }
229
230 if (!TM)
231 return true;
232 const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
233
234 if (Function *F = CI->getCalledFunction()) {
235 // Most intrinsics don't become function calls, but some might.
236 // sin, cos, exp and log are always calls.
237 unsigned Opcode;
238 if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
239 switch (F->getIntrinsicID()) {
240 default: continue;
241
242 // VisualStudio defines setjmp as _setjmp
243 #if defined(_MSC_VER) && defined(setjmp) && \
244 !defined(setjmp_undefined_for_msvc)
245 # pragma push_macro("setjmp")
246 # undef setjmp
247 # define setjmp_undefined_for_msvc
248 #endif
249
250 case Intrinsic::setjmp:
251
252 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
253 // let's return it to _setjmp state
254 # pragma pop_macro("setjmp")
255 # undef setjmp_undefined_for_msvc
256 #endif
257
258 case Intrinsic::longjmp:
259
260 // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
261 // because, although it does clobber the counter register, the
262 // control can't then return to inside the loop unless there is also
263 // an eh_sjlj_setjmp.
264 case Intrinsic::eh_sjlj_setjmp:
265
266 case Intrinsic::memcpy:
267 case Intrinsic::memmove:
268 case Intrinsic::memset:
269 case Intrinsic::powi:
270 case Intrinsic::log:
271 case Intrinsic::log2:
272 case Intrinsic::log10:
273 case Intrinsic::exp:
274 case Intrinsic::exp2:
275 case Intrinsic::pow:
276 case Intrinsic::sin:
277 case Intrinsic::cos:
278 return true;
279 case Intrinsic::copysign:
280 if (CI->getArgOperand(0)->getType()->getScalarType()->
281 isPPC_FP128Ty())
282 return true;
283 else
284 continue; // ISD::FCOPYSIGN is never a library call.
285 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
286 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
287 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
288 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
289 case Intrinsic::rint: Opcode = ISD::FRINT; break;
290 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
291 case Intrinsic::round: Opcode = ISD::FROUND; break;
292 }
293 }
294
295 // PowerPC does not use [US]DIVREM or other library calls for
296 // operations on regular types which are not otherwise library calls
297 // (i.e. soft float or atomics). If adapting for targets that do,
298 // additional care is required here.
299
300 LibFunc::Func Func;
301 if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
302 LibInfo->getLibFunc(F->getName(), Func) &&
303 LibInfo->hasOptimizedCodeGen(Func)) {
304 // Non-read-only functions are never treated as intrinsics.
305 if (!CI->onlyReadsMemory())
306 return true;
307
308 // Conversion happens only for FP calls.
309 if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
310 return true;
311
312 switch (Func) {
313 default: return true;
314 case LibFunc::copysign:
315 case LibFunc::copysignf:
316 continue; // ISD::FCOPYSIGN is never a library call.
317 case LibFunc::copysignl:
318 return true;
319 case LibFunc::fabs:
320 case LibFunc::fabsf:
321 case LibFunc::fabsl:
322 continue; // ISD::FABS is never a library call.
323 case LibFunc::sqrt:
324 case LibFunc::sqrtf:
325 case LibFunc::sqrtl:
326 Opcode = ISD::FSQRT; break;
327 case LibFunc::floor:
328 case LibFunc::floorf:
329 case LibFunc::floorl:
330 Opcode = ISD::FFLOOR; break;
331 case LibFunc::nearbyint:
332 case LibFunc::nearbyintf:
333 case LibFunc::nearbyintl:
334 Opcode = ISD::FNEARBYINT; break;
335 case LibFunc::ceil:
336 case LibFunc::ceilf:
337 case LibFunc::ceill:
338 Opcode = ISD::FCEIL; break;
339 case LibFunc::rint:
340 case LibFunc::rintf:
341 case LibFunc::rintl:
342 Opcode = ISD::FRINT; break;
343 case LibFunc::round:
344 case LibFunc::roundf:
345 case LibFunc::roundl:
346 Opcode = ISD::FROUND; break;
347 case LibFunc::trunc:
348 case LibFunc::truncf:
349 case LibFunc::truncl:
350 Opcode = ISD::FTRUNC; break;
351 }
352
353 MVT VTy =
354 TLI->getSimpleValueType(CI->getArgOperand(0)->getType(), true);
355 if (VTy == MVT::Other)
356 return true;
357
358 if (TLI->isOperationLegalOrCustom(Opcode, VTy))
359 continue;
360 else if (VTy.isVector() &&
361 TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType()))
362 continue;
363
364 return true;
365 }
366 }
367
368 return true;
369 } else if (isa<BinaryOperator>(J) &&
370 J->getType()->getScalarType()->isPPC_FP128Ty()) {
371 // Most operations on ppc_f128 values become calls.
372 return true;
373 } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) ||
374 isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) {
375 CastInst *CI = cast<CastInst>(J);
376 if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() ||
377 CI->getDestTy()->getScalarType()->isPPC_FP128Ty() ||
378 isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) ||
379 isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType()))
380 return true;
381 } else if (isLargeIntegerTy(TT.isArch32Bit(),
382 J->getType()->getScalarType()) &&
383 (J->getOpcode() == Instruction::UDiv ||
384 J->getOpcode() == Instruction::SDiv ||
385 J->getOpcode() == Instruction::URem ||
386 J->getOpcode() == Instruction::SRem)) {
387 return true;
388 } else if (TT.isArch32Bit() &&
389 isLargeIntegerTy(false, J->getType()->getScalarType()) &&
390 (J->getOpcode() == Instruction::Shl ||
391 J->getOpcode() == Instruction::AShr ||
392 J->getOpcode() == Instruction::LShr)) {
393 // Only on PPC32, for 128-bit integers (specifically not 64-bit
394 // integers), these might be runtime calls.
395 return true;
396 } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) {
397 // On PowerPC, indirect jumps use the counter register.
398 return true;
399 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) {
400 if (!TM)
401 return true;
402 const TargetLowering *TLI = TM->getSubtargetImpl()->getTargetLowering();
403
404 if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries())
405 return true;
406 }
407 for (Value *Operand : J->operands())
408 if (memAddrUsesCTR(TM, Operand))
409 return true;
410 }
411
412 return false;
413 }
414
convertToCTRLoop(Loop * L)415 bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
416 bool MadeChange = false;
417
418 Triple TT = Triple(L->getHeader()->getParent()->getParent()->
419 getTargetTriple());
420 if (!TT.isArch32Bit() && !TT.isArch64Bit())
421 return MadeChange; // Unknown arch. type.
422
423 // Process nested loops first.
424 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
425 MadeChange |= convertToCTRLoop(*I);
426 }
427
428 // If a nested loop has been converted, then we can't convert this loop.
429 if (MadeChange)
430 return MadeChange;
431
432 #ifndef NDEBUG
433 // Stop trying after reaching the limit (if any).
434 int Limit = CTRLoopLimit;
435 if (Limit >= 0) {
436 if (Counter >= CTRLoopLimit)
437 return false;
438 Counter++;
439 }
440 #endif
441
442 // We don't want to spill/restore the counter register, and so we don't
443 // want to use the counter register if the loop contains calls.
444 for (Loop::block_iterator I = L->block_begin(), IE = L->block_end();
445 I != IE; ++I)
446 if (mightUseCTR(TT, *I))
447 return MadeChange;
448
449 SmallVector<BasicBlock*, 4> ExitingBlocks;
450 L->getExitingBlocks(ExitingBlocks);
451
452 BasicBlock *CountedExitBlock = nullptr;
453 const SCEV *ExitCount = nullptr;
454 BranchInst *CountedExitBranch = nullptr;
455 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
456 IE = ExitingBlocks.end(); I != IE; ++I) {
457 const SCEV *EC = SE->getExitCount(L, *I);
458 DEBUG(dbgs() << "Exit Count for " << *L << " from block " <<
459 (*I)->getName() << ": " << *EC << "\n");
460 if (isa<SCEVCouldNotCompute>(EC))
461 continue;
462 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
463 if (ConstEC->getValue()->isZero())
464 continue;
465 } else if (!SE->isLoopInvariant(EC, L))
466 continue;
467
468 if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32))
469 continue;
470
471 // We now have a loop-invariant count of loop iterations (which is not the
472 // constant zero) for which we know that this loop will not exit via this
473 // exisiting block.
474
475 // We need to make sure that this block will run on every loop iteration.
476 // For this to be true, we must dominate all blocks with backedges. Such
477 // blocks are in-loop predecessors to the header block.
478 bool NotAlways = false;
479 for (pred_iterator PI = pred_begin(L->getHeader()),
480 PIE = pred_end(L->getHeader()); PI != PIE; ++PI) {
481 if (!L->contains(*PI))
482 continue;
483
484 if (!DT->dominates(*I, *PI)) {
485 NotAlways = true;
486 break;
487 }
488 }
489
490 if (NotAlways)
491 continue;
492
493 // Make sure this blocks ends with a conditional branch.
494 Instruction *TI = (*I)->getTerminator();
495 if (!TI)
496 continue;
497
498 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
499 if (!BI->isConditional())
500 continue;
501
502 CountedExitBranch = BI;
503 } else
504 continue;
505
506 // Note that this block may not be the loop latch block, even if the loop
507 // has a latch block.
508 CountedExitBlock = *I;
509 ExitCount = EC;
510 break;
511 }
512
513 if (!CountedExitBlock)
514 return MadeChange;
515
516 BasicBlock *Preheader = L->getLoopPreheader();
517
518 // If we don't have a preheader, then insert one. If we already have a
519 // preheader, then we can use it (except if the preheader contains a use of
520 // the CTR register because some such uses might be reordered by the
521 // selection DAG after the mtctr instruction).
522 if (!Preheader || mightUseCTR(TT, Preheader))
523 Preheader = InsertPreheaderForLoop(L, this);
524 if (!Preheader)
525 return MadeChange;
526
527 DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n");
528
529 // Insert the count into the preheader and replace the condition used by the
530 // selected branch.
531 MadeChange = true;
532
533 SCEVExpander SCEVE(*SE, "loopcnt");
534 LLVMContext &C = SE->getContext();
535 Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) :
536 Type::getInt32Ty(C);
537 if (!ExitCount->getType()->isPointerTy() &&
538 ExitCount->getType() != CountType)
539 ExitCount = SE->getZeroExtendExpr(ExitCount, CountType);
540 ExitCount = SE->getAddExpr(ExitCount,
541 SE->getConstant(CountType, 1));
542 Value *ECValue = SCEVE.expandCodeFor(ExitCount, CountType,
543 Preheader->getTerminator());
544
545 IRBuilder<> CountBuilder(Preheader->getTerminator());
546 Module *M = Preheader->getParent()->getParent();
547 Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr,
548 CountType);
549 CountBuilder.CreateCall(MTCTRFunc, ECValue);
550
551 IRBuilder<> CondBuilder(CountedExitBranch);
552 Value *DecFunc =
553 Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero);
554 Value *NewCond = CondBuilder.CreateCall(DecFunc);
555 Value *OldCond = CountedExitBranch->getCondition();
556 CountedExitBranch->setCondition(NewCond);
557
558 // The false branch must exit the loop.
559 if (!L->contains(CountedExitBranch->getSuccessor(0)))
560 CountedExitBranch->swapSuccessors();
561
562 // The old condition may be dead now, and may have even created a dead PHI
563 // (the original induction variable).
564 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
565 DeleteDeadPHIs(CountedExitBlock);
566
567 ++NumCTRLoops;
568 return MadeChange;
569 }
570
571 #ifndef NDEBUG
clobbersCTR(const MachineInstr * MI)572 static bool clobbersCTR(const MachineInstr *MI) {
573 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
574 const MachineOperand &MO = MI->getOperand(i);
575 if (MO.isReg()) {
576 if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8))
577 return true;
578 } else if (MO.isRegMask()) {
579 if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8))
580 return true;
581 }
582 }
583
584 return false;
585 }
586
verifyCTRBranch(MachineBasicBlock * MBB,MachineBasicBlock::iterator I)587 static bool verifyCTRBranch(MachineBasicBlock *MBB,
588 MachineBasicBlock::iterator I) {
589 MachineBasicBlock::iterator BI = I;
590 SmallSet<MachineBasicBlock *, 16> Visited;
591 SmallVector<MachineBasicBlock *, 8> Preds;
592 bool CheckPreds;
593
594 if (I == MBB->begin()) {
595 Visited.insert(MBB);
596 goto queue_preds;
597 } else
598 --I;
599
600 check_block:
601 Visited.insert(MBB);
602 if (I == MBB->end())
603 goto queue_preds;
604
605 CheckPreds = true;
606 for (MachineBasicBlock::iterator IE = MBB->begin();; --I) {
607 unsigned Opc = I->getOpcode();
608 if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) {
609 CheckPreds = false;
610 break;
611 }
612
613 if (I != BI && clobbersCTR(I)) {
614 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" <<
615 MBB->getFullName() << ") instruction " << *I <<
616 " clobbers CTR, invalidating " << "BB#" <<
617 BI->getParent()->getNumber() << " (" <<
618 BI->getParent()->getFullName() << ") instruction " <<
619 *BI << "\n");
620 return false;
621 }
622
623 if (I == IE)
624 break;
625 }
626
627 if (!CheckPreds && Preds.empty())
628 return true;
629
630 if (CheckPreds) {
631 queue_preds:
632 if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) {
633 DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" <<
634 BI->getParent()->getNumber() << " (" <<
635 BI->getParent()->getFullName() << ") instruction " <<
636 *BI << "\n");
637 return false;
638 }
639
640 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
641 PIE = MBB->pred_end(); PI != PIE; ++PI)
642 Preds.push_back(*PI);
643 }
644
645 do {
646 MBB = Preds.pop_back_val();
647 if (!Visited.count(MBB)) {
648 I = MBB->getLastNonDebugInstr();
649 goto check_block;
650 }
651 } while (!Preds.empty());
652
653 return true;
654 }
655
runOnMachineFunction(MachineFunction & MF)656 bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) {
657 MDT = &getAnalysis<MachineDominatorTree>();
658
659 // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before
660 // any other instructions that might clobber the ctr register.
661 for (MachineFunction::iterator I = MF.begin(), IE = MF.end();
662 I != IE; ++I) {
663 MachineBasicBlock *MBB = I;
664 if (!MDT->isReachableFromEntry(MBB))
665 continue;
666
667 for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(),
668 MIIE = MBB->end(); MII != MIIE; ++MII) {
669 unsigned Opc = MII->getOpcode();
670 if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ ||
671 Opc == PPC::BDZ8 || Opc == PPC::BDZ)
672 if (!verifyCTRBranch(MBB, MII))
673 llvm_unreachable("Invalid PPC CTR loop!");
674 }
675 }
676
677 return false;
678 }
679 #endif // NDEBUG
680
681