1# RUN: env SUPPORT_LIB=%mlir_c_runner_utils \ 2# RUN: %PYTHON %s | FileCheck %s 3 4import ctypes 5import numpy as np 6import os 7import sys 8 9from mlir import ir 10from mlir import runtime as rt 11 12from mlir.dialects import sparse_tensor as st 13from mlir.dialects import builtin 14from mlir.dialects import func 15from mlir.dialects.linalg.opdsl import lang as dsl 16 17_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__)) 18sys.path.append(_SCRIPT_PATH) 19from tools import sparsifier 20 21 22@dsl.linalg_structured_op 23def matmul_dsl( 24 A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K), 25 B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N), 26 C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True), 27): 28 C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n] 29 30 31def build_SpMM(attr: st.EncodingAttr): 32 """Build SpMM kernel. 33 34 This method generates a linalg op with for matrix multiplication using 35 just the Python API. Effectively, a generic linalg op is constructed 36 that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A. 37 """ 38 module = ir.Module.create() 39 f64 = ir.F64Type.get() 40 a = ir.RankedTensorType.get([3, 4], f64, attr) 41 b = ir.RankedTensorType.get([4, 2], f64) 42 c = ir.RankedTensorType.get([3, 2], f64) 43 arguments = [a, b, c] 44 with ir.InsertionPoint(module.body): 45 46 @func.FuncOp.from_py_func(*arguments) 47 def spMxM(*args): 48 return matmul_dsl(args[0], args[1], outs=[args[2]]) 49 50 return module 51 52 53def boilerplate(attr: st.EncodingAttr): 54 """Returns boilerplate main method. 55 56 This method sets up a boilerplate main method that takes three tensors 57 (a, b, c), converts the first tensor a into s sparse tensor, and then 58 calls the sparse kernel for matrix multiplication. For convenience, 59 this part is purely done as string input. 60 """ 61 return f""" 62func.func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64> 63 attributes {{ llvm.emit_c_interface }} {{ 64 %a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}> 65 %0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>, 66 tensor<4x2xf64>, 67 tensor<3x2xf64>) -> tensor<3x2xf64> 68 return %0 : tensor<3x2xf64> 69}} 70""" 71 72 73def build_compile_and_run_SpMM(attr: st.EncodingAttr, compiler): 74 # Build. 75 module = build_SpMM(attr) 76 func = str(module.operation.regions[0].blocks[0].operations[0].operation) 77 module = ir.Module.parse(func + boilerplate(attr)) 78 79 # Compile. 80 engine = compiler.compile_and_jit(module) 81 82 # Set up numpy input and buffer for output. 83 a = np.array( 84 [[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]], np.float64 85 ) 86 b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64) 87 c = np.zeros((3, 2), np.float64) 88 89 mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) 90 mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) 91 mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c))) 92 # Allocate a MemRefDescriptor to receive the output tensor. 93 # The buffer itself is allocated inside the MLIR code generation. 94 ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)() 95 mem_out = ctypes.pointer(ctypes.pointer(ref_out)) 96 97 # Invoke the kernel and get numpy output. 98 # Built-in bufferization uses in-out buffers. 99 engine.invoke("main", mem_out, mem_a, mem_b, mem_c) 100 101 # Sanity check on computed result. 102 expected = np.matmul(a, b) 103 c = rt.ranked_memref_to_numpy(mem_out[0]) 104 if np.allclose(c, expected): 105 pass 106 else: 107 quit(f"FAILURE") 108 109 110def main(): 111 support_lib = os.getenv("SUPPORT_LIB") 112 assert support_lib is not None, "SUPPORT_LIB is undefined" 113 if not os.path.exists(support_lib): 114 raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib) 115 116 # CHECK-LABEL: TEST: testSpMM 117 print("\nTEST: testSpMM") 118 count = 0 119 with ir.Context() as ctx, ir.Location.unknown(): 120 # Loop over various ways to compile and annotate the SpMM kernel with 121 # a *single* sparse tensor. Note that we deliberate do not exhaustively 122 # search the full state space to reduce runtime of the test. It is 123 # straightforward to adapt the code below to explore more combinations. 124 # For these simple orderings, dim2lvl and lvl2dim are the same. 125 vl = 1 126 e = False 127 opt = f"parallelization-strategy=none" 128 builder = st.EncodingAttr.build_level_type 129 fmt = st.LevelFormat 130 prop = st.LevelProperty 131 levels = [ 132 [builder(fmt.compressed, [prop.non_unique]), builder(fmt.singleton)], 133 [builder(fmt.dense), builder(fmt.dense)], 134 [builder(fmt.dense), builder(fmt.compressed)], 135 [builder(fmt.compressed), builder(fmt.dense)], 136 [builder(fmt.compressed), builder(fmt.compressed)], 137 ] 138 orderings = [ 139 ir.AffineMap.get_permutation([0, 1]), 140 ir.AffineMap.get_permutation([1, 0]), 141 ] 142 bitwidths = [0] 143 compiler = sparsifier.Sparsifier( 144 extras="", options=opt, opt_level=0, shared_libs=[support_lib] 145 ) 146 for level in levels: 147 for ordering in orderings: 148 for pwidth in bitwidths: 149 for iwidth in bitwidths: 150 attr = st.EncodingAttr.get( 151 level, ordering, ordering, pwidth, iwidth 152 ) 153 build_compile_and_run_SpMM(attr, compiler) 154 count = count + 1 155 # CHECK: Passed 10 tests 156 print("Passed ", count, "tests") 157 158 159if __name__ == "__main__": 160 main() 161