1// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification -cse -sparse-vectorization="vl=8" -cse | \ 2// RUN: FileCheck %s 3 4// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py 5 6#SparseVector = #sparse_tensor.encoding<{ 7 map = (d0) -> (d0 : compressed) 8}> 9 10#trait_1d = { 11 indexing_maps = [ 12 affine_map<(i) -> (i)>, // a 13 affine_map<(i) -> (i)> // x (out) 14 ], 15 iterator_types = ["parallel"], 16 doc = "X(i) = a(i) op i" 17} 18 19// CHECK-LABEL: func.func @sparse_index_1d_conj( 20// CHECK-SAME: %[[VAL_0:.*]]: tensor<8xi64, #sparse{{[0-9]*}}>) -> tensor<8xi64> { 21// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 8 : index 22// CHECK-DAG: %[[VAL_2:.*]] = arith.constant dense<0> : vector<8xi64> 23// CHECK-DAG: %[[VAL_3:.*]] = arith.constant dense<0> : vector<8xindex> 24// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : i64 25// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index 26// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index 27// CHECK-DAG: %[[VAL_7:.*]] = tensor.empty() : tensor<8xi64> 28// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<8xi64, #sparse{{[0-9]*}}> to memref<?xindex> 29// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<8xi64, #sparse{{[0-9]*}}> to memref<?xindex> 30// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<8xi64, #sparse{{[0-9]*}}> to memref<?xi64> 31// CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_7]] : tensor<8xi64> to memref<8xi64> 32// CHECK-DAG: linalg.fill ins(%[[VAL_4]] : i64) outs(%[[VAL_11]] : memref<8xi64>) 33// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref<?xindex> 34// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref<?xindex> 35// CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_12]] to %[[VAL_13]] step %[[VAL_1]] { 36// CHECK: %[[VAL_15:.*]] = affine.min #map(%[[VAL_13]], %[[VAL_14]]){{\[}}%[[VAL_1]]] 37// CHECK: %[[VAL_16:.*]] = vector.create_mask %[[VAL_15]] : vector<8xi1> 38// CHECK: %[[VAL_17:.*]] = vector.maskedload %[[VAL_9]]{{\[}}%[[VAL_14]]], %[[VAL_16]], %[[VAL_3]] : memref<?xindex>, vector<8xi1>, vector<8xindex> into vector<8xindex> 39// CHECK: %[[VAL_18:.*]] = vector.maskedload %[[VAL_10]]{{\[}}%[[VAL_14]]], %[[VAL_16]], %[[VAL_2]] : memref<?xi64>, vector<8xi1>, vector<8xi64> into vector<8xi64> 40// CHECK: %[[VAL_19:.*]] = arith.index_cast %[[VAL_17]] : vector<8xindex> to vector<8xi64> 41// CHECK: %[[VAL_20:.*]] = arith.muli %[[VAL_18]], %[[VAL_19]] : vector<8xi64> 42// CHECK: vector.scatter %[[VAL_11]]{{\[}}%[[VAL_5]]] {{\[}}%[[VAL_17]]], %[[VAL_16]], %[[VAL_20]] : memref<8xi64>, vector<8xindex>, vector<8xi1>, vector<8xi64> 43// CHECK: } {"Emitted from" = "linalg.generic"} 44// CHECK: %[[VAL_21:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<8xi64> 45// CHECK: return %[[VAL_21]] : tensor<8xi64> 46// CHECK: } 47func.func @sparse_index_1d_conj(%arga: tensor<8xi64, #SparseVector>) -> tensor<8xi64> { 48 %init = tensor.empty() : tensor<8xi64> 49 %r = linalg.generic #trait_1d 50 ins(%arga: tensor<8xi64, #SparseVector>) 51 outs(%init: tensor<8xi64>) { 52 ^bb(%a: i64, %x: i64): 53 %i = linalg.index 0 : index 54 %ii = arith.index_cast %i : index to i64 55 %m1 = arith.muli %a, %ii : i64 56 linalg.yield %m1 : i64 57 } -> tensor<8xi64> 58 return %r : tensor<8xi64> 59} 60 61// CHECK-LABEL: func.func @sparse_index_1d_disj( 62// CHECK-SAME: %[[VAL_0:.*]]: tensor<8xi64, #sparse{{[0-9]*}}>) -> tensor<8xi64> { 63// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 8 : index 64// CHECK-DAG: %[[VAL_2:.*]] = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7]> : vector<8xindex> 65// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : i64 66// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index 67// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index 68// CHECK-DAG: %[[VAL_6:.*]] = arith.constant true 69// CHECK-DAG: %[[VAL_7:.*]] = tensor.empty() : tensor<8xi64> 70// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<8xi64, #sparse{{[0-9]*}}> to memref<?xindex> 71// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<8xi64, #sparse{{[0-9]*}}> to memref<?xindex> 72// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<8xi64, #sparse{{[0-9]*}}> to memref<?xi64> 73// CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_7]] : tensor<8xi64> to memref<8xi64> 74// CHECK-DAG: linalg.fill ins(%[[VAL_3]] : i64) outs(%[[VAL_11]] : memref<8xi64>) 75// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex> 76// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref<?xindex> 77// CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) { 78// CHECK: %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index 79// CHECK: scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index 80// CHECK: } do { 81// CHECK: ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index): 82// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xindex> 83// CHECK: %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index 84// CHECK: scf.if %[[VAL_21]] { 85// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_18]]] : memref<?xi64> 86// CHECK: %[[VAL_23:.*]] = arith.index_cast %[[VAL_19]] : index to i64 87// CHECK: %[[VAL_24:.*]] = arith.addi %[[VAL_22]], %[[VAL_23]] : i64 88// CHECK: memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<8xi64> 89// CHECK: } else { 90// CHECK: scf.if %[[VAL_6]] { 91// CHECK: %[[VAL_25:.*]] = arith.index_cast %[[VAL_19]] : index to i64 92// CHECK: memref.store %[[VAL_25]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<8xi64> 93// CHECK: } else { 94// CHECK: } 95// CHECK: } 96// CHECK: %[[VAL_26:.*]] = arith.addi %[[VAL_18]], %[[VAL_5]] : index 97// CHECK: %[[VAL_27:.*]] = arith.select %[[VAL_21]], %[[VAL_26]], %[[VAL_18]] : index 98// CHECK: %[[VAL_28:.*]] = arith.addi %[[VAL_19]], %[[VAL_5]] : index 99// CHECK: scf.yield %[[VAL_27]], %[[VAL_28]] : index, index 100// CHECK: } attributes {"Emitted from" = "linalg.generic"} 101// CHECK: scf.for %[[VAL_29:.*]] = %[[VAL_30:.*]]#1 to %[[VAL_1]] step %[[VAL_1]] { 102// CHECK: %[[VAL_31:.*]] = affine.min #map(%[[VAL_1]], %[[VAL_29]]){{\[}}%[[VAL_1]]] 103// CHECK: %[[VAL_32:.*]] = vector.create_mask %[[VAL_31]] : vector<8xi1> 104// CHECK: %[[VAL_33:.*]] = vector.broadcast %[[VAL_29]] : index to vector<8xindex> 105// CHECK: %[[VAL_34:.*]] = arith.addi %[[VAL_33]], %[[VAL_2]] : vector<8xindex> 106// CHECK: %[[VAL_35:.*]] = arith.index_cast %[[VAL_34]] : vector<8xindex> to vector<8xi64> 107// CHECK: vector.maskedstore %[[VAL_11]]{{\[}}%[[VAL_29]]], %[[VAL_32]], %[[VAL_35]] : memref<8xi64>, vector<8xi1>, vector<8xi64> 108// CHECK: } {"Emitted from" = "linalg.generic"} 109// CHECK: %[[VAL_36:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<8xi64> 110// CHECK: return %[[VAL_36]] : tensor<8xi64> 111// CHECK: } 112func.func @sparse_index_1d_disj(%arga: tensor<8xi64, #SparseVector>) -> tensor<8xi64> { 113 %init = tensor.empty() : tensor<8xi64> 114 %r = linalg.generic #trait_1d 115 ins(%arga: tensor<8xi64, #SparseVector>) 116 outs(%init: tensor<8xi64>) { 117 ^bb(%a: i64, %x: i64): 118 %i = linalg.index 0 : index 119 %ii = arith.index_cast %i : index to i64 120 %m1 = arith.addi %a, %ii : i64 121 linalg.yield %m1 : i64 122 } -> tensor<8xi64> 123 return %r : tensor<8xi64> 124} 125