xref: /llvm-project/mlir/test/IR/slice.mlir (revision d97bc388fd9ef8bc38353f93ff42d894ddc4a271)
1// RUN: mlir-opt -slice-analysis-test -split-input-file %s | FileCheck %s
2
3func.func @slicing_linalg_op(%arg0 : index, %arg1 : index, %arg2 : index) {
4  %a = memref.alloc(%arg0, %arg2) : memref<?x?xf32>
5  %b = memref.alloc(%arg2, %arg1) : memref<?x?xf32>
6  %c = memref.alloc(%arg0, %arg1) : memref<?x?xf32>
7  %d = memref.alloc(%arg0, %arg1) : memref<?x?xf32>
8  linalg.matmul ins(%a, %b : memref<?x?xf32>, memref<?x?xf32>)
9               outs(%c : memref<?x?xf32>)
10  linalg.matmul ins(%a, %b : memref<?x?xf32>, memref<?x?xf32>)
11               outs(%d : memref<?x?xf32>)
12  memref.dealloc %c : memref<?x?xf32>
13  memref.dealloc %b : memref<?x?xf32>
14  memref.dealloc %a : memref<?x?xf32>
15  memref.dealloc %d : memref<?x?xf32>
16  return
17}
18
19// CHECK-LABEL: func @slicing_linalg_op__backward_slice__0
20//  CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: index
21//  CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: index
22//  CHECK-SAME:   %[[ARG2:[a-zA-Z0-9_]+]]: index
23//   CHECK-DAG:   %[[A:.+]] = memref.alloc(%[[ARG0]], %[[ARG2]]) : memref<?x?xf32>
24//   CHECK-DAG:   %[[B:.+]] = memref.alloc(%[[ARG2]], %[[ARG1]]) : memref<?x?xf32>
25//   CHECK-DAG:   %[[C:.+]] = memref.alloc(%[[ARG0]], %[[ARG1]]) : memref<?x?xf32>
26//       CHECK:   return
27
28// CHECK-LABEL: func @slicing_linalg_op__backward_slice__1
29//  CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: index
30//  CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: index
31//  CHECK-SAME:   %[[ARG2:[a-zA-Z0-9_]+]]: index
32//   CHECK-DAG:   %[[A:.+]] = memref.alloc(%[[ARG0]], %[[ARG2]]) : memref<?x?xf32>
33//   CHECK-DAG:   %[[B:.+]] = memref.alloc(%[[ARG2]], %[[ARG1]]) : memref<?x?xf32>
34//   CHECK-DAG:   %[[C:.+]] = memref.alloc(%[[ARG0]], %[[ARG1]]) : memref<?x?xf32>
35//       CHECK:   return
36
37// -----
38
39#map = affine_map<(d0, d1) -> (d0, d1)>
40func.func @slice_use_from_above(%arg0: tensor<5x5xf32>, %arg1: tensor<5x5xf32>) {
41  %0 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor<5x5xf32>) outs(%arg1 : tensor<5x5xf32>) {
42  ^bb0(%in: f32, %out: f32):
43    %2 = arith.addf %in, %in : f32
44    linalg.yield %2 : f32
45  } -> tensor<5x5xf32>
46  %collapsed = tensor.collapse_shape %0 [[0, 1]] : tensor<5x5xf32> into tensor<25xf32>
47  %1 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel"]} ins(%0 : tensor<5x5xf32>) outs(%arg1 : tensor<5x5xf32>) {
48  ^bb0(%in: f32, %out: f32):
49    %c2 = arith.constant 2 : index
50    %extracted = tensor.extract %collapsed[%c2] : tensor<25xf32>
51    %2 = arith.addf %extracted, %extracted : f32
52    linalg.yield %2 : f32
53  } -> tensor<5x5xf32>
54  return
55}
56
57// CHECK-LABEL: func @slice_use_from_above__backward_slice__0
58//  CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor
59//       CHECK:   %[[A:.+]] = linalg.generic {{.*}} ins(%[[ARG0]]
60//       CHECK:   %[[B:.+]] = tensor.collapse_shape %[[A]]
61//       CHECK:   return
62