xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conv_2d_55.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
25// RUN: %{compile} | %{run} | FileCheck %s
26//
27// Do the same run, but now with direct IR generation and vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
29//
30// Do the same run, but now with direct IR generation and VLA vectorization.
31// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
32
33#CSR = #sparse_tensor.encoding<{
34  map = (d0, d1) -> (d0 : dense,
35                     d1 : compressed)
36}>
37
38#DCSR = #sparse_tensor.encoding<{
39  map = (d0, d1) -> (d0 : compressed,
40                     d1 : compressed)
41}>
42
43// An example of a 2D convolution with sparse data and filter.
44module {
45  func.func @conv2d(%input:  tensor<10x10xi32>,
46                    %filter: tensor<5x5xi32>,
47                    %output: tensor<6x6xi32>) -> tensor<6x6xi32> {
48    %0 = linalg.conv_2d
49      ins  (%input, %filter: tensor<10x10xi32>, tensor<5x5xi32>)
50      outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
51    return %0 : tensor<6x6xi32>
52  }
53
54  func.func @conv2d_ss(%input:  tensor<10x10xi32, #CSR>,
55                       %filter: tensor<5x5xi32, #CSR>,
56                       %output: tensor<6x6xi32>) -> tensor<6x6xi32> {
57    %0 = linalg.conv_2d
58      ins  (%input, %filter: tensor<10x10xi32, #CSR>, tensor<5x5xi32, #CSR>)
59      outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
60    return %0 : tensor<6x6xi32>
61  }
62
63  func.func @conv2d_bs(%input:  tensor<10x10xi32, #DCSR>,
64                       %filter: tensor<5x5xi32, #CSR>,
65                       %output: tensor<6x6xi32>) -> tensor<6x6xi32> {
66    %0 = linalg.conv_2d
67      ins  (%input, %filter: tensor<10x10xi32, #DCSR>, tensor<5x5xi32, #CSR>)
68      outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
69    return %0 : tensor<6x6xi32>
70  }
71
72  func.func @main() {
73    %c0 = arith.constant 0 : index
74    %i0 = arith.constant 0 : i32
75
76    // Dense filter and input to "stress" test sparsity.
77
78    %filter = arith.constant dense<[
79      [  -1,  -2,  -3,  -4,  -5 ],
80      [  -6,  -7,  -8,  -9, -10 ],
81      [ -11, -12, -13, -14, -15 ],
82      [ -16, -17, -18, -19, -20 ],
83      [ -21, -22, -23, -24, -25 ]
84    ]> : tensor<5x5xi32>
85
86    %input = arith.constant dense<[
87      [  0,  1,  2,  3,  4,  5,  6,  7,  8,  9 ],
88      [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ],
89      [ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 ],
90      [ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 ],
91      [ 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 ],
92      [ 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 ],
93      [ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 ],
94      [ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 ],
95      [ 80, 81, 82, 83, 84, 85, 86, 87, 88, 89 ],
96      [ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 ]
97    ]> : tensor<10x10xi32>
98
99    // Sparse filter and input to test true sparsity.
100
101    %sfilter = arith.constant dense<[
102      [  0, -1,  0, -2,  0 ],
103      [  0,  0,  0,  0,  0 ],
104      [  0,  0,  8,  0,  0 ],
105      [ -3,  0,  0, -4,  0 ],
106      [  0,  0, -5,  0, -6 ]
107    ]> : tensor<5x5xi32>
108
109    %sinput = arith.constant dense<[
110      [  0,  1,  2,  3,  0,  0,  0,  0,  0,  0 ],
111      [  0,  4,  0,  0,  5,  0,  0,  0,  0,  0 ],
112      [  0,  0,  0,  0,  0,  0,  0,  0,  0,  0 ],
113      [  0,  0,  0,  0,  0,  0,  0,  0,  0,  0 ],
114      [  0,  0,  0,  0,  0,  0,  6,  0,  0,  7 ],
115      [  0,  0,  0,  0,  0,  0,  0,  8,  0,  0 ],
116      [  0,  0,  0,  0,  0,  0,  0,  0,  0,  0 ],
117      [  0,  0,  0,  0,  0,  0,  0,  0,  0,  0 ],
118      [  0,  9,  0,  0,  0,  0,  0,  0,  0,  0 ],
119      [  0,  0,  0,  0, 10,  0,  0,  0,  0,  0 ]
120    ]> : tensor<10x10xi32>
121
122    // Set up sparse tensors.
123
124    %input_CSR = sparse_tensor.convert %input : tensor<10x10xi32> to tensor<10x10xi32, #CSR>
125    %input_DCSR = sparse_tensor.convert %input : tensor<10x10xi32> to tensor<10x10xi32, #DCSR>
126    %filter_CSR = sparse_tensor.convert %filter : tensor<5x5xi32> to tensor<5x5xi32, #CSR>
127
128    %sinput_CSR = sparse_tensor.convert %sinput : tensor<10x10xi32> to tensor<10x10xi32, #CSR>
129    %sinput_DCSR = sparse_tensor.convert %sinput : tensor<10x10xi32> to tensor<10x10xi32, #DCSR>
130    %sfilter_CSR = sparse_tensor.convert %sfilter : tensor<5x5xi32> to tensor<5x5xi32, #CSR>
131
132    // Call the kernels with stress input.
133    %output0 = arith.constant dense<0> : tensor<6x6xi32>
134    %0 = call @conv2d(%input, %filter, %output0)
135       : (tensor<10x10xi32>, tensor<5x5xi32>, tensor<6x6xi32>) -> tensor<6x6xi32>
136    %output1 = arith.constant dense<0> : tensor<6x6xi32>
137    %1 = call @conv2d_ss(%input_CSR, %filter_CSR, %output1)
138       : (tensor<10x10xi32, #CSR>, tensor<5x5xi32, #CSR>, tensor<6x6xi32>) -> tensor<6x6xi32>
139    %output2 = arith.constant dense<0> : tensor<6x6xi32>
140    %2 = call @conv2d_bs(%input_DCSR, %filter_CSR, %output2)
141       : (tensor<10x10xi32, #DCSR>, tensor<5x5xi32, #CSR>, tensor<6x6xi32>) -> tensor<6x6xi32>
142
143    // Call the kernels with sparse input.
144    %output3 = arith.constant dense<0> : tensor<6x6xi32>
145    %3 = call @conv2d(%sinput, %sfilter, %output3)
146       : (tensor<10x10xi32>, tensor<5x5xi32>, tensor<6x6xi32>) -> tensor<6x6xi32>
147    %output4 = arith.constant dense<0> : tensor<6x6xi32>
148    %4 = call @conv2d_ss(%sinput_CSR, %sfilter_CSR, %output4)
149       : (tensor<10x10xi32, #CSR>, tensor<5x5xi32, #CSR>, tensor<6x6xi32>) -> tensor<6x6xi32>
150    %output5 = arith.constant dense<0> : tensor<6x6xi32>
151    %5 = call @conv2d_bs(%sinput_DCSR, %sfilter_CSR, %output5)
152       : (tensor<10x10xi32, #DCSR>, tensor<5x5xi32, #CSR>, tensor<6x6xi32>) -> tensor<6x6xi32>
153
154    // Verify the output.
155    //
156    // CHECK:    ( ( -9700, -10025, -10350, -10675, -11000, -11325 ),
157    // CHECK-SAME: ( -12950, -13275, -13600, -13925, -14250, -14575 ),
158    // CHECK-SAME: ( -16200, -16525, -16850, -17175, -17500, -17825 ),
159    // CHECK-SAME: ( -19450, -19775, -20100, -20425, -20750, -21075 ),
160    // CHECK-SAME: ( -22700, -23025, -23350, -23675, -24000, -24325 ),
161    // CHECK-SAME: ( -25950, -26275, -26600, -26925, -27250, -27575 ) )
162    //
163    // CHECK:    ( ( -9700, -10025, -10350, -10675, -11000, -11325 ),
164    // CHECK-SAME: ( -12950, -13275, -13600, -13925, -14250, -14575 ),
165    // CHECK-SAME: ( -16200, -16525, -16850, -17175, -17500, -17825 ),
166    // CHECK-SAME: ( -19450, -19775, -20100, -20425, -20750, -21075 ),
167    // CHECK-SAME: ( -22700, -23025, -23350, -23675, -24000, -24325 ),
168    // CHECK-SAME: ( -25950, -26275, -26600, -26925, -27250, -27575 ) )
169    //
170    // CHECK:    ( ( -9700, -10025, -10350, -10675, -11000, -11325 ),
171    // CHECK-SAME: ( -12950, -13275, -13600, -13925, -14250, -14575 ),
172    // CHECK-SAME: ( -16200, -16525, -16850, -17175, -17500, -17825 ),
173    // CHECK-SAME: ( -19450, -19775, -20100, -20425, -20750, -21075 ),
174    // CHECK-SAME: ( -22700, -23025, -23350, -23675, -24000, -24325 ),
175    // CHECK-SAME: ( -25950, -26275, -26600, -26925, -27250, -27575 ) )
176    //
177    // CHECK:    ( ( -7, -2, -39, 0, -30, -42 ),
178    // CHECK-SAME: ( -4, -10, 0, -77, 0, -40 ),
179    // CHECK-SAME: ( 0, 0, 0, 0, 16, 0 ),
180    // CHECK-SAME: ( 0, 0, 0, 0, 0, 64 ),
181    // CHECK-SAME: ( 0, 0, 0, -12, 0, -6 ),
182    // CHECK-SAME: ( -60, -27, -50, 0, -16, 0 ) )
183    //
184    // CHECK:    ( ( -7, -2, -39, 0, -30, -42 ),
185    // CHECK-SAME: ( -4, -10, 0, -77, 0, -40 ),
186    // CHECK-SAME: ( 0, 0, 0, 0, 16, 0 ),
187    // CHECK-SAME: ( 0, 0, 0, 0, 0, 64 ),
188    // CHECK-SAME: ( 0, 0, 0, -12, 0, -6 ),
189    // CHECK-SAME: ( -60, -27, -50, 0, -16, 0 ) )
190    //
191    // CHECK:    ( ( -7, -2, -39, 0, -30, -42 ),
192    // CHECK-SAME: ( -4, -10, 0, -77, 0, -40 ),
193    // CHECK-SAME: ( 0, 0, 0, 0, 16, 0 ),
194    // CHECK-SAME: ( 0, 0, 0, 0, 0, 64 ),
195    // CHECK-SAME: ( 0, 0, 0, -12, 0, -6 ),
196    // CHECK-SAME: ( -60, -27, -50, 0, -16, 0 ) )
197    //
198    %v0 = vector.transfer_read %0[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
199    vector.print %v0 : vector<6x6xi32>
200    %v1 = vector.transfer_read %1[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
201    vector.print %v1 : vector<6x6xi32>
202    %v2 = vector.transfer_read %2[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
203    vector.print %v2 : vector<6x6xi32>
204    %v3 = vector.transfer_read %3[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
205    vector.print %v3 : vector<6x6xi32>
206    %v4 = vector.transfer_read %4[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
207    vector.print %v4 : vector<6x6xi32>
208    %v5 = vector.transfer_read %5[%c0, %c0], %i0 : tensor<6x6xi32>, vector<6x6xi32>
209    vector.print %v5 : vector<6x6xi32>
210
211    // Release resources.
212    bufferization.dealloc_tensor %input_CSR : tensor<10x10xi32, #CSR>
213    bufferization.dealloc_tensor %input_DCSR : tensor<10x10xi32, #DCSR>
214    bufferization.dealloc_tensor %filter_CSR : tensor<5x5xi32, #CSR>
215    bufferization.dealloc_tensor %sinput_CSR : tensor<10x10xi32, #CSR>
216    bufferization.dealloc_tensor %sinput_DCSR : tensor<10x10xi32, #DCSR>
217    bufferization.dealloc_tensor %sfilter_CSR : tensor<5x5xi32, #CSR>
218    bufferization.dealloc_tensor %0 : tensor<6x6xi32>
219    bufferization.dealloc_tensor %1 : tensor<6x6xi32>
220    bufferization.dealloc_tensor %2 : tensor<6x6xi32>
221    bufferization.dealloc_tensor %3 : tensor<6x6xi32>
222    bufferization.dealloc_tensor %4 : tensor<6x6xi32>
223    bufferization.dealloc_tensor %5 : tensor<6x6xi32>
224
225    return
226  }
227}
228