xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_cast.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
25// RUN: %{compile} | %{run} | FileCheck %s
26//
27// Do the same run, but now with direct IR generation and vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
29// RUN: %{compile} | %{run} | FileCheck %s
30//
31// Do the same run, but now with direct IR generation and VLA vectorization.
32// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
33
34#SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
35
36#trait_cast = {
37  indexing_maps = [
38    affine_map<(i) -> (i)>,  // A (in)
39    affine_map<(i) -> (i)>   // X (out)
40  ],
41  iterator_types = ["parallel"],
42  doc = "X(i) = cast A(i)"
43}
44
45//
46// Integration test that lowers a kernel annotated as sparse to actual sparse
47// code, initializes a matching sparse storage scheme from a dense vector,
48// and runs the resulting code with the JIT compiler.
49//
50module {
51  //
52  // Various kernels that cast a sparse vector from one type to another.
53  // Arithmetic supports the following casts.
54  //   sitofp
55  //   uitofp
56  //   fptosi
57  //   fptoui
58  //   extf
59  //   truncf
60  //   extsi
61  //   extui
62  //   trunci
63  //   bitcast
64  // Since all casts are "zero preserving" unary operations, lattice computation
65  // and conversion to sparse code is straightforward.
66  //
67  func.func @sparse_cast_s32_to_f32(%arga: tensor<10xi32, #SV>,
68                                    %argb: tensor<10xf32>) -> tensor<10xf32> {
69    %0 = linalg.generic #trait_cast
70      ins(%arga: tensor<10xi32, #SV>)
71      outs(%argb: tensor<10xf32>) {
72        ^bb(%a: i32, %x : f32):
73          %cst = arith.sitofp %a : i32 to f32
74          linalg.yield %cst : f32
75    } -> tensor<10xf32>
76    return %0 : tensor<10xf32>
77  }
78  func.func @sparse_cast_u32_to_f32(%arga: tensor<10xi32, #SV>,
79                                    %argb: tensor<10xf32>) -> tensor<10xf32> {
80    %0 = linalg.generic #trait_cast
81      ins(%arga: tensor<10xi32, #SV>)
82      outs(%argb: tensor<10xf32>) {
83        ^bb(%a: i32, %x : f32):
84          %cst = arith.uitofp %a : i32 to f32
85          linalg.yield %cst : f32
86    } -> tensor<10xf32>
87    return %0 : tensor<10xf32>
88  }
89  func.func @sparse_cast_f32_to_s32(%arga: tensor<10xf32, #SV>,
90                                    %argb: tensor<10xi32>) -> tensor<10xi32> {
91    %0 = linalg.generic #trait_cast
92      ins(%arga: tensor<10xf32, #SV>)
93      outs(%argb: tensor<10xi32>) {
94        ^bb(%a: f32, %x : i32):
95          %cst = arith.fptosi %a : f32 to i32
96          linalg.yield %cst : i32
97    } -> tensor<10xi32>
98    return %0 : tensor<10xi32>
99  }
100  func.func @sparse_cast_f64_to_u32(%arga: tensor<10xf64, #SV>,
101                                    %argb: tensor<10xi32>) -> tensor<10xi32> {
102    %0 = linalg.generic #trait_cast
103      ins(%arga: tensor<10xf64, #SV>)
104      outs(%argb: tensor<10xi32>) {
105        ^bb(%a: f64, %x : i32):
106          %cst = arith.fptoui %a : f64 to i32
107          linalg.yield %cst : i32
108    } -> tensor<10xi32>
109    return %0 : tensor<10xi32>
110  }
111  func.func @sparse_cast_f32_to_f64(%arga: tensor<10xf32, #SV>,
112                                    %argb: tensor<10xf64>) -> tensor<10xf64> {
113    %0 = linalg.generic #trait_cast
114      ins(%arga: tensor<10xf32, #SV>)
115      outs(%argb: tensor<10xf64>) {
116        ^bb(%a: f32, %x : f64):
117          %cst = arith.extf %a : f32 to f64
118          linalg.yield %cst : f64
119    } -> tensor<10xf64>
120    return %0 : tensor<10xf64>
121  }
122  func.func @sparse_cast_f64_to_f32(%arga: tensor<10xf64, #SV>,
123                                    %argb: tensor<10xf32>) -> tensor<10xf32> {
124    %0 = linalg.generic #trait_cast
125      ins(%arga: tensor<10xf64, #SV>)
126      outs(%argb: tensor<10xf32>) {
127        ^bb(%a: f64, %x : f32):
128          %cst = arith.truncf %a : f64 to f32
129          linalg.yield %cst : f32
130    } -> tensor<10xf32>
131    return %0 : tensor<10xf32>
132  }
133  func.func @sparse_cast_s32_to_u64(%arga: tensor<10xi32, #SV>,
134                                    %argb: tensor<10xi64>) -> tensor<10xi64> {
135    %0 = linalg.generic #trait_cast
136      ins(%arga: tensor<10xi32, #SV>)
137      outs(%argb: tensor<10xi64>) {
138        ^bb(%a: i32, %x : i64):
139          %cst = arith.extsi %a : i32 to i64
140          linalg.yield %cst : i64
141    } -> tensor<10xi64>
142    return %0 : tensor<10xi64>
143  }
144  func.func @sparse_cast_u32_to_s64(%arga: tensor<10xi32, #SV>,
145                                    %argb: tensor<10xi64>) -> tensor<10xi64> {
146    %0 = linalg.generic #trait_cast
147      ins(%arga: tensor<10xi32, #SV>)
148      outs(%argb: tensor<10xi64>) {
149        ^bb(%a: i32, %x : i64):
150          %cst = arith.extui %a : i32 to i64
151          linalg.yield %cst : i64
152    } -> tensor<10xi64>
153    return %0 : tensor<10xi64>
154  }
155  func.func @sparse_cast_i32_to_i8(%arga: tensor<10xi32, #SV>,
156                                   %argb: tensor<10xi8>) -> tensor<10xi8> {
157    %0 = linalg.generic #trait_cast
158      ins(%arga: tensor<10xi32, #SV>)
159      outs(%argb: tensor<10xi8>) {
160        ^bb(%a: i32, %x : i8):
161          %cst = arith.trunci %a : i32 to i8
162          linalg.yield %cst : i8
163    } -> tensor<10xi8>
164    return %0 : tensor<10xi8>
165  }
166  func.func @sparse_cast_f32_as_s32(%arga: tensor<10xf32, #SV>,
167                                    %argb: tensor<10xi32>) -> tensor<10xi32> {
168    %0 = linalg.generic #trait_cast
169      ins(%arga: tensor<10xf32, #SV>)
170      outs(%argb: tensor<10xi32>) {
171        ^bb(%a: f32, %x : i32):
172          %cst = arith.bitcast %a : f32 to i32
173          linalg.yield %cst : i32
174    } -> tensor<10xi32>
175    return %0 : tensor<10xi32>
176  }
177
178  //
179  // Main driver that converts a dense tensor into a sparse tensor
180  // and then calls the sparse casting kernel.
181  //
182  func.func @main() {
183    %z = arith.constant 0 : index
184    %b = arith.constant 0 : i8
185    %i = arith.constant 0 : i32
186    %l = arith.constant 0 : i64
187    %f = arith.constant 0.0 : f32
188    %d = arith.constant 0.0 : f64
189
190    %zero_b = arith.constant dense<0> : tensor<10xi8>
191    %zero_d = arith.constant dense<0.0> : tensor<10xf64>
192    %zero_f = arith.constant dense<0.0> : tensor<10xf32>
193    %zero_i = arith.constant dense<0> : tensor<10xi32>
194    %zero_l = arith.constant dense<0> : tensor<10xi64>
195
196    // Initialize dense tensors, convert to a sparse vectors.
197    %0 = arith.constant dense<[ -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 ]> : tensor<10xi32>
198    %1 = sparse_tensor.convert %0 : tensor<10xi32> to tensor<10xi32, #SV>
199    %2 = arith.constant dense<[ -4.4, -3.3, -2.2, -1.1, 0.0, 1.1, 2.2, 3.3, 4.4, 305.5 ]> : tensor<10xf32>
200    %3 = sparse_tensor.convert %2 : tensor<10xf32> to tensor<10xf32, #SV>
201    %4 = arith.constant dense<[ -4.4, -3.3, -2.2, -1.1, 0.0, 1.1, 2.2, 3.3, 4.4, 305.5 ]> : tensor<10xf64>
202    %5 = sparse_tensor.convert %4 : tensor<10xf64> to tensor<10xf64, #SV>
203    %6 = arith.constant dense<[ 4294967295.0, 4294967294.0, 4294967293.0, 4294967292.0,
204                          0.0, 1.1, 2.2, 3.3, 4.4, 305.5 ]> : tensor<10xf64>
205    %7 = sparse_tensor.convert %6 : tensor<10xf64> to tensor<10xf64, #SV>
206
207    //
208    // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 )
209    //
210    %c0 = call @sparse_cast_s32_to_f32(%1, %zero_f) : (tensor<10xi32, #SV>, tensor<10xf32>) -> tensor<10xf32>
211    %v0 = vector.transfer_read %c0[%z], %f: tensor<10xf32>, vector<10xf32>
212    vector.print %v0 : vector<10xf32>
213
214    //
215    // CHECK: ( 4.29497e+09, 4.29497e+09, 4.29497e+09, 4.29497e+09, 0, 1, 2, 3, 4, 305 )
216    //
217    %c1 = call @sparse_cast_u32_to_f32(%1, %zero_f) : (tensor<10xi32, #SV>, tensor<10xf32>) -> tensor<10xf32>
218    %v1 = vector.transfer_read %c1[%z], %f: tensor<10xf32>, vector<10xf32>
219    vector.print %v1 : vector<10xf32>
220
221    //
222    // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 )
223    //
224    %c2 = call @sparse_cast_f32_to_s32(%3, %zero_i) : (tensor<10xf32, #SV>, tensor<10xi32>) -> tensor<10xi32>
225    %v2 = vector.transfer_read %c2[%z], %i: tensor<10xi32>, vector<10xi32>
226    vector.print %v2 : vector<10xi32>
227
228    //
229    // CHECK: ( 4294967295, 4294967294, 4294967293, 4294967292, 0, 1, 2, 3, 4, 305 )
230    //
231    %c3 = call @sparse_cast_f64_to_u32(%7, %zero_i) : (tensor<10xf64, #SV>, tensor<10xi32>) -> tensor<10xi32>
232    %v3 = vector.transfer_read %c3[%z], %i: tensor<10xi32>, vector<10xi32>
233    %vu = vector.bitcast %v3 : vector<10xi32> to vector<10xui32>
234    vector.print %vu : vector<10xui32>
235
236    //
237    // CHECK: ( -4.4, -3.3, -2.2, -1.1, 0, 1.1, 2.2, 3.3, 4.4, 305.5 )
238    //
239    %c4 = call @sparse_cast_f32_to_f64(%3, %zero_d) : (tensor<10xf32, #SV>, tensor<10xf64>) -> tensor<10xf64>
240    %v4 = vector.transfer_read %c4[%z], %d: tensor<10xf64>, vector<10xf64>
241    vector.print %v4 : vector<10xf64>
242
243    //
244    // CHECK: ( -4.4, -3.3, -2.2, -1.1, 0, 1.1, 2.2, 3.3, 4.4, 305.5 )
245    //
246    %c5 = call @sparse_cast_f64_to_f32(%5, %zero_f) : (tensor<10xf64, #SV>, tensor<10xf32>) -> tensor<10xf32>
247    %v5 = vector.transfer_read %c5[%z], %f: tensor<10xf32>, vector<10xf32>
248    vector.print %v5 : vector<10xf32>
249
250    //
251    // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 305 )
252    //
253    %c6 = call @sparse_cast_s32_to_u64(%1, %zero_l) : (tensor<10xi32, #SV>, tensor<10xi64>) -> tensor<10xi64>
254    %v6 = vector.transfer_read %c6[%z], %l: tensor<10xi64>, vector<10xi64>
255    vector.print %v6 : vector<10xi64>
256
257    //
258    // CHECK: ( 4294967292, 4294967293, 4294967294, 4294967295, 0, 1, 2, 3, 4, 305 )
259    //
260    %c7 = call @sparse_cast_u32_to_s64(%1, %zero_l) : (tensor<10xi32, #SV>, tensor<10xi64>) -> tensor<10xi64>
261    %v7 = vector.transfer_read %c7[%z], %l: tensor<10xi64>, vector<10xi64>
262    vector.print %v7 : vector<10xi64>
263
264    //
265    // CHECK: ( -4, -3, -2, -1, 0, 1, 2, 3, 4, 49 )
266    //
267    %c8 = call @sparse_cast_i32_to_i8(%1, %zero_b) : (tensor<10xi32, #SV>, tensor<10xi8>) -> tensor<10xi8>
268    %v8 = vector.transfer_read %c8[%z], %b: tensor<10xi8>, vector<10xi8>
269    vector.print %v8 : vector<10xi8>
270
271    //
272    // CHECK: ( -1064514355, -1068289229, -1072902963, -1081291571, 0, 1066192077, 1074580685, 1079194419, 1082969293, 1134084096 )
273    //
274    %c9 = call @sparse_cast_f32_as_s32(%3, %zero_i) : (tensor<10xf32, #SV>, tensor<10xi32>) -> tensor<10xi32>
275    %v9 = vector.transfer_read %c9[%z], %i: tensor<10xi32>, vector<10xi32>
276    vector.print %v9 : vector<10xi32>
277
278    // Release the resources.
279    bufferization.dealloc_tensor %1 : tensor<10xi32, #SV>
280    bufferization.dealloc_tensor %3 : tensor<10xf32, #SV>
281    bufferization.dealloc_tensor %5 : tensor<10xf64, #SV>
282    bufferization.dealloc_tensor %7 : tensor<10xf64, #SV>
283    bufferization.dealloc_tensor %c0 : tensor<10xf32>
284    bufferization.dealloc_tensor %c1 : tensor<10xf32>
285    bufferization.dealloc_tensor %c2 : tensor<10xi32>
286    bufferization.dealloc_tensor %c3 : tensor<10xi32>
287    bufferization.dealloc_tensor %c4 : tensor<10xf64>
288    bufferization.dealloc_tensor %c5 : tensor<10xf32>
289    bufferization.dealloc_tensor %c6 : tensor<10xi64>
290    bufferization.dealloc_tensor %c7 : tensor<10xi64>
291    bufferization.dealloc_tensor %c8 : tensor<10xi8>
292    bufferization.dealloc_tensor %c9 : tensor<10xi32>
293
294    return
295  }
296}
297