xref: /llvm-project/mlir/test/Dialect/SparseTensor/sparse_tensor_reshape.mlir (revision a02010b3e97b5f01d4ff921b353f4a25a29c45cd)
1// RUN: mlir-opt %s --lower-sparse-ops-to-foreach="enable-runtime-library=false enable-convert=false" \
2// RUN: --lower-sparse-foreach-to-scf --cse --canonicalize  | FileCheck %s
3
4#SparseMatrix = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed, d1 : compressed) }>
5
6// CHECK:         func.func @sparse_reshape(
7// CHECK-SAME:    %[[S:.*0]]:
8// CHECK-DAG:     %[[C25:.*]] = arith.constant 25 : index
9// CHECK-DAG:     %[[C10:.*]] = arith.constant 10 : index
10// CHECK-DAG:     %[[C0:.*]] = arith.constant 0 : index
11// CHECK-DAG:     %[[C1:.*]] = arith.constant 1 : index
12// CHECK-DAG:     %[[B:.*]] = bufferization.alloc_tensor()
13// CHECK-DAG:     %[[P0:.*]] = sparse_tensor.positions %[[S]] {level = 0 : index}
14// CHECK-DAG:     %[[I0:.*]] = sparse_tensor.coordinates %[[S]] {level = 0 : index}
15// CHECK-DAG:     %[[P1:.*]] = sparse_tensor.positions %[[S]] {level = 1 : index}
16// CHECK-DAG:     %[[I1:.*]] = sparse_tensor.coordinates %[[S]] {level = 1 : index}
17// CHECK-DAG:     %[[V:.*]] = sparse_tensor.values %[[S]]
18// CHECK:         %[[S0:.*]] = memref.load %[[P0]]{{\[}}%[[C0]]] : memref<?xindex>
19// CHECK:         %[[E0:.*]] = memref.load %[[P0]]{{\[}}%[[C1]]] : memref<?xindex>
20// CHECK:         %[[RET:.*]] = scf.for %[[I:.*]] = %[[S0]] to %[[E0]] step %[[C1]] iter_args(%[[A0:.*]] = %[[B]])
21// CHECK:           %[[SI0:.*]] = memref.load %[[I0]]{{\[}}%[[I]]] : memref<?xindex>
22// CHECK-DAG:       %[[S1:.*]] = memref.load %[[P1]]{{\[}}%[[I]]] : memref<?xindex>
23// CHECK-DAG:       %[[PE1:.*]] = arith.addi %[[I]], %[[C1]] : index
24// CHECK:           %[[E1:.*]] = memref.load %[[P1]]{{\[}}%[[PE1]]] : memref<?xindex>
25// CHECK:           %[[RET_1:.*]] = scf.for %[[J:.*]] = %[[S1]] to %[[E1]] step %[[C1]] iter_args(%[[A1:.*]] = %[[A0]])
26// CHECK:             %[[SI1:.*]] = memref.load %[[I1]]{{\[}}%[[J]]] : memref<?xindex>
27// CHECK:             %[[SV:.*]] = memref.load %[[V]]{{\[}}%[[J]]] : memref<?xf64>
28// CHECK:             %[[T:.*]] = arith.muli %[[SI0]], %[[C25]] : index
29// CHECK:             %[[DI:.*]] = arith.addi %[[T]], %[[SI1]] : index
30// CHECK:             %[[D:.*]] = arith.divui %[[DI]], %[[C10]] : index
31// CHECK:             %[[R:.*]] = arith.remui %[[DI]], %[[C10]] : index
32// CHECK:             %[[R1:.*]] = tensor.insert %[[SV]] into %[[A1]]{{\[}}%[[D]], %[[R]]]
33// CHECK:              scf.yield %[[R1]]
34// CHECK:            }
35// CHECK:            scf.yield %[[RET_1]]
36// CHECK:         }
37// CHECK:        %[[NT1:.*]] = sparse_tensor.load %[[RET]] hasInserts
38// CHECK:        return %[[NT1]] : tensor<10x10xf64, #sparse{{[0-9]*}}>
39//
40func.func @sparse_reshape(%arg0: tensor<4x25xf64, #SparseMatrix>) -> tensor<10x10xf64, #SparseMatrix> {
41  %shape = arith.constant dense <[ 10, 10 ]> : tensor<2xi32>
42  %0 = tensor.reshape %arg0(%shape) :
43    (tensor<4x25xf64, #SparseMatrix>, tensor<2xi32>) -> tensor<10x10xf64, #SparseMatrix>
44  return %0 : tensor<10x10xf64, #SparseMatrix>
45}
46