xref: /llvm-project/mlir/test/python/dialects/nvgpu.py (revision 4f88c2311130791cf69da34b743b1b3ba7584a7b)
1# RUN: %PYTHON %s | FileCheck %s
2# This is just a smoke test that the dialect is functional.
3
4from mlir.ir import *
5from mlir.dialects import nvgpu, arith, memref
6
7
8def constructAndPrintInModule(f):
9    print("\nTEST:", f.__name__)
10    with Context(), Location.unknown():
11        module = Module.create()
12        with InsertionPoint(module.body):
13            f()
14        print(module)
15    return f
16
17
18# CHECK-LABEL: testTypes
19@constructAndPrintInModule
20def testTypes():
21    tensorMemrefType = MemRefType.get(
22        (128, 64), F16Type.get(), memory_space=Attribute.parse("3")
23    )
24    # CHECK: !nvgpu.tensormap.descriptor<tensor = memref<128x64xf16, 3>, swizzle = swizzle_128b, l2promo = l2promo_256b, oob = nan, interleave = none>
25    tma_desc = nvgpu.TensorMapDescriptorType.get(
26        tensorMemrefType,
27        nvgpu.TensorMapSwizzleKind.SWIZZLE_128B,
28        nvgpu.TensorMapL2PromoKind.L2PROMO_256B,
29        nvgpu.TensorMapOOBKind.OOB_NAN,
30        nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
31    )
32    print(tma_desc)
33
34
35# CHECK-LABEL: testSmoke
36@constructAndPrintInModule
37def testSmoke():
38    cst = arith.ConstantOp(value=42, result=IndexType.get())
39    mem_t = MemRefType.get((10, 10), F32Type.get(), memory_space=Attribute.parse("3"))
40    vec_t = VectorType.get((4, 1), F32Type.get())
41    mem = memref.AllocOp(mem_t, [], [])
42    # CHECK: %0 = nvgpu.ldmatrix %alloc[%c42, %c42] {numTiles = 4 : i32, transpose = false} : memref<10x10xf32, 3> -> vector<4x1xf32>
43    nvgpu.LdMatrixOp(vec_t, mem, [cst, cst], False, 4)
44