xref: /llvm-project/mlir/unittests/Analysis/Presburger/IntegerPolyhedronTest.cpp (revision 1a0e67d73023e7ad9e7e79f66afb43a6f2561d04)
1 //===- IntegerPolyhedron.cpp - Tests for IntegerPolyhedron class ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Parser.h"
10 #include "Utils.h"
11 #include "mlir/Analysis/Presburger/IntegerRelation.h"
12 #include "mlir/Analysis/Presburger/PWMAFunction.h"
13 #include "mlir/Analysis/Presburger/Simplex.h"
14 
15 #include <gmock/gmock.h>
16 #include <gtest/gtest.h>
17 
18 #include <numeric>
19 #include <optional>
20 
21 using namespace mlir;
22 using namespace presburger;
23 
24 using testing::ElementsAre;
25 
26 enum class TestFunction { Sample, Empty };
27 
28 /// Construct a IntegerPolyhedron from a set of inequality and
29 /// equality constraints.
30 static IntegerPolyhedron
makeSetFromConstraints(unsigned ids,ArrayRef<SmallVector<int64_t,4>> ineqs,ArrayRef<SmallVector<int64_t,4>> eqs,unsigned syms=0)31 makeSetFromConstraints(unsigned ids, ArrayRef<SmallVector<int64_t, 4>> ineqs,
32                        ArrayRef<SmallVector<int64_t, 4>> eqs,
33                        unsigned syms = 0) {
34   IntegerPolyhedron set(
35       ineqs.size(), eqs.size(), ids + 1,
36       PresburgerSpace::getSetSpace(ids - syms, syms, /*numLocals=*/0));
37   for (const auto &eq : eqs)
38     set.addEquality(eq);
39   for (const auto &ineq : ineqs)
40     set.addInequality(ineq);
41   return set;
42 }
43 
dump(ArrayRef<DynamicAPInt> vec)44 static void dump(ArrayRef<DynamicAPInt> vec) {
45   for (const DynamicAPInt &x : vec)
46     llvm::errs() << x << ' ';
47   llvm::errs() << '\n';
48 }
49 
50 /// If fn is TestFunction::Sample (default):
51 ///
52 ///   If hasSample is true, check that findIntegerSample returns a valid sample
53 ///   for the IntegerPolyhedron poly. Also check that getIntegerLexmin finds a
54 ///   non-empty lexmin.
55 ///
56 ///   If hasSample is false, check that findIntegerSample returns std::nullopt
57 ///   and findIntegerLexMin returns Empty.
58 ///
59 /// If fn is TestFunction::Empty, check that isIntegerEmpty returns the
60 /// opposite of hasSample.
checkSample(bool hasSample,const IntegerPolyhedron & poly,TestFunction fn=TestFunction::Sample)61 static void checkSample(bool hasSample, const IntegerPolyhedron &poly,
62                         TestFunction fn = TestFunction::Sample) {
63   std::optional<SmallVector<DynamicAPInt, 8>> maybeSample;
64   MaybeOptimum<SmallVector<DynamicAPInt, 8>> maybeLexMin;
65   switch (fn) {
66   case TestFunction::Sample:
67     maybeSample = poly.findIntegerSample();
68     maybeLexMin = poly.findIntegerLexMin();
69 
70     if (!hasSample) {
71       EXPECT_FALSE(maybeSample.has_value());
72       if (maybeSample.has_value()) {
73         llvm::errs() << "findIntegerSample gave sample: ";
74         dump(*maybeSample);
75       }
76 
77       EXPECT_TRUE(maybeLexMin.isEmpty());
78       if (maybeLexMin.isBounded()) {
79         llvm::errs() << "findIntegerLexMin gave sample: ";
80         dump(*maybeLexMin);
81       }
82     } else {
83       ASSERT_TRUE(maybeSample.has_value());
84       EXPECT_TRUE(poly.containsPoint(*maybeSample));
85 
86       ASSERT_FALSE(maybeLexMin.isEmpty());
87       if (maybeLexMin.isUnbounded()) {
88         EXPECT_TRUE(Simplex(poly).isUnbounded());
89       }
90       if (maybeLexMin.isBounded()) {
91         EXPECT_TRUE(poly.containsPointNoLocal(*maybeLexMin));
92       }
93     }
94     break;
95   case TestFunction::Empty:
96     EXPECT_EQ(!hasSample, poly.isIntegerEmpty());
97     break;
98   }
99 }
100 
101 /// Check sampling for all the permutations of the dimensions for the given
102 /// constraint set. Since the GBR algorithm progresses dimension-wise, different
103 /// orderings may cause the algorithm to proceed differently. At least some of
104 ///.these permutations should make it past the heuristics and test the
105 /// implementation of the GBR algorithm itself.
106 /// Use TestFunction fn to test.
checkPermutationsSample(bool hasSample,unsigned nDim,ArrayRef<SmallVector<int64_t,4>> ineqs,ArrayRef<SmallVector<int64_t,4>> eqs,TestFunction fn=TestFunction::Sample)107 static void checkPermutationsSample(bool hasSample, unsigned nDim,
108                                     ArrayRef<SmallVector<int64_t, 4>> ineqs,
109                                     ArrayRef<SmallVector<int64_t, 4>> eqs,
110                                     TestFunction fn = TestFunction::Sample) {
111   SmallVector<unsigned, 4> perm(nDim);
112   std::iota(perm.begin(), perm.end(), 0);
113   auto permute = [&perm](ArrayRef<int64_t> coeffs) {
114     SmallVector<int64_t, 4> permuted;
115     for (unsigned id : perm)
116       permuted.push_back(coeffs[id]);
117     permuted.push_back(coeffs.back());
118     return permuted;
119   };
120   do {
121     SmallVector<SmallVector<int64_t, 4>, 4> permutedIneqs, permutedEqs;
122     for (const auto &ineq : ineqs)
123       permutedIneqs.push_back(permute(ineq));
124     for (const auto &eq : eqs)
125       permutedEqs.push_back(permute(eq));
126 
127     checkSample(hasSample,
128                 makeSetFromConstraints(nDim, permutedIneqs, permutedEqs), fn);
129   } while (std::next_permutation(perm.begin(), perm.end()));
130 }
131 
TEST(IntegerPolyhedronTest,removeInequality)132 TEST(IntegerPolyhedronTest, removeInequality) {
133   IntegerPolyhedron set =
134       makeSetFromConstraints(1, {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}}, {});
135 
136   set.removeInequalityRange(0, 0);
137   EXPECT_EQ(set.getNumInequalities(), 5u);
138 
139   set.removeInequalityRange(1, 3);
140   EXPECT_EQ(set.getNumInequalities(), 3u);
141   EXPECT_THAT(set.getInequality(0), ElementsAre(0, 0));
142   EXPECT_THAT(set.getInequality(1), ElementsAre(3, 3));
143   EXPECT_THAT(set.getInequality(2), ElementsAre(4, 4));
144 
145   set.removeInequality(1);
146   EXPECT_EQ(set.getNumInequalities(), 2u);
147   EXPECT_THAT(set.getInequality(0), ElementsAre(0, 0));
148   EXPECT_THAT(set.getInequality(1), ElementsAre(4, 4));
149 }
150 
TEST(IntegerPolyhedronTest,removeEquality)151 TEST(IntegerPolyhedronTest, removeEquality) {
152   IntegerPolyhedron set =
153       makeSetFromConstraints(1, {}, {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}});
154 
155   set.removeEqualityRange(0, 0);
156   EXPECT_EQ(set.getNumEqualities(), 5u);
157 
158   set.removeEqualityRange(1, 3);
159   EXPECT_EQ(set.getNumEqualities(), 3u);
160   EXPECT_THAT(set.getEquality(0), ElementsAre(0, 0));
161   EXPECT_THAT(set.getEquality(1), ElementsAre(3, 3));
162   EXPECT_THAT(set.getEquality(2), ElementsAre(4, 4));
163 
164   set.removeEquality(1);
165   EXPECT_EQ(set.getNumEqualities(), 2u);
166   EXPECT_THAT(set.getEquality(0), ElementsAre(0, 0));
167   EXPECT_THAT(set.getEquality(1), ElementsAre(4, 4));
168 }
169 
TEST(IntegerPolyhedronTest,clearConstraints)170 TEST(IntegerPolyhedronTest, clearConstraints) {
171   IntegerPolyhedron set = makeSetFromConstraints(1, {}, {});
172 
173   set.addInequality({1, 0});
174   EXPECT_EQ(set.atIneq(0, 0), 1);
175   EXPECT_EQ(set.atIneq(0, 1), 0);
176 
177   set.clearConstraints();
178 
179   set.addInequality({1, 0});
180   EXPECT_EQ(set.atIneq(0, 0), 1);
181   EXPECT_EQ(set.atIneq(0, 1), 0);
182 }
183 
TEST(IntegerPolyhedronTest,removeIdRange)184 TEST(IntegerPolyhedronTest, removeIdRange) {
185   IntegerPolyhedron set(PresburgerSpace::getSetSpace(3, 2, 1));
186 
187   set.addInequality({10, 11, 12, 20, 21, 30, 40});
188   set.removeVar(VarKind::Symbol, 1);
189   EXPECT_THAT(set.getInequality(0),
190               testing::ElementsAre(10, 11, 12, 20, 30, 40));
191 
192   set.removeVarRange(VarKind::SetDim, 0, 2);
193   EXPECT_THAT(set.getInequality(0), testing::ElementsAre(12, 20, 30, 40));
194 
195   set.removeVarRange(VarKind::Local, 1, 1);
196   EXPECT_THAT(set.getInequality(0), testing::ElementsAre(12, 20, 30, 40));
197 
198   set.removeVarRange(VarKind::Local, 0, 1);
199   EXPECT_THAT(set.getInequality(0), testing::ElementsAre(12, 20, 40));
200 }
201 
TEST(IntegerPolyhedronTest,FindSampleTest)202 TEST(IntegerPolyhedronTest, FindSampleTest) {
203   // Bounded sets with only inequalities.
204   // 0 <= 7x <= 5
205   checkSample(true,
206               parseIntegerPolyhedron("(x) : (7 * x >= 0, -7 * x + 5 >= 0)"));
207 
208   // 1 <= 5x and 5x <= 4 (no solution).
209   checkSample(
210       false, parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)"));
211 
212   // 1 <= 5x and 5x <= 9 (solution: x = 1).
213   checkSample(
214       true, parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)"));
215 
216   // Bounded sets with equalities.
217   // x >= 8 and 40 >= y and x = y.
218   checkSample(true, parseIntegerPolyhedron(
219                         "(x,y) : (x - 8 >= 0, -y + 40 >= 0, x - y == 0)"));
220 
221   // x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z.
222   // solution: x = y = z = 10.
223   checkSample(true,
224               parseIntegerPolyhedron("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
225                                      "z - 10 >= 0, x + 2 * y - 3 * z == 0)"));
226 
227   // x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z.
228   // This implies x + 2y >= 33 and x + 2y <= 30, which has no solution.
229   checkSample(false,
230               parseIntegerPolyhedron("(x,y,z) : (-x + 10 >= 0, -y + 10 >= 0, "
231                                      "z - 11 >= 0, x + 2 * y - 3 * z == 0)"));
232 
233   // 0 <= r and r <= 3 and 4q + r = 7.
234   // Solution: q = 1, r = 3.
235   checkSample(true, parseIntegerPolyhedron(
236                         "(q,r) : (r >= 0, -r + 3 >= 0, 4 * q + r - 7 == 0)"));
237 
238   // 4q + r = 7 and r = 0.
239   // Solution: q = 1, r = 3.
240   checkSample(false,
241               parseIntegerPolyhedron("(q,r) : (4 * q + r - 7 == 0, r == 0)"));
242 
243   // The next two sets are large sets that should take a long time to sample
244   // with a naive branch and bound algorithm but can be sampled efficiently with
245   // the GBR algorithm.
246   //
247   // This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000).
248   checkSample(
249       true, parseIntegerPolyhedron("(x,y) : (y >= 0, "
250                                    "300000 * x - 299999 * y - 100000 >= 0, "
251                                    "-300000 * x + 299998 * y + 200000 >= 0)"));
252 
253   // This is a tetrahedron with vertices at
254   // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
255   // The first three points form a triangular base on the xz plane with the
256   // apex at the fourth point, which is the only integer point.
257   checkPermutationsSample(
258       true, 3,
259       {
260           {0, 1, 0, 0},  // y >= 0
261           {0, -1, 1, 0}, // z >= y
262           {300000, -299998, -1,
263            -100000},                    // -300000x + 299998y + 100000 + z <= 0.
264           {-150000, 149999, 0, 100000}, // -150000x + 149999y + 100000 >= 0.
265       },
266       {});
267 
268   // Same thing with some spurious extra dimensions equated to constants.
269   checkSample(true,
270               parseIntegerPolyhedron(
271                   "(a,b,c,d,e) : (b + d - e >= 0, -b + c - d + e >= 0, "
272                   "300000 * a - 299998 * b - c - 9 * d + 21 * e - 112000 >= 0, "
273                   "-150000 * a + 149999 * b - 15 * d + 47 * e + 68000 >= 0, "
274                   "d - e == 0, d + e - 2000 == 0)"));
275 
276   // This is a tetrahedron with vertices at
277   // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100).
278   checkPermutationsSample(false, 3,
279                           {
280                               {0, 1, 0, 0},
281                               {0, -300, 299, 0},
282                               {300 * 299, -89400, -299, -100 * 299},
283                               {-897, 894, 0, 598},
284                           },
285                           {});
286 
287   // Two tests involving equalities that are integer empty but not rational
288   // empty.
289 
290   // This is a line segment from (0, 1/3) to (100, 100 + 1/3).
291   checkSample(false,
292               parseIntegerPolyhedron(
293                   "(x,y) : (x >= 0, -x + 100 >= 0, 3 * x - 3 * y + 1 == 0)"));
294 
295   // A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3.
296   checkSample(false, parseIntegerPolyhedron(
297                          "(x,y) : (x >= 0, -x + 100 >= 0, "
298                          "3 * x - 3 * y + 2 >= 0, -3 * x + 3 * y - 1 >= 0)"));
299 
300   checkSample(true,
301               parseIntegerPolyhedron("(x,y) : (2 * x >= 0, -2 * x + 99 >= 0, "
302                                      "2 * y >= 0, -2 * y + 99 >= 0)"));
303 
304   // 2D cone with apex at (10000, 10000) and
305   // edges passing through (1/3, 0) and (2/3, 0).
306   checkSample(true, parseIntegerPolyhedron(
307                         "(x,y) : (300000 * x - 299999 * y - 100000 >= 0, "
308                         "-300000 * x + 299998 * y + 200000 >= 0)"));
309 
310   // Cartesian product of a tetrahedron and a 2D cone.
311   // The tetrahedron has vertices at
312   // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
313   // The first three points form a triangular base on the xz plane with the
314   // apex at the fourth point, which is the only integer point.
315   // The cone has apex at (10000, 10000) and
316   // edges passing through (1/3, 0) and (2/3, 0).
317   checkPermutationsSample(
318       true /* not empty */, 5,
319       {
320           // Tetrahedron contraints:
321           {0, 1, 0, 0, 0, 0},  // y >= 0
322           {0, -1, 1, 0, 0, 0}, // z >= y
323                                // -300000x + 299998y + 100000 + z <= 0.
324           {300000, -299998, -1, 0, 0, -100000},
325           // -150000x + 149999y + 100000 >= 0.
326           {-150000, 149999, 0, 0, 0, 100000},
327 
328           // Triangle constraints:
329           // 300000p - 299999q >= 100000
330           {0, 0, 0, 300000, -299999, -100000},
331           // -300000p + 299998q + 200000 >= 0
332           {0, 0, 0, -300000, 299998, 200000},
333       },
334       {});
335 
336   // Cartesian product of same tetrahedron as above and {(p, q) : 1/3 <= p <=
337   // 2/3}. Since the second set is empty, the whole set is too.
338   checkPermutationsSample(
339       false /* empty */, 5,
340       {
341           // Tetrahedron contraints:
342           {0, 1, 0, 0, 0, 0},  // y >= 0
343           {0, -1, 1, 0, 0, 0}, // z >= y
344                                // -300000x + 299998y + 100000 + z <= 0.
345           {300000, -299998, -1, 0, 0, -100000},
346           // -150000x + 149999y + 100000 >= 0.
347           {-150000, 149999, 0, 0, 0, 100000},
348 
349           // Second set constraints:
350           // 3p >= 1
351           {0, 0, 0, 3, 0, -1},
352           // 3p <= 2
353           {0, 0, 0, -3, 0, 2},
354       },
355       {});
356 
357   // Cartesian product of same tetrahedron as above and
358   // {(p, q, r) : 1 <= p <= 2 and p = 3q + 3r}.
359   // Since the second set is empty, the whole set is too.
360   checkPermutationsSample(
361       false /* empty */, 5,
362       {
363           // Tetrahedron contraints:
364           {0, 1, 0, 0, 0, 0, 0},  // y >= 0
365           {0, -1, 1, 0, 0, 0, 0}, // z >= y
366                                   // -300000x + 299998y + 100000 + z <= 0.
367           {300000, -299998, -1, 0, 0, 0, -100000},
368           // -150000x + 149999y + 100000 >= 0.
369           {-150000, 149999, 0, 0, 0, 0, 100000},
370 
371           // Second set constraints:
372           // p >= 1
373           {0, 0, 0, 1, 0, 0, -1},
374           // p <= 2
375           {0, 0, 0, -1, 0, 0, 2},
376       },
377       {
378           {0, 0, 0, 1, -3, -3, 0}, // p = 3q + 3r
379       });
380 
381   // Cartesian product of a tetrahedron and a 2D cone.
382   // The tetrahedron is empty and has vertices at
383   // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), and (100, 100 - 1/3, 100).
384   // The cone has apex at (10000, 10000) and
385   // edges passing through (1/3, 0) and (2/3, 0).
386   // Since the tetrahedron is empty, the Cartesian product is too.
387   checkPermutationsSample(false /* empty */, 5,
388                           {
389                               // Tetrahedron contraints:
390                               {0, 1, 0, 0, 0, 0},
391                               {0, -300, 299, 0, 0, 0},
392                               {300 * 299, -89400, -299, 0, 0, -100 * 299},
393                               {-897, 894, 0, 0, 0, 598},
394 
395                               // Triangle constraints:
396                               // 300000p - 299999q >= 100000
397                               {0, 0, 0, 300000, -299999, -100000},
398                               // -300000p + 299998q + 200000 >= 0
399                               {0, 0, 0, -300000, 299998, 200000},
400                           },
401                           {});
402 
403   // Cartesian product of same tetrahedron as above and
404   // {(p, q) : 1/3 <= p <= 2/3}.
405   checkPermutationsSample(false /* empty */, 5,
406                           {
407                               // Tetrahedron contraints:
408                               {0, 1, 0, 0, 0, 0},
409                               {0, -300, 299, 0, 0, 0},
410                               {300 * 299, -89400, -299, 0, 0, -100 * 299},
411                               {-897, 894, 0, 0, 0, 598},
412 
413                               // Second set constraints:
414                               // 3p >= 1
415                               {0, 0, 0, 3, 0, -1},
416                               // 3p <= 2
417                               {0, 0, 0, -3, 0, 2},
418                           },
419                           {});
420 
421   checkSample(true, parseIntegerPolyhedron(
422                         "(x, y, z) : (2 * x - 1 >= 0, x - y - 1 == 0, "
423                         "y - z == 0)"));
424 
425   // Test with a local id.
426   checkSample(true, parseIntegerPolyhedron("(x) : (x == 5*(x floordiv 2))"));
427 
428   // Regression tests for the computation of dual coefficients.
429   checkSample(false, parseIntegerPolyhedron("(x, y, z) : ("
430                                             "6*x - 4*y + 9*z + 2 >= 0,"
431                                             "x + 5*y + z + 5 >= 0,"
432                                             "-4*x + y + 2*z - 1 >= 0,"
433                                             "-3*x - 2*y - 7*z - 1 >= 0,"
434                                             "-7*x - 5*y - 9*z - 1 >= 0)"));
435   checkSample(true, parseIntegerPolyhedron("(x, y, z) : ("
436                                            "3*x + 3*y + 3 >= 0,"
437                                            "-4*x - 8*y - z + 4 >= 0,"
438                                            "-7*x - 4*y + z + 1 >= 0,"
439                                            "2*x - 7*y - 8*z - 7 >= 0,"
440                                            "9*x + 8*y - 9*z - 7 >= 0)"));
441 }
442 
TEST(IntegerPolyhedronTest,IsIntegerEmptyTest)443 TEST(IntegerPolyhedronTest, IsIntegerEmptyTest) {
444   // 1 <= 5x and 5x <= 4 (no solution).
445   EXPECT_TRUE(parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 4 >= 0)")
446                   .isIntegerEmpty());
447   // 1 <= 5x and 5x <= 9 (solution: x = 1).
448   EXPECT_FALSE(parseIntegerPolyhedron("(x) : (5 * x - 1 >= 0, -5 * x + 9 >= 0)")
449                    .isIntegerEmpty());
450 
451   // Unbounded sets.
452   EXPECT_TRUE(
453       parseIntegerPolyhedron("(x,y,z) : (2 * y - 1 >= 0, -2 * y + 1 >= 0, "
454                              "2 * z - 1 >= 0, 2 * x - 1 == 0)")
455           .isIntegerEmpty());
456 
457   EXPECT_FALSE(parseIntegerPolyhedron(
458                    "(x,y,z) : (2 * x - 1 >= 0, -3 * x + 3 >= 0, "
459                    "5 * z - 6 >= 0, -7 * z + 17 >= 0, 3 * y - 2 >= 0)")
460                    .isIntegerEmpty());
461 
462   EXPECT_FALSE(parseIntegerPolyhedron(
463                    "(x,y,z) : (2 * x - 1 >= 0, x - y - 1 == 0, y - z == 0)")
464                    .isIntegerEmpty());
465 
466   // IntegerPolyhedron::isEmpty() does not detect the following sets to be
467   // empty.
468 
469   // 3x + 7y = 1 and 0 <= x, y <= 10.
470   // Since x and y are non-negative, 3x + 7y can never be 1.
471   EXPECT_TRUE(parseIntegerPolyhedron(
472                   "(x,y) : (x >= 0, -x + 10 >= 0, y >= 0, -y + 10 >= 0, "
473                   "3 * x + 7 * y - 1 == 0)")
474                   .isIntegerEmpty());
475 
476   // 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100.
477   // Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2.
478   // Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty.
479   EXPECT_TRUE(parseIntegerPolyhedron(
480                   "(x,y,z) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, "
481                   "2 * x - 3 * y == 0, x - y - 1 == 0, x + y - 6 * z - 2 == 0)")
482                   .isIntegerEmpty());
483 
484   // 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100.
485   // 2x = 3y implies x is a multiple of 3 and y is even.
486   // Now y = x - 1 + 6z implies y = 2 mod 3. In fact, since y is even, we have
487   // y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying
488   // x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty.
489   EXPECT_TRUE(
490       parseIntegerPolyhedron(
491           "(x,y,z,q) : (x >= 0, -x + 100 >= 0, y >= 0, -y + 100 >= 0, "
492           "2 * x - 3 * y == 0, x - y + 6 * z - 1 == 0, x + y - 6 * q - 2 == 0)")
493           .isIntegerEmpty());
494 
495   // Set with symbols.
496   EXPECT_FALSE(parseIntegerPolyhedron("(x)[s] : (x + s >= 0, x - s == 0)")
497                    .isIntegerEmpty());
498 }
499 
TEST(IntegerPolyhedronTest,removeRedundantConstraintsTest)500 TEST(IntegerPolyhedronTest, removeRedundantConstraintsTest) {
501   IntegerPolyhedron poly =
502       parseIntegerPolyhedron("(x) : (x - 2 >= 0, -x + 2 >= 0, x - 2 == 0)");
503   poly.removeRedundantConstraints();
504 
505   // Both inequalities are redundant given the equality. Both have been removed.
506   EXPECT_EQ(poly.getNumInequalities(), 0u);
507   EXPECT_EQ(poly.getNumEqualities(), 1u);
508 
509   IntegerPolyhedron poly2 =
510       parseIntegerPolyhedron("(x,y) : (x - 3 >= 0, y - 2 >= 0, x - y == 0)");
511   poly2.removeRedundantConstraints();
512 
513   // The second inequality is redundant and should have been removed. The
514   // remaining inequality should be the first one.
515   EXPECT_EQ(poly2.getNumInequalities(), 1u);
516   EXPECT_THAT(poly2.getInequality(0), ElementsAre(1, 0, -3));
517   EXPECT_EQ(poly2.getNumEqualities(), 1u);
518 
519   IntegerPolyhedron poly3 =
520       parseIntegerPolyhedron("(x,y,z) : (x - y == 0, x - z == 0, y - z == 0)");
521   poly3.removeRedundantConstraints();
522 
523   // One of the three equalities can be removed.
524   EXPECT_EQ(poly3.getNumInequalities(), 0u);
525   EXPECT_EQ(poly3.getNumEqualities(), 2u);
526 
527   IntegerPolyhedron poly4 = parseIntegerPolyhedron(
528       "(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) : ("
529       "b - 1 >= 0,"
530       "-b + 500 >= 0,"
531       "-16 * d + f >= 0,"
532       "f - 1 >= 0,"
533       "-f + 998 >= 0,"
534       "16 * d - f + 15 >= 0,"
535       "-16 * e + g >= 0,"
536       "g - 1 >= 0,"
537       "-g + 998 >= 0,"
538       "16 * e - g + 15 >= 0,"
539       "h >= 0,"
540       "-h + 1 >= 0,"
541       "j - 1 >= 0,"
542       "-j + 500 >= 0,"
543       "-f + 16 * l + 15 >= 0,"
544       "f - 16 * l >= 0,"
545       "-16 * m + o >= 0,"
546       "o - 1 >= 0,"
547       "-o + 998 >= 0,"
548       "16 * m - o + 15 >= 0,"
549       "p >= 0,"
550       "-p + 1 >= 0,"
551       "-g - h + 8 * q + 8 >= 0,"
552       "-o - p + 8 * q + 8 >= 0,"
553       "o + p - 8 * q - 1 >= 0,"
554       "g + h - 8 * q - 1 >= 0,"
555       "-f + n >= 0,"
556       "f - n >= 0,"
557       "k - 10 >= 0,"
558       "-k + 10 >= 0,"
559       "i - 13 >= 0,"
560       "-i + 13 >= 0,"
561       "c - 10 >= 0,"
562       "-c + 10 >= 0,"
563       "a - 13 >= 0,"
564       "-a + 13 >= 0"
565       ")");
566 
567   // The above is a large set of constraints without any redundant constraints,
568   // as verified by the Fourier-Motzkin based removeRedundantInequalities.
569   unsigned nIneq = poly4.getNumInequalities();
570   unsigned nEq = poly4.getNumEqualities();
571   poly4.removeRedundantInequalities();
572   ASSERT_EQ(poly4.getNumInequalities(), nIneq);
573   ASSERT_EQ(poly4.getNumEqualities(), nEq);
574   // Now we test that removeRedundantConstraints does not find any constraints
575   // to be redundant either.
576   poly4.removeRedundantConstraints();
577   EXPECT_EQ(poly4.getNumInequalities(), nIneq);
578   EXPECT_EQ(poly4.getNumEqualities(), nEq);
579 
580   IntegerPolyhedron poly5 = parseIntegerPolyhedron(
581       "(x,y) : (128 * x + 127 >= 0, -x + 7 >= 0, -128 * x + y >= 0, y >= 0)");
582   // 128x + 127 >= 0  implies that 128x >= 0, since x has to be an integer.
583   // (This should be caught by GCDTightenInqualities().)
584   // So -128x + y >= 0 and 128x + 127 >= 0 imply y >= 0 since we have
585   // y >= 128x >= 0.
586   poly5.removeRedundantConstraints();
587   EXPECT_EQ(poly5.getNumInequalities(), 3u);
588   SmallVector<DynamicAPInt, 8> redundantConstraint =
589       getDynamicAPIntVec({0, 1, 0});
590   for (unsigned i = 0; i < 3; ++i) {
591     // Ensure that the removed constraint was the redundant constraint [3].
592     EXPECT_NE(poly5.getInequality(i),
593               ArrayRef<DynamicAPInt>(redundantConstraint));
594   }
595 }
596 
TEST(IntegerPolyhedronTest,addConstantUpperBound)597 TEST(IntegerPolyhedronTest, addConstantUpperBound) {
598   IntegerPolyhedron poly(PresburgerSpace::getSetSpace(2));
599   poly.addBound(BoundType::UB, 0, 1);
600   EXPECT_EQ(poly.atIneq(0, 0), -1);
601   EXPECT_EQ(poly.atIneq(0, 1), 0);
602   EXPECT_EQ(poly.atIneq(0, 2), 1);
603 
604   poly.addBound(BoundType::UB, {1, 2, 3}, 1);
605   EXPECT_EQ(poly.atIneq(1, 0), -1);
606   EXPECT_EQ(poly.atIneq(1, 1), -2);
607   EXPECT_EQ(poly.atIneq(1, 2), -2);
608 }
609 
TEST(IntegerPolyhedronTest,addConstantLowerBound)610 TEST(IntegerPolyhedronTest, addConstantLowerBound) {
611   IntegerPolyhedron poly(PresburgerSpace::getSetSpace(2));
612   poly.addBound(BoundType::LB, 0, 1);
613   EXPECT_EQ(poly.atIneq(0, 0), 1);
614   EXPECT_EQ(poly.atIneq(0, 1), 0);
615   EXPECT_EQ(poly.atIneq(0, 2), -1);
616 
617   poly.addBound(BoundType::LB, {1, 2, 3}, 1);
618   EXPECT_EQ(poly.atIneq(1, 0), 1);
619   EXPECT_EQ(poly.atIneq(1, 1), 2);
620   EXPECT_EQ(poly.atIneq(1, 2), 2);
621 }
622 
623 /// Check if the expected division representation of local variables matches the
624 /// computed representation. The expected division representation is given as
625 /// a vector of expressions set in `expectedDividends` and the corressponding
626 /// denominator in `expectedDenominators`. The `denominators` and `dividends`
627 /// obtained through `getLocalRepr` function is verified against the
628 /// `expectedDenominators` and `expectedDividends` respectively.
checkDivisionRepresentation(IntegerPolyhedron & poly,const std::vector<SmallVector<int64_t,8>> & expectedDividends,ArrayRef<int64_t> expectedDenominators)629 static void checkDivisionRepresentation(
630     IntegerPolyhedron &poly,
631     const std::vector<SmallVector<int64_t, 8>> &expectedDividends,
632     ArrayRef<int64_t> expectedDenominators) {
633   DivisionRepr divs = poly.getLocalReprs();
634 
635   // Check that the `denominators` and `expectedDenominators` match.
636   EXPECT_EQ(ArrayRef<DynamicAPInt>(getDynamicAPIntVec(expectedDenominators)),
637             divs.getDenoms());
638 
639   // Check that the `dividends` and `expectedDividends` match. If the
640   // denominator for a division is zero, we ignore its dividend.
641   EXPECT_TRUE(divs.getNumDivs() == expectedDividends.size());
642   for (unsigned i = 0, e = divs.getNumDivs(); i < e; ++i) {
643     if (divs.hasRepr(i)) {
644       for (unsigned j = 0, f = divs.getNumVars() + 1; j < f; ++j) {
645         EXPECT_TRUE(expectedDividends[i][j] == divs.getDividend(i)[j]);
646       }
647     }
648   }
649 }
650 
TEST(IntegerPolyhedronTest,computeLocalReprSimple)651 TEST(IntegerPolyhedronTest, computeLocalReprSimple) {
652   IntegerPolyhedron poly(PresburgerSpace::getSetSpace(1));
653 
654   poly.addLocalFloorDiv({1, 4}, 10);
655   poly.addLocalFloorDiv({1, 0, 100}, 10);
656 
657   std::vector<SmallVector<int64_t, 8>> divisions = {{1, 0, 0, 4},
658                                                     {1, 0, 0, 100}};
659   SmallVector<int64_t, 8> denoms = {10, 10};
660 
661   // Check if floordivs can be computed when no other inequalities exist
662   // and floor divs do not depend on each other.
663   checkDivisionRepresentation(poly, divisions, denoms);
664 }
665 
TEST(IntegerPolyhedronTest,computeLocalReprConstantFloorDiv)666 TEST(IntegerPolyhedronTest, computeLocalReprConstantFloorDiv) {
667   IntegerPolyhedron poly(PresburgerSpace::getSetSpace(4));
668 
669   poly.addInequality({1, 0, 3, 1, 2});
670   poly.addInequality({1, 2, -8, 1, 10});
671   poly.addEquality({1, 2, -4, 1, 10});
672 
673   poly.addLocalFloorDiv({0, 0, 0, 0, 100}, 30);
674   poly.addLocalFloorDiv({0, 0, 0, 0, 0, 206}, 101);
675 
676   std::vector<SmallVector<int64_t, 8>> divisions = {{0, 0, 0, 0, 0, 0, 3},
677                                                     {0, 0, 0, 0, 0, 0, 2}};
678   SmallVector<int64_t, 8> denoms = {1, 1};
679 
680   // Check if floordivs with constant numerator can be computed.
681   checkDivisionRepresentation(poly, divisions, denoms);
682 }
683 
TEST(IntegerPolyhedronTest,computeLocalReprRecursive)684 TEST(IntegerPolyhedronTest, computeLocalReprRecursive) {
685   IntegerPolyhedron poly(PresburgerSpace::getSetSpace(4));
686   poly.addInequality({1, 0, 3, 1, 2});
687   poly.addInequality({1, 2, -8, 1, 10});
688   poly.addEquality({1, 2, -4, 1, 10});
689 
690   poly.addLocalFloorDiv({0, -2, 7, 2, 10}, 3);
691   poly.addLocalFloorDiv({3, 0, 9, 2, 2, 10}, 5);
692   poly.addLocalFloorDiv({0, 1, -123, 2, 0, -4, 10}, 3);
693 
694   poly.addInequality({1, 2, -2, 1, -5, 0, 6, 100});
695   poly.addInequality({1, 2, -8, 1, 3, 7, 0, -9});
696 
697   std::vector<SmallVector<int64_t, 8>> divisions = {
698       {0, -2, 7, 2, 0, 0, 0, 10},
699       {3, 0, 9, 2, 2, 0, 0, 10},
700       {0, 1, -123, 2, 0, -4, 0, 10}};
701 
702   SmallVector<int64_t, 8> denoms = {3, 5, 3};
703 
704   // Check if floordivs which may depend on other floordivs can be computed.
705   checkDivisionRepresentation(poly, divisions, denoms);
706 }
707 
TEST(IntegerPolyhedronTest,computeLocalReprTightUpperBound)708 TEST(IntegerPolyhedronTest, computeLocalReprTightUpperBound) {
709   {
710     IntegerPolyhedron poly = parseIntegerPolyhedron("(i) : (i mod 3 - 1 >= 0)");
711 
712     // The set formed by the poly is:
713     //        3q - i + 2 >= 0             <-- Division lower bound
714     //       -3q + i - 1 >= 0
715     //       -3q + i     >= 0             <-- Division upper bound
716     // We remove redundant constraints to get the set:
717     //        3q - i + 2 >= 0             <-- Division lower bound
718     //       -3q + i - 1 >= 0             <-- Tighter division upper bound
719     // thus, making the upper bound tighter.
720     poly.removeRedundantConstraints();
721 
722     std::vector<SmallVector<int64_t, 8>> divisions = {{1, 0, 0}};
723     SmallVector<int64_t, 8> denoms = {3};
724 
725     // Check if the divisions can be computed even with a tighter upper bound.
726     checkDivisionRepresentation(poly, divisions, denoms);
727   }
728 
729   {
730     IntegerPolyhedron poly = parseIntegerPolyhedron(
731         "(i, j, q) : (4*q - i - j + 2 >= 0, -4*q + i + j >= 0)");
732     // Convert `q` to a local variable.
733     poly.convertToLocal(VarKind::SetDim, 2, 3);
734 
735     std::vector<SmallVector<int64_t, 8>> divisions = {{1, 1, 0, 1}};
736     SmallVector<int64_t, 8> denoms = {4};
737 
738     // Check if the divisions can be computed even with a tighter upper bound.
739     checkDivisionRepresentation(poly, divisions, denoms);
740   }
741 }
742 
TEST(IntegerPolyhedronTest,computeLocalReprFromEquality)743 TEST(IntegerPolyhedronTest, computeLocalReprFromEquality) {
744   {
745     IntegerPolyhedron poly =
746         parseIntegerPolyhedron("(i, j, q) : (-4*q + i + j == 0)");
747     // Convert `q` to a local variable.
748     poly.convertToLocal(VarKind::SetDim, 2, 3);
749 
750     std::vector<SmallVector<int64_t, 8>> divisions = {{1, 1, 0, 0}};
751     SmallVector<int64_t, 8> denoms = {4};
752 
753     checkDivisionRepresentation(poly, divisions, denoms);
754   }
755   {
756     IntegerPolyhedron poly =
757         parseIntegerPolyhedron("(i, j, q) : (4*q - i - j == 0)");
758     // Convert `q` to a local variable.
759     poly.convertToLocal(VarKind::SetDim, 2, 3);
760 
761     std::vector<SmallVector<int64_t, 8>> divisions = {{1, 1, 0, 0}};
762     SmallVector<int64_t, 8> denoms = {4};
763 
764     checkDivisionRepresentation(poly, divisions, denoms);
765   }
766   {
767     IntegerPolyhedron poly =
768         parseIntegerPolyhedron("(i, j, q) : (3*q + i + j - 2 == 0)");
769     // Convert `q` to a local variable.
770     poly.convertToLocal(VarKind::SetDim, 2, 3);
771 
772     std::vector<SmallVector<int64_t, 8>> divisions = {{-1, -1, 0, 2}};
773     SmallVector<int64_t, 8> denoms = {3};
774 
775     checkDivisionRepresentation(poly, divisions, denoms);
776   }
777 }
778 
TEST(IntegerPolyhedronTest,computeLocalReprFromEqualityAndInequality)779 TEST(IntegerPolyhedronTest, computeLocalReprFromEqualityAndInequality) {
780   {
781     IntegerPolyhedron poly =
782         parseIntegerPolyhedron("(i, j, q, k) : (-3*k + i + j == 0, 4*q - "
783                                "i - j + 2 >= 0, -4*q + i + j >= 0)");
784     // Convert `q` and `k` to local variables.
785     poly.convertToLocal(VarKind::SetDim, 2, 4);
786 
787     std::vector<SmallVector<int64_t, 8>> divisions = {{1, 1, 0, 0, 1},
788                                                       {1, 1, 0, 0, 0}};
789     SmallVector<int64_t, 8> denoms = {4, 3};
790 
791     checkDivisionRepresentation(poly, divisions, denoms);
792   }
793 }
794 
TEST(IntegerPolyhedronTest,computeLocalReprNoRepr)795 TEST(IntegerPolyhedronTest, computeLocalReprNoRepr) {
796   IntegerPolyhedron poly =
797       parseIntegerPolyhedron("(x, q) : (x - 3 * q >= 0, -x + 3 * q + 3 >= 0)");
798   // Convert q to a local variable.
799   poly.convertToLocal(VarKind::SetDim, 1, 2);
800 
801   std::vector<SmallVector<int64_t, 8>> divisions = {{0, 0, 0}};
802   SmallVector<int64_t, 8> denoms = {0};
803 
804   // Check that no division is computed.
805   checkDivisionRepresentation(poly, divisions, denoms);
806 }
807 
TEST(IntegerPolyhedronTest,computeLocalReprNegConstNormalize)808 TEST(IntegerPolyhedronTest, computeLocalReprNegConstNormalize) {
809   IntegerPolyhedron poly = parseIntegerPolyhedron(
810       "(x, q) : (-1 - 3*x - 6 * q >= 0, 6 + 3*x + 6*q >= 0)");
811   // Convert q to a local variable.
812   poly.convertToLocal(VarKind::SetDim, 1, 2);
813 
814   // q = floor((-1/3 - x)/2)
815   //   = floor((1/3) + (-1 - x)/2)
816   //   = floor((-1 - x)/2).
817   std::vector<SmallVector<int64_t, 8>> divisions = {{-1, 0, -1}};
818   SmallVector<int64_t, 8> denoms = {2};
819   checkDivisionRepresentation(poly, divisions, denoms);
820 }
821 
TEST(IntegerPolyhedronTest,simplifyLocalsTest)822 TEST(IntegerPolyhedronTest, simplifyLocalsTest) {
823   // (x) : (exists y: 2x + y = 1 and y = 2).
824   IntegerPolyhedron poly(PresburgerSpace::getSetSpace(1, 0, 1));
825   poly.addEquality({2, 1, -1});
826   poly.addEquality({0, 1, -2});
827 
828   EXPECT_TRUE(poly.isEmpty());
829 
830   // (x) : (exists y, z, w: 3x + y = 1 and 2y = z and 3y = w and z = w).
831   IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1, 0, 3));
832   poly2.addEquality({3, 1, 0, 0, -1});
833   poly2.addEquality({0, 2, -1, 0, 0});
834   poly2.addEquality({0, 3, 0, -1, 0});
835   poly2.addEquality({0, 0, 1, -1, 0});
836 
837   EXPECT_TRUE(poly2.isEmpty());
838 
839   // (x) : (exists y: x >= y + 1 and 2x + y = 0 and y >= -1).
840   IntegerPolyhedron poly3(PresburgerSpace::getSetSpace(1, 0, 1));
841   poly3.addInequality({1, -1, -1});
842   poly3.addInequality({0, 1, 1});
843   poly3.addEquality({2, 1, 0});
844 
845   EXPECT_TRUE(poly3.isEmpty());
846 }
847 
TEST(IntegerPolyhedronTest,mergeDivisionsSimple)848 TEST(IntegerPolyhedronTest, mergeDivisionsSimple) {
849   {
850     // (x) : (exists z, y  = [x / 2] : x = 3y and x + z + 1 >= 0).
851     IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1, 0, 1));
852     poly1.addLocalFloorDiv({1, 0, 0}, 2); // y = [x / 2].
853     poly1.addEquality({1, 0, -3, 0});     // x = 3y.
854     poly1.addInequality({1, 1, 0, 1});    // x + z + 1 >= 0.
855 
856     // (x) : (exists y = [x / 2], z : x = 5y).
857     IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
858     poly2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2].
859     poly2.addEquality({1, -5, 0});     // x = 5y.
860     poly2.appendVar(VarKind::Local);   // Add local id z.
861 
862     poly1.mergeLocalVars(poly2);
863 
864     // Local space should be same.
865     EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars());
866 
867     // 1 division should be matched + 2 unmatched local ids.
868     EXPECT_EQ(poly1.getNumLocalVars(), 3u);
869     EXPECT_EQ(poly2.getNumLocalVars(), 3u);
870   }
871 
872   {
873     // (x) : (exists z = [x / 5], y = [x / 2] : x = 3y).
874     IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1));
875     poly1.addLocalFloorDiv({1, 0}, 5);    // z = [x / 5].
876     poly1.addLocalFloorDiv({1, 0, 0}, 2); // y = [x / 2].
877     poly1.addEquality({1, 0, -3, 0});     // x = 3y.
878 
879     // (x) : (exists y = [x / 2], z = [x / 5]: x = 5z).
880     IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
881     poly2.addLocalFloorDiv({1, 0}, 2);    // y = [x / 2].
882     poly2.addLocalFloorDiv({1, 0, 0}, 5); // z = [x / 5].
883     poly2.addEquality({1, 0, -5, 0});     // x = 5z.
884 
885     poly1.mergeLocalVars(poly2);
886 
887     // Local space should be same.
888     EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars());
889 
890     // 2 divisions should be matched.
891     EXPECT_EQ(poly1.getNumLocalVars(), 2u);
892     EXPECT_EQ(poly2.getNumLocalVars(), 2u);
893   }
894 
895   {
896     // Division Normalization test.
897     // (x) : (exists z, y  = [x / 2] : x = 3y and x + z + 1 >= 0).
898     IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1, 0, 1));
899     // This division would be normalized.
900     poly1.addLocalFloorDiv({3, 0, 0}, 6); // y = [3x / 6] -> [x/2].
901     poly1.addEquality({1, 0, -3, 0});     // x = 3z.
902     poly1.addInequality({1, 1, 0, 1});    // x + y + 1 >= 0.
903 
904     // (x) : (exists y = [x / 2], z : x = 5y).
905     IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
906     poly2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2].
907     poly2.addEquality({1, -5, 0});     // x = 5y.
908     poly2.appendVar(VarKind::Local);   // Add local id z.
909 
910     poly1.mergeLocalVars(poly2);
911 
912     // Local space should be same.
913     EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars());
914 
915     // One division should be matched + 2 unmatched local ids.
916     EXPECT_EQ(poly1.getNumLocalVars(), 3u);
917     EXPECT_EQ(poly2.getNumLocalVars(), 3u);
918   }
919 }
920 
TEST(IntegerPolyhedronTest,mergeDivisionsNestedDivsions)921 TEST(IntegerPolyhedronTest, mergeDivisionsNestedDivsions) {
922   {
923     // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z >= x).
924     IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1));
925     poly1.addLocalFloorDiv({1, 0}, 2);    // y = [x / 2].
926     poly1.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3].
927     poly1.addInequality({-1, 1, 1, 0});   // y + z >= x.
928 
929     // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z <= x).
930     IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
931     poly2.addLocalFloorDiv({1, 0}, 2);    // y = [x / 2].
932     poly2.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3].
933     poly2.addInequality({1, -1, -1, 0});  // y + z <= x.
934 
935     poly1.mergeLocalVars(poly2);
936 
937     // Local space should be same.
938     EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars());
939 
940     // 2 divisions should be matched.
941     EXPECT_EQ(poly1.getNumLocalVars(), 2u);
942     EXPECT_EQ(poly2.getNumLocalVars(), 2u);
943   }
944 
945   {
946     // (x) : (exists y = [x / 2], z = [x + y / 3], w = [z + 1 / 5]: y + z >= x).
947     IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1));
948     poly1.addLocalFloorDiv({1, 0}, 2);       // y = [x / 2].
949     poly1.addLocalFloorDiv({1, 1, 0}, 3);    // z = [x + y / 3].
950     poly1.addLocalFloorDiv({0, 0, 1, 1}, 5); // w = [z + 1 / 5].
951     poly1.addInequality({-1, 1, 1, 0, 0});   // y + z >= x.
952 
953     // (x) : (exists y = [x / 2], z = [x + y / 3], w = [z + 1 / 5]: y + z <= x).
954     IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
955     poly2.addLocalFloorDiv({1, 0}, 2);       // y = [x / 2].
956     poly2.addLocalFloorDiv({1, 1, 0}, 3);    // z = [x + y / 3].
957     poly2.addLocalFloorDiv({0, 0, 1, 1}, 5); // w = [z + 1 / 5].
958     poly2.addInequality({1, -1, -1, 0, 0});  // y + z <= x.
959 
960     poly1.mergeLocalVars(poly2);
961 
962     // Local space should be same.
963     EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars());
964 
965     // 3 divisions should be matched.
966     EXPECT_EQ(poly1.getNumLocalVars(), 3u);
967     EXPECT_EQ(poly2.getNumLocalVars(), 3u);
968   }
969   {
970     // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z >= x).
971     IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1));
972     poly1.addLocalFloorDiv({2, 0}, 4);    // y = [2x / 4] -> [x / 2].
973     poly1.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3].
974     poly1.addInequality({-1, 1, 1, 0});   // y + z >= x.
975 
976     // (x) : (exists y = [x / 2], z = [x + y / 3]: y + z <= x).
977     IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
978     poly2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2].
979     // This division would be normalized.
980     poly2.addLocalFloorDiv({3, 3, 0}, 9); // z = [3x + 3y / 9] -> [x + y / 3].
981     poly2.addInequality({1, -1, -1, 0});  // y + z <= x.
982 
983     poly1.mergeLocalVars(poly2);
984 
985     // Local space should be same.
986     EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars());
987 
988     // 2 divisions should be matched.
989     EXPECT_EQ(poly1.getNumLocalVars(), 2u);
990     EXPECT_EQ(poly2.getNumLocalVars(), 2u);
991   }
992 }
993 
TEST(IntegerPolyhedronTest,mergeDivisionsConstants)994 TEST(IntegerPolyhedronTest, mergeDivisionsConstants) {
995   {
996     // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z >= x).
997     IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1));
998     poly1.addLocalFloorDiv({1, 1}, 2);    // y = [x + 1 / 2].
999     poly1.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3].
1000     poly1.addInequality({-1, 1, 1, 0});   // y + z >= x.
1001 
1002     // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x).
1003     IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
1004     poly2.addLocalFloorDiv({1, 1}, 2);    // y = [x + 1 / 2].
1005     poly2.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3].
1006     poly2.addInequality({1, -1, -1, 0});  // y + z <= x.
1007 
1008     poly1.mergeLocalVars(poly2);
1009 
1010     // Local space should be same.
1011     EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars());
1012 
1013     // 2 divisions should be matched.
1014     EXPECT_EQ(poly1.getNumLocalVars(), 2u);
1015     EXPECT_EQ(poly2.getNumLocalVars(), 2u);
1016   }
1017   {
1018     // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z >= x).
1019     IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1));
1020     poly1.addLocalFloorDiv({1, 1}, 2); // y = [x + 1 / 2].
1021     // Normalization test.
1022     poly1.addLocalFloorDiv({3, 0, 6}, 9); // z = [3x + 6 / 9] -> [x + 2 / 3].
1023     poly1.addInequality({-1, 1, 1, 0});   // y + z >= x.
1024 
1025     // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x).
1026     IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
1027     // Normalization test.
1028     poly2.addLocalFloorDiv({2, 2}, 4);    // y = [2x + 2 / 4] -> [x + 1 / 2].
1029     poly2.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3].
1030     poly2.addInequality({1, -1, -1, 0});  // y + z <= x.
1031 
1032     poly1.mergeLocalVars(poly2);
1033 
1034     // Local space should be same.
1035     EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars());
1036 
1037     // 2 divisions should be matched.
1038     EXPECT_EQ(poly1.getNumLocalVars(), 2u);
1039     EXPECT_EQ(poly2.getNumLocalVars(), 2u);
1040   }
1041 }
1042 
TEST(IntegerPolyhedronTest,mergeDivisionsDuplicateInSameSet)1043 TEST(IntegerPolyhedronTest, mergeDivisionsDuplicateInSameSet) {
1044   // (x) : (exists y = [x + 1 / 3], z = [x + 1 / 3]: y + z >= x).
1045   IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1));
1046   poly1.addLocalFloorDiv({1, 1}, 3);    // y = [x + 1 / 2].
1047   poly1.addLocalFloorDiv({1, 0, 1}, 3); // z = [x + 1 / 3].
1048   poly1.addInequality({-1, 1, 1, 0});   // y + z >= x.
1049 
1050   // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x).
1051   IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
1052   poly2.addLocalFloorDiv({1, 1}, 3);    // y = [x + 1 / 3].
1053   poly2.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3].
1054   poly2.addInequality({1, -1, -1, 0});  // y + z <= x.
1055 
1056   poly1.mergeLocalVars(poly2);
1057 
1058   // Local space should be same.
1059   EXPECT_EQ(poly1.getNumLocalVars(), poly2.getNumLocalVars());
1060 
1061   // 1 divisions should be matched.
1062   EXPECT_EQ(poly1.getNumLocalVars(), 3u);
1063   EXPECT_EQ(poly2.getNumLocalVars(), 3u);
1064 }
1065 
TEST(IntegerPolyhedronTest,negativeDividends)1066 TEST(IntegerPolyhedronTest, negativeDividends) {
1067   // (x) : (exists y = [-x + 1 / 2], z = [-x - 2 / 3]: y + z >= x).
1068   IntegerPolyhedron poly1(PresburgerSpace::getSetSpace(1));
1069   poly1.addLocalFloorDiv({-1, 1}, 2); // y = [x + 1 / 2].
1070   // Normalization test with negative dividends
1071   poly1.addLocalFloorDiv({-3, 0, -6}, 9); // z = [3x + 6 / 9] -> [x + 2 / 3].
1072   poly1.addInequality({-1, 1, 1, 0});     // y + z >= x.
1073 
1074   // (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x).
1075   IntegerPolyhedron poly2(PresburgerSpace::getSetSpace(1));
1076   // Normalization test.
1077   poly2.addLocalFloorDiv({-2, 2}, 4);     // y = [-2x + 2 / 4] -> [-x + 1 / 2].
1078   poly2.addLocalFloorDiv({-1, 0, -2}, 3); // z = [-x - 2 / 3].
1079   poly2.addInequality({1, -1, -1, 0});    // y + z <= x.
1080 
1081   poly1.mergeLocalVars(poly2);
1082 
1083   // Merging triggers normalization.
1084   std::vector<SmallVector<int64_t, 8>> divisions = {{-1, 0, 0, 1},
1085                                                     {-1, 0, 0, -2}};
1086   SmallVector<int64_t, 8> denoms = {2, 3};
1087   checkDivisionRepresentation(poly1, divisions, denoms);
1088 }
1089 
expectRationalLexMin(const IntegerPolyhedron & poly,ArrayRef<Fraction> min)1090 void expectRationalLexMin(const IntegerPolyhedron &poly,
1091                           ArrayRef<Fraction> min) {
1092   auto lexMin = poly.findRationalLexMin();
1093   ASSERT_TRUE(lexMin.isBounded());
1094   EXPECT_EQ(ArrayRef<Fraction>(*lexMin), min);
1095 }
1096 
expectNoRationalLexMin(OptimumKind kind,const IntegerPolyhedron & poly)1097 void expectNoRationalLexMin(OptimumKind kind, const IntegerPolyhedron &poly) {
1098   ASSERT_NE(kind, OptimumKind::Bounded)
1099       << "Use expectRationalLexMin for bounded min";
1100   EXPECT_EQ(poly.findRationalLexMin().getKind(), kind);
1101 }
1102 
TEST(IntegerPolyhedronTest,findRationalLexMin)1103 TEST(IntegerPolyhedronTest, findRationalLexMin) {
1104   expectRationalLexMin(
1105       parseIntegerPolyhedron(
1106           "(x, y, z) : (x + 10 >= 0, y + 40 >= 0, z + 30 >= 0)"),
1107       {{-10, 1}, {-40, 1}, {-30, 1}});
1108   expectRationalLexMin(
1109       parseIntegerPolyhedron(
1110           "(x, y, z) : (2*x + 7 >= 0, 3*y - 5 >= 0, 8*z + 10 >= 0, 9*z >= 0)"),
1111       {{-7, 2}, {5, 3}, {0, 1}});
1112   expectRationalLexMin(
1113       parseIntegerPolyhedron("(x, y) : (3*x + 2*y + 10 >= 0, -3*y + 10 >= "
1114                              "0, 4*x - 7*y - 10 >= 0)"),
1115       {{-50, 29}, {-70, 29}});
1116 
1117   // Test with some locals. This is basically x >= 11, 0 <= x - 2e <= 1.
1118   // It'll just choose x = 11, e = 5.5 since it's rational lexmin.
1119   expectRationalLexMin(
1120       parseIntegerPolyhedron(
1121           "(x, y) : (x - 2*(x floordiv 2) == 0, y - 2*x >= 0, x - 11 >= 0)"),
1122       {{11, 1}, {22, 1}});
1123 
1124   expectRationalLexMin(
1125       parseIntegerPolyhedron("(x, y) : (3*x + 2*y + 10 >= 0,"
1126                              "-4*x + 7*y + 10 >= 0, -3*y + 10 >= 0)"),
1127       {{-50, 9}, {10, 3}});
1128 
1129   // Cartesian product of above with itself.
1130   expectRationalLexMin(
1131       parseIntegerPolyhedron(
1132           "(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
1133           "-3*y + 10 >= 0, 3*z + 2*w + 10 >= 0, -4*z + 7*w + 10 >= 0,"
1134           "-3*w + 10 >= 0)"),
1135       {{-50, 9}, {10, 3}, {-50, 9}, {10, 3}});
1136 
1137   // Same as above but for the constraints on z and w, we express "10" in terms
1138   // of x and y. We know that x and y still have to take the values
1139   // -50/9 and 10/3 since their constraints are the same and their values are
1140   // minimized first. Accordingly, the values -9x - 12y,  -9x - 0y - 10,
1141   // and -9x - 15y + 10 are all equal to 10.
1142   expectRationalLexMin(
1143       parseIntegerPolyhedron(
1144           "(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0, "
1145           "-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0,"
1146           "-4*z + 7*w + - 9*x - 9*y - 10 >= 0, -3*w - 9*x - 15*y + 10 >= 0)"),
1147       {{-50, 9}, {10, 3}, {-50, 9}, {10, 3}});
1148 
1149   // Same as above with one constraint removed, making the lexmin unbounded.
1150   expectNoRationalLexMin(
1151       OptimumKind::Unbounded,
1152       parseIntegerPolyhedron(
1153           "(x, y, z, w) : (3*x + 2*y + 10 >= 0, -4*x + 7*y + 10 >= 0,"
1154           "-3*y + 10 >= 0, 3*z + 2*w - 9*x - 12*y >= 0,"
1155           "-4*z + 7*w + - 9*x - 9*y - 10>= 0)"));
1156 
1157   // Again, the lexmin is unbounded.
1158   expectNoRationalLexMin(
1159       OptimumKind::Unbounded,
1160       parseIntegerPolyhedron(
1161           "(x, y, z) : (2*x + 5*y + 8*z - 10 >= 0,"
1162           "2*x + 10*y + 8*z - 10 >= 0, 2*x + 5*y + 10*z - 10 >= 0)"));
1163 
1164   // The set is empty.
1165   expectNoRationalLexMin(
1166       OptimumKind::Empty,
1167       parseIntegerPolyhedron("(x) : (2*x >= 0, -x - 1 >= 0)"));
1168 }
1169 
expectIntegerLexMin(const IntegerPolyhedron & poly,ArrayRef<int64_t> min)1170 void expectIntegerLexMin(const IntegerPolyhedron &poly, ArrayRef<int64_t> min) {
1171   MaybeOptimum<SmallVector<DynamicAPInt, 8>> lexMin = poly.findIntegerLexMin();
1172   ASSERT_TRUE(lexMin.isBounded());
1173   EXPECT_EQ(*lexMin, getDynamicAPIntVec(min));
1174 }
1175 
expectNoIntegerLexMin(OptimumKind kind,const IntegerPolyhedron & poly)1176 void expectNoIntegerLexMin(OptimumKind kind, const IntegerPolyhedron &poly) {
1177   ASSERT_NE(kind, OptimumKind::Bounded)
1178       << "Use expectRationalLexMin for bounded min";
1179   EXPECT_EQ(poly.findRationalLexMin().getKind(), kind);
1180 }
1181 
TEST(IntegerPolyhedronTest,findIntegerLexMin)1182 TEST(IntegerPolyhedronTest, findIntegerLexMin) {
1183   expectIntegerLexMin(
1184       parseIntegerPolyhedron("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2  >= "
1185                              "0, 11*z + 5*y - 3*x + 7 >= 0)"),
1186       {-6, -4, 0});
1187   // Similar to above but no lower bound on z.
1188   expectNoIntegerLexMin(
1189       OptimumKind::Unbounded,
1190       parseIntegerPolyhedron("(x, y, z) : (2*x + 13 >= 0, 4*y - 3*x - 2  "
1191                              ">= 0, -11*z + 5*y - 3*x + 7 >= 0)"));
1192 }
1193 
expectSymbolicIntegerLexMin(StringRef polyStr,ArrayRef<std::pair<StringRef,StringRef>> expectedLexminRepr,ArrayRef<StringRef> expectedUnboundedDomainRepr)1194 void expectSymbolicIntegerLexMin(
1195     StringRef polyStr,
1196     ArrayRef<std::pair<StringRef, StringRef>> expectedLexminRepr,
1197     ArrayRef<StringRef> expectedUnboundedDomainRepr) {
1198   IntegerPolyhedron poly = parseIntegerPolyhedron(polyStr);
1199 
1200   ASSERT_NE(poly.getNumDimVars(), 0u);
1201   ASSERT_NE(poly.getNumSymbolVars(), 0u);
1202 
1203   SymbolicLexOpt result = poly.findSymbolicIntegerLexMin();
1204 
1205   if (expectedLexminRepr.empty()) {
1206     EXPECT_TRUE(result.lexopt.getDomain().isIntegerEmpty());
1207   } else {
1208     PWMAFunction expectedLexmin = parsePWMAF(expectedLexminRepr);
1209     EXPECT_TRUE(result.lexopt.isEqual(expectedLexmin));
1210   }
1211 
1212   if (expectedUnboundedDomainRepr.empty()) {
1213     EXPECT_TRUE(result.unboundedDomain.isIntegerEmpty());
1214   } else {
1215     PresburgerSet expectedUnboundedDomain =
1216         parsePresburgerSet(expectedUnboundedDomainRepr);
1217     EXPECT_TRUE(result.unboundedDomain.isEqual(expectedUnboundedDomain));
1218   }
1219 }
1220 
expectSymbolicIntegerLexMin(StringRef polyStr,ArrayRef<std::pair<StringRef,StringRef>> result)1221 void expectSymbolicIntegerLexMin(
1222     StringRef polyStr, ArrayRef<std::pair<StringRef, StringRef>> result) {
1223   expectSymbolicIntegerLexMin(polyStr, result, {});
1224 }
1225 
TEST(IntegerPolyhedronTest,findSymbolicIntegerLexMin)1226 TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
1227   expectSymbolicIntegerLexMin("(x)[a] : (x - a >= 0)",
1228                               {
1229                                   {"()[a] : ()", "()[a] -> (a)"},
1230                               });
1231 
1232   expectSymbolicIntegerLexMin(
1233       "(x)[a, b] : (x - a >= 0, x - b >= 0)",
1234       {
1235           {"()[a, b] : (a - b >= 0)", "()[a, b] -> (a)"},
1236           {"()[a, b] : (b - a - 1 >= 0)", "()[a, b] -> (b)"},
1237       });
1238 
1239   expectSymbolicIntegerLexMin(
1240       "(x)[a, b, c] : (x -a >= 0, x - b >= 0, x - c >= 0)",
1241       {
1242           {"()[a, b, c] : (a - b >= 0, a - c >= 0)", "()[a, b, c] -> (a)"},
1243           {"()[a, b, c] : (b - a - 1 >= 0, b - c >= 0)", "()[a, b, c] -> (b)"},
1244           {"()[a, b, c] : (c - a - 1 >= 0, c - b - 1 >= 0)",
1245            "()[a, b, c] -> (c)"},
1246       });
1247 
1248   expectSymbolicIntegerLexMin("(x, y)[a] : (x - a >= 0, x + y >= 0)",
1249                               {
1250                                   {"()[a] : ()", "()[a] -> (a, -a)"},
1251                               });
1252 
1253   expectSymbolicIntegerLexMin("(x, y)[a] : (x - a >= 0, x + y >= 0, y >= 0)",
1254                               {
1255                                   {"()[a] : (a >= 0)", "()[a] -> (a, 0)"},
1256                                   {"()[a] : (-a - 1 >= 0)", "()[a] -> (a, -a)"},
1257                               });
1258 
1259   expectSymbolicIntegerLexMin(
1260       "(x, y)[a, b, c] : (x - a >= 0, y - b >= 0, c - x - y >= 0)",
1261       {
1262           {"()[a, b, c] : (c - a - b >= 0)", "()[a, b, c] -> (a, b)"},
1263       });
1264 
1265   expectSymbolicIntegerLexMin(
1266       "(x, y, z)[a, b, c] : (c - z >= 0, b - y >= 0, x + y + z - a == 0)",
1267       {
1268           {"()[a, b, c] : ()", "()[a, b, c] -> (a - b - c, b, c)"},
1269       });
1270 
1271   expectSymbolicIntegerLexMin(
1272       "(x)[a, b] : (a >= 0, b >= 0, x >= 0, a + b + x - 1 >= 0)",
1273       {
1274           {"()[a, b] : (a >= 0, b >= 0, a + b - 1 >= 0)", "()[a, b] -> (0)"},
1275           {"()[a, b] : (a == 0, b == 0)", "()[a, b] -> (1)"},
1276       });
1277 
1278   expectSymbolicIntegerLexMin(
1279       "(x)[a, b] : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, 1 - x >= 0, x >= "
1280       "0, a + b + x - 1 >= 0)",
1281       {
1282           {"()[a, b] : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, a + b - 1 >= "
1283            "0)",
1284            "()[a, b] -> (0)"},
1285           {"()[a, b] : (a == 0, b == 0)", "()[a, b] -> (1)"},
1286       });
1287 
1288   expectSymbolicIntegerLexMin(
1289       "(x, y, z)[a, b] : (x - a == 0, y - b == 0, x >= 0, y >= 0, z >= 0, x + "
1290       "y + z - 1 >= 0)",
1291       {
1292           {"()[a, b] : (a >= 0, b >= 0, 1 - a - b >= 0)",
1293            "()[a, b] -> (a, b, 1 - a - b)"},
1294           {"()[a, b] : (a >= 0, b >= 0, a + b - 2 >= 0)",
1295            "()[a, b] -> (a, b, 0)"},
1296       });
1297 
1298   expectSymbolicIntegerLexMin(
1299       "(x)[a, b] : (x - a == 0, x - b >= 0)",
1300       {
1301           {"()[a, b] : (a - b >= 0)", "()[a, b] -> (a)"},
1302       });
1303 
1304   expectSymbolicIntegerLexMin(
1305       "(q)[a] : (a - 1 - 3*q == 0, q >= 0)",
1306       {
1307           {"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
1308            "()[a] -> (a floordiv 3)"},
1309       });
1310 
1311   expectSymbolicIntegerLexMin(
1312       "(r, q)[a] : (a - r - 3*q == 0, q >= 0, 1 - r >= 0, r >= 0)",
1313       {
1314           {"()[a] : (a - 0 - 3*(a floordiv 3) == 0, a >= 0)",
1315            "()[a] -> (0, a floordiv 3)"},
1316           {"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
1317            "()[a] -> (1, a floordiv 3)"}, // (1 a floordiv 3)
1318       });
1319 
1320   expectSymbolicIntegerLexMin(
1321       "(r, q)[a] : (a - r - 3*q == 0, q >= 0, 2 - r >= 0, r - 1 >= 0)",
1322       {
1323           {"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
1324            "()[a] -> (1, a floordiv 3)"},
1325           {"()[a] : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)",
1326            "()[a] -> (2, a floordiv 3)"},
1327       });
1328 
1329   expectSymbolicIntegerLexMin(
1330       "(r, q)[a] : (a - r - 3*q == 0, q >= 0, r >= 0)",
1331       {
1332           {"()[a] : (a - 3*(a floordiv 3) == 0, a >= 0)",
1333            "()[a] -> (0, a floordiv 3)"},
1334           {"()[a] : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
1335            "()[a] -> (1, a floordiv 3)"},
1336           {"()[a] : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)",
1337            "()[a] -> (2, a floordiv 3)"},
1338       });
1339 
1340   expectSymbolicIntegerLexMin(
1341       "(x, y, z, w)[g] : ("
1342       // x, y, z, w are boolean variables.
1343       "1 - x >= 0, x >= 0, 1 - y >= 0, y >= 0,"
1344       "1 - z >= 0, z >= 0, 1 - w >= 0, w >= 0,"
1345       // We have some constraints on them:
1346       "x + y + z - 1 >= 0,"             // x or y or z
1347       "x + y + w - 1 >= 0,"             // x or y or w
1348       "1 - x + 1 - y + 1 - w - 1 >= 0," // ~x or ~y or ~w
1349       // What's the lexmin solution using exactly g true vars?
1350       "g - x - y - z - w == 0)",
1351       {
1352           {"()[g] : (g - 1 == 0)", "()[g] -> (0, 1, 0, 0)"},
1353           {"()[g] : (g - 2 == 0)", "()[g] -> (0, 0, 1, 1)"},
1354           {"()[g] : (g - 3 == 0)", "()[g] -> (0, 1, 1, 1)"},
1355       });
1356 
1357   // Bezout's lemma: if a, b are constants,
1358   // the set of values that ax + by can take is all multiples of gcd(a, b).
1359   expectSymbolicIntegerLexMin(
1360       // If (x, y) is a solution for a given [a, r], then so is (x - 5, y + 2).
1361       // So the lexmin is unbounded if it exists.
1362       "(x, y)[a, r] : (a >= 0, r - a + 14*x + 35*y == 0)", {},
1363       // According to Bezout's lemma, 14x + 35y can take on all multiples
1364       // of 7 and no other values. So the solution exists iff r - a is a
1365       // multiple of 7.
1366       {"()[a, r] : (a >= 0, r - a - 7*((r - a) floordiv 7) == 0)"});
1367 
1368   // The lexmins are unbounded.
1369   expectSymbolicIntegerLexMin("(x, y)[a] : (9*x - 4*y - 2*a >= 0)", {},
1370                               {"()[a] : ()"});
1371 
1372   // Test cases adapted from isl.
1373   expectSymbolicIntegerLexMin(
1374       // a = 2b - 2(c - b), c - b >= 0.
1375       // So b is minimized when c = b.
1376       "(b, c)[a] : (a - 4*b + 2*c == 0, c - b >= 0)",
1377       {
1378           {"()[a] : (a - 2*(a floordiv 2) == 0)",
1379            "()[a] -> (a floordiv 2, a floordiv 2)"},
1380       });
1381 
1382   expectSymbolicIntegerLexMin(
1383       // 0 <= b <= 255, 1 <= a - 512b <= 509,
1384       // b + 8 >= 1 + 16*(b + 8 floordiv 16) // i.e. b % 16 != 8
1385       "(b)[a] : (255 - b >= 0, b >= 0, a - 512*b - 1 >= 0, 512*b -a + 509 >= "
1386       "0, b + 7 - 16*((8 + b) floordiv 16) >= 0)",
1387       {
1388           {"()[a] : (255 - (a floordiv 512) >= 0, a >= 0, a - 512*(a floordiv "
1389            "512) - 1 >= 0, 512*(a floordiv 512) - a + 509 >= 0, (a floordiv "
1390            "512) + 7 - 16*((8 + (a floordiv 512)) floordiv 16) >= 0)",
1391            "()[a] -> (a floordiv 512)"},
1392       });
1393 
1394   expectSymbolicIntegerLexMin(
1395       "(a, b)[K, N, x, y] : (N - K - 2 >= 0, K + 4 - N >= 0, x - 4 >= 0, x + 6 "
1396       "- 2*N >= 0, K+N - x - 1 >= 0, a - N + 1 >= 0, K+N-1-a >= 0,a + 6 - b - "
1397       "N >= 0, 2*N - 4 - a >= 0,"
1398       "2*N - 3*K + a - b >= 0, 4*N - K + 1 - 3*b >= 0, b - N >= 0, a - x - 1 "
1399       ">= 0)",
1400       {
1401           {"()[K, N, x, y] : (x + 6 - 2*N >= 0, 2*N - 5 - x >= 0, x + 1 -3*K + "
1402            "N >= 0, N + K - 2 - x >= 0, x - 4 >= 0)",
1403            "()[K, N, x, y] -> (1 + x, N)"},
1404       });
1405 }
1406 
1407 static void
expectComputedVolumeIsValidOverapprox(const IntegerPolyhedron & poly,std::optional<int64_t> trueVolume,std::optional<int64_t> resultBound)1408 expectComputedVolumeIsValidOverapprox(const IntegerPolyhedron &poly,
1409                                       std::optional<int64_t> trueVolume,
1410                                       std::optional<int64_t> resultBound) {
1411   expectComputedVolumeIsValidOverapprox(poly.computeVolume(), trueVolume,
1412                                         resultBound);
1413 }
1414 
TEST(IntegerPolyhedronTest,computeVolume)1415 TEST(IntegerPolyhedronTest, computeVolume) {
1416   // 0 <= x <= 3 + 1/3, -5.5 <= y <= 2 + 3/5, 3 <= z <= 1.75.
1417   // i.e. 0 <= x <= 3, -5 <= y <= 2, 3 <= z <= 3 + 1/4.
1418   // So volume is 4 * 8 * 1 = 32.
1419   expectComputedVolumeIsValidOverapprox(
1420       parseIntegerPolyhedron(
1421           "(x, y, z) : (x >= 0, -3*x + 10 >= 0, 2*y + 11 >= 0,"
1422           "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
1423       /*trueVolume=*/32ull, /*resultBound=*/32ull);
1424 
1425   // Same as above but y has bounds 2 + 1/5 <= y <= 2 + 3/5. So the volume is
1426   // zero.
1427   expectComputedVolumeIsValidOverapprox(
1428       parseIntegerPolyhedron(
1429           "(x, y, z) : (x >= 0, -3*x + 10 >= 0, 5*y - 11 >= 0,"
1430           "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
1431       /*trueVolume=*/0ull, /*resultBound=*/0ull);
1432 
1433   // Now x is unbounded below but y still has no integer values.
1434   expectComputedVolumeIsValidOverapprox(
1435       parseIntegerPolyhedron("(x, y, z) : (-3*x + 10 >= 0, 5*y - 11 >= 0,"
1436                              "-5*y + 13 >= 0, z - 3 >= 0, -4*z + 13 >= 0)"),
1437       /*trueVolume=*/0ull, /*resultBound=*/0ull);
1438 
1439   // A diamond shape, 0 <= x + y <= 10, 0 <= x - y <= 10,
1440   // with vertices at (0, 0), (5, 5), (5, 5), (10, 0).
1441   // x and y can take 11 possible values so result computed is 11*11 = 121.
1442   expectComputedVolumeIsValidOverapprox(
1443       parseIntegerPolyhedron(
1444           "(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0,"
1445           "-x + y + 10 >= 0)"),
1446       /*trueVolume=*/61ull, /*resultBound=*/121ull);
1447 
1448   // Effectively the same diamond as above; constrain the variables to be even
1449   // and double the constant terms of the constraints. The algorithm can't
1450   // eliminate locals exactly, so the result is an overapproximation by
1451   // computing that x and y can take 21 possible values so result is 21*21 =
1452   // 441.
1453   expectComputedVolumeIsValidOverapprox(
1454       parseIntegerPolyhedron(
1455           "(x, y) : (x + y >= 0, -x - y + 20 >= 0, x - y >= 0,"
1456           " -x + y + 20 >= 0, x - 2*(x floordiv 2) == 0,"
1457           "y - 2*(y floordiv 2) == 0)"),
1458       /*trueVolume=*/61ull, /*resultBound=*/441ull);
1459 
1460   // Unbounded polytope.
1461   expectComputedVolumeIsValidOverapprox(
1462       parseIntegerPolyhedron("(x, y) : (2*x - y >= 0, y - 3*x >= 0)"),
1463       /*trueVolume=*/{}, /*resultBound=*/{});
1464 }
1465 
containsPointNoLocal(const IntegerPolyhedron & poly,ArrayRef<int64_t> point)1466 bool containsPointNoLocal(const IntegerPolyhedron &poly,
1467                           ArrayRef<int64_t> point) {
1468   return poly.containsPointNoLocal(getDynamicAPIntVec(point)).has_value();
1469 }
1470 
TEST(IntegerPolyhedronTest,containsPointNoLocal)1471 TEST(IntegerPolyhedronTest, containsPointNoLocal) {
1472   IntegerPolyhedron poly1 =
1473       parseIntegerPolyhedron("(x) : ((x floordiv 2) - x == 0)");
1474   EXPECT_TRUE(poly1.containsPointNoLocal({0}));
1475   EXPECT_FALSE(poly1.containsPointNoLocal({1}));
1476 
1477   IntegerPolyhedron poly2 = parseIntegerPolyhedron(
1478       "(x) : (x - 2*(x floordiv 2) == 0, x - 4*(x floordiv 4) - 2 == 0)");
1479   EXPECT_TRUE(containsPointNoLocal(poly2, {6}));
1480   EXPECT_FALSE(containsPointNoLocal(poly2, {4}));
1481 
1482   IntegerPolyhedron poly3 =
1483       parseIntegerPolyhedron("(x, y) : (2*x - y >= 0, y - 3*x >= 0)");
1484 
1485   EXPECT_TRUE(poly3.containsPointNoLocal(ArrayRef<int64_t>({0, 0})));
1486   EXPECT_FALSE(poly3.containsPointNoLocal({1, 0}));
1487 }
1488 
TEST(IntegerPolyhedronTest,truncateEqualityRegressionTest)1489 TEST(IntegerPolyhedronTest, truncateEqualityRegressionTest) {
1490   // IntegerRelation::truncate was truncating inequalities to the number of
1491   // equalities.
1492   IntegerRelation set(PresburgerSpace::getSetSpace(1));
1493   IntegerRelation::CountsSnapshot snapshot = set.getCounts();
1494   set.addEquality({1, 0});
1495   set.truncate(snapshot);
1496   EXPECT_EQ(set.getNumEqualities(), 0u);
1497 }
1498