1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "Win64Exception.h"
18 #include "WinCodeViewLineTables.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/JumpInstrTableInfo.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/GCMetadataPrinter.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBundle.h"
29 #include "llvm/CodeGen/MachineJumpTableInfo.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Mangler.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/MC/MCExpr.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCSection.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/Timer.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetRegisterInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 using namespace llvm;
55
56 #define DEBUG_TYPE "asm-printer"
57
58 static const char *const DWARFGroupName = "DWARF Emission";
59 static const char *const DbgTimerName = "Debug Info Emission";
60 static const char *const EHTimerName = "DWARF Exception Writer";
61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
62
63 STATISTIC(EmittedInsts, "Number of machine instrs printed");
64
65 char AsmPrinter::ID = 0;
66
67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
getGCMap(void * & P)68 static gcp_map_type &getGCMap(void *&P) {
69 if (!P)
70 P = new gcp_map_type();
71 return *(gcp_map_type*)P;
72 }
73
74
75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
76 /// value in log2 form. This rounds up to the preferred alignment if possible
77 /// and legal.
getGVAlignmentLog2(const GlobalValue * GV,const DataLayout & TD,unsigned InBits=0)78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
79 unsigned InBits = 0) {
80 unsigned NumBits = 0;
81 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
82 NumBits = TD.getPreferredAlignmentLog(GVar);
83
84 // If InBits is specified, round it to it.
85 if (InBits > NumBits)
86 NumBits = InBits;
87
88 // If the GV has a specified alignment, take it into account.
89 if (GV->getAlignment() == 0)
90 return NumBits;
91
92 unsigned GVAlign = Log2_32(GV->getAlignment());
93
94 // If the GVAlign is larger than NumBits, or if we are required to obey
95 // NumBits because the GV has an assigned section, obey it.
96 if (GVAlign > NumBits || GV->hasSection())
97 NumBits = GVAlign;
98 return NumBits;
99 }
100
AsmPrinter(TargetMachine & tm,MCStreamer & Streamer)101 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
102 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
103 MII(tm.getSubtargetImpl()->getInstrInfo()),
104 OutContext(Streamer.getContext()), OutStreamer(Streamer), LastMI(nullptr),
105 LastFn(0), Counter(~0U), SetCounter(0) {
106 DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr;
107 CurrentFnSym = CurrentFnSymForSize = nullptr;
108 GCMetadataPrinters = nullptr;
109 VerboseAsm = Streamer.isVerboseAsm();
110 }
111
~AsmPrinter()112 AsmPrinter::~AsmPrinter() {
113 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
114
115 if (GCMetadataPrinters) {
116 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
117
118 delete &GCMap;
119 GCMetadataPrinters = nullptr;
120 }
121
122 delete &OutStreamer;
123 }
124
125 /// getFunctionNumber - Return a unique ID for the current function.
126 ///
getFunctionNumber() const127 unsigned AsmPrinter::getFunctionNumber() const {
128 return MF->getFunctionNumber();
129 }
130
getObjFileLowering() const131 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
132 return TM.getSubtargetImpl()->getTargetLowering()->getObjFileLowering();
133 }
134
135 /// getDataLayout - Return information about data layout.
getDataLayout() const136 const DataLayout &AsmPrinter::getDataLayout() const {
137 return *TM.getSubtargetImpl()->getDataLayout();
138 }
139
getSubtargetInfo() const140 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
141 return TM.getSubtarget<MCSubtargetInfo>();
142 }
143
EmitToStreamer(MCStreamer & S,const MCInst & Inst)144 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
145 S.EmitInstruction(Inst, getSubtargetInfo());
146 }
147
getTargetTriple() const148 StringRef AsmPrinter::getTargetTriple() const {
149 return TM.getTargetTriple();
150 }
151
152 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const153 const MCSection *AsmPrinter::getCurrentSection() const {
154 return OutStreamer.getCurrentSection().first;
155 }
156
157
158
getAnalysisUsage(AnalysisUsage & AU) const159 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
160 AU.setPreservesAll();
161 MachineFunctionPass::getAnalysisUsage(AU);
162 AU.addRequired<MachineModuleInfo>();
163 AU.addRequired<GCModuleInfo>();
164 if (isVerbose())
165 AU.addRequired<MachineLoopInfo>();
166 }
167
doInitialization(Module & M)168 bool AsmPrinter::doInitialization(Module &M) {
169 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
170 MMI->AnalyzeModule(M);
171
172 // Initialize TargetLoweringObjectFile.
173 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
174 .Initialize(OutContext, TM);
175
176 OutStreamer.InitSections(false);
177
178 Mang = new Mangler(TM.getSubtargetImpl()->getDataLayout());
179
180 // Emit the version-min deplyment target directive if needed.
181 //
182 // FIXME: If we end up with a collection of these sorts of Darwin-specific
183 // or ELF-specific things, it may make sense to have a platform helper class
184 // that will work with the target helper class. For now keep it here, as the
185 // alternative is duplicated code in each of the target asm printers that
186 // use the directive, where it would need the same conditionalization
187 // anyway.
188 Triple TT(getTargetTriple());
189 if (TT.isOSDarwin()) {
190 unsigned Major, Minor, Update;
191 TT.getOSVersion(Major, Minor, Update);
192 // If there is a version specified, Major will be non-zero.
193 if (Major)
194 OutStreamer.EmitVersionMin((TT.isMacOSX() ?
195 MCVM_OSXVersionMin : MCVM_IOSVersionMin),
196 Major, Minor, Update);
197 }
198
199 // Allow the target to emit any magic that it wants at the start of the file.
200 EmitStartOfAsmFile(M);
201
202 // Very minimal debug info. It is ignored if we emit actual debug info. If we
203 // don't, this at least helps the user find where a global came from.
204 if (MAI->hasSingleParameterDotFile()) {
205 // .file "foo.c"
206 OutStreamer.EmitFileDirective(M.getModuleIdentifier());
207 }
208
209 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
210 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
211 for (auto &I : *MI)
212 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
213 MP->beginAssembly(M, *MI, *this);
214
215 // Emit module-level inline asm if it exists.
216 if (!M.getModuleInlineAsm().empty()) {
217 OutStreamer.AddComment("Start of file scope inline assembly");
218 OutStreamer.AddBlankLine();
219 EmitInlineAsm(M.getModuleInlineAsm()+"\n");
220 OutStreamer.AddComment("End of file scope inline assembly");
221 OutStreamer.AddBlankLine();
222 }
223
224 if (MAI->doesSupportDebugInformation()) {
225 bool skip_dwarf = false;
226 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) {
227 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
228 DbgTimerName,
229 CodeViewLineTablesGroupName));
230 // FIXME: Don't emit DWARF debug info if there's at least one function
231 // with AddressSanitizer instrumentation.
232 // This is a band-aid fix for PR22032.
233 for (auto &F : M.functions()) {
234 if (F.hasFnAttribute(Attribute::SanitizeAddress)) {
235 skip_dwarf = true;
236 break;
237 }
238 }
239 }
240 if (!skip_dwarf) {
241 DD = new DwarfDebug(this, &M);
242 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
243 }
244 }
245
246 EHStreamer *ES = nullptr;
247 switch (MAI->getExceptionHandlingType()) {
248 case ExceptionHandling::None:
249 break;
250 case ExceptionHandling::SjLj:
251 case ExceptionHandling::DwarfCFI:
252 ES = new DwarfCFIException(this);
253 break;
254 case ExceptionHandling::ARM:
255 ES = new ARMException(this);
256 break;
257 case ExceptionHandling::ItaniumWinEH:
258 case ExceptionHandling::MSVC:
259 switch (MAI->getWinEHEncodingType()) {
260 default: llvm_unreachable("unsupported unwinding information encoding");
261 case WinEH::EncodingType::Itanium:
262 ES = new Win64Exception(this);
263 break;
264 }
265 break;
266 }
267 if (ES)
268 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
269 return false;
270 }
271
canBeHidden(const GlobalValue * GV,const MCAsmInfo & MAI)272 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
273 if (!MAI.hasWeakDefCanBeHiddenDirective())
274 return false;
275
276 return canBeOmittedFromSymbolTable(GV);
277 }
278
EmitLinkage(const GlobalValue * GV,MCSymbol * GVSym) const279 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
280 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
281 switch (Linkage) {
282 case GlobalValue::CommonLinkage:
283 case GlobalValue::LinkOnceAnyLinkage:
284 case GlobalValue::LinkOnceODRLinkage:
285 case GlobalValue::WeakAnyLinkage:
286 case GlobalValue::WeakODRLinkage:
287 if (MAI->hasWeakDefDirective()) {
288 // .globl _foo
289 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
290
291 if (!canBeHidden(GV, *MAI))
292 // .weak_definition _foo
293 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
294 else
295 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
296 } else if (MAI->hasLinkOnceDirective()) {
297 // .globl _foo
298 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
299 //NOTE: linkonce is handled by the section the symbol was assigned to.
300 } else {
301 // .weak _foo
302 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
303 }
304 return;
305 case GlobalValue::AppendingLinkage:
306 // FIXME: appending linkage variables should go into a section of
307 // their name or something. For now, just emit them as external.
308 case GlobalValue::ExternalLinkage:
309 // If external or appending, declare as a global symbol.
310 // .globl _foo
311 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
312 return;
313 case GlobalValue::PrivateLinkage:
314 case GlobalValue::InternalLinkage:
315 return;
316 case GlobalValue::AvailableExternallyLinkage:
317 llvm_unreachable("Should never emit this");
318 case GlobalValue::ExternalWeakLinkage:
319 llvm_unreachable("Don't know how to emit these");
320 }
321 llvm_unreachable("Unknown linkage type!");
322 }
323
getNameWithPrefix(SmallVectorImpl<char> & Name,const GlobalValue * GV) const324 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
325 const GlobalValue *GV) const {
326 TM.getNameWithPrefix(Name, GV, *Mang);
327 }
328
getSymbol(const GlobalValue * GV) const329 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
330 return TM.getSymbol(GV, *Mang);
331 }
332
333 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)334 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
335 if (GV->hasInitializer()) {
336 // Check to see if this is a special global used by LLVM, if so, emit it.
337 if (EmitSpecialLLVMGlobal(GV))
338 return;
339
340 if (isVerbose()) {
341 GV->printAsOperand(OutStreamer.GetCommentOS(),
342 /*PrintType=*/false, GV->getParent());
343 OutStreamer.GetCommentOS() << '\n';
344 }
345 }
346
347 MCSymbol *GVSym = getSymbol(GV);
348 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
349
350 if (!GV->hasInitializer()) // External globals require no extra code.
351 return;
352
353 GVSym->redefineIfPossible();
354 if (GVSym->isDefined() || GVSym->isVariable())
355 report_fatal_error("symbol '" + Twine(GVSym->getName()) +
356 "' is already defined");
357
358 if (MAI->hasDotTypeDotSizeDirective())
359 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
360
361 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
362
363 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
364 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
365
366 // If the alignment is specified, we *must* obey it. Overaligning a global
367 // with a specified alignment is a prompt way to break globals emitted to
368 // sections and expected to be contiguous (e.g. ObjC metadata).
369 unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
370
371 for (const HandlerInfo &HI : Handlers) {
372 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
373 HI.Handler->setSymbolSize(GVSym, Size);
374 }
375
376 // Handle common and BSS local symbols (.lcomm).
377 if (GVKind.isCommon() || GVKind.isBSSLocal()) {
378 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
379 unsigned Align = 1 << AlignLog;
380
381 // Handle common symbols.
382 if (GVKind.isCommon()) {
383 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
384 Align = 0;
385
386 // .comm _foo, 42, 4
387 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
388 return;
389 }
390
391 // Handle local BSS symbols.
392 if (MAI->hasMachoZeroFillDirective()) {
393 const MCSection *TheSection =
394 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
395 // .zerofill __DATA, __bss, _foo, 400, 5
396 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
397 return;
398 }
399
400 // Use .lcomm only if it supports user-specified alignment.
401 // Otherwise, while it would still be correct to use .lcomm in some
402 // cases (e.g. when Align == 1), the external assembler might enfore
403 // some -unknown- default alignment behavior, which could cause
404 // spurious differences between external and integrated assembler.
405 // Prefer to simply fall back to .local / .comm in this case.
406 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
407 // .lcomm _foo, 42
408 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
409 return;
410 }
411
412 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
413 Align = 0;
414
415 // .local _foo
416 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
417 // .comm _foo, 42, 4
418 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
419 return;
420 }
421
422 const MCSection *TheSection =
423 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
424
425 // Handle the zerofill directive on darwin, which is a special form of BSS
426 // emission.
427 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
428 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
429
430 // .globl _foo
431 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
432 // .zerofill __DATA, __common, _foo, 400, 5
433 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
434 return;
435 }
436
437 // Handle thread local data for mach-o which requires us to output an
438 // additional structure of data and mangle the original symbol so that we
439 // can reference it later.
440 //
441 // TODO: This should become an "emit thread local global" method on TLOF.
442 // All of this macho specific stuff should be sunk down into TLOFMachO and
443 // stuff like "TLSExtraDataSection" should no longer be part of the parent
444 // TLOF class. This will also make it more obvious that stuff like
445 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
446 // specific code.
447 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
448 // Emit the .tbss symbol
449 MCSymbol *MangSym =
450 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
451
452 if (GVKind.isThreadBSS()) {
453 TheSection = getObjFileLowering().getTLSBSSSection();
454 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
455 } else if (GVKind.isThreadData()) {
456 OutStreamer.SwitchSection(TheSection);
457
458 EmitAlignment(AlignLog, GV);
459 OutStreamer.EmitLabel(MangSym);
460
461 EmitGlobalConstant(GV->getInitializer());
462 }
463
464 OutStreamer.AddBlankLine();
465
466 // Emit the variable struct for the runtime.
467 const MCSection *TLVSect
468 = getObjFileLowering().getTLSExtraDataSection();
469
470 OutStreamer.SwitchSection(TLVSect);
471 // Emit the linkage here.
472 EmitLinkage(GV, GVSym);
473 OutStreamer.EmitLabel(GVSym);
474
475 // Three pointers in size:
476 // - __tlv_bootstrap - used to make sure support exists
477 // - spare pointer, used when mapped by the runtime
478 // - pointer to mangled symbol above with initializer
479 unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
480 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
481 PtrSize);
482 OutStreamer.EmitIntValue(0, PtrSize);
483 OutStreamer.EmitSymbolValue(MangSym, PtrSize);
484
485 OutStreamer.AddBlankLine();
486 return;
487 }
488
489 OutStreamer.SwitchSection(TheSection);
490
491 EmitLinkage(GV, GVSym);
492 EmitAlignment(AlignLog, GV);
493
494 OutStreamer.EmitLabel(GVSym);
495
496 EmitGlobalConstant(GV->getInitializer());
497
498 if (MAI->hasDotTypeDotSizeDirective())
499 // .size foo, 42
500 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
501
502 OutStreamer.AddBlankLine();
503 }
504
505 /// EmitFunctionHeader - This method emits the header for the current
506 /// function.
EmitFunctionHeader()507 void AsmPrinter::EmitFunctionHeader() {
508 // Print out constants referenced by the function
509 EmitConstantPool();
510
511 // Print the 'header' of function.
512 const Function *F = MF->getFunction();
513
514 OutStreamer.SwitchSection(
515 getObjFileLowering().SectionForGlobal(F, *Mang, TM));
516 EmitVisibility(CurrentFnSym, F->getVisibility());
517
518 EmitLinkage(F, CurrentFnSym);
519 EmitAlignment(MF->getAlignment(), F);
520
521 if (MAI->hasDotTypeDotSizeDirective())
522 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
523
524 if (isVerbose()) {
525 F->printAsOperand(OutStreamer.GetCommentOS(),
526 /*PrintType=*/false, F->getParent());
527 OutStreamer.GetCommentOS() << '\n';
528 }
529
530 // Emit the prefix data.
531 if (F->hasPrefixData())
532 EmitGlobalConstant(F->getPrefixData());
533
534 // Emit the CurrentFnSym. This is a virtual function to allow targets to
535 // do their wild and crazy things as required.
536 EmitFunctionEntryLabel();
537
538 // If the function had address-taken blocks that got deleted, then we have
539 // references to the dangling symbols. Emit them at the start of the function
540 // so that we don't get references to undefined symbols.
541 std::vector<MCSymbol*> DeadBlockSyms;
542 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
543 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
544 OutStreamer.AddComment("Address taken block that was later removed");
545 OutStreamer.EmitLabel(DeadBlockSyms[i]);
546 }
547
548 // Emit pre-function debug and/or EH information.
549 for (const HandlerInfo &HI : Handlers) {
550 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
551 HI.Handler->beginFunction(MF);
552 }
553
554 // Emit the prologue data.
555 if (F->hasPrologueData())
556 EmitGlobalConstant(F->getPrologueData());
557 }
558
559 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
560 /// function. This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()561 void AsmPrinter::EmitFunctionEntryLabel() {
562 CurrentFnSym->redefineIfPossible();
563
564 // The function label could have already been emitted if two symbols end up
565 // conflicting due to asm renaming. Detect this and emit an error.
566 if (CurrentFnSym->isVariable())
567 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
568 "' is a protected alias");
569 if (CurrentFnSym->isDefined())
570 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
571 "' label emitted multiple times to assembly file");
572
573 return OutStreamer.EmitLabel(CurrentFnSym);
574 }
575
576 /// emitComments - Pretty-print comments for instructions.
emitComments(const MachineInstr & MI,raw_ostream & CommentOS)577 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
578 const MachineFunction *MF = MI.getParent()->getParent();
579 const TargetMachine &TM = MF->getTarget();
580
581 // Check for spills and reloads
582 int FI;
583
584 const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
585
586 // We assume a single instruction only has a spill or reload, not
587 // both.
588 const MachineMemOperand *MMO;
589 if (TM.getSubtargetImpl()->getInstrInfo()->isLoadFromStackSlotPostFE(&MI,
590 FI)) {
591 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
592 MMO = *MI.memoperands_begin();
593 CommentOS << MMO->getSize() << "-byte Reload\n";
594 }
595 } else if (TM.getSubtargetImpl()->getInstrInfo()->hasLoadFromStackSlot(
596 &MI, MMO, FI)) {
597 if (FrameInfo->isSpillSlotObjectIndex(FI))
598 CommentOS << MMO->getSize() << "-byte Folded Reload\n";
599 } else if (TM.getSubtargetImpl()->getInstrInfo()->isStoreToStackSlotPostFE(
600 &MI, FI)) {
601 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
602 MMO = *MI.memoperands_begin();
603 CommentOS << MMO->getSize() << "-byte Spill\n";
604 }
605 } else if (TM.getSubtargetImpl()->getInstrInfo()->hasStoreToStackSlot(
606 &MI, MMO, FI)) {
607 if (FrameInfo->isSpillSlotObjectIndex(FI))
608 CommentOS << MMO->getSize() << "-byte Folded Spill\n";
609 }
610
611 // Check for spill-induced copies
612 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
613 CommentOS << " Reload Reuse\n";
614 }
615
616 /// emitImplicitDef - This method emits the specified machine instruction
617 /// that is an implicit def.
emitImplicitDef(const MachineInstr * MI) const618 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
619 unsigned RegNo = MI->getOperand(0).getReg();
620 OutStreamer.AddComment(
621 Twine("implicit-def: ") +
622 TM.getSubtargetImpl()->getRegisterInfo()->getName(RegNo));
623 OutStreamer.AddBlankLine();
624 }
625
emitKill(const MachineInstr * MI,AsmPrinter & AP)626 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
627 std::string Str = "kill:";
628 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
629 const MachineOperand &Op = MI->getOperand(i);
630 assert(Op.isReg() && "KILL instruction must have only register operands");
631 Str += ' ';
632 Str += AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Op.getReg());
633 Str += (Op.isDef() ? "<def>" : "<kill>");
634 }
635 AP.OutStreamer.AddComment(Str);
636 AP.OutStreamer.AddBlankLine();
637 }
638
639 /// emitDebugValueComment - This method handles the target-independent form
640 /// of DBG_VALUE, returning true if it was able to do so. A false return
641 /// means the target will need to handle MI in EmitInstruction.
emitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)642 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
643 // This code handles only the 4-operand target-independent form.
644 if (MI->getNumOperands() != 4)
645 return false;
646
647 SmallString<128> Str;
648 raw_svector_ostream OS(Str);
649 OS << "DEBUG_VALUE: ";
650
651 DIVariable V = MI->getDebugVariable();
652 if (V.getContext().isSubprogram()) {
653 StringRef Name = DISubprogram(V.getContext()).getDisplayName();
654 if (!Name.empty())
655 OS << Name << ":";
656 }
657 OS << V.getName();
658
659 DIExpression Expr = MI->getDebugExpression();
660 if (Expr.isVariablePiece())
661 OS << " [piece offset=" << Expr.getPieceOffset()
662 << " size=" << Expr.getPieceSize() << "]";
663 OS << " <- ";
664
665 // The second operand is only an offset if it's an immediate.
666 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
667 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
668
669 // Register or immediate value. Register 0 means undef.
670 if (MI->getOperand(0).isFPImm()) {
671 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
672 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
673 OS << (double)APF.convertToFloat();
674 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
675 OS << APF.convertToDouble();
676 } else {
677 // There is no good way to print long double. Convert a copy to
678 // double. Ah well, it's only a comment.
679 bool ignored;
680 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
681 &ignored);
682 OS << "(long double) " << APF.convertToDouble();
683 }
684 } else if (MI->getOperand(0).isImm()) {
685 OS << MI->getOperand(0).getImm();
686 } else if (MI->getOperand(0).isCImm()) {
687 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
688 } else {
689 unsigned Reg;
690 if (MI->getOperand(0).isReg()) {
691 Reg = MI->getOperand(0).getReg();
692 } else {
693 assert(MI->getOperand(0).isFI() && "Unknown operand type");
694 const TargetFrameLowering *TFI =
695 AP.TM.getSubtargetImpl()->getFrameLowering();
696 Offset += TFI->getFrameIndexReference(*AP.MF,
697 MI->getOperand(0).getIndex(), Reg);
698 Deref = true;
699 }
700 if (Reg == 0) {
701 // Suppress offset, it is not meaningful here.
702 OS << "undef";
703 // NOTE: Want this comment at start of line, don't emit with AddComment.
704 AP.OutStreamer.emitRawComment(OS.str());
705 return true;
706 }
707 if (Deref)
708 OS << '[';
709 OS << AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Reg);
710 }
711
712 if (Deref)
713 OS << '+' << Offset << ']';
714
715 // NOTE: Want this comment at start of line, don't emit with AddComment.
716 AP.OutStreamer.emitRawComment(OS.str());
717 return true;
718 }
719
needsCFIMoves()720 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
721 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
722 MF->getFunction()->needsUnwindTableEntry())
723 return CFI_M_EH;
724
725 if (MMI->hasDebugInfo())
726 return CFI_M_Debug;
727
728 return CFI_M_None;
729 }
730
needsSEHMoves()731 bool AsmPrinter::needsSEHMoves() {
732 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
733 }
734
emitCFIInstruction(const MachineInstr & MI)735 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
736 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
737 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
738 ExceptionHandlingType != ExceptionHandling::ARM)
739 return;
740
741 if (needsCFIMoves() == CFI_M_None)
742 return;
743
744 const MachineModuleInfo &MMI = MF->getMMI();
745 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
746 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
747 const MCCFIInstruction &CFI = Instrs[CFIIndex];
748 emitCFIInstruction(CFI);
749 }
750
emitFrameAlloc(const MachineInstr & MI)751 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
752 // The operands are the MCSymbol and the frame offset of the allocation.
753 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
754 int FrameOffset = MI.getOperand(1).getImm();
755
756 // Emit a symbol assignment.
757 OutStreamer.EmitAssignment(FrameAllocSym,
758 MCConstantExpr::Create(FrameOffset, OutContext));
759 }
760
761 /// EmitFunctionBody - This method emits the body and trailer for a
762 /// function.
EmitFunctionBody()763 void AsmPrinter::EmitFunctionBody() {
764 // Emit target-specific gunk before the function body.
765 EmitFunctionBodyStart();
766
767 bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
768
769 // Print out code for the function.
770 bool HasAnyRealCode = false;
771 for (auto &MBB : *MF) {
772 // Print a label for the basic block.
773 EmitBasicBlockStart(MBB);
774 for (auto &MI : MBB) {
775
776 // Print the assembly for the instruction.
777 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
778 !MI.isDebugValue()) {
779 HasAnyRealCode = true;
780 ++EmittedInsts;
781 }
782
783 if (ShouldPrintDebugScopes) {
784 for (const HandlerInfo &HI : Handlers) {
785 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
786 TimePassesIsEnabled);
787 HI.Handler->beginInstruction(&MI);
788 }
789 }
790
791 if (isVerbose())
792 emitComments(MI, OutStreamer.GetCommentOS());
793
794 switch (MI.getOpcode()) {
795 case TargetOpcode::CFI_INSTRUCTION:
796 emitCFIInstruction(MI);
797 break;
798
799 case TargetOpcode::FRAME_ALLOC:
800 emitFrameAlloc(MI);
801 break;
802
803 case TargetOpcode::EH_LABEL:
804 case TargetOpcode::GC_LABEL:
805 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol());
806 break;
807 case TargetOpcode::INLINEASM:
808 EmitInlineAsm(&MI);
809 break;
810 case TargetOpcode::DBG_VALUE:
811 if (isVerbose()) {
812 if (!emitDebugValueComment(&MI, *this))
813 EmitInstruction(&MI);
814 }
815 break;
816 case TargetOpcode::IMPLICIT_DEF:
817 if (isVerbose()) emitImplicitDef(&MI);
818 break;
819 case TargetOpcode::KILL:
820 if (isVerbose()) emitKill(&MI, *this);
821 break;
822 default:
823 EmitInstruction(&MI);
824 break;
825 }
826
827 if (ShouldPrintDebugScopes) {
828 for (const HandlerInfo &HI : Handlers) {
829 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
830 TimePassesIsEnabled);
831 HI.Handler->endInstruction();
832 }
833 }
834 }
835
836 EmitBasicBlockEnd(MBB);
837 }
838
839 // If the function is empty and the object file uses .subsections_via_symbols,
840 // then we need to emit *something* to the function body to prevent the
841 // labels from collapsing together. Just emit a noop.
842 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
843 MCInst Noop;
844 TM.getSubtargetImpl()->getInstrInfo()->getNoopForMachoTarget(Noop);
845 OutStreamer.AddComment("avoids zero-length function");
846
847 // Targets can opt-out of emitting the noop here by leaving the opcode
848 // unspecified.
849 if (Noop.getOpcode())
850 OutStreamer.EmitInstruction(Noop, getSubtargetInfo());
851 }
852
853 const Function *F = MF->getFunction();
854 for (const auto &BB : *F) {
855 if (!BB.hasAddressTaken())
856 continue;
857 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
858 if (Sym->isDefined())
859 continue;
860 OutStreamer.AddComment("Address of block that was removed by CodeGen");
861 OutStreamer.EmitLabel(Sym);
862 }
863
864 // Emit target-specific gunk after the function body.
865 EmitFunctionBodyEnd();
866
867 // If the target wants a .size directive for the size of the function, emit
868 // it.
869 if (MAI->hasDotTypeDotSizeDirective()) {
870 // Create a symbol for the end of function, so we can get the size as
871 // difference between the function label and the temp label.
872 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
873 OutStreamer.EmitLabel(FnEndLabel);
874
875 const MCExpr *SizeExp =
876 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
877 MCSymbolRefExpr::Create(CurrentFnSymForSize,
878 OutContext),
879 OutContext);
880 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
881 }
882
883 // Emit post-function debug and/or EH information.
884 for (const HandlerInfo &HI : Handlers) {
885 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
886 HI.Handler->endFunction(MF);
887 }
888 MMI->EndFunction();
889
890 // Print out jump tables referenced by the function.
891 EmitJumpTableInfo();
892
893 OutStreamer.AddBlankLine();
894 }
895
doFinalization(Module & M)896 bool AsmPrinter::doFinalization(Module &M) {
897 // Emit global variables.
898 for (const auto &G : M.globals())
899 EmitGlobalVariable(&G);
900
901 // Emit visibility info for declarations
902 for (const Function &F : M) {
903 if (!F.isDeclaration())
904 continue;
905 GlobalValue::VisibilityTypes V = F.getVisibility();
906 if (V == GlobalValue::DefaultVisibility)
907 continue;
908
909 MCSymbol *Name = getSymbol(&F);
910 EmitVisibility(Name, V, false);
911 }
912
913 // Get information about jump-instruction tables to print.
914 JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>();
915
916 if (JITI && !JITI->getTables().empty()) {
917 unsigned Arch = Triple(getTargetTriple()).getArch();
918 bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb);
919 MCInst TrapInst;
920 TM.getSubtargetImpl()->getInstrInfo()->getTrap(TrapInst);
921 unsigned LogAlignment = llvm::Log2_64(JITI->entryByteAlignment());
922
923 // Emit the right section for these functions.
924 OutStreamer.SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
925 for (const auto &KV : JITI->getTables()) {
926 uint64_t Count = 0;
927 for (const auto &FunPair : KV.second) {
928 // Emit the function labels to make this be a function entry point.
929 MCSymbol *FunSym =
930 OutContext.GetOrCreateSymbol(FunPair.second->getName());
931 EmitAlignment(LogAlignment);
932 if (IsThumb)
933 OutStreamer.EmitThumbFunc(FunSym);
934 if (MAI->hasDotTypeDotSizeDirective())
935 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction);
936 OutStreamer.EmitLabel(FunSym);
937
938 // Emit the jump instruction to transfer control to the original
939 // function.
940 MCInst JumpToFun;
941 MCSymbol *TargetSymbol =
942 OutContext.GetOrCreateSymbol(FunPair.first->getName());
943 const MCSymbolRefExpr *TargetSymRef =
944 MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT,
945 OutContext);
946 TM.getSubtargetImpl()->getInstrInfo()->getUnconditionalBranch(
947 JumpToFun, TargetSymRef);
948 OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo());
949 ++Count;
950 }
951
952 // Emit enough padding instructions to fill up to the next power of two.
953 uint64_t Remaining = NextPowerOf2(Count) - Count;
954 for (uint64_t C = 0; C < Remaining; ++C) {
955 EmitAlignment(LogAlignment);
956 OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo());
957 }
958
959 }
960 }
961
962 // Emit module flags.
963 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
964 M.getModuleFlagsMetadata(ModuleFlags);
965 if (!ModuleFlags.empty())
966 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM);
967
968 // Make sure we wrote out everything we need.
969 OutStreamer.Flush();
970
971 // Finalize debug and EH information.
972 for (const HandlerInfo &HI : Handlers) {
973 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
974 TimePassesIsEnabled);
975 HI.Handler->endModule();
976 delete HI.Handler;
977 }
978 Handlers.clear();
979 DD = nullptr;
980
981 // If the target wants to know about weak references, print them all.
982 if (MAI->getWeakRefDirective()) {
983 // FIXME: This is not lazy, it would be nice to only print weak references
984 // to stuff that is actually used. Note that doing so would require targets
985 // to notice uses in operands (due to constant exprs etc). This should
986 // happen with the MC stuff eventually.
987
988 // Print out module-level global variables here.
989 for (const auto &G : M.globals()) {
990 if (!G.hasExternalWeakLinkage())
991 continue;
992 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference);
993 }
994
995 for (const auto &F : M) {
996 if (!F.hasExternalWeakLinkage())
997 continue;
998 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference);
999 }
1000 }
1001
1002 OutStreamer.AddBlankLine();
1003 for (const auto &Alias : M.aliases()) {
1004 MCSymbol *Name = getSymbol(&Alias);
1005
1006 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
1007 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
1008 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
1009 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
1010 else
1011 assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
1012
1013 EmitVisibility(Name, Alias.getVisibility());
1014
1015 // Emit the directives as assignments aka .set:
1016 OutStreamer.EmitAssignment(Name, lowerConstant(Alias.getAliasee()));
1017 }
1018
1019 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1020 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1021 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1022 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1023 MP->finishAssembly(M, *MI, *this);
1024
1025 // Emit llvm.ident metadata in an '.ident' directive.
1026 EmitModuleIdents(M);
1027
1028 // Emit __morestack address if needed for indirect calls.
1029 if (MMI->usesMorestackAddr()) {
1030 const MCSection *ReadOnlySection =
1031 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(),
1032 /*C=*/nullptr);
1033 OutStreamer.SwitchSection(ReadOnlySection);
1034
1035 MCSymbol *AddrSymbol =
1036 OutContext.GetOrCreateSymbol(StringRef("__morestack_addr"));
1037 OutStreamer.EmitLabel(AddrSymbol);
1038
1039 const DataLayout &DL = *TM.getSubtargetImpl()->getDataLayout();
1040 unsigned PtrSize = DL.getPointerSize(0);
1041 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1042 PtrSize);
1043 }
1044
1045 // If we don't have any trampolines, then we don't require stack memory
1046 // to be executable. Some targets have a directive to declare this.
1047 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1048 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1049 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1050 OutStreamer.SwitchSection(S);
1051
1052 // Allow the target to emit any magic that it wants at the end of the file,
1053 // after everything else has gone out.
1054 EmitEndOfAsmFile(M);
1055
1056 delete Mang; Mang = nullptr;
1057 MMI = nullptr;
1058
1059 OutStreamer.Finish();
1060 OutStreamer.reset();
1061
1062 return false;
1063 }
1064
SetupMachineFunction(MachineFunction & MF)1065 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1066 this->MF = &MF;
1067 // Get the function symbol.
1068 CurrentFnSym = getSymbol(MF.getFunction());
1069 CurrentFnSymForSize = CurrentFnSym;
1070
1071 if (isVerbose())
1072 LI = &getAnalysis<MachineLoopInfo>();
1073 }
1074
1075 namespace {
1076 // SectionCPs - Keep track the alignment, constpool entries per Section.
1077 struct SectionCPs {
1078 const MCSection *S;
1079 unsigned Alignment;
1080 SmallVector<unsigned, 4> CPEs;
SectionCPs__anond5aaca400111::SectionCPs1081 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
1082 };
1083 }
1084
1085 /// EmitConstantPool - Print to the current output stream assembly
1086 /// representations of the constants in the constant pool MCP. This is
1087 /// used to print out constants which have been "spilled to memory" by
1088 /// the code generator.
1089 ///
EmitConstantPool()1090 void AsmPrinter::EmitConstantPool() {
1091 const MachineConstantPool *MCP = MF->getConstantPool();
1092 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1093 if (CP.empty()) return;
1094
1095 // Calculate sections for constant pool entries. We collect entries to go into
1096 // the same section together to reduce amount of section switch statements.
1097 SmallVector<SectionCPs, 4> CPSections;
1098 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1099 const MachineConstantPoolEntry &CPE = CP[i];
1100 unsigned Align = CPE.getAlignment();
1101
1102 SectionKind Kind =
1103 CPE.getSectionKind(TM.getSubtargetImpl()->getDataLayout());
1104
1105 const Constant *C = nullptr;
1106 if (!CPE.isMachineConstantPoolEntry())
1107 C = CPE.Val.ConstVal;
1108
1109 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C);
1110
1111 // The number of sections are small, just do a linear search from the
1112 // last section to the first.
1113 bool Found = false;
1114 unsigned SecIdx = CPSections.size();
1115 while (SecIdx != 0) {
1116 if (CPSections[--SecIdx].S == S) {
1117 Found = true;
1118 break;
1119 }
1120 }
1121 if (!Found) {
1122 SecIdx = CPSections.size();
1123 CPSections.push_back(SectionCPs(S, Align));
1124 }
1125
1126 if (Align > CPSections[SecIdx].Alignment)
1127 CPSections[SecIdx].Alignment = Align;
1128 CPSections[SecIdx].CPEs.push_back(i);
1129 }
1130
1131 // Now print stuff into the calculated sections.
1132 const MCSection *CurSection = nullptr;
1133 unsigned Offset = 0;
1134 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1135 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1136 unsigned CPI = CPSections[i].CPEs[j];
1137 MCSymbol *Sym = GetCPISymbol(CPI);
1138 if (!Sym->isUndefined())
1139 continue;
1140
1141 if (CurSection != CPSections[i].S) {
1142 OutStreamer.SwitchSection(CPSections[i].S);
1143 EmitAlignment(Log2_32(CPSections[i].Alignment));
1144 CurSection = CPSections[i].S;
1145 Offset = 0;
1146 }
1147
1148 MachineConstantPoolEntry CPE = CP[CPI];
1149
1150 // Emit inter-object padding for alignment.
1151 unsigned AlignMask = CPE.getAlignment() - 1;
1152 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1153 OutStreamer.EmitZeros(NewOffset - Offset);
1154
1155 Type *Ty = CPE.getType();
1156 Offset = NewOffset +
1157 TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(Ty);
1158
1159 OutStreamer.EmitLabel(Sym);
1160 if (CPE.isMachineConstantPoolEntry())
1161 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1162 else
1163 EmitGlobalConstant(CPE.Val.ConstVal);
1164 }
1165 }
1166 }
1167
1168 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1169 /// by the current function to the current output stream.
1170 ///
EmitJumpTableInfo()1171 void AsmPrinter::EmitJumpTableInfo() {
1172 const DataLayout *DL = MF->getSubtarget().getDataLayout();
1173 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1174 if (!MJTI) return;
1175 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1176 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1177 if (JT.empty()) return;
1178
1179 // Pick the directive to use to print the jump table entries, and switch to
1180 // the appropriate section.
1181 const Function *F = MF->getFunction();
1182 bool JTInDiffSection = false;
1183 if (// In PIC mode, we need to emit the jump table to the same section as the
1184 // function body itself, otherwise the label differences won't make sense.
1185 // FIXME: Need a better predicate for this: what about custom entries?
1186 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1187 // We should also do if the section name is NULL or function is declared
1188 // in discardable section
1189 // FIXME: this isn't the right predicate, should be based on the MCSection
1190 // for the function.
1191 F->isWeakForLinker()) {
1192 OutStreamer.SwitchSection(
1193 getObjFileLowering().SectionForGlobal(F, *Mang, TM));
1194 } else {
1195 // Otherwise, drop it in the readonly section.
1196 const MCSection *ReadOnlySection =
1197 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(),
1198 /*C=*/nullptr);
1199 OutStreamer.SwitchSection(ReadOnlySection);
1200 JTInDiffSection = true;
1201 }
1202
1203 EmitAlignment(Log2_32(
1204 MJTI->getEntryAlignment(*TM.getSubtargetImpl()->getDataLayout())));
1205
1206 // Jump tables in code sections are marked with a data_region directive
1207 // where that's supported.
1208 if (!JTInDiffSection)
1209 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1210
1211 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1212 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1213
1214 // If this jump table was deleted, ignore it.
1215 if (JTBBs.empty()) continue;
1216
1217 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1218 /// emit a .set directive for each unique entry.
1219 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1220 MAI->doesSetDirectiveSuppressesReloc()) {
1221 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1222 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
1223 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1224 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1225 const MachineBasicBlock *MBB = JTBBs[ii];
1226 if (!EmittedSets.insert(MBB).second)
1227 continue;
1228
1229 // .set LJTSet, LBB32-base
1230 const MCExpr *LHS =
1231 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1232 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1233 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1234 }
1235 }
1236
1237 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1238 // before each jump table. The first label is never referenced, but tells
1239 // the assembler and linker the extents of the jump table object. The
1240 // second label is actually referenced by the code.
1241 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix())
1242 // FIXME: This doesn't have to have any specific name, just any randomly
1243 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1244 OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1245
1246 OutStreamer.EmitLabel(GetJTISymbol(JTI));
1247
1248 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1249 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1250 }
1251 if (!JTInDiffSection)
1252 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1253 }
1254
1255 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1256 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1257 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1258 const MachineBasicBlock *MBB,
1259 unsigned UID) const {
1260 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1261 const MCExpr *Value = nullptr;
1262 switch (MJTI->getEntryKind()) {
1263 case MachineJumpTableInfo::EK_Inline:
1264 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1265 case MachineJumpTableInfo::EK_Custom32:
1266 Value =
1267 TM.getSubtargetImpl()->getTargetLowering()->LowerCustomJumpTableEntry(
1268 MJTI, MBB, UID, OutContext);
1269 break;
1270 case MachineJumpTableInfo::EK_BlockAddress:
1271 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1272 // .word LBB123
1273 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1274 break;
1275 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1276 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1277 // with a relocation as gp-relative, e.g.:
1278 // .gprel32 LBB123
1279 MCSymbol *MBBSym = MBB->getSymbol();
1280 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1281 return;
1282 }
1283
1284 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1285 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1286 // with a relocation as gp-relative, e.g.:
1287 // .gpdword LBB123
1288 MCSymbol *MBBSym = MBB->getSymbol();
1289 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1290 return;
1291 }
1292
1293 case MachineJumpTableInfo::EK_LabelDifference32: {
1294 // Each entry is the address of the block minus the address of the jump
1295 // table. This is used for PIC jump tables where gprel32 is not supported.
1296 // e.g.:
1297 // .word LBB123 - LJTI1_2
1298 // If the .set directive avoids relocations, this is emitted as:
1299 // .set L4_5_set_123, LBB123 - LJTI1_2
1300 // .word L4_5_set_123
1301 if (MAI->doesSetDirectiveSuppressesReloc()) {
1302 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1303 OutContext);
1304 break;
1305 }
1306 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1307 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
1308 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1309 Value = MCBinaryExpr::CreateSub(Value, Base, OutContext);
1310 break;
1311 }
1312 }
1313
1314 assert(Value && "Unknown entry kind!");
1315
1316 unsigned EntrySize =
1317 MJTI->getEntrySize(*TM.getSubtargetImpl()->getDataLayout());
1318 OutStreamer.EmitValue(Value, EntrySize);
1319 }
1320
1321
1322 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1323 /// special global used by LLVM. If so, emit it and return true, otherwise
1324 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1325 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1326 if (GV->getName() == "llvm.used") {
1327 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1328 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1329 return true;
1330 }
1331
1332 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1333 if (StringRef(GV->getSection()) == "llvm.metadata" ||
1334 GV->hasAvailableExternallyLinkage())
1335 return true;
1336
1337 if (!GV->hasAppendingLinkage()) return false;
1338
1339 assert(GV->hasInitializer() && "Not a special LLVM global!");
1340
1341 if (GV->getName() == "llvm.global_ctors") {
1342 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1343
1344 if (TM.getRelocationModel() == Reloc::Static &&
1345 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1346 StringRef Sym(".constructors_used");
1347 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1348 MCSA_Reference);
1349 }
1350 return true;
1351 }
1352
1353 if (GV->getName() == "llvm.global_dtors") {
1354 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1355
1356 if (TM.getRelocationModel() == Reloc::Static &&
1357 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1358 StringRef Sym(".destructors_used");
1359 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1360 MCSA_Reference);
1361 }
1362 return true;
1363 }
1364
1365 return false;
1366 }
1367
1368 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1369 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1370 /// is true, as being used with this directive.
EmitLLVMUsedList(const ConstantArray * InitList)1371 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1372 // Should be an array of 'i8*'.
1373 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1374 const GlobalValue *GV =
1375 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1376 if (GV)
1377 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1378 }
1379 }
1380
1381 namespace {
1382 struct Structor {
Structor__anond5aaca400211::Structor1383 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
1384 int Priority;
1385 llvm::Constant *Func;
1386 llvm::GlobalValue *ComdatKey;
1387 };
1388 } // end namespace
1389
1390 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1391 /// priority.
EmitXXStructorList(const Constant * List,bool isCtor)1392 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1393 // Should be an array of '{ int, void ()* }' structs. The first value is the
1394 // init priority.
1395 if (!isa<ConstantArray>(List)) return;
1396
1397 // Sanity check the structors list.
1398 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1399 if (!InitList) return; // Not an array!
1400 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1401 // FIXME: Only allow the 3-field form in LLVM 4.0.
1402 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1403 return; // Not an array of two or three elements!
1404 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1405 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1406 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1407 return; // Not (int, ptr, ptr).
1408
1409 // Gather the structors in a form that's convenient for sorting by priority.
1410 SmallVector<Structor, 8> Structors;
1411 for (Value *O : InitList->operands()) {
1412 ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1413 if (!CS) continue; // Malformed.
1414 if (CS->getOperand(1)->isNullValue())
1415 break; // Found a null terminator, skip the rest.
1416 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1417 if (!Priority) continue; // Malformed.
1418 Structors.push_back(Structor());
1419 Structor &S = Structors.back();
1420 S.Priority = Priority->getLimitedValue(65535);
1421 S.Func = CS->getOperand(1);
1422 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1423 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1424 }
1425
1426 // Emit the function pointers in the target-specific order
1427 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
1428 unsigned Align = Log2_32(DL->getPointerPrefAlignment());
1429 std::stable_sort(Structors.begin(), Structors.end(),
1430 [](const Structor &L,
1431 const Structor &R) { return L.Priority < R.Priority; });
1432 for (Structor &S : Structors) {
1433 const TargetLoweringObjectFile &Obj = getObjFileLowering();
1434 const MCSymbol *KeySym = nullptr;
1435 if (GlobalValue *GV = S.ComdatKey) {
1436 if (GV->hasAvailableExternallyLinkage())
1437 // If the associated variable is available_externally, some other TU
1438 // will provide its dynamic initializer.
1439 continue;
1440
1441 KeySym = getSymbol(GV);
1442 }
1443 const MCSection *OutputSection =
1444 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1445 : Obj.getStaticDtorSection(S.Priority, KeySym));
1446 OutStreamer.SwitchSection(OutputSection);
1447 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1448 EmitAlignment(Align);
1449 EmitXXStructor(S.Func);
1450 }
1451 }
1452
EmitModuleIdents(Module & M)1453 void AsmPrinter::EmitModuleIdents(Module &M) {
1454 if (!MAI->hasIdentDirective())
1455 return;
1456
1457 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1458 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1459 const MDNode *N = NMD->getOperand(i);
1460 assert(N->getNumOperands() == 1 &&
1461 "llvm.ident metadata entry can have only one operand");
1462 const MDString *S = cast<MDString>(N->getOperand(0));
1463 OutStreamer.EmitIdent(S->getString());
1464 }
1465 }
1466 }
1467
1468 //===--------------------------------------------------------------------===//
1469 // Emission and print routines
1470 //
1471
1472 /// EmitInt8 - Emit a byte directive and value.
1473 ///
EmitInt8(int Value) const1474 void AsmPrinter::EmitInt8(int Value) const {
1475 OutStreamer.EmitIntValue(Value, 1);
1476 }
1477
1478 /// EmitInt16 - Emit a short directive and value.
1479 ///
EmitInt16(int Value) const1480 void AsmPrinter::EmitInt16(int Value) const {
1481 OutStreamer.EmitIntValue(Value, 2);
1482 }
1483
1484 /// EmitInt32 - Emit a long directive and value.
1485 ///
EmitInt32(int Value) const1486 void AsmPrinter::EmitInt32(int Value) const {
1487 OutStreamer.EmitIntValue(Value, 4);
1488 }
1489
1490 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1491 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1492 /// .set if it avoids relocations.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const1493 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1494 unsigned Size) const {
1495 // Get the Hi-Lo expression.
1496 const MCExpr *Diff =
1497 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1498 MCSymbolRefExpr::Create(Lo, OutContext),
1499 OutContext);
1500
1501 if (!MAI->doesSetDirectiveSuppressesReloc()) {
1502 OutStreamer.EmitValue(Diff, Size);
1503 return;
1504 }
1505
1506 // Otherwise, emit with .set (aka assignment).
1507 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1508 OutStreamer.EmitAssignment(SetLabel, Diff);
1509 OutStreamer.EmitSymbolValue(SetLabel, Size);
1510 }
1511
1512 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1513 /// where the size in bytes of the directive is specified by Size and Label
1514 /// specifies the label. This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size,bool IsSectionRelative) const1515 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1516 unsigned Size,
1517 bool IsSectionRelative) const {
1518 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1519 OutStreamer.EmitCOFFSecRel32(Label);
1520 return;
1521 }
1522
1523 // Emit Label+Offset (or just Label if Offset is zero)
1524 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1525 if (Offset)
1526 Expr = MCBinaryExpr::CreateAdd(
1527 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext);
1528
1529 OutStreamer.EmitValue(Expr, Size);
1530 }
1531
1532 //===----------------------------------------------------------------------===//
1533
1534 // EmitAlignment - Emit an alignment directive to the specified power of
1535 // two boundary. For example, if you pass in 3 here, you will get an 8
1536 // byte alignment. If a global value is specified, and if that global has
1537 // an explicit alignment requested, it will override the alignment request
1538 // if required for correctness.
1539 //
EmitAlignment(unsigned NumBits,const GlobalObject * GV) const1540 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1541 if (GV)
1542 NumBits = getGVAlignmentLog2(GV, *TM.getSubtargetImpl()->getDataLayout(),
1543 NumBits);
1544
1545 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1546
1547 assert(NumBits <
1548 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1549 "undefined behavior");
1550 if (getCurrentSection()->getKind().isText())
1551 OutStreamer.EmitCodeAlignment(1u << NumBits);
1552 else
1553 OutStreamer.EmitValueToAlignment(1u << NumBits);
1554 }
1555
1556 //===----------------------------------------------------------------------===//
1557 // Constant emission.
1558 //===----------------------------------------------------------------------===//
1559
lowerConstant(const Constant * CV)1560 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1561 MCContext &Ctx = OutContext;
1562
1563 if (CV->isNullValue() || isa<UndefValue>(CV))
1564 return MCConstantExpr::Create(0, Ctx);
1565
1566 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1567 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1568
1569 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1570 return MCSymbolRefExpr::Create(getSymbol(GV), Ctx);
1571
1572 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1573 return MCSymbolRefExpr::Create(GetBlockAddressSymbol(BA), Ctx);
1574
1575 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1576 if (!CE) {
1577 llvm_unreachable("Unknown constant value to lower!");
1578 }
1579
1580 if (const MCExpr *RelocExpr
1581 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM))
1582 return RelocExpr;
1583
1584 switch (CE->getOpcode()) {
1585 default:
1586 // If the code isn't optimized, there may be outstanding folding
1587 // opportunities. Attempt to fold the expression using DataLayout as a
1588 // last resort before giving up.
1589 if (Constant *C = ConstantFoldConstantExpression(
1590 CE, TM.getSubtargetImpl()->getDataLayout()))
1591 if (C != CE)
1592 return lowerConstant(C);
1593
1594 // Otherwise report the problem to the user.
1595 {
1596 std::string S;
1597 raw_string_ostream OS(S);
1598 OS << "Unsupported expression in static initializer: ";
1599 CE->printAsOperand(OS, /*PrintType=*/false,
1600 !MF ? nullptr : MF->getFunction()->getParent());
1601 report_fatal_error(OS.str());
1602 }
1603 case Instruction::GetElementPtr: {
1604 const DataLayout &DL = *TM.getSubtargetImpl()->getDataLayout();
1605 // Generate a symbolic expression for the byte address
1606 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
1607 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
1608
1609 const MCExpr *Base = lowerConstant(CE->getOperand(0));
1610 if (!OffsetAI)
1611 return Base;
1612
1613 int64_t Offset = OffsetAI.getSExtValue();
1614 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1615 Ctx);
1616 }
1617
1618 case Instruction::Trunc:
1619 // We emit the value and depend on the assembler to truncate the generated
1620 // expression properly. This is important for differences between
1621 // blockaddress labels. Since the two labels are in the same function, it
1622 // is reasonable to treat their delta as a 32-bit value.
1623 // FALL THROUGH.
1624 case Instruction::BitCast:
1625 return lowerConstant(CE->getOperand(0));
1626
1627 case Instruction::IntToPtr: {
1628 const DataLayout &DL = *TM.getSubtargetImpl()->getDataLayout();
1629 // Handle casts to pointers by changing them into casts to the appropriate
1630 // integer type. This promotes constant folding and simplifies this code.
1631 Constant *Op = CE->getOperand(0);
1632 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1633 false/*ZExt*/);
1634 return lowerConstant(Op);
1635 }
1636
1637 case Instruction::PtrToInt: {
1638 const DataLayout &DL = *TM.getSubtargetImpl()->getDataLayout();
1639 // Support only foldable casts to/from pointers that can be eliminated by
1640 // changing the pointer to the appropriately sized integer type.
1641 Constant *Op = CE->getOperand(0);
1642 Type *Ty = CE->getType();
1643
1644 const MCExpr *OpExpr = lowerConstant(Op);
1645
1646 // We can emit the pointer value into this slot if the slot is an
1647 // integer slot equal to the size of the pointer.
1648 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1649 return OpExpr;
1650
1651 // Otherwise the pointer is smaller than the resultant integer, mask off
1652 // the high bits so we are sure to get a proper truncation if the input is
1653 // a constant expr.
1654 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1655 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1656 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1657 }
1658
1659 // The MC library also has a right-shift operator, but it isn't consistently
1660 // signed or unsigned between different targets.
1661 case Instruction::Add:
1662 case Instruction::Sub:
1663 case Instruction::Mul:
1664 case Instruction::SDiv:
1665 case Instruction::SRem:
1666 case Instruction::Shl:
1667 case Instruction::And:
1668 case Instruction::Or:
1669 case Instruction::Xor: {
1670 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
1671 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
1672 switch (CE->getOpcode()) {
1673 default: llvm_unreachable("Unknown binary operator constant cast expr");
1674 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1675 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1676 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1677 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1678 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1679 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1680 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1681 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1682 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1683 }
1684 }
1685 }
1686 }
1687
1688 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1689
1690 /// isRepeatedByteSequence - Determine whether the given value is
1691 /// composed of a repeated sequence of identical bytes and return the
1692 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)1693 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1694 StringRef Data = V->getRawDataValues();
1695 assert(!Data.empty() && "Empty aggregates should be CAZ node");
1696 char C = Data[0];
1697 for (unsigned i = 1, e = Data.size(); i != e; ++i)
1698 if (Data[i] != C) return -1;
1699 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1700 }
1701
1702
1703 /// isRepeatedByteSequence - Determine whether the given value is
1704 /// composed of a repeated sequence of identical bytes and return the
1705 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,TargetMachine & TM)1706 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1707
1708 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1709 if (CI->getBitWidth() > 64) return -1;
1710
1711 uint64_t Size =
1712 TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(V->getType());
1713 uint64_t Value = CI->getZExtValue();
1714
1715 // Make sure the constant is at least 8 bits long and has a power
1716 // of 2 bit width. This guarantees the constant bit width is
1717 // always a multiple of 8 bits, avoiding issues with padding out
1718 // to Size and other such corner cases.
1719 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1720
1721 uint8_t Byte = static_cast<uint8_t>(Value);
1722
1723 for (unsigned i = 1; i < Size; ++i) {
1724 Value >>= 8;
1725 if (static_cast<uint8_t>(Value) != Byte) return -1;
1726 }
1727 return Byte;
1728 }
1729 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1730 // Make sure all array elements are sequences of the same repeated
1731 // byte.
1732 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1733 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1734 if (Byte == -1) return -1;
1735
1736 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1737 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1738 if (ThisByte == -1) return -1;
1739 if (Byte != ThisByte) return -1;
1740 }
1741 return Byte;
1742 }
1743
1744 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1745 return isRepeatedByteSequence(CDS);
1746
1747 return -1;
1748 }
1749
emitGlobalConstantDataSequential(const ConstantDataSequential * CDS,AsmPrinter & AP)1750 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1751 AsmPrinter &AP){
1752
1753 // See if we can aggregate this into a .fill, if so, emit it as such.
1754 int Value = isRepeatedByteSequence(CDS, AP.TM);
1755 if (Value != -1) {
1756 uint64_t Bytes =
1757 AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(
1758 CDS->getType());
1759 // Don't emit a 1-byte object as a .fill.
1760 if (Bytes > 1)
1761 return AP.OutStreamer.EmitFill(Bytes, Value);
1762 }
1763
1764 // If this can be emitted with .ascii/.asciz, emit it as such.
1765 if (CDS->isString())
1766 return AP.OutStreamer.EmitBytes(CDS->getAsString());
1767
1768 // Otherwise, emit the values in successive locations.
1769 unsigned ElementByteSize = CDS->getElementByteSize();
1770 if (isa<IntegerType>(CDS->getElementType())) {
1771 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1772 if (AP.isVerbose())
1773 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1774 CDS->getElementAsInteger(i));
1775 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1776 ElementByteSize);
1777 }
1778 } else if (ElementByteSize == 4) {
1779 // FP Constants are printed as integer constants to avoid losing
1780 // precision.
1781 assert(CDS->getElementType()->isFloatTy());
1782 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1783 union {
1784 float F;
1785 uint32_t I;
1786 };
1787
1788 F = CDS->getElementAsFloat(i);
1789 if (AP.isVerbose())
1790 AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1791 AP.OutStreamer.EmitIntValue(I, 4);
1792 }
1793 } else {
1794 assert(CDS->getElementType()->isDoubleTy());
1795 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1796 union {
1797 double F;
1798 uint64_t I;
1799 };
1800
1801 F = CDS->getElementAsDouble(i);
1802 if (AP.isVerbose())
1803 AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1804 AP.OutStreamer.EmitIntValue(I, 8);
1805 }
1806 }
1807
1808 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout();
1809 unsigned Size = DL.getTypeAllocSize(CDS->getType());
1810 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1811 CDS->getNumElements();
1812 if (unsigned Padding = Size - EmittedSize)
1813 AP.OutStreamer.EmitZeros(Padding);
1814
1815 }
1816
emitGlobalConstantArray(const ConstantArray * CA,AsmPrinter & AP)1817 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1818 // See if we can aggregate some values. Make sure it can be
1819 // represented as a series of bytes of the constant value.
1820 int Value = isRepeatedByteSequence(CA, AP.TM);
1821
1822 if (Value != -1) {
1823 uint64_t Bytes =
1824 AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(
1825 CA->getType());
1826 AP.OutStreamer.EmitFill(Bytes, Value);
1827 }
1828 else {
1829 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1830 emitGlobalConstantImpl(CA->getOperand(i), AP);
1831 }
1832 }
1833
emitGlobalConstantVector(const ConstantVector * CV,AsmPrinter & AP)1834 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1835 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1836 emitGlobalConstantImpl(CV->getOperand(i), AP);
1837
1838 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout();
1839 unsigned Size = DL.getTypeAllocSize(CV->getType());
1840 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1841 CV->getType()->getNumElements();
1842 if (unsigned Padding = Size - EmittedSize)
1843 AP.OutStreamer.EmitZeros(Padding);
1844 }
1845
emitGlobalConstantStruct(const ConstantStruct * CS,AsmPrinter & AP)1846 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1847 // Print the fields in successive locations. Pad to align if needed!
1848 const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout();
1849 unsigned Size = DL->getTypeAllocSize(CS->getType());
1850 const StructLayout *Layout = DL->getStructLayout(CS->getType());
1851 uint64_t SizeSoFar = 0;
1852 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1853 const Constant *Field = CS->getOperand(i);
1854
1855 // Check if padding is needed and insert one or more 0s.
1856 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
1857 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1858 - Layout->getElementOffset(i)) - FieldSize;
1859 SizeSoFar += FieldSize + PadSize;
1860
1861 // Now print the actual field value.
1862 emitGlobalConstantImpl(Field, AP);
1863
1864 // Insert padding - this may include padding to increase the size of the
1865 // current field up to the ABI size (if the struct is not packed) as well
1866 // as padding to ensure that the next field starts at the right offset.
1867 AP.OutStreamer.EmitZeros(PadSize);
1868 }
1869 assert(SizeSoFar == Layout->getSizeInBytes() &&
1870 "Layout of constant struct may be incorrect!");
1871 }
1872
emitGlobalConstantFP(const ConstantFP * CFP,AsmPrinter & AP)1873 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1874 APInt API = CFP->getValueAPF().bitcastToAPInt();
1875
1876 // First print a comment with what we think the original floating-point value
1877 // should have been.
1878 if (AP.isVerbose()) {
1879 SmallString<8> StrVal;
1880 CFP->getValueAPF().toString(StrVal);
1881
1882 if (CFP->getType())
1883 CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1884 else
1885 AP.OutStreamer.GetCommentOS() << "Printing <null> Type";
1886 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1887 }
1888
1889 // Now iterate through the APInt chunks, emitting them in endian-correct
1890 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1891 // floats).
1892 unsigned NumBytes = API.getBitWidth() / 8;
1893 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1894 const uint64_t *p = API.getRawData();
1895
1896 // PPC's long double has odd notions of endianness compared to how LLVM
1897 // handles it: p[0] goes first for *big* endian on PPC.
1898 if (AP.TM.getSubtargetImpl()->getDataLayout()->isBigEndian() &&
1899 !CFP->getType()->isPPC_FP128Ty()) {
1900 int Chunk = API.getNumWords() - 1;
1901
1902 if (TrailingBytes)
1903 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1904
1905 for (; Chunk >= 0; --Chunk)
1906 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1907 } else {
1908 unsigned Chunk;
1909 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1910 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1911
1912 if (TrailingBytes)
1913 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1914 }
1915
1916 // Emit the tail padding for the long double.
1917 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout();
1918 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
1919 DL.getTypeStoreSize(CFP->getType()));
1920 }
1921
emitGlobalConstantLargeInt(const ConstantInt * CI,AsmPrinter & AP)1922 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1923 const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout();
1924 unsigned BitWidth = CI->getBitWidth();
1925
1926 // Copy the value as we may massage the layout for constants whose bit width
1927 // is not a multiple of 64-bits.
1928 APInt Realigned(CI->getValue());
1929 uint64_t ExtraBits = 0;
1930 unsigned ExtraBitsSize = BitWidth & 63;
1931
1932 if (ExtraBitsSize) {
1933 // The bit width of the data is not a multiple of 64-bits.
1934 // The extra bits are expected to be at the end of the chunk of the memory.
1935 // Little endian:
1936 // * Nothing to be done, just record the extra bits to emit.
1937 // Big endian:
1938 // * Record the extra bits to emit.
1939 // * Realign the raw data to emit the chunks of 64-bits.
1940 if (DL->isBigEndian()) {
1941 // Basically the structure of the raw data is a chunk of 64-bits cells:
1942 // 0 1 BitWidth / 64
1943 // [chunk1][chunk2] ... [chunkN].
1944 // The most significant chunk is chunkN and it should be emitted first.
1945 // However, due to the alignment issue chunkN contains useless bits.
1946 // Realign the chunks so that they contain only useless information:
1947 // ExtraBits 0 1 (BitWidth / 64) - 1
1948 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1949 ExtraBits = Realigned.getRawData()[0] &
1950 (((uint64_t)-1) >> (64 - ExtraBitsSize));
1951 Realigned = Realigned.lshr(ExtraBitsSize);
1952 } else
1953 ExtraBits = Realigned.getRawData()[BitWidth / 64];
1954 }
1955
1956 // We don't expect assemblers to support integer data directives
1957 // for more than 64 bits, so we emit the data in at most 64-bit
1958 // quantities at a time.
1959 const uint64_t *RawData = Realigned.getRawData();
1960 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1961 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1962 AP.OutStreamer.EmitIntValue(Val, 8);
1963 }
1964
1965 if (ExtraBitsSize) {
1966 // Emit the extra bits after the 64-bits chunks.
1967
1968 // Emit a directive that fills the expected size.
1969 uint64_t Size = AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(
1970 CI->getType());
1971 Size -= (BitWidth / 64) * 8;
1972 assert(Size && Size * 8 >= ExtraBitsSize &&
1973 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1974 == ExtraBits && "Directive too small for extra bits.");
1975 AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1976 }
1977 }
1978
emitGlobalConstantImpl(const Constant * CV,AsmPrinter & AP)1979 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1980 const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout();
1981 uint64_t Size = DL->getTypeAllocSize(CV->getType());
1982 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1983 return AP.OutStreamer.EmitZeros(Size);
1984
1985 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1986 switch (Size) {
1987 case 1:
1988 case 2:
1989 case 4:
1990 case 8:
1991 if (AP.isVerbose())
1992 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1993 CI->getZExtValue());
1994 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1995 return;
1996 default:
1997 emitGlobalConstantLargeInt(CI, AP);
1998 return;
1999 }
2000 }
2001
2002 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2003 return emitGlobalConstantFP(CFP, AP);
2004
2005 if (isa<ConstantPointerNull>(CV)) {
2006 AP.OutStreamer.EmitIntValue(0, Size);
2007 return;
2008 }
2009
2010 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2011 return emitGlobalConstantDataSequential(CDS, AP);
2012
2013 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2014 return emitGlobalConstantArray(CVA, AP);
2015
2016 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2017 return emitGlobalConstantStruct(CVS, AP);
2018
2019 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2020 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2021 // vectors).
2022 if (CE->getOpcode() == Instruction::BitCast)
2023 return emitGlobalConstantImpl(CE->getOperand(0), AP);
2024
2025 if (Size > 8) {
2026 // If the constant expression's size is greater than 64-bits, then we have
2027 // to emit the value in chunks. Try to constant fold the value and emit it
2028 // that way.
2029 Constant *New = ConstantFoldConstantExpression(CE, DL);
2030 if (New && New != CE)
2031 return emitGlobalConstantImpl(New, AP);
2032 }
2033 }
2034
2035 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2036 return emitGlobalConstantVector(V, AP);
2037
2038 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2039 // thread the streamer with EmitValue.
2040 AP.OutStreamer.EmitValue(AP.lowerConstant(CV), Size);
2041 }
2042
2043 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const Constant * CV)2044 void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
2045 uint64_t Size =
2046 TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(CV->getType());
2047 if (Size)
2048 emitGlobalConstantImpl(CV, *this);
2049 else if (MAI->hasSubsectionsViaSymbols()) {
2050 // If the global has zero size, emit a single byte so that two labels don't
2051 // look like they are at the same location.
2052 OutStreamer.EmitIntValue(0, 1);
2053 }
2054 }
2055
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)2056 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2057 // Target doesn't support this yet!
2058 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2059 }
2060
printOffset(int64_t Offset,raw_ostream & OS) const2061 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2062 if (Offset > 0)
2063 OS << '+' << Offset;
2064 else if (Offset < 0)
2065 OS << Offset;
2066 }
2067
2068 //===----------------------------------------------------------------------===//
2069 // Symbol Lowering Routines.
2070 //===----------------------------------------------------------------------===//
2071
2072 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
2073 /// temporary label with the specified stem and unique ID.
GetTempSymbol(Twine Name,unsigned ID) const2074 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const {
2075 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
2076 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) +
2077 Name + Twine(ID));
2078 }
2079
2080 /// GetTempSymbol - Return an assembler temporary label with the specified
2081 /// stem.
GetTempSymbol(Twine Name) const2082 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const {
2083 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
2084 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
2085 Name);
2086 }
2087
2088
GetBlockAddressSymbol(const BlockAddress * BA) const2089 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2090 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2091 }
2092
GetBlockAddressSymbol(const BasicBlock * BB) const2093 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2094 return MMI->getAddrLabelSymbol(BB);
2095 }
2096
2097 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const2098 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2099 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
2100 return OutContext.GetOrCreateSymbol
2101 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
2102 + "_" + Twine(CPID));
2103 }
2104
2105 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const2106 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2107 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2108 }
2109
2110 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2111 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const2112 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2113 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout();
2114 return OutContext.GetOrCreateSymbol
2115 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
2116 Twine(UID) + "_set_" + Twine(MBBID));
2117 }
2118
getSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix) const2119 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2120 StringRef Suffix) const {
2121 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
2122 TM);
2123 }
2124
2125 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2126 /// ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const2127 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2128 SmallString<60> NameStr;
2129 Mang->getNameWithPrefix(NameStr, Sym);
2130 return OutContext.GetOrCreateSymbol(NameStr.str());
2131 }
2132
2133
2134
2135 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2136 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2137 unsigned FunctionNumber) {
2138 if (!Loop) return;
2139 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2140 OS.indent(Loop->getLoopDepth()*2)
2141 << "Parent Loop BB" << FunctionNumber << "_"
2142 << Loop->getHeader()->getNumber()
2143 << " Depth=" << Loop->getLoopDepth() << '\n';
2144 }
2145
2146
2147 /// PrintChildLoopComment - Print comments about child loops within
2148 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2149 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2150 unsigned FunctionNumber) {
2151 // Add child loop information
2152 for (const MachineLoop *CL : *Loop) {
2153 OS.indent(CL->getLoopDepth()*2)
2154 << "Child Loop BB" << FunctionNumber << "_"
2155 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2156 << '\n';
2157 PrintChildLoopComment(OS, CL, FunctionNumber);
2158 }
2159 }
2160
2161 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
emitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)2162 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2163 const MachineLoopInfo *LI,
2164 const AsmPrinter &AP) {
2165 // Add loop depth information
2166 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2167 if (!Loop) return;
2168
2169 MachineBasicBlock *Header = Loop->getHeader();
2170 assert(Header && "No header for loop");
2171
2172 // If this block is not a loop header, just print out what is the loop header
2173 // and return.
2174 if (Header != &MBB) {
2175 AP.OutStreamer.AddComment(" in Loop: Header=BB" +
2176 Twine(AP.getFunctionNumber())+"_" +
2177 Twine(Loop->getHeader()->getNumber())+
2178 " Depth="+Twine(Loop->getLoopDepth()));
2179 return;
2180 }
2181
2182 // Otherwise, it is a loop header. Print out information about child and
2183 // parent loops.
2184 raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2185
2186 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2187
2188 OS << "=>";
2189 OS.indent(Loop->getLoopDepth()*2-2);
2190
2191 OS << "This ";
2192 if (Loop->empty())
2193 OS << "Inner ";
2194 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2195
2196 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2197 }
2198
2199
2200 /// EmitBasicBlockStart - This method prints the label for the specified
2201 /// MachineBasicBlock, an alignment (if present) and a comment describing
2202 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock & MBB) const2203 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2204 // Emit an alignment directive for this block, if needed.
2205 if (unsigned Align = MBB.getAlignment())
2206 EmitAlignment(Align);
2207
2208 // If the block has its address taken, emit any labels that were used to
2209 // reference the block. It is possible that there is more than one label
2210 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2211 // the references were generated.
2212 if (MBB.hasAddressTaken()) {
2213 const BasicBlock *BB = MBB.getBasicBlock();
2214 if (isVerbose())
2215 OutStreamer.AddComment("Block address taken");
2216
2217 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB);
2218 for (auto *Sym : Symbols)
2219 OutStreamer.EmitLabel(Sym);
2220 }
2221
2222 // Print some verbose block comments.
2223 if (isVerbose()) {
2224 if (const BasicBlock *BB = MBB.getBasicBlock())
2225 if (BB->hasName())
2226 OutStreamer.AddComment("%" + BB->getName());
2227 emitBasicBlockLoopComments(MBB, LI, *this);
2228 }
2229
2230 // Print the main label for the block.
2231 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) {
2232 if (isVerbose()) {
2233 // NOTE: Want this comment at start of line, don't emit with AddComment.
2234 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2235 }
2236 } else {
2237 OutStreamer.EmitLabel(MBB.getSymbol());
2238 }
2239 }
2240
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const2241 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2242 bool IsDefinition) const {
2243 MCSymbolAttr Attr = MCSA_Invalid;
2244
2245 switch (Visibility) {
2246 default: break;
2247 case GlobalValue::HiddenVisibility:
2248 if (IsDefinition)
2249 Attr = MAI->getHiddenVisibilityAttr();
2250 else
2251 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2252 break;
2253 case GlobalValue::ProtectedVisibility:
2254 Attr = MAI->getProtectedVisibilityAttr();
2255 break;
2256 }
2257
2258 if (Attr != MCSA_Invalid)
2259 OutStreamer.EmitSymbolAttribute(Sym, Attr);
2260 }
2261
2262 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2263 /// exactly one predecessor and the control transfer mechanism between
2264 /// the predecessor and this block is a fall-through.
2265 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const2266 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2267 // If this is a landing pad, it isn't a fall through. If it has no preds,
2268 // then nothing falls through to it.
2269 if (MBB->isLandingPad() || MBB->pred_empty())
2270 return false;
2271
2272 // If there isn't exactly one predecessor, it can't be a fall through.
2273 if (MBB->pred_size() > 1)
2274 return false;
2275
2276 // The predecessor has to be immediately before this block.
2277 MachineBasicBlock *Pred = *MBB->pred_begin();
2278 if (!Pred->isLayoutSuccessor(MBB))
2279 return false;
2280
2281 // If the block is completely empty, then it definitely does fall through.
2282 if (Pred->empty())
2283 return true;
2284
2285 // Check the terminators in the previous blocks
2286 for (const auto &MI : Pred->terminators()) {
2287 // If it is not a simple branch, we are in a table somewhere.
2288 if (!MI.isBranch() || MI.isIndirectBranch())
2289 return false;
2290
2291 // If we are the operands of one of the branches, this is not a fall
2292 // through. Note that targets with delay slots will usually bundle
2293 // terminators with the delay slot instruction.
2294 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
2295 if (OP->isJTI())
2296 return false;
2297 if (OP->isMBB() && OP->getMBB() == MBB)
2298 return false;
2299 }
2300 }
2301
2302 return true;
2303 }
2304
2305
2306
GetOrCreateGCPrinter(GCStrategy & S)2307 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2308 if (!S.usesMetadata())
2309 return nullptr;
2310
2311 assert(!S.useStatepoints() && "statepoints do not currently support custom"
2312 " stackmap formats, please see the documentation for a description of"
2313 " the default format. If you really need a custom serialized format,"
2314 " please file a bug");
2315
2316 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2317 gcp_map_type::iterator GCPI = GCMap.find(&S);
2318 if (GCPI != GCMap.end())
2319 return GCPI->second.get();
2320
2321 const char *Name = S.getName().c_str();
2322
2323 for (GCMetadataPrinterRegistry::iterator
2324 I = GCMetadataPrinterRegistry::begin(),
2325 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2326 if (strcmp(Name, I->getName()) == 0) {
2327 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2328 GMP->S = &S;
2329 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2330 return IterBool.first->second.get();
2331 }
2332
2333 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2334 }
2335
2336 /// Pin vtable to this file.
~AsmPrinterHandler()2337 AsmPrinterHandler::~AsmPrinterHandler() {}
2338