xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py (revision 0e34dbb4f452013eab89a0a8f04a436ff6c408d4)
1# RUN: env SUPPORT_LIB=%mlir_c_runner_utils \
2# RUN:   %PYTHON %s | FileCheck %s
3
4import ctypes
5import numpy as np
6import os
7import sys
8
9from mlir import ir
10from mlir import runtime as rt
11
12from mlir.dialects import sparse_tensor as st
13from mlir.dialects import builtin
14from mlir.dialects import func
15from mlir.dialects.linalg.opdsl import lang as dsl
16
17_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
18sys.path.append(_SCRIPT_PATH)
19from tools import sparsifier
20
21
22@dsl.linalg_structured_op
23def matmul_dsl(
24    A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
25    B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
26    C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True),
27):
28    C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
29
30
31def build_SpMM(attr: st.EncodingAttr):
32    """Build SpMM kernel.
33
34    This method generates a linalg op with for matrix multiplication using
35    just the Python API. Effectively, a generic linalg op is constructed
36    that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
37    """
38    module = ir.Module.create()
39    f64 = ir.F64Type.get()
40    a = ir.RankedTensorType.get([3, 4], f64, attr)
41    b = ir.RankedTensorType.get([4, 2], f64)
42    c = ir.RankedTensorType.get([3, 2], f64)
43    arguments = [a, b, c]
44    with ir.InsertionPoint(module.body):
45
46        @func.FuncOp.from_py_func(*arguments)
47        def spMxM(*args):
48            return matmul_dsl(args[0], args[1], outs=[args[2]])
49
50    return module
51
52
53def boilerplate(attr: st.EncodingAttr):
54    """Returns boilerplate main method.
55
56    This method sets up a boilerplate main method that takes three tensors
57    (a, b, c), converts the first tensor a into s sparse tensor, and then
58    calls the sparse kernel for matrix multiplication. For convenience,
59    this part is purely done as string input.
60    """
61    return f"""
62func.func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64>
63  attributes {{ llvm.emit_c_interface }} {{
64  %a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
65  %0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
66                                  tensor<4x2xf64>,
67                                  tensor<3x2xf64>) -> tensor<3x2xf64>
68  return %0 : tensor<3x2xf64>
69}}
70"""
71
72
73def build_compile_and_run_SpMM(attr: st.EncodingAttr, compiler):
74    # Build.
75    module = build_SpMM(attr)
76    func = str(module.operation.regions[0].blocks[0].operations[0].operation)
77    module = ir.Module.parse(func + boilerplate(attr))
78
79    # Compile.
80    engine = compiler.compile_and_jit(module)
81
82    # Set up numpy input and buffer for output.
83    a = np.array(
84        [[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]], np.float64
85    )
86    b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64)
87    c = np.zeros((3, 2), np.float64)
88
89    mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
90    mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
91    mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
92    # Allocate a MemRefDescriptor to receive the output tensor.
93    # The buffer itself is allocated inside the MLIR code generation.
94    ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)()
95    mem_out = ctypes.pointer(ctypes.pointer(ref_out))
96
97    # Invoke the kernel and get numpy output.
98    # Built-in bufferization uses in-out buffers.
99    engine.invoke("main", mem_out, mem_a, mem_b, mem_c)
100
101    # Sanity check on computed result.
102    expected = np.matmul(a, b)
103    c = rt.ranked_memref_to_numpy(mem_out[0])
104    if np.allclose(c, expected):
105        pass
106    else:
107        quit(f"FAILURE")
108
109
110def main():
111    support_lib = os.getenv("SUPPORT_LIB")
112    assert support_lib is not None, "SUPPORT_LIB is undefined"
113    if not os.path.exists(support_lib):
114        raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib)
115
116    # CHECK-LABEL: TEST: testSpMM
117    print("\nTEST: testSpMM")
118    count = 0
119    with ir.Context() as ctx, ir.Location.unknown():
120        # Loop over various ways to compile and annotate the SpMM kernel with
121        # a *single* sparse tensor. Note that we deliberate do not exhaustively
122        # search the full state space to reduce runtime of the test. It is
123        # straightforward to adapt the code below to explore more combinations.
124        # For these simple orderings, dim2lvl and lvl2dim are the same.
125        vl = 1
126        e = False
127        opt = f"parallelization-strategy=none"
128        builder = st.EncodingAttr.build_level_type
129        fmt = st.LevelFormat
130        prop = st.LevelProperty
131        levels = [
132            [builder(fmt.compressed, [prop.non_unique]), builder(fmt.singleton)],
133            [builder(fmt.dense), builder(fmt.dense)],
134            [builder(fmt.dense), builder(fmt.compressed)],
135            [builder(fmt.compressed), builder(fmt.dense)],
136            [builder(fmt.compressed), builder(fmt.compressed)],
137        ]
138        orderings = [
139            ir.AffineMap.get_permutation([0, 1]),
140            ir.AffineMap.get_permutation([1, 0]),
141        ]
142        bitwidths = [0]
143        compiler = sparsifier.Sparsifier(
144            extras="", options=opt, opt_level=0, shared_libs=[support_lib]
145        )
146        for level in levels:
147            for ordering in orderings:
148                for pwidth in bitwidths:
149                    for iwidth in bitwidths:
150                        attr = st.EncodingAttr.get(
151                            level, ordering, ordering, pwidth, iwidth
152                        )
153                        build_compile_and_run_SpMM(attr, compiler)
154                        count = count + 1
155        # CHECK: Passed 10 tests
156        print("Passed ", count, "tests")
157
158
159if __name__ == "__main__":
160    main()
161