xref: /llvm-project/polly/lib/Support/SCEVValidator.cpp (revision 716360367fbdabac2c374c19b8746f4de49a5599)
1 
2 #include "polly/Support/SCEVValidator.h"
3 #include "polly/ScopDetection.h"
4 #include "llvm/Analysis/RegionInfo.h"
5 #include "llvm/Analysis/ScalarEvolution.h"
6 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
7 #include "llvm/Support/Debug.h"
8 
9 using namespace llvm;
10 using namespace polly;
11 
12 #include "polly/Support/PollyDebug.h"
13 #define DEBUG_TYPE "polly-scev-validator"
14 
15 namespace SCEVType {
16 /// The type of a SCEV
17 ///
18 /// To check for the validity of a SCEV we assign to each SCEV a type. The
19 /// possible types are INT, PARAM, IV and INVALID. The order of the types is
20 /// important. The subexpressions of SCEV with a type X can only have a type
21 /// that is smaller or equal than X.
22 enum TYPE {
23   // An integer value.
24   INT,
25 
26   // An expression that is constant during the execution of the Scop,
27   // but that may depend on parameters unknown at compile time.
28   PARAM,
29 
30   // An expression that may change during the execution of the SCoP.
31   IV,
32 
33   // An invalid expression.
34   INVALID
35 };
36 } // namespace SCEVType
37 
38 /// The result the validator returns for a SCEV expression.
39 class ValidatorResult final {
40   /// The type of the expression
41   SCEVType::TYPE Type;
42 
43   /// The set of Parameters in the expression.
44   ParameterSetTy Parameters;
45 
46 public:
47   /// The copy constructor
48   ValidatorResult(const ValidatorResult &Source) {
49     Type = Source.Type;
50     Parameters = Source.Parameters;
51   }
52 
53   /// Construct a result with a certain type and no parameters.
54   ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
55     assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
56   }
57 
58   /// Construct a result with a certain type and a single parameter.
59   ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
60     Parameters.insert(Expr);
61   }
62 
63   /// Get the type of the ValidatorResult.
64   SCEVType::TYPE getType() { return Type; }
65 
66   /// Is the analyzed SCEV constant during the execution of the SCoP.
67   bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; }
68 
69   /// Is the analyzed SCEV valid.
70   bool isValid() { return Type != SCEVType::INVALID; }
71 
72   /// Is the analyzed SCEV of Type IV.
73   bool isIV() { return Type == SCEVType::IV; }
74 
75   /// Is the analyzed SCEV of Type INT.
76   bool isINT() { return Type == SCEVType::INT; }
77 
78   /// Is the analyzed SCEV of Type PARAM.
79   bool isPARAM() { return Type == SCEVType::PARAM; }
80 
81   /// Get the parameters of this validator result.
82   const ParameterSetTy &getParameters() { return Parameters; }
83 
84   /// Add the parameters of Source to this result.
85   void addParamsFrom(const ValidatorResult &Source) {
86     Parameters.insert(Source.Parameters.begin(), Source.Parameters.end());
87   }
88 
89   /// Merge a result.
90   ///
91   /// This means to merge the parameters and to set the Type to the most
92   /// specific Type that matches both.
93   void merge(const ValidatorResult &ToMerge) {
94     Type = std::max(Type, ToMerge.Type);
95     addParamsFrom(ToMerge);
96   }
97 
98   void print(raw_ostream &OS) {
99     switch (Type) {
100     case SCEVType::INT:
101       OS << "SCEVType::INT";
102       break;
103     case SCEVType::PARAM:
104       OS << "SCEVType::PARAM";
105       break;
106     case SCEVType::IV:
107       OS << "SCEVType::IV";
108       break;
109     case SCEVType::INVALID:
110       OS << "SCEVType::INVALID";
111       break;
112     }
113   }
114 };
115 
116 raw_ostream &operator<<(raw_ostream &OS, ValidatorResult &VR) {
117   VR.print(OS);
118   return OS;
119 }
120 
121 /// Check if a SCEV is valid in a SCoP.
122 class SCEVValidator : public SCEVVisitor<SCEVValidator, ValidatorResult> {
123 private:
124   const Region *R;
125   Loop *Scope;
126   ScalarEvolution &SE;
127   InvariantLoadsSetTy *ILS;
128 
129 public:
130   SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
131                 InvariantLoadsSetTy *ILS)
132       : R(R), Scope(Scope), SE(SE), ILS(ILS) {}
133 
134   ValidatorResult visitConstant(const SCEVConstant *Constant) {
135     return ValidatorResult(SCEVType::INT);
136   }
137 
138   ValidatorResult visitVScale(const SCEVVScale *VScale) {
139     // We do not support VScale constants.
140     POLLY_DEBUG(dbgs() << "INVALID: VScale is not supported");
141     return ValidatorResult(SCEVType::INVALID);
142   }
143 
144   ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr,
145                                                 const SCEV *Operand) {
146     ValidatorResult Op = visit(Operand);
147     auto Type = Op.getType();
148 
149     // If unsigned operations are allowed return the operand, otherwise
150     // check if we can model the expression without unsigned assumptions.
151     if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID)
152       return Op;
153 
154     if (Type == SCEVType::IV)
155       return ValidatorResult(SCEVType::INVALID);
156     return ValidatorResult(SCEVType::PARAM, Expr);
157   }
158 
159   ValidatorResult visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) {
160     return visit(Expr->getOperand());
161   }
162 
163   ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
164     return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
165   }
166 
167   ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
168     return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
169   }
170 
171   ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
172     return visit(Expr->getOperand());
173   }
174 
175   ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
176     ValidatorResult Return(SCEVType::INT);
177 
178     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
179       ValidatorResult Op = visit(Expr->getOperand(i));
180       Return.merge(Op);
181 
182       // Early exit.
183       if (!Return.isValid())
184         break;
185     }
186 
187     return Return;
188   }
189 
190   ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
191     ValidatorResult Return(SCEVType::INT);
192 
193     bool HasMultipleParams = false;
194 
195     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
196       ValidatorResult Op = visit(Expr->getOperand(i));
197 
198       if (Op.isINT())
199         continue;
200 
201       if (Op.isPARAM() && Return.isPARAM()) {
202         HasMultipleParams = true;
203         continue;
204       }
205 
206       if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) {
207         POLLY_DEBUG(
208             dbgs() << "INVALID: More than one non-int operand in MulExpr\n"
209                    << "\tExpr: " << *Expr << "\n"
210                    << "\tPrevious expression type: " << Return << "\n"
211                    << "\tNext operand (" << Op << "): " << *Expr->getOperand(i)
212                    << "\n");
213 
214         return ValidatorResult(SCEVType::INVALID);
215       }
216 
217       Return.merge(Op);
218     }
219 
220     if (HasMultipleParams && Return.isValid())
221       return ValidatorResult(SCEVType::PARAM, Expr);
222 
223     return Return;
224   }
225 
226   ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
227     if (!Expr->isAffine()) {
228       POLLY_DEBUG(dbgs() << "INVALID: AddRec is not affine");
229       return ValidatorResult(SCEVType::INVALID);
230     }
231 
232     ValidatorResult Start = visit(Expr->getStart());
233     ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));
234 
235     if (!Start.isValid())
236       return Start;
237 
238     if (!Recurrence.isValid())
239       return Recurrence;
240 
241     auto *L = Expr->getLoop();
242     if (R->contains(L) && (!Scope || !L->contains(Scope))) {
243       POLLY_DEBUG(
244           dbgs() << "INVALID: Loop of AddRec expression boxed in an a "
245                     "non-affine subregion or has a non-synthesizable exit "
246                     "value.");
247       return ValidatorResult(SCEVType::INVALID);
248     }
249 
250     if (R->contains(L)) {
251       if (Recurrence.isINT()) {
252         ValidatorResult Result(SCEVType::IV);
253         Result.addParamsFrom(Start);
254         return Result;
255       }
256 
257       POLLY_DEBUG(dbgs() << "INVALID: AddRec within scop has non-int"
258                             "recurrence part");
259       return ValidatorResult(SCEVType::INVALID);
260     }
261 
262     assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant");
263 
264     // Directly generate ValidatorResult for Expr if 'start' is zero.
265     if (Expr->getStart()->isZero())
266       return ValidatorResult(SCEVType::PARAM, Expr);
267 
268     // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
269     // if 'start' is not zero.
270     const SCEV *ZeroStartExpr = SE.getAddRecExpr(
271         SE.getConstant(Expr->getStart()->getType(), 0),
272         Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags());
273 
274     ValidatorResult ZeroStartResult =
275         ValidatorResult(SCEVType::PARAM, ZeroStartExpr);
276     ZeroStartResult.addParamsFrom(Start);
277 
278     return ZeroStartResult;
279   }
280 
281   ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
282     ValidatorResult Return(SCEVType::INT);
283 
284     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
285       ValidatorResult Op = visit(Expr->getOperand(i));
286 
287       if (!Op.isValid())
288         return Op;
289 
290       Return.merge(Op);
291     }
292 
293     return Return;
294   }
295 
296   ValidatorResult visitSMinExpr(const SCEVSMinExpr *Expr) {
297     ValidatorResult Return(SCEVType::INT);
298 
299     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
300       ValidatorResult Op = visit(Expr->getOperand(i));
301 
302       if (!Op.isValid())
303         return Op;
304 
305       Return.merge(Op);
306     }
307 
308     return Return;
309   }
310 
311   ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
312     // We do not support unsigned max operations. If 'Expr' is constant during
313     // Scop execution we treat this as a parameter, otherwise we bail out.
314     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
315       ValidatorResult Op = visit(Expr->getOperand(i));
316 
317       if (!Op.isConstant()) {
318         POLLY_DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand");
319         return ValidatorResult(SCEVType::INVALID);
320       }
321     }
322 
323     return ValidatorResult(SCEVType::PARAM, Expr);
324   }
325 
326   ValidatorResult visitUMinExpr(const SCEVUMinExpr *Expr) {
327     // We do not support unsigned min operations. If 'Expr' is constant during
328     // Scop execution we treat this as a parameter, otherwise we bail out.
329     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
330       ValidatorResult Op = visit(Expr->getOperand(i));
331 
332       if (!Op.isConstant()) {
333         POLLY_DEBUG(dbgs() << "INVALID: UMinExpr has a non-constant operand");
334         return ValidatorResult(SCEVType::INVALID);
335       }
336     }
337 
338     return ValidatorResult(SCEVType::PARAM, Expr);
339   }
340 
341   ValidatorResult visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
342     // We do not support unsigned min operations. If 'Expr' is constant during
343     // Scop execution we treat this as a parameter, otherwise we bail out.
344     for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
345       ValidatorResult Op = visit(Expr->getOperand(i));
346 
347       if (!Op.isConstant()) {
348         POLLY_DEBUG(
349             dbgs()
350             << "INVALID: SCEVSequentialUMinExpr has a non-constant operand");
351         return ValidatorResult(SCEVType::INVALID);
352       }
353     }
354 
355     return ValidatorResult(SCEVType::PARAM, Expr);
356   }
357 
358   ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) {
359     if (R->contains(I)) {
360       POLLY_DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction "
361                             "within the region\n");
362       return ValidatorResult(SCEVType::INVALID);
363     }
364 
365     return ValidatorResult(SCEVType::PARAM, S);
366   }
367 
368   ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) {
369     if (R->contains(I) && ILS) {
370       ILS->insert(cast<LoadInst>(I));
371       return ValidatorResult(SCEVType::PARAM, S);
372     }
373 
374     return visitGenericInst(I, S);
375   }
376 
377   ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor,
378                                 const SCEV *DivExpr,
379                                 Instruction *SDiv = nullptr) {
380 
381     // First check if we might be able to model the division, thus if the
382     // divisor is constant. If so, check the dividend, otherwise check if
383     // the whole division can be seen as a parameter.
384     if (isa<SCEVConstant>(Divisor) && !Divisor->isZero())
385       return visit(Dividend);
386 
387     // For signed divisions use the SDiv instruction to check for a parameter
388     // division, for unsigned divisions check the operands.
389     if (SDiv)
390       return visitGenericInst(SDiv, DivExpr);
391 
392     ValidatorResult LHS = visit(Dividend);
393     ValidatorResult RHS = visit(Divisor);
394     if (LHS.isConstant() && RHS.isConstant())
395       return ValidatorResult(SCEVType::PARAM, DivExpr);
396 
397     POLLY_DEBUG(
398         dbgs() << "INVALID: unsigned division of non-constant expressions");
399     return ValidatorResult(SCEVType::INVALID);
400   }
401 
402   ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
403     if (!PollyAllowUnsignedOperations)
404       return ValidatorResult(SCEVType::INVALID);
405 
406     const SCEV *Dividend = Expr->getLHS();
407     const SCEV *Divisor = Expr->getRHS();
408     return visitDivision(Dividend, Divisor, Expr);
409   }
410 
411   ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) {
412     assert(SDiv->getOpcode() == Instruction::SDiv &&
413            "Assumed SDiv instruction!");
414 
415     const SCEV *Dividend = SE.getSCEV(SDiv->getOperand(0));
416     const SCEV *Divisor = SE.getSCEV(SDiv->getOperand(1));
417     return visitDivision(Dividend, Divisor, Expr, SDiv);
418   }
419 
420   ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) {
421     assert(SRem->getOpcode() == Instruction::SRem &&
422            "Assumed SRem instruction!");
423 
424     auto *Divisor = SRem->getOperand(1);
425     auto *CI = dyn_cast<ConstantInt>(Divisor);
426     if (!CI || CI->isZeroValue())
427       return visitGenericInst(SRem, S);
428 
429     auto *Dividend = SRem->getOperand(0);
430     const SCEV *DividendSCEV = SE.getSCEV(Dividend);
431     return visit(DividendSCEV);
432   }
433 
434   ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
435     Value *V = Expr->getValue();
436 
437     if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) {
438       POLLY_DEBUG(
439           dbgs() << "INVALID: UnknownExpr is not an integer or pointer");
440       return ValidatorResult(SCEVType::INVALID);
441     }
442 
443     if (isa<UndefValue>(V)) {
444       POLLY_DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value");
445       return ValidatorResult(SCEVType::INVALID);
446     }
447 
448     if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
449       switch (I->getOpcode()) {
450       case Instruction::IntToPtr:
451         return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
452       case Instruction::Load:
453         return visitLoadInstruction(I, Expr);
454       case Instruction::SDiv:
455         return visitSDivInstruction(I, Expr);
456       case Instruction::SRem:
457         return visitSRemInstruction(I, Expr);
458       default:
459         return visitGenericInst(I, Expr);
460       }
461     }
462 
463     if (Expr->getType()->isPointerTy()) {
464       if (isa<ConstantPointerNull>(V))
465         return ValidatorResult(SCEVType::INT); // "int"
466     }
467 
468     return ValidatorResult(SCEVType::PARAM, Expr);
469   }
470 };
471 
472 /// Check whether a SCEV refers to an SSA name defined inside a region.
473 class SCEVInRegionDependences final {
474   const Region *R;
475   Loop *Scope;
476   const InvariantLoadsSetTy &ILS;
477   bool AllowLoops;
478   bool HasInRegionDeps = false;
479 
480 public:
481   SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops,
482                           const InvariantLoadsSetTy &ILS)
483       : R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {}
484 
485   bool follow(const SCEV *S) {
486     if (auto Unknown = dyn_cast<SCEVUnknown>(S)) {
487       Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
488 
489       if (Inst) {
490         // When we invariant load hoist a load, we first make sure that there
491         // can be no dependences created by it in the Scop region. So, we should
492         // not consider scalar dependences to `LoadInst`s that are invariant
493         // load hoisted.
494         //
495         // If this check is not present, then we create data dependences which
496         // are strictly not necessary by tracking the invariant load as a
497         // scalar.
498         LoadInst *LI = dyn_cast<LoadInst>(Inst);
499         if (LI && ILS.contains(LI))
500           return false;
501       }
502 
503       // Return true when Inst is defined inside the region R.
504       if (!Inst || !R->contains(Inst))
505         return true;
506 
507       HasInRegionDeps = true;
508       return false;
509     }
510 
511     if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
512       if (AllowLoops)
513         return true;
514 
515       auto *L = AddRec->getLoop();
516       if (R->contains(L) && !L->contains(Scope)) {
517         HasInRegionDeps = true;
518         return false;
519       }
520     }
521 
522     return true;
523   }
524   bool isDone() { return false; }
525   bool hasDependences() { return HasInRegionDeps; }
526 };
527 
528 /// Find all loops referenced in SCEVAddRecExprs.
529 class SCEVFindLoops final {
530   SetVector<const Loop *> &Loops;
531 
532 public:
533   SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {}
534 
535   bool follow(const SCEV *S) {
536     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
537       Loops.insert(AddRec->getLoop());
538     return true;
539   }
540   bool isDone() { return false; }
541 };
542 
543 void polly::findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) {
544   SCEVFindLoops FindLoops(Loops);
545   SCEVTraversal<SCEVFindLoops> ST(FindLoops);
546   ST.visitAll(Expr);
547 }
548 
549 /// Find all values referenced in SCEVUnknowns.
550 class SCEVFindValues final {
551   ScalarEvolution &SE;
552   SetVector<Value *> &Values;
553 
554 public:
555   SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values)
556       : SE(SE), Values(Values) {}
557 
558   bool follow(const SCEV *S) {
559     const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
560     if (!Unknown)
561       return true;
562 
563     Values.insert(Unknown->getValue());
564     Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
565     if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
566                   Inst->getOpcode() != Instruction::SDiv))
567       return false;
568 
569     const SCEV *Dividend = SE.getSCEV(Inst->getOperand(1));
570     if (!isa<SCEVConstant>(Dividend))
571       return false;
572 
573     const SCEV *Divisor = SE.getSCEV(Inst->getOperand(0));
574     SCEVFindValues FindValues(SE, Values);
575     SCEVTraversal<SCEVFindValues> ST(FindValues);
576     ST.visitAll(Dividend);
577     ST.visitAll(Divisor);
578 
579     return false;
580   }
581   bool isDone() { return false; }
582 };
583 
584 void polly::findValues(const SCEV *Expr, ScalarEvolution &SE,
585                        SetVector<Value *> &Values) {
586   SCEVFindValues FindValues(SE, Values);
587   SCEVTraversal<SCEVFindValues> ST(FindValues);
588   ST.visitAll(Expr);
589 }
590 
591 bool polly::hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
592                                       llvm::Loop *Scope, bool AllowLoops,
593                                       const InvariantLoadsSetTy &ILS) {
594   SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS);
595   SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps);
596   ST.visitAll(Expr);
597   return InRegionDeps.hasDependences();
598 }
599 
600 bool polly::isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
601                          ScalarEvolution &SE, InvariantLoadsSetTy *ILS) {
602   if (isa<SCEVCouldNotCompute>(Expr))
603     return false;
604 
605   SCEVValidator Validator(R, Scope, SE, ILS);
606   POLLY_DEBUG({
607     dbgs() << "\n";
608     dbgs() << "Expr: " << *Expr << "\n";
609     dbgs() << "Region: " << R->getNameStr() << "\n";
610     dbgs() << " -> ";
611   });
612 
613   ValidatorResult Result = Validator.visit(Expr);
614 
615   POLLY_DEBUG({
616     if (Result.isValid())
617       dbgs() << "VALID\n";
618     dbgs() << "\n";
619   });
620 
621   return Result.isValid();
622 }
623 
624 static bool isAffineExpr(Value *V, const Region *R, Loop *Scope,
625                          ScalarEvolution &SE, ParameterSetTy &Params) {
626   const SCEV *E = SE.getSCEV(V);
627   if (isa<SCEVCouldNotCompute>(E))
628     return false;
629 
630   SCEVValidator Validator(R, Scope, SE, nullptr);
631   ValidatorResult Result = Validator.visit(E);
632   if (!Result.isValid())
633     return false;
634 
635   auto ResultParams = Result.getParameters();
636   Params.insert(ResultParams.begin(), ResultParams.end());
637 
638   return true;
639 }
640 
641 bool polly::isAffineConstraint(Value *V, const Region *R, Loop *Scope,
642                                ScalarEvolution &SE, ParameterSetTy &Params,
643                                bool OrExpr) {
644   if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
645     return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
646                               true) &&
647            isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true);
648   } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
649     auto Opcode = BinOp->getOpcode();
650     if (Opcode == Instruction::And || Opcode == Instruction::Or)
651       return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
652                                 false) &&
653              isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
654                                 false);
655     /* Fall through */
656   }
657 
658   if (!OrExpr)
659     return false;
660 
661   return ::isAffineExpr(V, R, Scope, SE, Params);
662 }
663 
664 ParameterSetTy polly::getParamsInAffineExpr(const Region *R, Loop *Scope,
665                                             const SCEV *Expr,
666                                             ScalarEvolution &SE) {
667   if (isa<SCEVCouldNotCompute>(Expr))
668     return ParameterSetTy();
669 
670   InvariantLoadsSetTy ILS;
671   SCEVValidator Validator(R, Scope, SE, &ILS);
672   ValidatorResult Result = Validator.visit(Expr);
673   assert(Result.isValid() && "Requested parameters for an invalid SCEV!");
674 
675   return Result.getParameters();
676 }
677 
678 std::pair<const SCEVConstant *, const SCEV *>
679 polly::extractConstantFactor(const SCEV *S, ScalarEvolution &SE) {
680   auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1));
681 
682   if (auto *Constant = dyn_cast<SCEVConstant>(S))
683     return std::make_pair(Constant, SE.getConstant(S->getType(), 1));
684 
685   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
686   if (AddRec) {
687     const SCEV *StartExpr = AddRec->getStart();
688     if (StartExpr->isZero()) {
689       auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE);
690       const SCEV *LeftOverAddRec =
691           SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(),
692                            AddRec->getNoWrapFlags());
693       return std::make_pair(StepPair.first, LeftOverAddRec);
694     }
695     return std::make_pair(ConstPart, S);
696   }
697 
698   if (auto *Add = dyn_cast<SCEVAddExpr>(S)) {
699     SmallVector<const SCEV *, 4> LeftOvers;
700     auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE);
701     auto *Factor = Op0Pair.first;
702     if (SE.isKnownNegative(Factor)) {
703       Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor));
704       LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second));
705     } else {
706       LeftOvers.push_back(Op0Pair.second);
707     }
708 
709     for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) {
710       auto OpUPair = extractConstantFactor(Add->getOperand(u), SE);
711       // TODO: Use something smarter than equality here, e.g., gcd.
712       if (Factor == OpUPair.first)
713         LeftOvers.push_back(OpUPair.second);
714       else if (Factor == SE.getNegativeSCEV(OpUPair.first))
715         LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second));
716       else
717         return std::make_pair(ConstPart, S);
718     }
719 
720     const SCEV *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags());
721     return std::make_pair(Factor, NewAdd);
722   }
723 
724   auto *Mul = dyn_cast<SCEVMulExpr>(S);
725   if (!Mul)
726     return std::make_pair(ConstPart, S);
727 
728   SmallVector<const SCEV *, 4> LeftOvers;
729   for (const SCEV *Op : Mul->operands())
730     if (isa<SCEVConstant>(Op))
731       ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op));
732     else
733       LeftOvers.push_back(Op);
734 
735   return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers));
736 }
737 
738 const SCEV *polly::tryForwardThroughPHI(const SCEV *Expr, Region &R,
739                                         ScalarEvolution &SE,
740                                         ScopDetection *SD) {
741   if (auto *Unknown = dyn_cast<SCEVUnknown>(Expr)) {
742     Value *V = Unknown->getValue();
743     auto *PHI = dyn_cast<PHINode>(V);
744     if (!PHI)
745       return Expr;
746 
747     Value *Final = nullptr;
748 
749     for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
750       BasicBlock *Incoming = PHI->getIncomingBlock(i);
751       if (SD->isErrorBlock(*Incoming, R) && R.contains(Incoming))
752         continue;
753       if (Final)
754         return Expr;
755       Final = PHI->getIncomingValue(i);
756     }
757 
758     if (Final)
759       return SE.getSCEV(Final);
760   }
761   return Expr;
762 }
763 
764 Value *polly::getUniqueNonErrorValue(PHINode *PHI, Region *R,
765                                      ScopDetection *SD) {
766   Value *V = nullptr;
767   for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
768     BasicBlock *BB = PHI->getIncomingBlock(i);
769     if (!SD->isErrorBlock(*BB, *R)) {
770       if (V)
771         return nullptr;
772       V = PHI->getIncomingValue(i);
773     }
774   }
775 
776   return V;
777 }
778