xref: /llvm-project/polly/lib/Transform/ZoneAlgo.cpp (revision 601d7eab0665ba298d81952da11593124fd893a0)
1 //===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Derive information about array elements between statements ("Zones").
10 //
11 // The algorithms here work on the scatter space - the image space of the
12 // schedule returned by Scop::getSchedule(). We call an element in that space a
13 // "timepoint". Timepoints are lexicographically ordered such that we can
14 // defined ranges in the scatter space. We use two flavors of such ranges:
15 // Timepoint sets and zones. A timepoint set is simply a subset of the scatter
16 // space and is directly stored as isl_set.
17 //
18 // Zones are used to describe the space between timepoints as open sets, i.e.
19 // they do not contain the extrema. Using isl rational sets to express these
20 // would be overkill. We also cannot store them as the integer timepoints they
21 // contain; the (nonempty) zone between 1 and 2 would be empty and
22 // indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
23 // the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
24 // coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
25 // Instead, we store the "half-open" integer extrema, including the lower bound,
26 // but excluding the upper bound. Examples:
27 //
28 // * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
29 //   integer points 1 and 2, but not 0 or 3)
30 //
31 // * { [1] } represents the zone ]0,1[
32 //
33 // * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
34 //
35 // Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
36 // speaking the integer points never belong to the zone. However, depending an
37 // the interpretation, one might want to include them. Part of the
38 // interpretation may not be known when the zone is constructed.
39 //
40 // Reads are assumed to always take place before writes, hence we can think of
41 // reads taking place at the beginning of a timepoint and writes at the end.
42 //
43 // Let's assume that the zone represents the lifetime of a variable. That is,
44 // the zone begins with a write that defines the value during its lifetime and
45 // ends with the last read of that value. In the following we consider whether a
46 // read/write at the beginning/ending of the lifetime zone should be within the
47 // zone or outside of it.
48 //
49 // * A read at the timepoint that starts the live-range loads the previous
50 //   value. Hence, exclude the timepoint starting the zone.
51 //
52 // * A write at the timepoint that starts the live-range is not defined whether
53 //   it occurs before or after the write that starts the lifetime. We do not
54 //   allow this situation to occur. Hence, we include the timepoint starting the
55 //   zone to determine whether they are conflicting.
56 //
57 // * A read at the timepoint that ends the live-range reads the same variable.
58 //   We include the timepoint at the end of the zone to include that read into
59 //   the live-range. Doing otherwise would mean that the two reads access
60 //   different values, which would mean that the value they read are both alive
61 //   at the same time but occupy the same variable.
62 //
63 // * A write at the timepoint that ends the live-range starts a new live-range.
64 //   It must not be included in the live-range of the previous definition.
65 //
66 // All combinations of reads and writes at the endpoints are possible, but most
67 // of the time only the write->read (for instance, a live-range from definition
68 // to last use) and read->write (for instance, an unused range from last use to
69 // overwrite) and combinations are interesting (half-open ranges). write->write
70 // zones might be useful as well in some context to represent
71 // output-dependencies.
72 //
73 // @see convertZoneToTimepoints
74 //
75 //
76 // The code makes use of maps and sets in many different spaces. To not loose
77 // track in which space a set or map is expected to be in, variables holding an
78 // isl reference are usually annotated in the comments. They roughly follow isl
79 // syntax for spaces, but only the tuples, not the dimensions. The tuples have a
80 // meaning as follows:
81 //
82 // * Space[] - An unspecified tuple. Used for function parameters such that the
83 //             function caller can use it for anything they like.
84 //
85 // * Domain[] - A statement instance as returned by ScopStmt::getDomain()
86 //     isl_id_get_name: Stmt_<NameOfBasicBlock>
87 //     isl_id_get_user: Pointer to ScopStmt
88 //
89 // * Element[] - An array element as in the range part of
90 //               MemoryAccess::getAccessRelation()
91 //     isl_id_get_name: MemRef_<NameOfArrayVariable>
92 //     isl_id_get_user: Pointer to ScopArrayInfo
93 //
94 // * Scatter[] - Scatter space or space of timepoints
95 //     Has no tuple id
96 //
97 // * Zone[] - Range between timepoints as described above
98 //     Has no tuple id
99 //
100 // * ValInst[] - An llvm::Value as defined at a specific timepoint.
101 //
102 //     A ValInst[] itself can be structured as one of:
103 //
104 //     * [] - An unknown value.
105 //         Always zero dimensions
106 //         Has no tuple id
107 //
108 //     * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
109 //                 runtime content does not depend on the timepoint.
110 //         Always zero dimensions
111 //         isl_id_get_name: Val_<NameOfValue>
112 //         isl_id_get_user: A pointer to an llvm::Value
113 //
114 //     * SCEV[...] - A synthesizable llvm::SCEV Expression.
115 //         In contrast to a Value[] is has at least one dimension per
116 //         SCEVAddRecExpr in the SCEV.
117 //
118 //     * [Domain[] -> Value[]] - An llvm::Value that may change during the
119 //                               Scop's execution.
120 //         The tuple itself has no id, but it wraps a map space holding a
121 //         statement instance which defines the llvm::Value as the map's domain
122 //         and llvm::Value itself as range.
123 //
124 // @see makeValInst()
125 //
126 // An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
127 // statement instance to a timepoint, aka a schedule. There is only one scatter
128 // space, but most of the time multiple statements are processed in one set.
129 // This is why most of the time isl_union_map has to be used.
130 //
131 // The basic algorithm works as follows:
132 // At first we verify that the SCoP is compatible with this technique. For
133 // instance, two writes cannot write to the same location at the same statement
134 // instance because we cannot determine within the polyhedral model which one
135 // comes first. Once this was verified, we compute zones at which an array
136 // element is unused. This computation can fail if it takes too long. Then the
137 // main algorithm is executed. Because every store potentially trails an unused
138 // zone, we start at stores. We search for a scalar (MemoryKind::Value or
139 // MemoryKind::PHI) that we can map to the array element overwritten by the
140 // store, preferably one that is used by the store or at least the ScopStmt.
141 // When it does not conflict with the lifetime of the values in the array
142 // element, the map is applied and the unused zone updated as it is now used. We
143 // continue to try to map scalars to the array element until there are no more
144 // candidates to map. The algorithm is greedy in the sense that the first scalar
145 // not conflicting will be mapped. Other scalars processed later that could have
146 // fit the same unused zone will be rejected. As such the result depends on the
147 // processing order.
148 //
149 //===----------------------------------------------------------------------===//
150 
151 #include "polly/ZoneAlgo.h"
152 #include "polly/ScopInfo.h"
153 #include "polly/Support/GICHelper.h"
154 #include "polly/Support/ISLTools.h"
155 #include "polly/Support/VirtualInstruction.h"
156 #include "llvm/ADT/Statistic.h"
157 #include "llvm/Support/raw_ostream.h"
158 
159 #include "polly/Support/PollyDebug.h"
160 #define DEBUG_TYPE "polly-zone"
161 
162 STATISTIC(NumIncompatibleArrays, "Number of not zone-analyzable arrays");
163 STATISTIC(NumCompatibleArrays, "Number of zone-analyzable arrays");
164 STATISTIC(NumRecursivePHIs, "Number of recursive PHIs");
165 STATISTIC(NumNormalizablePHIs, "Number of normalizable PHIs");
166 STATISTIC(NumPHINormialization, "Number of PHI executed normalizations");
167 
168 using namespace polly;
169 using namespace llvm;
170 
computeReachingDefinition(isl::union_map Schedule,isl::union_map Writes,bool InclDef,bool InclRedef)171 static isl::union_map computeReachingDefinition(isl::union_map Schedule,
172                                                 isl::union_map Writes,
173                                                 bool InclDef, bool InclRedef) {
174   return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
175 }
176 
177 /// Compute the reaching definition of a scalar.
178 ///
179 /// Compared to computeReachingDefinition, there is just one element which is
180 /// accessed and therefore only a set if instances that accesses that element is
181 /// required.
182 ///
183 /// @param Schedule  { DomainWrite[] -> Scatter[] }
184 /// @param Writes    { DomainWrite[] }
185 /// @param InclDef   Include the timepoint of the definition to the result.
186 /// @param InclRedef Include the timepoint of the overwrite into the result.
187 ///
188 /// @return { Scatter[] -> DomainWrite[] }
computeScalarReachingDefinition(isl::union_map Schedule,isl::union_set Writes,bool InclDef,bool InclRedef)189 static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
190                                                       isl::union_set Writes,
191                                                       bool InclDef,
192                                                       bool InclRedef) {
193   // { DomainWrite[] -> Element[] }
194   isl::union_map Defs = isl::union_map::from_domain(Writes);
195 
196   // { [Element[] -> Scatter[]] -> DomainWrite[] }
197   auto ReachDefs =
198       computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
199 
200   // { Scatter[] -> DomainWrite[] }
201   return ReachDefs.curry().range().unwrap();
202 }
203 
204 /// Compute the reaching definition of a scalar.
205 ///
206 /// This overload accepts only a single writing statement as an isl_map,
207 /// consequently the result also is only a single isl_map.
208 ///
209 /// @param Schedule  { DomainWrite[] -> Scatter[] }
210 /// @param Writes    { DomainWrite[] }
211 /// @param InclDef   Include the timepoint of the definition to the result.
212 /// @param InclRedef Include the timepoint of the overwrite into the result.
213 ///
214 /// @return { Scatter[] -> DomainWrite[] }
computeScalarReachingDefinition(isl::union_map Schedule,isl::set Writes,bool InclDef,bool InclRedef)215 static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
216                                                 isl::set Writes, bool InclDef,
217                                                 bool InclRedef) {
218   isl::space DomainSpace = Writes.get_space();
219   isl::space ScatterSpace = getScatterSpace(Schedule);
220 
221   //  { Scatter[] -> DomainWrite[] }
222   isl::union_map UMap = computeScalarReachingDefinition(
223       Schedule, isl::union_set(Writes), InclDef, InclRedef);
224 
225   isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
226   return singleton(UMap, ResultSpace);
227 }
228 
makeUnknownForDomain(isl::union_set Domain)229 isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
230   return isl::union_map::from_domain(Domain);
231 }
232 
233 /// Create a domain-to-unknown value mapping.
234 ///
235 /// @see makeUnknownForDomain(isl::union_set)
236 ///
237 /// @param Domain { Domain[] }
238 ///
239 /// @return { Domain[] -> ValInst[] }
makeUnknownForDomain(isl::set Domain)240 static isl::map makeUnknownForDomain(isl::set Domain) {
241   return isl::map::from_domain(Domain);
242 }
243 
244 /// Return whether @p Map maps to an unknown value.
245 ///
246 /// @param { [] -> ValInst[] }
isMapToUnknown(const isl::map & Map)247 static bool isMapToUnknown(const isl::map &Map) {
248   isl::space Space = Map.get_space().range();
249   return Space.has_tuple_id(isl::dim::set).is_false() &&
250          Space.is_wrapping().is_false() &&
251          Space.dim(isl::dim::set).release() == 0;
252 }
253 
filterKnownValInst(const isl::union_map & UMap)254 isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
255   isl::union_map Result = isl::union_map::empty(UMap.ctx());
256   for (isl::map Map : UMap.get_map_list()) {
257     if (!isMapToUnknown(Map))
258       Result = Result.unite(Map);
259   }
260   return Result;
261 }
262 
ZoneAlgorithm(const char * PassName,Scop * S,LoopInfo * LI)263 ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
264     : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
265       Schedule(S->getSchedule()) {
266   auto Domains = S->getDomains();
267 
268   Schedule = Schedule.intersect_domain(Domains);
269   ParamSpace = Schedule.get_space();
270   ScatterSpace = getScatterSpace(Schedule);
271 }
272 
273 /// Check if all stores in @p Stmt store the very same value.
274 ///
275 /// This covers a special situation occurring in Polybench's
276 /// covariance/correlation (which is typical for algorithms that cover symmetric
277 /// matrices):
278 ///
279 /// for (int i = 0; i < n; i += 1)
280 /// 	for (int j = 0; j <= i; j += 1) {
281 /// 		double x = ...;
282 /// 		C[i][j] = x;
283 /// 		C[j][i] = x;
284 /// 	}
285 ///
286 /// For i == j, the same value is written twice to the same element.Double
287 /// writes to the same element are not allowed in DeLICM because its algorithm
288 /// does not see which of the writes is effective.But if its the same value
289 /// anyway, it doesn't matter.
290 ///
291 /// LLVM passes, however, cannot simplify this because the write is necessary
292 /// for i != j (unless it would add a condition for one of the writes to occur
293 /// only if i != j).
294 ///
295 /// TODO: In the future we may want to extent this to make the checks
296 ///       specific to different memory locations.
onlySameValueWrites(ScopStmt * Stmt)297 static bool onlySameValueWrites(ScopStmt *Stmt) {
298   Value *V = nullptr;
299 
300   for (auto *MA : *Stmt) {
301     if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
302         !MA->isOriginalArrayKind())
303       continue;
304 
305     if (!V) {
306       V = MA->getAccessValue();
307       continue;
308     }
309 
310     if (V != MA->getAccessValue())
311       return false;
312   }
313   return true;
314 }
315 
316 /// Is @p InnerLoop nested inside @p OuterLoop?
isInsideLoop(Loop * OuterLoop,Loop * InnerLoop)317 static bool isInsideLoop(Loop *OuterLoop, Loop *InnerLoop) {
318   // If OuterLoop is nullptr, we cannot call its contains() method. In this case
319   // OuterLoop represents the 'top level' and therefore contains all loop.
320   return !OuterLoop || OuterLoop->contains(InnerLoop);
321 }
322 
collectIncompatibleElts(ScopStmt * Stmt,isl::union_set & IncompatibleElts,isl::union_set & AllElts)323 void ZoneAlgorithm::collectIncompatibleElts(ScopStmt *Stmt,
324                                             isl::union_set &IncompatibleElts,
325                                             isl::union_set &AllElts) {
326   auto Stores = makeEmptyUnionMap();
327   auto Loads = makeEmptyUnionMap();
328 
329   // This assumes that the MemoryKind::Array MemoryAccesses are iterated in
330   // order.
331   for (auto *MA : *Stmt) {
332     if (!MA->isOriginalArrayKind())
333       continue;
334 
335     isl::map AccRelMap = getAccessRelationFor(MA);
336     isl::union_map AccRel = AccRelMap;
337 
338     // To avoid solving any ILP problems, always add entire arrays instead of
339     // just the elements that are accessed.
340     auto ArrayElts = isl::set::universe(AccRelMap.get_space().range());
341     AllElts = AllElts.unite(ArrayElts);
342 
343     if (MA->isRead()) {
344       // Reject load after store to same location.
345       if (!Stores.is_disjoint(AccRel)) {
346         POLLY_DEBUG(
347             dbgs() << "Load after store of same element in same statement\n");
348         OptimizationRemarkMissed R(PassName, "LoadAfterStore",
349                                    MA->getAccessInstruction());
350         R << "load after store of same element in same statement";
351         R << " (previous stores: " << Stores;
352         R << ", loading: " << AccRel << ")";
353         S->getFunction().getContext().diagnose(R);
354 
355         IncompatibleElts = IncompatibleElts.unite(ArrayElts);
356       }
357 
358       Loads = Loads.unite(AccRel);
359 
360       continue;
361     }
362 
363     // In region statements the order is less clear, eg. the load and store
364     // might be in a boxed loop.
365     if (Stmt->isRegionStmt() && !Loads.is_disjoint(AccRel)) {
366       POLLY_DEBUG(dbgs() << "WRITE in non-affine subregion not supported\n");
367       OptimizationRemarkMissed R(PassName, "StoreInSubregion",
368                                  MA->getAccessInstruction());
369       R << "store is in a non-affine subregion";
370       S->getFunction().getContext().diagnose(R);
371 
372       IncompatibleElts = IncompatibleElts.unite(ArrayElts);
373     }
374 
375     // Do not allow more than one store to the same location.
376     if (!Stores.is_disjoint(AccRel) && !onlySameValueWrites(Stmt)) {
377       POLLY_DEBUG(dbgs() << "WRITE after WRITE to same element\n");
378       OptimizationRemarkMissed R(PassName, "StoreAfterStore",
379                                  MA->getAccessInstruction());
380       R << "store after store of same element in same statement";
381       R << " (previous stores: " << Stores;
382       R << ", storing: " << AccRel << ")";
383       S->getFunction().getContext().diagnose(R);
384 
385       IncompatibleElts = IncompatibleElts.unite(ArrayElts);
386     }
387 
388     Stores = Stores.unite(AccRel);
389   }
390 }
391 
addArrayReadAccess(MemoryAccess * MA)392 void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
393   assert(MA->isLatestArrayKind());
394   assert(MA->isRead());
395   ScopStmt *Stmt = MA->getStatement();
396 
397   // { DomainRead[] -> Element[] }
398   auto AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
399   AllReads = AllReads.unite(AccRel);
400 
401   if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
402     // { DomainRead[] -> ValInst[] }
403     isl::map LoadValInst = makeValInst(
404         Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
405 
406     // { DomainRead[] -> [Element[] -> DomainRead[]] }
407     isl::map IncludeElement = AccRel.domain_map().curry();
408 
409     // { [Element[] -> DomainRead[]] -> ValInst[] }
410     isl::map EltLoadValInst = LoadValInst.apply_domain(IncludeElement);
411 
412     AllReadValInst = AllReadValInst.unite(EltLoadValInst);
413   }
414 }
415 
getWrittenValue(MemoryAccess * MA,isl::map AccRel)416 isl::union_map ZoneAlgorithm::getWrittenValue(MemoryAccess *MA,
417                                               isl::map AccRel) {
418   if (!MA->isMustWrite())
419     return {};
420 
421   Value *AccVal = MA->getAccessValue();
422   ScopStmt *Stmt = MA->getStatement();
423   Instruction *AccInst = MA->getAccessInstruction();
424 
425   // Write a value to a single element.
426   auto L = MA->isOriginalArrayKind() ? LI->getLoopFor(AccInst->getParent())
427                                      : Stmt->getSurroundingLoop();
428   if (AccVal &&
429       AccVal->getType() == MA->getLatestScopArrayInfo()->getElementType() &&
430       AccRel.is_single_valued().is_true())
431     return makeNormalizedValInst(AccVal, Stmt, L);
432 
433   // memset(_, '0', ) is equivalent to writing the null value to all touched
434   // elements. isMustWrite() ensures that all of an element's bytes are
435   // overwritten.
436   if (auto *Memset = dyn_cast<MemSetInst>(AccInst)) {
437     auto *WrittenConstant = dyn_cast<Constant>(Memset->getValue());
438     Type *Ty = MA->getLatestScopArrayInfo()->getElementType();
439     if (WrittenConstant && WrittenConstant->isZeroValue()) {
440       Constant *Zero = Constant::getNullValue(Ty);
441       return makeNormalizedValInst(Zero, Stmt, L);
442     }
443   }
444 
445   return {};
446 }
447 
addArrayWriteAccess(MemoryAccess * MA)448 void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
449   assert(MA->isLatestArrayKind());
450   assert(MA->isWrite());
451   auto *Stmt = MA->getStatement();
452 
453   // { Domain[] -> Element[] }
454   isl::map AccRel = intersectRange(getAccessRelationFor(MA), CompatibleElts);
455 
456   if (MA->isMustWrite())
457     AllMustWrites = AllMustWrites.unite(AccRel);
458 
459   if (MA->isMayWrite())
460     AllMayWrites = AllMayWrites.unite(AccRel);
461 
462   // { Domain[] -> ValInst[] }
463   isl::union_map WriteValInstance = getWrittenValue(MA, AccRel);
464   if (WriteValInstance.is_null())
465     WriteValInstance = makeUnknownForDomain(Stmt);
466 
467   // { Domain[] -> [Element[] -> Domain[]] }
468   isl::map IncludeElement = AccRel.domain_map().curry();
469 
470   // { [Element[] -> DomainWrite[]] -> ValInst[] }
471   isl::union_map EltWriteValInst =
472       WriteValInstance.apply_domain(IncludeElement);
473 
474   AllWriteValInst = AllWriteValInst.unite(EltWriteValInst);
475 }
476 
477 /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a
478 /// use in every instance of @p UseStmt.
479 ///
480 /// @param UseStmt Statement a scalar is used in.
481 /// @param DefStmt Statement a scalar is defined in.
482 ///
483 /// @return { DomainUse[] -> DomainDef[] }
computeUseToDefFlowDependency(ScopStmt * UseStmt,ScopStmt * DefStmt)484 isl::map ZoneAlgorithm::computeUseToDefFlowDependency(ScopStmt *UseStmt,
485                                                       ScopStmt *DefStmt) {
486   // { DomainUse[] -> Scatter[] }
487   isl::map UseScatter = getScatterFor(UseStmt);
488 
489   // { Zone[] -> DomainDef[] }
490   isl::map ReachDefZone = getScalarReachingDefinition(DefStmt);
491 
492   // { Scatter[] -> DomainDef[] }
493   isl::map ReachDefTimepoints =
494       convertZoneToTimepoints(ReachDefZone, isl::dim::in, false, true);
495 
496   // { DomainUse[] -> DomainDef[] }
497   return UseScatter.apply_range(ReachDefTimepoints);
498 }
499 
500 /// Return whether @p PHI refers (also transitively through other PHIs) to
501 /// itself.
502 ///
503 /// loop:
504 ///   %phi1 = phi [0, %preheader], [%phi1, %loop]
505 ///   br i1 %c, label %loop, label %exit
506 ///
507 /// exit:
508 ///   %phi2 = phi [%phi1, %bb]
509 ///
510 /// In this example, %phi1 is recursive, but %phi2 is not.
isRecursivePHI(const PHINode * PHI)511 static bool isRecursivePHI(const PHINode *PHI) {
512   SmallVector<const PHINode *, 8> Worklist;
513   SmallPtrSet<const PHINode *, 8> Visited;
514   Worklist.push_back(PHI);
515 
516   while (!Worklist.empty()) {
517     const PHINode *Cur = Worklist.pop_back_val();
518 
519     if (Visited.count(Cur))
520       continue;
521     Visited.insert(Cur);
522 
523     for (const Use &Incoming : Cur->incoming_values()) {
524       Value *IncomingVal = Incoming.get();
525       auto *IncomingPHI = dyn_cast<PHINode>(IncomingVal);
526       if (!IncomingPHI)
527         continue;
528 
529       if (IncomingPHI == PHI)
530         return true;
531       Worklist.push_back(IncomingPHI);
532     }
533   }
534   return false;
535 }
536 
computePerPHI(const ScopArrayInfo * SAI)537 isl::union_map ZoneAlgorithm::computePerPHI(const ScopArrayInfo *SAI) {
538   // TODO: If the PHI has an incoming block from before the SCoP, it is not
539   // represented in any ScopStmt.
540 
541   auto *PHI = cast<PHINode>(SAI->getBasePtr());
542   auto It = PerPHIMaps.find(PHI);
543   if (It != PerPHIMaps.end())
544     return It->second;
545 
546   // Cannot reliably compute immediate predecessor for undefined executions, so
547   // bail out if we do not know. This in particular applies to undefined control
548   // flow.
549   isl::set DefinedContext = S->getDefinedBehaviorContext();
550   if (DefinedContext.is_null())
551     return {};
552 
553   assert(SAI->isPHIKind());
554 
555   // { DomainPHIWrite[] -> Scatter[] }
556   isl::union_map PHIWriteScatter = makeEmptyUnionMap();
557 
558   // Collect all incoming block timepoints.
559   for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
560     isl::map Scatter = getScatterFor(MA);
561     PHIWriteScatter = PHIWriteScatter.unite(Scatter);
562   }
563 
564   // { DomainPHIRead[] -> Scatter[] }
565   isl::map PHIReadScatter = getScatterFor(S->getPHIRead(SAI));
566 
567   // { DomainPHIRead[] -> Scatter[] }
568   isl::map BeforeRead = beforeScatter(PHIReadScatter, true);
569 
570   // { Scatter[] }
571   isl::set WriteTimes = singleton(PHIWriteScatter.range(), ScatterSpace);
572 
573   // { DomainPHIRead[] -> Scatter[] }
574   isl::map PHIWriteTimes = BeforeRead.intersect_range(WriteTimes);
575 
576   // Remove instances outside the context.
577   PHIWriteTimes = PHIWriteTimes.intersect_params(DefinedContext);
578 
579   isl::map LastPerPHIWrites = PHIWriteTimes.lexmax();
580 
581   // { DomainPHIRead[] -> DomainPHIWrite[] }
582   isl::union_map Result =
583       isl::union_map(LastPerPHIWrites).apply_range(PHIWriteScatter.reverse());
584   assert(!Result.is_single_valued().is_false());
585   assert(!Result.is_injective().is_false());
586 
587   PerPHIMaps.insert({PHI, Result});
588   return Result;
589 }
590 
makeEmptyUnionSet() const591 isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
592   return isl::union_set::empty(ParamSpace.ctx());
593 }
594 
makeEmptyUnionMap() const595 isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
596   return isl::union_map::empty(ParamSpace.ctx());
597 }
598 
collectCompatibleElts()599 void ZoneAlgorithm::collectCompatibleElts() {
600   // First find all the incompatible elements, then take the complement.
601   // We compile the list of compatible (rather than incompatible) elements so
602   // users can intersect with the list, not requiring a subtract operation. It
603   // also allows us to define a 'universe' of all elements and makes it more
604   // explicit in which array elements can be used.
605   isl::union_set AllElts = makeEmptyUnionSet();
606   isl::union_set IncompatibleElts = makeEmptyUnionSet();
607 
608   for (auto &Stmt : *S)
609     collectIncompatibleElts(&Stmt, IncompatibleElts, AllElts);
610 
611   NumIncompatibleArrays += isl_union_set_n_set(IncompatibleElts.get());
612   CompatibleElts = AllElts.subtract(IncompatibleElts);
613   NumCompatibleArrays += isl_union_set_n_set(CompatibleElts.get());
614 }
615 
getScatterFor(ScopStmt * Stmt) const616 isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
617   isl::space ResultSpace =
618       Stmt->getDomainSpace().map_from_domain_and_range(ScatterSpace);
619   return Schedule.extract_map(ResultSpace);
620 }
621 
getScatterFor(MemoryAccess * MA) const622 isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
623   return getScatterFor(MA->getStatement());
624 }
625 
getScatterFor(isl::union_set Domain) const626 isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
627   return Schedule.intersect_domain(Domain);
628 }
629 
getScatterFor(isl::set Domain) const630 isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
631   auto ResultSpace = Domain.get_space().map_from_domain_and_range(ScatterSpace);
632   auto UDomain = isl::union_set(Domain);
633   auto UResult = getScatterFor(std::move(UDomain));
634   auto Result = singleton(std::move(UResult), std::move(ResultSpace));
635   assert(Result.is_null() || Result.domain().is_equal(Domain) == isl_bool_true);
636   return Result;
637 }
638 
getDomainFor(ScopStmt * Stmt) const639 isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
640   return Stmt->getDomain().remove_redundancies();
641 }
642 
getDomainFor(MemoryAccess * MA) const643 isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
644   return getDomainFor(MA->getStatement());
645 }
646 
getAccessRelationFor(MemoryAccess * MA) const647 isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
648   auto Domain = getDomainFor(MA);
649   auto AccRel = MA->getLatestAccessRelation();
650   return AccRel.intersect_domain(Domain);
651 }
652 
getDefToTarget(ScopStmt * DefStmt,ScopStmt * TargetStmt)653 isl::map ZoneAlgorithm::getDefToTarget(ScopStmt *DefStmt,
654                                        ScopStmt *TargetStmt) {
655   // No translation required if the definition is already at the target.
656   if (TargetStmt == DefStmt)
657     return isl::map::identity(
658         getDomainFor(TargetStmt).get_space().map_from_set());
659 
660   isl::map &Result = DefToTargetCache[std::make_pair(TargetStmt, DefStmt)];
661 
662   // This is a shortcut in case the schedule is still the original and
663   // TargetStmt is in the same or nested inside DefStmt's loop. With the
664   // additional assumption that operand trees do not cross DefStmt's loop
665   // header, then TargetStmt's instance shared coordinates are the same as
666   // DefStmt's coordinates. All TargetStmt instances with this prefix share
667   // the same DefStmt instance.
668   // Model:
669   //
670   //   for (int i < 0; i < N; i+=1) {
671   // DefStmt:
672   //    D = ...;
673   //    for (int j < 0; j < N; j+=1) {
674   // TargetStmt:
675   //      use(D);
676   //    }
677   //  }
678   //
679   // Here, the value used in TargetStmt is defined in the corresponding
680   // DefStmt, i.e.
681   //
682   //   { DefStmt[i] -> TargetStmt[i,j] }
683   //
684   // In practice, this should cover the majority of cases.
685   if (Result.is_null() && S->isOriginalSchedule() &&
686       isInsideLoop(DefStmt->getSurroundingLoop(),
687                    TargetStmt->getSurroundingLoop())) {
688     isl::set DefDomain = getDomainFor(DefStmt);
689     isl::set TargetDomain = getDomainFor(TargetStmt);
690     assert(unsignedFromIslSize(DefDomain.tuple_dim()) <=
691            unsignedFromIslSize(TargetDomain.tuple_dim()));
692 
693     Result = isl::map::from_domain_and_range(DefDomain, TargetDomain);
694     for (unsigned i : rangeIslSize(0, DefDomain.tuple_dim()))
695       Result = Result.equate(isl::dim::in, i, isl::dim::out, i);
696   }
697 
698   if (Result.is_null()) {
699     // { DomainDef[] -> DomainTarget[] }
700     Result = computeUseToDefFlowDependency(TargetStmt, DefStmt).reverse();
701     simplify(Result);
702   }
703 
704   return Result;
705 }
706 
getScalarReachingDefinition(ScopStmt * Stmt)707 isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
708   auto &Result = ScalarReachDefZone[Stmt];
709   if (!Result.is_null())
710     return Result;
711 
712   auto Domain = getDomainFor(Stmt);
713   Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
714   simplify(Result);
715 
716   return Result;
717 }
718 
getScalarReachingDefinition(isl::set DomainDef)719 isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
720   auto DomId = DomainDef.get_tuple_id();
721   auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.get()));
722 
723   auto StmtResult = getScalarReachingDefinition(Stmt);
724 
725   return StmtResult.intersect_range(DomainDef);
726 }
727 
makeUnknownForDomain(ScopStmt * Stmt) const728 isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
729   return ::makeUnknownForDomain(getDomainFor(Stmt));
730 }
731 
makeValueId(Value * V)732 isl::id ZoneAlgorithm::makeValueId(Value *V) {
733   if (!V)
734     return {};
735 
736   auto &Id = ValueIds[V];
737   if (Id.is_null()) {
738     auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
739                                      std::string(), UseInstructionNames);
740     Id = isl::id::alloc(IslCtx.get(), Name.c_str(), V);
741   }
742   return Id;
743 }
744 
makeValueSpace(Value * V)745 isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
746   auto Result = ParamSpace.set_from_params();
747   return Result.set_tuple_id(isl::dim::set, makeValueId(V));
748 }
749 
makeValueSet(Value * V)750 isl::set ZoneAlgorithm::makeValueSet(Value *V) {
751   auto Space = makeValueSpace(V);
752   return isl::set::universe(Space);
753 }
754 
makeValInst(Value * Val,ScopStmt * UserStmt,Loop * Scope,bool IsCertain)755 isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
756                                     bool IsCertain) {
757   // If the definition/write is conditional, the value at the location could
758   // be either the written value or the old value. Since we cannot know which
759   // one, consider the value to be unknown.
760   if (!IsCertain)
761     return makeUnknownForDomain(UserStmt);
762 
763   auto DomainUse = getDomainFor(UserStmt);
764   auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
765   switch (VUse.getKind()) {
766   case VirtualUse::Constant:
767   case VirtualUse::Block:
768   case VirtualUse::Hoisted:
769   case VirtualUse::ReadOnly: {
770     // The definition does not depend on the statement which uses it.
771     auto ValSet = makeValueSet(Val);
772     return isl::map::from_domain_and_range(DomainUse, ValSet);
773   }
774 
775   case VirtualUse::Synthesizable: {
776     auto *ScevExpr = VUse.getScevExpr();
777     auto UseDomainSpace = DomainUse.get_space();
778 
779     // Construct the SCEV space.
780     // TODO: Add only the induction variables referenced in SCEVAddRecExpr
781     // expressions, not just all of them.
782     auto ScevId = isl::manage(isl_id_alloc(UseDomainSpace.ctx().get(), nullptr,
783                                            const_cast<SCEV *>(ScevExpr)));
784 
785     auto ScevSpace = UseDomainSpace.drop_dims(isl::dim::set, 0, 0);
786     ScevSpace = ScevSpace.set_tuple_id(isl::dim::set, ScevId);
787 
788     // { DomainUse[] -> ScevExpr[] }
789     auto ValInst =
790         isl::map::identity(UseDomainSpace.map_from_domain_and_range(ScevSpace));
791     return ValInst;
792   }
793 
794   case VirtualUse::Intra: {
795     // Definition and use is in the same statement. We do not need to compute
796     // a reaching definition.
797 
798     // { llvm::Value }
799     auto ValSet = makeValueSet(Val);
800 
801     // {  UserDomain[] -> llvm::Value }
802     auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
803 
804     // { UserDomain[] -> [UserDomain[] - >llvm::Value] }
805     auto Result = ValInstSet.domain_map().reverse();
806     simplify(Result);
807     return Result;
808   }
809 
810   case VirtualUse::Inter: {
811     // The value is defined in a different statement.
812 
813     auto *Inst = cast<Instruction>(Val);
814     auto *ValStmt = S->getStmtFor(Inst);
815 
816     // If the llvm::Value is defined in a removed Stmt, we cannot derive its
817     // domain. We could use an arbitrary statement, but this could result in
818     // different ValInst[] for the same llvm::Value.
819     if (!ValStmt)
820       return ::makeUnknownForDomain(DomainUse);
821 
822     // { DomainUse[] -> DomainDef[] }
823     auto UsedInstance = getDefToTarget(ValStmt, UserStmt).reverse();
824 
825     // { llvm::Value }
826     auto ValSet = makeValueSet(Val);
827 
828     // { DomainUse[] -> llvm::Value[] }
829     auto ValInstSet = isl::map::from_domain_and_range(DomainUse, ValSet);
830 
831     // { DomainUse[] -> [DomainDef[] -> llvm::Value]  }
832     auto Result = UsedInstance.range_product(ValInstSet);
833 
834     simplify(Result);
835     return Result;
836   }
837   }
838   llvm_unreachable("Unhandled use type");
839 }
840 
841 /// Remove all computed PHIs out of @p Input and replace by their incoming
842 /// value.
843 ///
844 /// @param Input        { [] -> ValInst[] }
845 /// @param ComputedPHIs Set of PHIs that are replaced. Its ValInst must appear
846 ///                     on the LHS of @p NormalizeMap.
847 /// @param NormalizeMap { ValInst[] -> ValInst[] }
normalizeValInst(isl::union_map Input,const DenseSet<PHINode * > & ComputedPHIs,isl::union_map NormalizeMap)848 static isl::union_map normalizeValInst(isl::union_map Input,
849                                        const DenseSet<PHINode *> &ComputedPHIs,
850                                        isl::union_map NormalizeMap) {
851   isl::union_map Result = isl::union_map::empty(Input.ctx());
852   for (isl::map Map : Input.get_map_list()) {
853     isl::space Space = Map.get_space();
854     isl::space RangeSpace = Space.range();
855 
856     // Instructions within the SCoP are always wrapped. Non-wrapped tuples
857     // are therefore invariant in the SCoP and don't need normalization.
858     if (!RangeSpace.is_wrapping()) {
859       Result = Result.unite(Map);
860       continue;
861     }
862 
863     auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(
864         RangeSpace.unwrap().get_tuple_id(isl::dim::out).get_user()));
865 
866     // If no normalization is necessary, then the ValInst stands for itself.
867     if (!ComputedPHIs.count(PHI)) {
868       Result = Result.unite(Map);
869       continue;
870     }
871 
872     // Otherwise, apply the normalization.
873     isl::union_map Mapped = isl::union_map(Map).apply_range(NormalizeMap);
874     Result = Result.unite(Mapped);
875     NumPHINormialization++;
876   }
877   return Result;
878 }
879 
makeNormalizedValInst(llvm::Value * Val,ScopStmt * UserStmt,llvm::Loop * Scope,bool IsCertain)880 isl::union_map ZoneAlgorithm::makeNormalizedValInst(llvm::Value *Val,
881                                                     ScopStmt *UserStmt,
882                                                     llvm::Loop *Scope,
883                                                     bool IsCertain) {
884   isl::map ValInst = makeValInst(Val, UserStmt, Scope, IsCertain);
885   isl::union_map Normalized =
886       normalizeValInst(ValInst, ComputedPHIs, NormalizeMap);
887   return Normalized;
888 }
889 
isCompatibleAccess(MemoryAccess * MA)890 bool ZoneAlgorithm::isCompatibleAccess(MemoryAccess *MA) {
891   if (!MA)
892     return false;
893   if (!MA->isLatestArrayKind())
894     return false;
895   Instruction *AccInst = MA->getAccessInstruction();
896   return isa<StoreInst>(AccInst) || isa<LoadInst>(AccInst);
897 }
898 
isNormalizable(MemoryAccess * MA)899 bool ZoneAlgorithm::isNormalizable(MemoryAccess *MA) {
900   assert(MA->isRead());
901 
902   // Exclude ExitPHIs, we are assuming that a normalizable PHI has a READ
903   // MemoryAccess.
904   if (!MA->isOriginalPHIKind())
905     return false;
906 
907   // Exclude recursive PHIs, normalizing them would require a transitive
908   // closure.
909   auto *PHI = cast<PHINode>(MA->getAccessInstruction());
910   if (RecursivePHIs.count(PHI))
911     return false;
912 
913   // Ensure that each incoming value can be represented by a ValInst[].
914   // We do represent values from statements associated to multiple incoming
915   // value by the PHI itself, but we do not handle this case yet (especially
916   // isNormalized()) when normalizing.
917   const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
918   auto Incomings = S->getPHIIncomings(SAI);
919   for (MemoryAccess *Incoming : Incomings) {
920     if (Incoming->getIncoming().size() != 1)
921       return false;
922   }
923 
924   return true;
925 }
926 
isNormalized(isl::map Map)927 isl::boolean ZoneAlgorithm::isNormalized(isl::map Map) {
928   isl::space Space = Map.get_space();
929   isl::space RangeSpace = Space.range();
930 
931   isl::boolean IsWrapping = RangeSpace.is_wrapping();
932   if (!IsWrapping.is_true())
933     return !IsWrapping;
934   isl::space Unwrapped = RangeSpace.unwrap();
935 
936   isl::id OutTupleId = Unwrapped.get_tuple_id(isl::dim::out);
937   if (OutTupleId.is_null())
938     return isl::boolean();
939   auto *PHI = dyn_cast<PHINode>(static_cast<Value *>(OutTupleId.get_user()));
940   if (!PHI)
941     return true;
942 
943   isl::id InTupleId = Unwrapped.get_tuple_id(isl::dim::in);
944   if (OutTupleId.is_null())
945     return isl::boolean();
946   auto *IncomingStmt = static_cast<ScopStmt *>(InTupleId.get_user());
947   MemoryAccess *PHIRead = IncomingStmt->lookupPHIReadOf(PHI);
948   if (!isNormalizable(PHIRead))
949     return true;
950 
951   return false;
952 }
953 
isNormalized(isl::union_map UMap)954 isl::boolean ZoneAlgorithm::isNormalized(isl::union_map UMap) {
955   isl::boolean Result = true;
956   for (isl::map Map : UMap.get_map_list()) {
957     Result = isNormalized(Map);
958     if (Result.is_true())
959       continue;
960     break;
961   }
962   return Result;
963 }
964 
computeCommon()965 void ZoneAlgorithm::computeCommon() {
966   AllReads = makeEmptyUnionMap();
967   AllMayWrites = makeEmptyUnionMap();
968   AllMustWrites = makeEmptyUnionMap();
969   AllWriteValInst = makeEmptyUnionMap();
970   AllReadValInst = makeEmptyUnionMap();
971 
972   // Default to empty, i.e. no normalization/replacement is taking place. Call
973   // computeNormalizedPHIs() to initialize.
974   NormalizeMap = makeEmptyUnionMap();
975   ComputedPHIs.clear();
976 
977   for (auto &Stmt : *S) {
978     for (auto *MA : Stmt) {
979       if (!MA->isLatestArrayKind())
980         continue;
981 
982       if (MA->isRead())
983         addArrayReadAccess(MA);
984 
985       if (MA->isWrite())
986         addArrayWriteAccess(MA);
987     }
988   }
989 
990   // { DomainWrite[] -> Element[] }
991   AllWrites = AllMustWrites.unite(AllMayWrites);
992 
993   // { [Element[] -> Zone[]] -> DomainWrite[] }
994   WriteReachDefZone =
995       computeReachingDefinition(Schedule, AllWrites, false, true);
996   simplify(WriteReachDefZone);
997 }
998 
computeNormalizedPHIs()999 void ZoneAlgorithm::computeNormalizedPHIs() {
1000   // Determine which PHIs can reference themselves. They are excluded from
1001   // normalization to avoid problems with transitive closures.
1002   for (ScopStmt &Stmt : *S) {
1003     for (MemoryAccess *MA : Stmt) {
1004       if (!MA->isPHIKind())
1005         continue;
1006       if (!MA->isRead())
1007         continue;
1008 
1009       // TODO: Can be more efficient since isRecursivePHI can theoretically
1010       // determine recursiveness for multiple values and/or cache results.
1011       auto *PHI = cast<PHINode>(MA->getAccessInstruction());
1012       if (isRecursivePHI(PHI)) {
1013         NumRecursivePHIs++;
1014         RecursivePHIs.insert(PHI);
1015       }
1016     }
1017   }
1018 
1019   // { PHIValInst[] -> IncomingValInst[] }
1020   isl::union_map AllPHIMaps = makeEmptyUnionMap();
1021 
1022   // Discover new PHIs and try to normalize them.
1023   DenseSet<PHINode *> AllPHIs;
1024   for (ScopStmt &Stmt : *S) {
1025     for (MemoryAccess *MA : Stmt) {
1026       if (!MA->isOriginalPHIKind())
1027         continue;
1028       if (!MA->isRead())
1029         continue;
1030       if (!isNormalizable(MA))
1031         continue;
1032 
1033       auto *PHI = cast<PHINode>(MA->getAccessInstruction());
1034       const ScopArrayInfo *SAI = MA->getOriginalScopArrayInfo();
1035 
1036       // Determine which instance of the PHI statement corresponds to which
1037       // incoming value. Skip if we cannot determine PHI predecessors.
1038       // { PHIDomain[] -> IncomingDomain[] }
1039       isl::union_map PerPHI = computePerPHI(SAI);
1040       if (PerPHI.is_null())
1041         continue;
1042 
1043       // { PHIDomain[] -> PHIValInst[] }
1044       isl::map PHIValInst = makeValInst(PHI, &Stmt, Stmt.getSurroundingLoop());
1045 
1046       // { IncomingDomain[] -> IncomingValInst[] }
1047       isl::union_map IncomingValInsts = makeEmptyUnionMap();
1048 
1049       // Get all incoming values.
1050       for (MemoryAccess *MA : S->getPHIIncomings(SAI)) {
1051         ScopStmt *IncomingStmt = MA->getStatement();
1052 
1053         auto Incoming = MA->getIncoming();
1054         assert(Incoming.size() == 1 && "The incoming value must be "
1055                                        "representable by something else than "
1056                                        "the PHI itself");
1057         Value *IncomingVal = Incoming[0].second;
1058 
1059         // { IncomingDomain[] -> IncomingValInst[] }
1060         isl::map IncomingValInst = makeValInst(
1061             IncomingVal, IncomingStmt, IncomingStmt->getSurroundingLoop());
1062 
1063         IncomingValInsts = IncomingValInsts.unite(IncomingValInst);
1064       }
1065 
1066       // { PHIValInst[] -> IncomingValInst[] }
1067       isl::union_map PHIMap =
1068           PerPHI.apply_domain(PHIValInst).apply_range(IncomingValInsts);
1069       assert(!PHIMap.is_single_valued().is_false());
1070 
1071       // Resolve transitiveness: The incoming value of the newly discovered PHI
1072       // may reference a previously normalized PHI. At the same time, already
1073       // normalized PHIs might be normalized to the new PHI. At the end, none of
1074       // the PHIs may appear on the right-hand-side of the normalization map.
1075       PHIMap = normalizeValInst(PHIMap, AllPHIs, AllPHIMaps);
1076       AllPHIs.insert(PHI);
1077       AllPHIMaps = normalizeValInst(AllPHIMaps, AllPHIs, PHIMap);
1078 
1079       AllPHIMaps = AllPHIMaps.unite(PHIMap);
1080       NumNormalizablePHIs++;
1081     }
1082   }
1083   simplify(AllPHIMaps);
1084 
1085   // Apply the normalization.
1086   ComputedPHIs = AllPHIs;
1087   NormalizeMap = AllPHIMaps;
1088 
1089   assert(NormalizeMap.is_null() || isNormalized(NormalizeMap));
1090 }
1091 
printAccesses(llvm::raw_ostream & OS,int Indent) const1092 void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
1093   OS.indent(Indent) << "After accesses {\n";
1094   for (auto &Stmt : *S) {
1095     OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
1096     for (auto *MA : Stmt)
1097       MA->print(OS);
1098   }
1099   OS.indent(Indent) << "}\n";
1100 }
1101 
computeKnownFromMustWrites() const1102 isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
1103   // { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
1104   isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
1105 
1106   // { [Element[] -> DomainWrite[]] -> ValInst[] }
1107   isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
1108 
1109   // { [Element[] -> Zone[]] -> ValInst[] }
1110   return EltReachdDef.apply_range(AllKnownWriteValInst);
1111 }
1112 
computeKnownFromLoad() const1113 isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
1114   // { Element[] }
1115   isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
1116 
1117   // { Element[] -> Scatter[] }
1118   isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
1119       AllAccessedElts, isl::set::universe(ScatterSpace));
1120 
1121   // This assumes there are no "holes" in
1122   // isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
1123   // before the first write or that are not written at all.
1124   // { Element[] -> Scatter[] }
1125   isl::union_set NonReachDef =
1126       EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
1127 
1128   // { [Element[] -> Zone[]] -> ReachDefId[] }
1129   isl::union_map DefZone =
1130       WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
1131 
1132   // { [Element[] -> Scatter[]] -> Element[] }
1133   isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
1134 
1135   // { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
1136   isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
1137 
1138   // { Element[] -> [Zone[] -> ReachDefId[]] }
1139   isl::union_map EltDefZone = DefZone.curry();
1140 
1141   // { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
1142   isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
1143 
1144   // { [Element[] -> Scatter[]] -> DomainRead[] }
1145   isl::union_map Reads = AllReads.range_product(Schedule).reverse();
1146 
1147   // { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
1148   isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
1149 
1150   // { [Element[] -> Scatter[]] -> ValInst[] }
1151   isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
1152 
1153   // { [Element[] -> ReachDefId[]] -> ValInst[] }
1154   isl::union_map DefidKnown =
1155       DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
1156 
1157   // { [Element[] -> Zone[]] -> ValInst[] }
1158   return DefZoneEltDefId.apply_range(DefidKnown);
1159 }
1160 
computeKnown(bool FromWrite,bool FromRead) const1161 isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
1162                                            bool FromRead) const {
1163   isl::union_map Result = makeEmptyUnionMap();
1164 
1165   if (FromWrite)
1166     Result = Result.unite(computeKnownFromMustWrites());
1167 
1168   if (FromRead)
1169     Result = Result.unite(computeKnownFromLoad());
1170 
1171   simplify(Result);
1172   return Result;
1173 }
1174